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Abstract 

The successful outcome from implant procedure relies heavily on the integration 
between the implant and the surrounding bone tissues. Besides, Type 2 Diabetes 
Mellitus (T2DM), which is linked with delay of osseointegration and reduction of 
bone-implant interface, further compromises the success rate of implant in diabetic 
patients.  Apart from hyperglycaemia, the precise mechanism of diabetes influence 
on bone repair associated with dental implants is not completely understood. 
Nevertheless, the transforming growth factor-β1 (TGF-β1) has been indicated to 
increase healing processes, by exerting the stimulatory role on mesenchymal stem 
cells (MSCs) and macrophage populations during the inflammatory stage of bone 
repair. Moreover, the bioavailability of growth factors has been associated with the 
functional role of SLRPs, particularly biglycan and decorin. However, the 
responsiveness of each relevant bone-repair cell and biomolecule during bone repair 
in a diabetic environment has not been fully evaluated.  

On the other hand, the in vivo osseointegration of implant in T2DM animal models, 
investigated in respect to the expression of TGF-β1 by MSCs, demonstrated 
statistically significant differences in TGF-β1 labelled between the young diabetic 
and the control groups. Besides, the in vitro assessment demonstrated alterations for 
TGF-β1 expression and synthesis by osteoprogenitor cells, macrophages populations, 
between cells with different proliferative states, and prior hyperglycaemic-induction. 
Moreover, hyperglycaemia altered osteogenic and adipogenic differentiation 
capacities in MSCs. The data also suggested that hyperglycaemia induced lower 
proliferative capacity in MSCs, which led to significant changes in growth factor and 
proteoglycans bioactivity in bone repair. Hence, the data gathered from both in vivo 
and in vitro experiments suggested the potential association of MSCs proliferative 
stage with bioavailability of TGF-β1 and proteoglycans sequestration in the 
extracellular matrix compartment. Apart from that, the inter-dependent relationship 
observed between the osseointegration biomolecules directly exerted a synergical 
impact on the capability of MSCs to form osteoblast and further stimulate bone 
formation in order to induce bone-healing processes. Thus, the original contribution 
of this study to the field of reparative medicine is the novel identification and the 
characterisation of key biological components in both cellular and molecular bone 
repairs; the osteoprogenitor cell populations, as well as the macrophages, in relation 
to hyperglycaemia that directly influences growth factors, signalling the role of 
proteoglycans during the bone repair processes in T2DM. Collectively, the evidence 
gathered within this study is highly valuable to assist in elucidating the relevant 
therapeutic target to accelerate bone repair processes in T2DM patients. 

Keywords: diabetes, osseointegration, hyperglycaemia, bone, growth factors. 
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1.0 Introduction 

Implant technologies have significantly improved the rates of success and survival in 

treated subjects, besides making various improvements in treatment for bone loss and 

repair. Besides, studies on both animal and human have provided useful insights 

towards assisting in better post-implant recoveries. Approximately 188,000 hips and 

knees replacements are performed each year in England and Wales (National Joint 

Registry, 2014). Replacement surgeries are critical to replace the damaged tissues, as 

well as to restore the initial function and the structural features of the skeletal area, 

by replacing the joints with prosthetic implant. Nonetheless, in clinical dentistry, 

implants are preferred in comparison to removable prosthetic appliances, as they 

provide long-term stability and comfort with excellent post-surgical performance. 

However, the successful outcomes from implantology rely heavily on the 

osseointegration process between the implant and the surrounding tissues, which is 

variously influenced by a number of biological and pathophysiological factors. For 

that reason, implant treatment has been restricted to certain groups of individuals 

where high risk of failure is minimal or low. 

Furthermore, rigorous pre-clinical guidelines have been introduced to increase the 

efficacy and the long-term benefit of implant procedure, by eliminating the risk 

factors that may impair the implant success.  In fact, the presence of an underlying 

disease is identified as a possible risk in implant treatment (Soballe 1993). Therefore, 

patients with chronic conditions of metabolic bone diseases, such as 

hyperparathyroidism, osteoporosis, and diabetes mellitus, with altered physiological 

activities to compromise healing are likely to be excluded from implant treatment. 

Moreover, epidemiological studies suggested an increase in the incidences of hip 

fracture and periodontal diseases in Type 2 Diabetes Mellitus (T2DM), in 

comparison to non-diabetic group (Lipscombe et al. 2007). These directly indicate 

the extreme necessities of this group to undergo implant treatment. In view of these 

important factors, the exclusion criteria are likely to bring a substantial negative 

impact on the present society, due to the epidemic prevalence of T2DM. As of 2013, 

at least 382 million people worldwide were diagnosed with diabetes; and the number 

is estimated to increase up to 592 million by 2035 (International Diabetes Federation, 

2014). Nevertheless, there is no clear-cut boundary in epidemics of T2DM, as the 
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emergence of this disease is obviously not limited by geographical locations, ages, 

gender, ethnic origins or even family medical history. On 14th December 2006, the 

United Nations General Assembly had unanimously agreed to pass Resolution 

61/225, proclaiming and recognizing diabetes as the world’s major health crisis to 

combat. The emerging threat of T2DM epidemic on paediatric groups implies the 

crucial needs for finding therapeutic option in dealing with future diabetic burdens in 

world population (Kitagawa et al. 1998; Zimmet et al. 2001). 

Diabetes compromises wound or bone healing progress, and consequently, affects 

the osseointegration of implants. Hence, the evaluation of implant survival via in 

vivo demonstrated a delay and reduction of new bone formation in diabetic models 

(McCracken et al. 2006; Kwon et al. 2008; Colombo et al. 2011). Besides, 

histological and histomorphometric analyses confirmed reduced formation of bone in 

diabetic conditions, following implant placement. On top of that, impaired bone 

healing processes may often lead to other post-surgical complications, such as 

microbial infections (Goodson and Hunt 1979; Tonetti et al. 1994). Thus, the success 

rates of titanium implants being placed in healthy individuals are higher, compared 

to patients with T2DM (Morris et al. 2000). Sustaining elevated cycles of bone 

remodelling processes at the healing site is vital to maintain the progress of 

osseointegration (Garetto et al. 1995). Although a considerable amount of researches 

has been devoted to improving the rate of osseointegration, less attention has been 

paid to investigate the prolonged effects of high glucose on bone healing tissue. 

Hyperglycaemia plays a role in the pathophysiological progress of diabetic 

complications. These hyperglycaemic-induced mechanisms consist of a combination 

of oxidative stress, impaired inflammatory cytokines activation, as well as altered 

activation of NF-κB, JNK/SAPK, and p38 MAPK pathways (Evans et al. 2002). 

Understanding the fundamental mechanisms may provide strong evidence to 

formulate key therapeutic compounds, in order to promote bone healing among the 

diabetic group. 

The current strategies employed in regenerative therapies include manipulation of the 

growth factor level in the systemic environment, along with pharmacological drug 

administration, to keep the glucose level. Although the topical and gene therapy 
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delivery of growth factor seems promising in promoting tissue healing, the 

conclusive role of growth factor within hyperglycaemic environment, particularly 

during bone repair in T2DM, has not been fully elucidated. The different 

mechanisms of insulin actions in Type 1 Diabetes Mellitus (T1DM) seem unlikely to 

be applicable for T2DM, where insulin resistance is a known pathogenic mechanism.  

Besides, it would seem that further studies might provide more reliable and valuable 

evidence in supporting the clinical management of T2DM patients who undergo 

implant treatment. Until then, effective strategies to improve the osseointegration 

ability within hyperglycaemic environment are still far from becoming available to 

T2DM patients. 

Against this background, this study investigated and characterized the cellular 

activity in bone progenitor cells during culture in a hyperglycaemic environment, 

similar to T2DM.  With in vivo and in vitro applied on animal models, focus was 

given to the growth factor bioavailability within the healing situation. Moreover, it 

further elucidated the potential of mesenchymal stem cells (MSCs) to migrate to 

bone repair sites, to form osteoblasts and further regenerate new bone tissue 

formation. The study also looked into potential small matrix proteins and 

biomolecules, which might be relevant in regulating the inflammatory response 

during diabetic bone healing, by indirectly causing alterations in growth factors 

signalling.  Therefore, detailed analysis and information derived from this study 

should shed some light on the current knowledge of reparative strategies. The data 

obtained could also assist in any future work to design a specific therapeutic agent to 

reverse the altered hyperglycaemic-induced responses, as well as to improve rates of 

successful clinical outcomes. 
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1.1 Bone biology 

Bone is a dynamic structure in the body that is comprised of various active cell types 

and organic matrix components. The bone structure is strengthened by calcium and 

inorganic mineral deposition that mainly exist in the form of hydroxyapatite. Bone 

plays an important role in regulating metabolic reservoir, providing mechanical 

support, and also protecting vital organs. The unique composition and properties of 

bone are mainly controlled by multiple actions; regulated between cellular material, 

matrix composition, and mineral contents. The bone structure and its biological 

functions are maintained through a series of synchronized events that takes place in 

parallel to physiological and biochemical changes in the body. 

1.1.1 Bone structure 

Bone structure comprises of two important features; the cortical bone and the 

trabecular bone. Cortical or compact bone is the hard, dense, and rigid form of bone 

tissue, which forms the outer layer of bone surrounding the marrow space. Enclosed 

within these layers is the trabecular bone, a network of plate-like and rod-like 

trabecular microstructures, which create sponge-like features within the bone marrow 

compartment. The outermost layer of cortical bone, the periosteal, is a thin and tough 

membrane of fibrous connective tissue, which contains nerve fibres, blood vessels, 

osteoblasts, and osteoclasts (Kini and Nandeesh 2012). It provides support for tendon 

and muscles, as well as assist in bone formation during skeletal growth and 

reparative processes. Lying beneath the trabecular sheath is an endosteum layer, a 

membranous structure that contains osteoprogenitor cells, osteoblasts, and 

osteoclasts (Garg, 2004). Meanwhile, the innermost portion of the bone is a hollow 

space filled with marrow.  

In addition, microscopic analysis of bone differentiation has identified two types of 

bone formation, which differ in their patterns of the collagen fibres forming the 

osteoid. First, the woven bone encompass a rapid formation of osteoid from 

osteoblasts, which leads to random distribution of collagen fibres, leaving a weakly 

structured woven-like appearance of fibrous matrix. Second is the lamellar bone that 

is characterised by uniform alignment of highly organized collagen sheets, which 

form the mechanically strong lamella structure (Eriksen 1994). 



 

 

 6 

1.1.2 Bone formation  

Formation of bone tissues starts during embryonic development and remains until the 

period of postnatal bone growth. Bone formation is vital, in order to maintain 

biological homeostasis and to support skeletal growth. Different mechanisms of bone 

formation take place within the skeletal organ, depending on the site and the shape of 

the bone involved, classified as intramembranous ossification and endochondral 

ossification (Pfeilschifter et al. 1992). In intramembranous ossification, the process is 

directed to develop bones within a collagenous mesenchymal matrix. This process 

utilises osteoprogenitor cells or undifferentiated MSCs, which mature into bone-

forming cells, such as osteoblasts; and further develop into osteoid. The bone growth 

then continues to form a network of immature bone structures, referred to as woven 

bone. The immature woven bone structure, which consists of randomly distributed 

collagen fibres, will eventually be replaced by lamellar bone formation. 

Intramembranous ossification takes place in flat bones, such as the skull, sternum, 

mandible, and clavicle, and the major ossification mechanism is associated with 

osseointegration.  

Endochondral ossification regulates the replacement of a cartilage matrix by bone, 

following the recruitment, the proliferation, and the differentiation of MSCs to the 

site. Besides, the development and the growth of cartilage model play an important 

role in the formation of the ossification centre for osteoblast migration and 

maturation. Thereafter, the mineralization of cartilage takes place (Poole et al. 1982). 

Each process in endochondral ossification occurs in multiple stages of temporal 

characteristics, whereby in the end, calcified cartilage is replaced by compact bone. 

1.1.3 Bone remodelling 

Bone undergoes a sequence of remodelling or turnover processes throughout life. 

The remodelling process involves changes in the structure, the size, the shape, and 

the quality of bone that is being produced in the skeletal system. During bone 

remodelling, a cascade of events will take place simultaneously within the bone to 

remove the old osseous tissues, and immediately followed by the formation of new 

tissue to replace the existing bone. Remodelling of bone is important for bone growth 

and development to regulate calcium homeostasis, and also to provide a reparative 
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mechanism in response to injury or fracture damage. Bone remodelling frequency in 

growing tissue is controlled by both mechanical and metabolic factors. Besides, the 

evidence of tight coupling behaviour between bone resorption and bone formation 

validates the impairment of bone remodelling in patients with osteoporosis and 

metabolic bone disorders. The delayed resorption activity is postulated to impair 

bone formation and remodelling system, which leads to alteration of net change in 

bone mass and quality after the remodelling cycle (He et al. 2004). Meanwhile, bone 

morphogenetic proteins (BMPs) are a type of growth factor in the TGF-β 

superfamily that integrates interactions between bone resorption and bone formation 

to maintain the cues for bone turnover in biological systems (Marx and Garg 1998). 

It is believed, however, that during osteoblast deposition on the bone surface, they 

also secrete BMPs into the mineralising matrix. The insoluble properties of BMPs at 

pH1.0 explain the release of this protein from the bone matrix as soon as osteoclasts 

initiate the resorption activity (Urist 1997). The release of BMPs subsequently 

induces differentiation of osteoblastic cells, which stimulates bone formation. 

1.1.4 Bone cellular components 

Four different types of bone cells are closely related to bone metabolism and 

physiology; osteoblasts, osteoclasts, osteocytes, and osteoprogenitor cell populations. 

These bone cells mainly develop from mesenchymal progenitor cells and are 

commonly associated with important roles in skeletal development. MSCs originate 

from multipotent stromal cells and display great capability to differentiate and form 

various types of cells; including the major bone-forming cells, osteoblasts, and other 

mesenchyme lineages cells, such as chondrocytes and adipocytes. The whole 

mechanism of MSC differentiation into osteoblasts has been documented using in 

vitro cell culture. Hence, the evidence has further pointed out the importance of 

MSCs as the major type of cells involved in bone remodelling and repair process.  

Osteoblasts actively produces bone matrix, which largely consists of Type I collagen 

and a variety of non-collagenous proteins. The inorganic matrix component is 

subsequently mineralised and becomes new bone, providing rigidity and strength to 

skeletal composition. However, in later stages of bone formation, osteoblasts 

eventually become embedded in the bone matrix, and these cells are transformed to 
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form part of bone components called osteocytes. Osteocytes cells have a basophilic 

cytoplasm that contributes to the formation of a canaliculi network system; which 

serves as a platform for metabolic and biochemical exchanges between the 

bloodstream and the bone cells (Marx and Garg 1998). Another group of bone cells 

that play an important role in bone development is osteoclasts. Osteoclasts are a 

group of bone cells that originally develop from the haematopoietic lineage. During 

the activation of bone remodelling, osteoclasts adhere to the bone matrix and secrete 

a combination of acid and lytic enzymes that degrade the existing bone cell structure. 

The interaction between osteoblasts and osteoclasts commonly takes place in active 

bone turnover sites, which occur in periosteal, endosteal, trabecular, and cortical 

bones (Hughes and Boyce 1997). Besides, the imbalanced actions in the bone area 

can lead to perturbation of bone quality, growth, and structure.  

1.1.5 Bone progenitor cells 

Both regeneration and repair of bone are commonly associated with osteoprogenitor 

cells and their precursors, the MSCs. MSCs are a group of progenitor cells, derived 

from the subset identified in non-hematopoietic, a bone marrow component. MSCs 

were first introduced by Friedstein (Friedenstein et al. 1976). MSCs have 

demonstrated sustained proliferation capacity and differentiation capacity to be 

developed into various stroma-supporting cells, including bone precursor cells. The 

success of osteoprogenitor cells and MSCs application in accelerating endosseous 

healing is determined by coordinated interactions between the participating cells, the 

growth factors, and the extracellular matrix components, which provide the local 

biochemical and mechanical support for cell proliferation and differentiation. Hence, 

in vitro cell culture models have often been utilised to study the microenvironment of 

cellular and molecular activities of bone cells within the healing interface to further 

investigate the potential role of bone precursor cells and MSCs in the reparative 

processes. At present, the isolation of mesenchymal progenitor cells is performed 

actively from bone marrow and other additional mesenchymal sources, such as 

adipose, skeletal, and muscles (Zuk et al. 2001; Qu-Petersen et al. 2002; Lee et al. 

2004; Nakamura et al. 2010). 
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MSCs have long been utilised in orthopaedic medicine, whereby the administration 

of these skeletal progenitor cells typically involves their local delivery to the targeted 

area. For example, MSC application has been demonstrated in treatments of spine 

injury (Muschler et al. 2003), fracture repair (Granero-Moltó et al. 2009), craniotomy 

defect (Krebsbach et al. 2003), and segmented bone defects (Quarto et al. 2001). 

Apart from that, a recent study demonstrated that bone marrow-derived MSCs (BM-

MSCs) application significantly improved wound healing in normal and diabetic 

mice. The medium of BM-MSCs has been found to increase angiogenesis and 

consists of high levels of vascular endothelial growth factor (VEGF) and 

angiopoietin-1, which further explain the improvement of wound healing in BM-

MSC treated areas (Wu et al. 2007). Several other studies also indicate the potential 

benefits of BM-MSCs in promoting rapid bone healing in both normal and diabetic 

groups (Bruder et al. 1998; Kwon et al. 2008; Fiorina et al. 2010; Albiero et al. 

2011). Apart from mainly relying on MSCs derived from bone marrow to provide 

bone progenitor cells, more experimental work has been dedicated to assessing into 

other potential sources of progenitor stem cells, which provide less invasive methods 

of extraction. Therefore, hair follicles, dental pulp, and oral mucosa lamina propia 

(OMLP)-derived stem cells have been explored for this purpose (Gronthos et al. 

2000; Oshima et al. 2001; Davies et al. 2010). Previous studies also revealed that 

dental pulp stem cells (DPSCs) differentiate into osteoblasts and further stimulate 

secretion of ECM component to support in vitro bone formation (Laino et al. 2005; 

Laino et al. 2006). DPSCs also revealed positive results for in vitro and in vivo 

experiments to induce bone formation in damaged or injured tissues (D’Aquino et al. 

2008; D'Aquino et al. 2009). These extensive studies provide much promising 

evidence for the future application of MSCs in facilitating rapid recovery process, 

following implant placement. 

The main rationale for MSC applications in bone repair is based on their ability to 

differentiate into osteoprogenitor cells and osteoblasts. Besides, the differentiation 

capacity of MSCs can be manipulated by controlling the stem cells niche and 

microenvironment. Moreover, different signalling molecules have been identified to 

have a modulatory effect on MSCs differentiation into various types of progenitor 

cells, such as osteoblasts, adipocytes, chondrocytes, and tenocytes. Experimental 
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studies also have demonstrated the differentiation capacity of MSCs to form 

osteoblasts with the application of metabolic hormone, such as 1,25-

dihydroxyvitamin D3, growth hormone, leptin, and prostaglandin E2 (Kröger et al. 

1997; Kelly and Gimble 1998; Thomas et al. 1999; Keila et al. 2001); cytokine, such 

as interleukin-6 (IL-6) (Taguchi et al. 1998); and growth factors, such as bone 

morphogenetic protein-4 (BMP-4), and transforming growth factor- β3 (TGF-β3) 

(Ahrens et al. 1993; Pittenger et al. 1999). 

1.1.6 Bone signalling pathways 

The study of bone signalling pathways has enhanced our comprehension on bone cell 

differentiation, migration, and activation.  Biochemical challenge and stress activate 

different bone signalling pathways. Systematic regulations of osteoblasts and 

osteoclast functions are important to maintain normal bone remodelling process. Few 

of the known major transcription factors in osteogenesis are Runx2, Taz, Osterix 

(OSX), and Dlx5. These transcription factors are mainly important in inducing 

progressive differentiation of multipotent MSCs into osteoblasts, osteocytes, and 

other types of cells from multiple lineages, in supporting osteogenesis (Abbas et al. 

2003; Lee et al. 2003). Runx2 is a major gene of core-binding factor A1 (Cbfa1), 

which regulates osteogenesis by binding to OSE2 promoter region of major 

osteoblast genes. Runx2 also regulates the expression of osteocalcin (OCN), bone 

sialoprotein (BSP), osteopontin (OPN), type I collagen, and others (Ducy et al. 1997; 

Javed et al. 2001). Besides, Runx2 has been proven as the major transcription factor 

for osteoblast differentiation. However, their action on osteoblast differentiation is 

inhibited by tumour necrosis factor-α (TNF-α), via TNF type-1 receptor activation 

(Abbas et al. 2003). Meanwhile, Taz is a transcriptional co-activator with PDZ-

binding motive, which activates Runx2 expression via FGF2 signalling to stimulate 

osteoblast differentiation (Cui et al. 2003; Byun et al. 2013). Taz also plays an 

important role in modulating the switch between osteogenesis and adipogenesis, by 

inhibiting PPARγ gene transcription (Hong et al. 2005). Next, OSX is a zinc-finger 

containing transcription factor, which is specifically expressed in all developing 

bones and plays an important role in bone mineralization. OSX transcription factor is 

located downstream to Runx2, as no OSX expression was observed in Runx2-

knocked out mice (Nakashima et al. 2002a). While Runx2 had been postulated to be 



 

 

 11 

responsible for mediating the differentiation of osteoblast to chondro-progenitor 

cells, OSX activation predominantly effects terminal differentiation of osteoblasts, 

whereby they act to distinguish the osteogenic pathway from the chondrogenic one. 

Another major bone-inducing transcription factor expressed in differentiating 

osteoblasts is known as distal-less homeobox-5 (Dlx5) (Ryoo et al. 1997). Dlx5 plays 

a pivotal role in BMP-2-induced osteoblast differentiation by stimulating 

downstream of transcription factor Runx2. Furthermore, another study indicated that 

Dlx5, instead of Runx2, which is located upstream, mediated BMP-2-induced Osx 

expression (Lee et al. 2003). Forced expression of Dlx5 demonstrated an increase in 

osteocalcin expression and the formation of a mineralized matrix in cell culture, 

which indicate the functional importance of Dlx5 in osteoblast differentiation (Tadic 

et al. 2002).  

Several different identified pathways and components control the regulation and the 

differentiation of osteoclasts, including macrophage colony-stimulating factor 

(MCSF) (Asagiri and Takayanagi 2007); osteoprotegerin (OPG); TNF receptor 

activator of nuclear factor-κB (RANK); and receptor activator of nuclear factor-κB 

ligand (RANKL) (as reviewed by Boyle et al. 2003). These identified pathways lead 

to the differentiation of osteoclasts from hematopoietic progenitor cells, thus 

controlling osteoclastogenesis, bone remodelling, as well as regulation of bone mass 

and density. On the other hand, OPG is a soluble and secreted TNFR-related protein 

that blocks osteoclast formation in vitro and bone resorption in vivo. OPG-knocked 

out mice demonstrated osteopenia and OPG-overexpressed transgenic mouse 

exhibited major increment in bone mass. These indicate the critical role of the OPG 

pathway in mediating osteoclastogenesis and bone remodelling (Simonet et al. 1997; 

Bucay et al. 1998). Meanwhile, RANKL is a soluble transmembrane protein found 

on the surface of expressing osteogenic cells (Anderson et al. 1997; Wong et al. 

1997). The expression of RANKL is important to co-ordinate bone remodelling, by 

inducing bone resorption in local osteoclasts that consecutively stimulate bone 

synthesis from the adjacent osteoblasts through a process called ‘coupling’ 

(Udagawa et al. 2000). Therefore, knocked out mice lacking in RANK and RANKL 

were found to develop osteopetrosis, which resulted from impaired osteoclasts 

functions and bone resorption (Dougall et al. 1999). The RANK:OPG ratio 
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represents an interdependent relationship with osteoclasts activities, which relatively 

include overall changes in bone microenvironment and remodelling; such as 

alterations in local growth factors and calcium release from bone matrix (Dougall 

2011). Together, these identified bone signalling pathways act as key regulatory 

factors in formation and function of osteogenic cells to maintain normal 

physiological bone remodelling activities (Figure 1.1). Hence, any alteration or 

disruption of these signalling pathways may potentially suppress or delay bone 

development and repair process. 
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Figure 1.1 Bone remodelling pathways involves several cell types; including 
osteoblasts, bone marrow stromal cells and osteoclasts. Osteoblasts are derived from 
mesenchymal stem cells, via induction of the osteoblastogenic transcription factors 
Runx2, Dlx5, Taz and osterix. Osteoclasts on the other hand are derived from 
myeloid precursors under the permissive influence of receptor activator of nuclear 
factor-κB (RANK), which is activated by RANK ligand (RANKL). The balance of 
RANKL:OPG ratio regulates bone homeostasis. Adapted from Tilg et al. (2008). 
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1.2 Bone healing associated with osseointegration 

Bone holds substantial capacity to repair and regenerate in response towards injury 

and surgical procedures, comprising of a series of processes and simultaneous 

reparative functions, besides being triggered in response to damage. Following an 

implant placement, the repair processes involve integration between the metal 

implant and the surrounding bone tissues, which is known as osseointegration. 

Contact osteogenesis and distance osteogenesis are two suggested terms, which refer 

to the location of osseointegration. Contact osteogenesis is bone formation on the 

implant surface, whereas distance osteogenesis is bone formation by recruitment of 

osteoblasts cells deposition on bone surfaces (Davies 2003). The activity of 

osseointegration correlates with the success rate and survival of implants in treated 

patients because prolongation of the osseointegration process may increase the 

susceptibility of bone-implant interface towards infections and other post-surgical 

complications. 

1.2.1 Osseointegration: The healing phases 

Repair and regeneration of bone tissue at the healing site is a constant process, which 

primarily involves restoration of the injured tissue, as a consequence of 

differentiation of bone progenitor cells to form new bone tissue. Nevertheless, due to 

the complexity of the in-vivo environment, it is relatively challenging to fully 

characterize the complexity of bone-implant contact during the healing process. 

Although several biomolecules have been identified at the bone-implant interface, 

the possibility of many other essential biomolecules involved in the process might 

still be unknown (Puleo and Nanci 1999). The osseointegration of implants and 

surrounding bone tissues consist of three different stages, which are generally 

described as the initial inflammatory phase, restorative phase; and the late 

remodelling phase. Controlling the bone-implant interface to induce osseointegration 

is likely to be possible, if the fundamental factors, such as biomaterial, biomechanics, 

and biological events, which effect the healing phase, are precisely manipulated. 

Expression of osteocalcin (OCN) indicate differentiation lineage of mesenchymal 

cells during the early stage of healing. The molecular and the cellular events near the 

bone-implant contact mainly involve intramembranous ossification, as very small 
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amount of ColIIa expression was detected in the stabilized fractures, indicating that 

healing occurs mainly through intramembranous ossification (Thompson et al. 2002). 

1.2.1.1 Phase 1: Inflammatory phase 

The healing mechanisms, which consist of multiple important events, are 

immediately generated following injury and damage to the bone microenvironment. 

The damage to tissue structure triggers the formation and the migration of clotting 

factor to the site of the injury. Clot formation induces homeostasis and provides a 

matrix for the recruitment of inflammatory cells, such as macrophages, monocytes, 

lymphocytes, and polymorphonuclear cells, to the injury site (Barrientos et al. 2008). 

Collectively, the existence of inflammatory cells at the bone-implant interface 

provides the source of various active signalling molecules, such as growth factors, 

cytokines, and chemokines, to the site of injury; and further activates signalling 

pathways for coordinating cellular repair. Besides, complex integration of signalling 

molecules is critical to induce the migration of undifferentiated mesenchymal 

progenitor cells from the inner layer of the cortex to the healing site. These precursor 

cells are essential to repair processes as they represent the key components in 

regeneration of new bone tissue. 

1.2.1.2 Phase 2: Restorative phase 

Usually, when an implant is placed into the cancellous marrow space of a mandible 

or maxilla, only a small amount of bone cells remains in the insertion site to form 

interactions with the surface area of the implant (Marx and Garg 1998). Following 

the inflammatory phase, the initial bone-implant interface becomes occupied with 

bone precursor cells. At this restorative phase, mesenchymal progenitor cells may be 

evenly distributed along the surface of the implant or along the surface of the old 

bone. The different locations in the lining depositions of these osteoprogenitor cells 

are commonly associated with the terms ‘contact osteogenesis’ and ‘distance 

osteogenesis’. Contact osteogenesis refers to the formation of a thin layer of 

progenitor cell localised along the implant surface to induce osteogenesis, while the 

latter involves the formation of lining cells on the surface of the old bone (Davies 

2003). The progenitor cells form an interaction with extracellular matrix 
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components; and further proliferate and differentiate at the healing site to form 

granulation tissue, as well as induce de novo bone formation. In the de novo bone 

formation, the osteogenic cells secrete a non-collagenous layer of organic matrix 

between the osteoprogenitor cells and the adjacent bone or the implant surface. Bone 

proteins, such as OPN, BSP, and proteoglycans, have been found among this non-

collagenous organic phase (Berglundh et al. 2003). The theory of contact 

osteogenesis is important in de novo bone formation, as the non-collagenous matrix 

provides a template for calcium phosphate mineralization, followed by formation of 

bone collagenous matrix components, which further embed a large number of MSCs 

in the woven matrix, and stimulates calcification by bone cells (Cardaropoli et al. 

2003). The primary bone consists of immature woven bone structures, which later 

on, are replaced with more mature bone tissue that consists of plate-like trabeculae, 

fibre lamellar bone, and marrow space (Berglundh et al. 2003). Furthermore, 

induction of angiogenesis during this repair phase is also as important as 

osteogenesis, to maintain the osseointegration process. 

1.2.1.3 Phase 3: Remodelling phase 

Osseointegration consists of a dynamic process, both during its establishment of 

inflammatory and restorative phases, as well as its maintenance in the remodelling 

phase. As remodelling begins in the healing interface, it often indicates the last stage 

of healing progress, also known as osteoadaptation, as in this phase, the bone cells 

begin to adapt to a new matrix environment and continue to grow in parallel to the 

implant. Bone remodelling at the healing sites consists of both osteoblasts and 

osteoclasts, which facilitate in restoration of original structure, shape, and 

mechanical strength of bone. As the healing bone learns to adapt to loading forces, 

the mechanisms of bone resorption and bone formation simultaneously take place in 

order to continuously reconstruct the bone according to its function. Therefore, the 

late remodelling phase in healing site is important to secure and to maintain the 

osseointegration process, prior to adaptation and function (Berglundh et al. 2003). 
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1.2.2 Signalling pathways in osseointegration 

Initial bone healing responses involve activation of fibroblast, endothelial cells, 

macrophages, and platelets (Brem and Tomic-Canic 2007). Activation of these cells 

is triggered by the release of important cytokines, such as IL-1, IL-6, and TNF-α, as 

well as growth factors, such as TGF-β1, BMPs, and VEGF, which are essential to 

enhance and maintain healing processes (Al-Aql et al. 2008). The expressions of 

these biomolecules are regulated by the activation of multiple signalling-induced 

pathways. The two important signalling pathways that have been identified to play 

an important role in mediating the activation of cellular response to facilitate healing 

and osseointegration are p38 MAPK and ERKs. The p38 MAPK and the ERKs are 

members of the complex superfamily of MAP serine/threonine protein kinases. The 

ERKs are typically activated by mitogens, but the p38 MAPK pathway is often 

associated with stress-activated kinases (Evans et al. 2002). Moreover, it is believed 

that the activation of MAPK pathway in osseous healing is mainly stimulated by the 

presence of pro-inflammatory cytokines, such as IL-1β and TNF-α (Eda et al. 2011). 

Furthermore, the activation of the MAPK signalling cascade is known to stimulate a 

variety of cellular changes during gene transcription, including initiation of 

angiogenesis, which is important in the development of a vascular supply in stages of 

wound and bone repair (Sharma et al. 2003). Meanwhile, the cross-talk activation of 

p38 MPKs and/or ERK1/2 pathways are accountable for sheer stress-dependant 

angiogenesis, endothelial cell migration, and vasculature formation, leading to 

overall tissue-repair responses (Bajpai et al. 2007; Huang and Sheibani 2008; Gee et 

al. 2010). However, few experimental studies have characterised the potential role of 

p38 and/or ERK1/2 pathways in directing VEGF expression from endothelial cells 

and MSCs (Mezentsev et al. 2002; Kim and Wong 2009), which plays a critical role 

in angiogenesis. Recent experimental data also suggested that administration of 

exogenous biomolecules, such as 14S,21R-diHDHA, to activate the p38 MAPK 

signalling pathway in endothelial cells and MSCs, were found to have a positive 

effect in accelerating diabetic wound healing and MSC functions (Tian et al. 2010). 
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1.3  Growth factors in bone metabolism 

Growth factors are a group of soluble proteins produced by cells, which are capable 

of carrying out multiple cellular actions on targeted cells. Growth factor actions in 

the cellular environment are divided into three types; autocrine, paracrine, and 

endocrine. In autocrine actions, growth factor acts on targeted cells with the same 

phenotype as those cells that secreted them. For example, growth factor secreted by 

osteoblast will have effect on osteoblast functions. Meanwhile, in paracrine actions, 

the growth factor acts on cells that reside near the secretory cells; and endocrine 

actions refer to the ability of growth factor to act on target cells that are located 

remotely from the cell of origin. Growth factor secretion exerts a wide range of 

effects on cellular behaviour as they take part in a series of molecular signalling 

events, which control cell growth and division, tissue differentiation, and matrix 

synthesis. For example, insulin-like growth factor-I (IGF-I), basic fibroblast growth 

factor (bFGF), and platelet-derived growth factor (PDGF) are known to have a 

profound mitogenicity effect on cellular functions, whereas bone morphogenetic 

proteins (BMPs) enhances collagen synthesis through osteoinduction (Mohan and 

Baylink 1991; Lind 1998). 

In addition, growth factors serve a clinical role in bone development through phases 

of endochondral and intramembranous ossifications; as well as participation in bone 

remodelling from embryonic life to postnatal period. Besides, growth factor 

regulations are known to have significant effects on the induction of bone and 

cartilage formation, which correlate with their substantial role in bone or fracture 

healing progress (Hughes et al. 2006). Abundant amounts of growth factors, such as 

PDGF, TGF-β1, and BMP-2, are secreted during the healing phase, following bone 

fracture or wound injury, to promote the release of inflammatory cytokines (as 

reviewed by Dimitriou et. al, 2005); and further initiate migration of progenitor cells 

to the injury site. This understanding has become the basis of attempts to manipulate 

growth factors for therapeutic use in inducing bone repair process. Therefore, various 

types of growth factors have been manipulated via cloning techniques and are 

recombinantly produced in order to serve their therapeutic roles in bone growth and 

remodelling, such as rhIGF-1, rhFGF, and rhTGF-β1 (Marcelli et al. 1990; Ebeling et 

al. 1993; Nakamura et al. 1995). Delivery of these molecules, which normally plays 
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essential roles in osteogenesis, is believed to accelerate osseointegration capacity at 

the tissue-implant interface, particularly following placement of implant in 

compromised patients. 

1.3.1 Origins of growth factors in bone  

Most of the growth factors involved in bone and cartilage regulations originate from 

osteoblast and extracellular matrix components (Hughes et al. 2006; Discher et al. 

2009). Osteoblasts and osteoclasts are known to secrete several types of pro-

inflammatory cytokines and growth factors, such as BMPs, FGF, IGF, and PDGF, 

which are subsequently located within the bone matrix (Hughes et al. 2006). Growth 

factors in bone development may also be derived from various other cells, such as 

osteoprogenitor cells (BMPs), macrophages (FGF), platelets (PDGF, TGF-β), and 

chondrocytes (FGF, IGF) (Lieberman et al. 2002). It has long been recognised that 

the synthesis and the deposition of extracellular matrix are determined by growth 

factor actions, cytokine expression, and mechanical signals generated through cell 

surface receptors. As a consequence, extracellular matrix also serves as a reservoir 

for the deposition of growth factors and secretory proteins following a wound or 

injury to the bone area. In fact, several growth factors have been identified residing 

within the bone matrix and extracellular components, such as BMPs, IGF, and TGF-

β1, which modulate and coordinate the cues for the bone remodelling process. In this 

way, the extracellular matrix does not only mediate cell attachment, but also 

facilitates in retaining the growth factor functions within its short lifespan by limiting 

the diffusion (Discher et al. 2009). Hence, this explains the association of appropriate 

distribution and release of growth factors by extracellular matrix, with several 

impacts on cellular activity, including prolongation of growth factor action, 

localisation of growth factor activity to the immediate environment, and alterations 

in growth factor activity (Flaumenhaft and Rifkin 1992). 

1.3.2 Receptors for growth factors in bone 

Effects of growth factors on bone metabolism are mediated through specific receptor 

on osteoblasts and neighbouring cells. Cell surface receptors act as attachment sites 

for growth factors and other proteins, so that they can trigger the mechanical signal 

for coordination of a functional deposited matrix. Following binding, the receptor 
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will activate an intracellular signal transduction response directed to the nucleus and 

induce biological responses in the target cells.  The binding of growth factors to its 

receptors is known as ligand-receptor interaction (Lieberman et al. 2002). 

Theoretically, each type of receptor is assigned to bind to a single specific type of 

growth factor, corresponding to its unique protein structure. However, ligand-

receptor interactions in growth factor activation are more complex with one or more 

ligands binding to one single receptor, or a single type of ligand is able to bind to 

several types of growth factor receptors (Trippel et al. 1996; Barnes et al. 1999). 

These unique and complex ligand-binding interactions indicate that growth factors 

action is taking place in a coordinated cascade of events, which involves a definitive 

combination of growth factors to completely exert its overall effect on bone 

restoration (Lee et al. 2011). This has been proven in experimental studies, as 

treatment with a combination of growth factors showed various responses in 

stimulatory and inhibitory effects towards bone formation. For instance, the 

application of IGF-I and TGF-β1 in a rat tibia fracture model demonstrated improved 

healing responses (Schmidmaier et al. 2003), whereby local deliveries of TGF-β and 

IGF-1 in a biodegradable polymer or hydroxyapatite (HA) coating markedly 

increased the fixation and the osseointegration rates of titanium implants in animal 

models (Lamberg et al. 2006; Lamberg et al. 2009). However, a combination of 

BMP-2 and bFGF in rabbit tibia fracture model resulted in decreased bone formation 

(Vonau et al. 2001). Therefore, an optimal combination of growth factors for 

delivery, together with adequate release kinetics based on identified temporal 

characteristics, may provide a substantial formulation of successful bone and wound 

healing in treated subjects. 

1.3.3 Growth factors in bone formation  

Since growth factors play an important role in the modulation of tissue growth and 

repair, evaluation of their precise roles in the healing process is extremely beneficial. 

Following injury, the expression of growth factors in cells is elevated, due to its 

association with cell degranulation and inflammatory processes. However, at later 

stages, when bone remodelling processes and reorganization of extracellular matrix 

become more active, growth factor levels return to normal or become undetectable. 

Owing to this evidence, temporal expression of growth factors in the healing process 
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had been proposed (Würgler-Hauri et al. 2007). Experimental studies have 

demonstrated the role, the expression, and the application of different growth factors 

in facilitating bone healing, either in animal models or human subjects (Katagiri and 

Takahashi 2002; Baker et al. 2009; Ehnert et al. 2010). Growth factors play an 

important role in the stimulation of molecular mechanism for controlling osteoblasts 

proliferation and differentiation, which results in coordinated bone formation during 

fracture healing and distraction osteogenesis (Al-Aql et al. 2008). Among the 

abundant growth factor available, a number of them have been identified to be 

relatively significant in bone healing and repair. 

1.3.3.1 Transforming growth factor-β  

Transforming Growth Factor-β (TGF-β) predominantly exists within the bone 

matrix. The TGF-β superfamily consists of five isoforms that range from TGF-β1 to 

TGF-β5, the BMPs, growth differentiation factor (GDFs), activins, inhibins, and 

anti-Mullerian hormones (Linkhart et al. 1996; Rosier et al. 1998; Massagué and 

Wotton 2000). This family of proteins participate in system regulation and cellular 

functions, such as proliferation, differentiation, and extracellular matrix synthesis. 

These isoforms exert their effect on cell development by interactions with specific 

heterodimer receptor complexes, which consist of two distinct transmembrane 

proteins, known as TGFβ-receptor I (TGF-β1R) and TGFβ-receptor II (TGF-β2R). 

These two transmembrane proteins belong to the serine-threonine kinase receptor 

family (Hu et al. 1998). Meanwhile, the type III receptor, known as betaglycans, has 

not been directly associated with TGFβ signalling, but may have a profound effect on 

binding of TGF-β to receptor II (Pfeilschifter et al. 1998). Besides, most of the TGF-

β receptors are found in osteoblastic cells from various origins (Robey et al. 1987). 

TGF-β has a positive effect on bone healing progression, as it has been proven to 

induce in vitro cell growth via activation of IGF-I and significantly increase the 

osteogenic capacity of primary human osteoblasts (Viereck et al. 2002). Their role in 

proliferation of MSCs is controlled by other factors, such as the extracellular 

environment, the ligand-receptors interactions with other growth factors, and the 

total concentration at the healing site. Therefore, TGF-β is known to exert their effect 

on bone metabolism more as a modulator instead of a stimulator, as it coordinates 

local growth factors that reside within the bone extracellular matrix, such as IGF-I 
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and PDGF, for a wide range of effects in the resorption and formation of bone 

(Pfeilschifter et al. 1998). On top of that, TGF-β1 has been reported to have long-

term positive effects on bone matrix turnover by taking part in the differentiation 

osteoblast precursor cells to become mature osteoblast. TGF-β1 also participates in 

suppression of bone resorption by inhibiting osteoclast activity and inducing the 

apoptosis of osteoclasts (Ehnert et al. 2010). Therefore, TGF-β1 plays an important 

role in bone remodelling, as it induces osteoid formation and increases the number of 

osteoblasts. Moreover, TGF-β1 is suggested to modulate collagen and fibronectin 

production, as well as induce angiogenesis by increasing adherence capacity of TGF-

β1 to the extracellular matrix compartment (Ignotz and Massagué 1986).  

TGF-β1 expression has been demonstrated to increase in early inflammatory phase 

and later stage of healing (Cho et al. 2006; Würgler-Hauri et al. 2007). Localization 

of TGF-β1 in healing tissue also has shown that this growth factor is sequestrated 

within the newly formed tissues, around the insertion site and the articular surface. In 

fact, their concentration was found to be the highest in healing sites; at around 10 

days post-surgical period, but after 16 weeks, TGF-β1 was no longer detectable 

(Galatz et al. 2006; Würgler-Hauri et al. 2007). However, higher expression of TGF-

β1 in the early process of healing has been associated with the excessive formation of 

scars in the healing tissues (Tsubone et al. 2006). A recent study has also depicted 

that TGF-β1 is able to stimulate the migration of diabetic monocytes through the 

stimulation of ALK5 kinase activity, as well as signalling via phosphoinositide 3-

kinase (PI3K) and p38 pathways (Olieslagers et al. 2011). These evidences support 

the potential application of TGF-β1 in stimulating collateral growth in diabetic 

environment. 

1.3.3.2 Bone morphogenetic proteins (BMPs) 

BMPs belong to the large TGF-β superfamily. The BMPs are mostly present in the 

bone matrix and have effects on stimulating ectopic bone formation in vivo (as 

reviewed by Mundy et al. 1995). BMP-12, a member of the BMPs’ large family, is 

also found in active fibroblasts. Application of human recombinant-BMPs (rhBMPs) 

has been reported to be significantly relevant in facilitating the healing process in 

acute diaphyseal, open tibial fracture, and reducing the risk of secondary intervention 
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(Govender et al. 2002; Lyon et al. 2013). BMPs are expressed by osteoblastic cells 

during the differentiation process and later exert their effects on bone formation via 

autocrine actions (Harris et al. 1994). Three osteogenic master transcription factors; 

Dlx5, Runx2, and OSX, are controlled by the BMP-2 expression (Lee et al. 1999; 

Miyama et al. 1999; Nakashima et al. 2002b). Besides, a study of fracture healing 

reported an increase in the expression of potent osteogenic factor, BMP-2, at the 

fracture site, where it exerted an osteogenic role via direct stimulation of osteoblasts 

(Bouletreau et al. 2002). 

1.3.3.3 Basic fibroblast growth factor (bFGF)  

bFGF is known as a modulator of cartilage and bone growth. These growth factors 

are localised in the extracellular matrix and are mainly expressed and regulated in 

osteoblastic cells (Hurley and Florkiewicz, 1996). However, in other in vitro work, 

bFGF had shown to suppress collagen synthesis (Katagiri and Takahashi 2002). 

Therefore, temporal profiles of these growth factors are important to facilitate in the 

application of bFGF as an effective therapeutic agent.  Mice with defects in bFGF 

expression were found to have reduced plate-like trabeculae structures, indicating a 

significant decrease in bone quality, which directly represent lower bone volume, 

less mineral apposition, and impaired bone formation (Montero et al. 2000). In 

addition, bFGF treatment had been found to demonstrate increased cancellous bone 

formation, suggesting that osteoblast precursors in the marrow cavity act as an 

important source for bFGF activity (Mayahara et al. 1993). Thus, these studies 

indicate the important role of bFGF in fracture and bone repair. 

1.3.3.4 Vascular Endothelial Growth Factor (VEGF) 

VEGF has been reported to increase the rate of bone metabolism by stimulating 

vascularisation (Ferrara et al. 1998). VEGF is produced by osteoblasts to stimulate 

angiogenesis and to increase osteogenesis in response to BMP expression (Deckers 

et al. 2002). More studies in recent years have also indicated the participation of 

VEGF in ossification, where the expression of VEGF was observed in hypertrophic 

chondrocytes, woven bone, and fibroblastic cells close to new bone formation 

(Ferguson et al. 1999; Gerber et al. 1999; Street et al. 2002). Moreover, VEGF has 
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been identified as a potent stimulator of endothelial cell proliferation, often 

expressed during endochondral ossification and bone formation. Hence, the topical 

application of VEGF has been found to induce wound healing in diabetic patients by 

inducing angiogenesis and the mobilization of bone marrow progenitor cells to the 

healing site (Galiano et al. 2004). Additionally, VEGF and angiopoietin-1 are 

significantly present in higher concentrations in BM-MSCs, thus indicating the 

potential role of BM-MSCs application in promoting wound healing (Wu et al. 

2007). The expression of VEGF, BMP-2, and BMP-4 in rat models also suggested 

that angiogenesis occur before osteogenesis in distraction osteogenesis (Sojo et al. 

2005). 

1.3.3.5 Insulin-like Growth Factor (IGF) 

IGF is one of the major anabolic growth factors, with effects on inducing bone 

matrix apposition by stimulating osteoblast proliferations, differentiation, and matrix 

synthesis. IGF and PDGF are stimulator of cells of the osteoblastic lineage, as their 

application has been demonstrated to induce cell proliferation in osteoblasts culture 

(Katz et al. 1995; Zhang et al. 2002; Aberg et al. 2003). Two types of IGF receptors 

have been identified in bone cells, IGF Type I and Type II receptors. Activity of 

IGF-I is mediated by IGF Type I receptor (IGF-1R), which is a ligand-dependant 

tyrosine kinase receptor. Following ligand-receptor interactions, IGF-1R activates 

phosphorylation and triggers downstream signalling of MAPK and P13/AKT 

pathways, which play an important role in osteoblast differentiation and bone 

growth. Hence, experimental study using mice that lacked IGF and IGF-1R 

demonstrated impaired skeletal growth and development (Linkhart et al. 1996). 

Another study postulated that IGF-1R is likely to share the same homological 

structure with insulin receptors, giving the possibility for IGF-I to have the affinity to 

bind to the insulin receptor (Taniguchi et al. 2006). Application of insulin therapy in 

experimental studies exhibited an elevation in osteoblasts activity, increased cell 

proliferation, and higher alkaline phosphatase (ALP) activity. Based on these results, 

there is a possibility that administrated insulin is bound to IGF receptor and activates 

the signalling pathway for cell proliferation, leading to stimulation of certain growth 

factor receptors (Gandhi et al. 2005). However, the result is expected to differ in 
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T2DM cases, due to distinct physiological evidence of insulin resistance, which is 

probably non-susceptible to IGF stimulation. 

 

1.3.4 The role of extracellular matrix (ECM) in growth factor regulation 

The ECM is composed of different biomolecules that are produced and deposited 

outside the cell. ECM and growth factors have been proposed to have an 

interdependent relationship. For instance, TGF-β1 demonstrated the ability to inhibit 

proteolytic degradation of ECM, but at the same time, relying on ECM components, 

such as proteoglycans, to assist with sequestration and bioactivity of TGF-β1 within 

ECM (Schultz and Wysocki 2009). Besides, the rate of bone formation is highly 

associated with the number and the activity of available precursor cells to participate 

in the healing process, together with appropriate interaction with the ECM. The 

dynamic interactions between growth factor and extracellular matrix can be either 

direct or indirect, whereas the target cells do not necessarily bind to extracellular 

matrix in order to response to growth factor signalling (Schultz and Wysocki 2009). 

It is also postulated that cell-to-cell interaction is developmentally crucial to mediate 

the unfolding force of conserved membrane signalling system (Discher et al. 2009). 

However, growth factor regulation of the bone matrix has not been fully 

characterised in terms of stem cell behaviour and function. Since there is limited 

evidence, more in vitro studies have been required to look into the regulatory 

mechanisms of the ECM components and growth factors, to identify the exact roles 

of participating molecules in the regulation of healing processes. 

1.3.5 The role of small leucine-rich proteoglycans (SLRPs) in bone repair 

The regulation of growth factor activities within bone repair sites are mainly 

coordinated through complex interactions with many types of biologically active 

ECM components, known as proteoglycans. Small leucine-rich proteoglycans 

(SLRPs) is a unique sub-group in a bigger class of proteoglycans, identified by the 

presence of a core protein and tandem leucine-rich repeats (LRRs) in the primary 

structure, which is covalently linked to either chondroitin- or dermatan-sulphate 

glycosaminoglycan (GAG) side chains at the N-terminus of the core protein (Frey et 

al. 2013). Apart from the structural function in maintaining the ECM assembly, 
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emerging evidence has revealed the importance of SLRPs in modulating cell-matrix 

crosstalk and signalling processes by controlling growth factors sequestration and 

activation. Two of the widely characterized SLRPs, decorin and biglycan, exhibit 

their vital role as endogenous ligands of Toll-Like Receptors (TLRs) 2 and 4, with 

the capability to modify the signalling events that directly influence the innate 

immune-inflammatory response. Taken together, better understanding of the 

molecular mechanisms underlying interactions between SLRPs and these innate 

immunity receptors is highly important, to gather significant knowledge of their 

functional roles in the inflammatory phase, exclusively in correlation with tissue 

repair and regeneration. 

1.3.5.1 Biglycan 

Biglycan is a class I SLRP, which consists of 42kDa core protein, and accompanied 

by two GAG side chains on the N-terminus. Biglycan also exists in non-intact forms, 

particularly in aging articular cartilage and invertebral disc (Roughley et al. 1993). 

Upon tissue damage and stress, proteolysis on the ECM releases abundant amount of 

biglycan, either as the cleaved core protein or as various fragments of biglycan 

(Moreth et al. 2012). The released bioactive molecules of biglycan interact with 

TLR2/4 to stimulate major signalling pathways to generate rapid inflammatory 

responses (Moreth et al. 2014). Besides, previous studies have indicated the 

importance of biglycan in the proper sequestration of TGF-β within the ECM (Young 

et al. 2002). Furthermore, viral transduction of biglycan in MSCs has been found to 

stimulate the proliferative capacity and the osteogenic potential of MSCs, through 

activation of TGF-β1, Smad2, and Smad3 signalling pathways (Wu et al. 2013). In 

fact, a study on biglycan-deficient cell line reported that marked elevation in TGFβ 

levels resulted in apoptosis and growth retardation (Yang et al. 2009). Moreover, 

biglycan-deficient mice exhibited collagen fibrils abnormality and increased bone 

fragility (Bi et al. 2005). Interestingly, the inverse relationship between biglycan and 

TGF-β expression diminished in the diabetic environment as the diabetic mice 

displayed the overexpression of biglycan, accompanied by an elevation in TGFβ, and 

renal lipid retention (Thompson et al. 2011). Moreover, it has been postulated that 

hyperglycaemia induces abnormal synthesis of biglycan, with elongated GAG 

chains, in response to the abundance of TGF-β1 (Yang et al. 2009). However, longer 
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GAG chains were shown to have higher affinity towards low-density lipoprotein 

(LDL), leading to alterations in cellular activity (Tannock 2006). 

1.3.5.2 Decorin 

Decorin consists of 36-40kDa core protein, 12 LLRs, and one GAG chain, which is 

found uniformly expressed all over the osteogenic and the non-osteogenic layers of 

periosteum (Bianco et al. 1990). The matrix-bound form of decorin is predominantly 

expressed in articular cartilage and bone matrix to provide the proper assembly of 

collagen fibrils in building the structure of the ECM. Hence, studies with decorin-

null mice had shown collagen malformation and increased skin fragility (Reed and 

Iozzo 2002). Decorin also exhibits a significant interaction with members of TGF-β 

family to stimulate osteoprogenitor cells recruitment and proliferation (Alliston et al. 

2001), but at the same time, inhibiting TGF-β1 activation, leading to anti-fibrotic 

effect in the targeting organ (Schaefer 2011). On top of that, the soluble form of 

decorin is associated with perturbations in bone and ECM synthesis as decorin-

deficient mice model exhibited severe osteopenia and increased skin fragility, owing 

to the capability of intact decorin to act as a pro-inflammatory agent by signalling 

through TLR2/4 (Young et al. 2002). Apart from the angiogenic role of decorin in 

aiding vascularization during bone repair (Waddington et al. 2003), decorin also 

plays a role in down-regulating TLR-regulated pro-inflammatory genes, indicating a 

competitive binding to endogenous ligands of TLR2/4 and further representing a 

complex mechanism of the role of SLPRs in immunity response (Buraschi et al. 

2012).  

1.4 Diabetes Mellitus:  Type I and Type II 

Diabetes is a medical condition that is associated with hyperglycaemia, with defects 

in insulin secretion or insulin resistance, or a combination of both. The progression 

of diabetes in individuals tends to develop through both pathological and 

physiological factors. The most striking feature of diabetes mellitus is an abnormally 

high level of glucose in blood. Therefore, diagnosis of diabetes is indicated when 

fasting plasma glucose exceeds 126mg/dL. Diabetes mellitus can be divided into two 

different categories because of variations in the etiology of the disease. Therefore, 
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diabetes mellitus in human populations is commonly known either as type 1 (T1DM) 

or type 2 (T2DM) diabetes mellitus. Of note, this study only looked into T2DM 

pathological perturbations in regards to bone reparative capacity. 

T1DM is a chronic autoimmune disease, which is mainly associated with pathogenic 

action of T lymphocytes on insulin-producing β cells, resulting in defects of insulin 

secretion from the β-islet cells of pancreas. The exact reason behind the etiology of 

impaired insulin secretion in this type of diabetes has not been fully elucidated. 

However, it is believed that the abnormal reaction, which leads to impairment of β 

cells, is mainly triggered by viral or external pathogen (Jun and Yoon 2001). This 

type of diabetes is mostly present in younger populations, but can also be diagnosed 

in adults. The general characteristic of T1DM is hyperglycaemia with non-obese 

characteristics, which mainly lead to ketoacidosis condition if the insulin treatment is 

withdrawn. Therefore, exogenous insulin administration is commonly employed in 

the treatment of this disease. 

Meanwhile, T2DM is a physiological disorder, which occurs as a result of one or a 

combination of both insulin deficiency and insulin resistance in liver and peripheral 

tissues. Most T2DM cases in the modern world comprise of a combination of both 

defects, as insulin resistance is highly associated with obesity; and peripheral fat 

deposition is closely linked to induce insulin desensitization (Hotamisligil et al. 

1994). The most striking features of T2DM are abnormal insulin secretion in 

response to glucose (hyperinsulinaemia), dyslipidaemia, hypertension, insulin 

resistance in association obesity, hyperphagia, and excessive hepatic 

gluconeogenesis (Šedová et al. 2007). Apart from genetic predisposition, the risk of 

developing T2DM in humans also increases with age, obesity, underlying 

cardiovascular disease, and lifestyle factors, such as diet and physical activity. 

Therefore, it is often complicated to outline the underlying factors in the diagnosis of 

T2DM, as there is no clear evidence of each contributing factor in the development 

of disease.  

Moreover, the current treatment for diabetes mellitus involves a combination of 

administered insulin to control the glycaemic index; and the utilisation of oral anti-

diabetic agents, such as sulfonylureas, to stimulate pancreatic insulin secretion or to 
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reduce hepatic glucose production (Srinivasan and Ramarao 2007). However, more 

information of the molecular and cellular roles in diabetic progress is needed to 

provide further information in assisting formulation of new drugs or therapeutic 

agent to manage T2DM complications. 

1.4.1 Epidemiology and prevalence of Type 2 Diabetes Mellitus  

The growing pandemics of T2DM in the modern world are strongly associated with 

human lifestyle and behaviour changes over the last few decades. Until now, there is 

no clear evidence of genetic predisposition influencing the etiology of diabetes, as 

the epidemics of diabetes in global populations are more likely to develop from 

multiple environmental factors, such as unhealthy diet, obesity, and sedentary 

lifestyle. Increasing number of diabetes cases in children groups are overwhelmingly 

disturbing, which leads to another hypothetical role of epigenetics to influence the 

maternal environment and in-utero development of diabetes (Kitagawa et al. 1998). 

Theoretically, the expected number of diabetes patients worldwide, as published by 

the International Diabetes Federation (IDF), merely account for patients who are 

being treated and diagnosed with this condition. Conversely, many cases of diabetes 

will remain undiagnosed and indeed untreated, particularly in developing countries; 

which indicate a substantial epidemic and burden of diabetes to worldwide 

populations. 

Diabetes has long been given extra attention in well-developed countries, such as 

US, UK, and Japan, due to the economic burden of managing the treatment of 

patients and complications resulted from this metabolic disease. Diabetes imposes a 

large economic burden on national healthcare systems, as the expenditure for 

diabetes alone was reported to account for almost 11.6% of the total healthcare 

expenses in the world in 2010. By 2030, the global expenses or the prevention, 

management and treatment of diabetes, as well as its complications are estimated to 

reach at least $449 billion, which roughly cost an average of $703 per person (Zhang 

et al. 2010). In recent years, T2DM has shown a dramatic epidemic proportions in 

many developing countries, as reported in Middle-Eastern nations, China, India, 

Korea, Australia, as well as minority groups in developed countries (Saadi et al. 

2007; Magliano et al. 2008; Ramachandran et al. 2010). Massive increases in the 

number of diabetes cases in developing nations are a reflective of indirect influence 
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of modernisation, industrialization, and economic forces, which are drastically 

changing their lifestyles, including dietary and physical activity, that substantially 

compromise health status. For example, a retrospective study conducted to 

investigate the prevalence of diabetes in selected Asian nation showed a minimum of 

1.5 and maximum of 5.1 multiplicative increases during the period of study (Yoon et 

al. 2006). This evidence indicates that diabetes has become a major threat to public 

health globally, and hence, extensive strategies aimed at the prevention, the 

management, and the treatment of diabetes, are strongly required. 

1.4.2 Complication of diabetes 

1.4.2.1 General health  

T2DM is known to have detrimental effects on the human biological system, which 

compromises the molecular signalling and biochemical synthesis pathway; besides 

leading to cellular damage.  Until recently, many experimental studies have 

demonstrated diabetes with complications of microvascular and macrovascular 

diseases, such as microangiopathy and arteriosclerosis (Jennings et al. 1987; Creager 

et al. 2003), which further increase the risk of developing cardiovascular disease and 

chronic complications of retinopathy, nephropathy, and neuropathy (Kannel and 

McGee 1979; Fowler 2008). Furthermore, diabetes pathogenesis has also been 

associated with various disorders of calcium metabolism, which result in impairment 

of calcium absorption in the intestine, and increased urinary loss of calcium, which 

consequently lead to increased risk of secondary thyroid disease and other hormone 

imbalances complications (Brenta 2010). It has been postulated that the metabolic 

alterations in diabetes significantly affect the rate of osteogenesis and angiogenesis at 

a cellular level, by suppressing the production of endothelial progenitor cells (EPCs).  

Moreover, more studies have reported that diabetic animals are found to have altered 

bone strength and mechanical properties, owing to lower overall bone mineral 

density (Lu et al. 2003; He et al. 2004; Prisby et al. 2008). Diabetic patients are also 

found to have a higher tendency in developing periodontal disease and osteogenic 

disorders (Shlossman et al. 1990; Katz et al. 1991). From these experimental studies, 

it is clear that diabetes mellitus is accountable for multiple negative impacts on 
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human biology, although the specific mechanisms by which this occurs are not fully 

understood. 

1.4.2.2 Direct impact on wound and bone repair 

Diabetic environments are often associated with systemic adverse effects, which 

result in the impairment of wound and bone healing. This correlates with the findings 

of many experimental studies that reported a reduction in bone and matrix formation 

in diabetic models (Hou et al. 1993; Suzuki et al. 2005; Kwon et al. 2008). 

Moreover, from genetic to biochemical analyses, in vivo to in vitro animal models, 

and clinical data evaluations; various strategies and approaches have been employed 

in order to prove the underlying mechanism, which leads to the impairment of 

healing in diabetic subjects. Theoretically, the cumulative findings have summarized 

that the healing process in T2DM is impaired because of possible alterations to one 

or more processes in the healing event (Evans et al. 2002). It begins with a delay in 

the influx of progenitor cells to the wound site, which leads to a decrease in both 

angiogenesis and osteogenesis (Fiorina et al. 2010). For example, bone marrow-

derived endothelial progenitor cells (EPCs) are known to promote tissue healing and 

angiogenesis. However, diabetes is found to have negative effects on BM-EPC 

biology at the sites of wound healing by reducing EPC proliferation, recruitment, and 

differentiation capability, thus, it directly impairs their contribution to healing event 

(Albiero et al. 2011). In fact, eNOS (endothelial nitric-oxide synthase) activation in 

peripheral blood was demonstrated to inhibit the migration of EPCs to the healing 

site, which further supports these altered mechanisms (Gallagher et al. 2007). 

Hyperglycaemia is also well-recognised as one of the factors, which lead to altered 

mechanism of healing in diabetic groups. Experimental evidence reported an 

increase in crestal bone loss among diabetic patients during the first year of implant 

function, indicating the role of hyperglycaemia in impaired osseointegration 

(Kotsovilis et al. 2006).  

An alternative mechanism that impairs diabetic tissue healing includes the reduction 

in migration of pro-inflammatory cells or cytokines to the injury site. Wound healing 

responses involve activation of keratinocytes, fibroblast, endothelial cells, 

macrophages, and platelets (Brem and Tomic-Canic 2007). Activation of these cells 
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will trigger the release of important cytokines and growth factors, which are needed 

to enhance and to maintain the healing process. Therefore, it had been proposed that 

diabetic wounds have a lower chemotactic ability to recruit inflammatory cells to the 

damage tissue site, which subsequently reduces angiogenesis and osteogenesis 

(Medina et al. 2005). Moreover, the whole combination of impaired cellular immune 

responses, altered inflammatory cytokine profiles, and microcirculation during the 

healing process would lead to higher rate of infectious complications in uncontrolled 

diabetic in animals (Blondet and Beilman 2007). Diabetes is also well associated 

with alterations in growth factor production and expression within the bone matrix 

(Al-Zube et al. 2009). It is believed that high glucose concentrations within the 

system have a direct detrimental effect on growth factor regulation, which results in 

impaired neovascularization and reduced oxygen supply. However, a recent 

hypothetical analysis tended to correlate hyperglycaemia with increased interaction 

of AGE and AGE receptor (RAGE), which stimulated the expression of TNF-α and 

matrix metalloproteinases (MMPs), and thus, indirectly resulted in a lower 

deposition of collagen within the ECM. The reduction in matrix collagen synthesis, 

coupled with chronic inflammation, minimized the capacity of ECM to support 

growth factors expression, and subsequently, delays tissue healing. Undeniably, 

growth factors expression is also influenced by macrophage production following the 

pro-inflammatory cytokines release. However, diabetic conditions were found to 

suppress macrophage production and activation, which resulted in reduced lymphatic 

vessel formation and led to impair wound and bone healing (Maruyama et al. 2007). 

Meanwhile, as for molecular analysis of diabetic in animal models, diabetes had been 

found to induce 71 genes that correlated with apoptosis and enhanced caspase-8, -9, 

and -3 activities. Alterations in pan-caspase gene activity were proven to decrease 

healing capacity, owing to reduction in fibroblast density and collagen synthesis, 

which led to lower matrix formation (Al-Mashat et al. 2006).  

1.4.2.3 Current management of healing problem in diabetes 

Typically, the presence of uncontrolled diabetes has been associated with higher 

outcome variability and increased rates of infectious complications. For that reason, 

monitoring glycaemic index is extremely crucial in the assurance of positive and 

successful outcomes among diabetes patients who wish to undergo implant 
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treatment. Current requirements for optimal glycaemic level control were found to 

reduce the variability of the outcome, thus improving the consistency and the 

predictability of the guided bone regeneration treatment in experimentally-induced 

diabetes (Retzepi et al. 2010). However, in reality, glycaemic control has remained 

poor in the majority of diabetes patients, although many drugs are available to 

facilitate in controlling the diabetic complications. 

To date, the FDA-approved evidence-based medicines that are relevant in the 

treatment of diabetic osseous healing include recombinant human-fibroblast graft 

application and keratinocytes delivery via type I collagen (Brem et al. 2000; Marston 

et al. 2003). Current evidence suggested the potential use of demineralised dentin 

matrix in stimulating bone defect healing in a T2DM rabbit model (Gomez-Moreno 

et al. 2014). Besides, advances in growth factor treatment include the application of 

human recombinant PDGF-BB (becaplermin) on diabetic ulcers, also BMP-2 and 

BMP-7 application in treating open tibia, non-union fractures, and spine injuries 

(Friedlaender et al. 2001; Embil and Nagai 2002; Poynton and Lane ; Carragee et al. 

2011). However, the number of FDA-approved growth factors and cell therapies in 

the treatment of bone healing is still considerably very limited due to insufficient 

pre-clinical data and clinical evaluations. Furthermore, studies that reported the 

association of rhBMP-2 and PDGF-becaplermin application with increased rate of 

developing cancer have raised the issue of safety and concern among treated patients 

(Schafer and Werner 2008; Cheng et al. 2011). In view of this evidence, more 

randomized clinical trials are required in looking for other potential growth factors, 

which are often associated with efficacy in stimulating the healing process. In a way, 

further information may provide useful insights into its potential application for the 

treatment of skeletal wounds and defects, as well as further enable the professionals 

to apply evidence-based medicine into clinical practice.  

Apart from that, the total number of active EPCs has been known to be lower in 

diabetic animals, thus indicating the need to increase the number of EPCs in the 

bloodstream; and directing these to the healing site in order to promote rapid healing. 

Hyperbaric oxygen therapy (HBO) is another FDA-approved protocol to enhance 

healing in problem wounds, which is often associated with diabetes complications 

(Löndahl et al. 2010; Tiaka et al. 2012). However, the application of HBO has 
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reported inconsistency in treatment outcome. Gallagher et al., (2007) demonstrated 

that a combination of hyperoxia and stromal cell-derived factor 1α (SFD-1α) 

positively enhanced wound healing in diabetic animals. Hyperoxia acts to stimulate 

eNOS activation in the bone marrow to produce a higher number of EPCs in the 

bloodstream; and SFD-1α is responsible to enhance the mobilization of bone 

marrow-derived progenitor cells to the injury site, resulting in faster healing process. 

Therefore, simultaneous administration of both HBO and stromal cell-derived factor-

1α (SFD-1α) at the wound site was suggested to be of a combination to provide a 

better prognosis in patients with diabetes, in comparison to current HBO application 

protocol. 

1.4.3  Animal models in the study of Type 2 Diabetes Mellitus   

Different types of animal models have been developed and proposed for in vivo and 

in vitro analyses of diabetes progression in living organisms. The utilisation of 

animal models to study diabetes is relatively advantageous in biomedical fields, as it 

facilitates better understanding of diabetes pathological and physiological progress, 

as these animal models were found to exhibit diabetes characteristics by induction of 

multiple factors, such as genetic predisposition, controlled environmental factor or 

drug stimulation. Hence, it further provides evidence to support the various 

hypotheses of diabetic progression in humans. Several animal models have been 

developed for the study of T2DM. Despite more experimental work being inclined 

towards manipulating chemically-induced diabetes animals, such as by low dose 

alloxan to study non-obese T2DM, the stimulation effect from chemical-induced 

diabetes are often unfavourable, in agreement with human T2DM. For instance, the 

direct toxicity induced in animal models tends to enhance insulin deficiency, rather 

than insulin resistance. Additionally, chemically-induced diabetes is also found to be 

reversible, unstable, and causing toxicity to other systemic components (as reviewed 

by Srinivasan and Ramarao in 2007). Therefore, more experimental work has now 

begun to make use of spontaneous or single-gene defects in T2DM models, such as 

the leptin-deficient (ob/ob) mouse, the leptin receptor-deficient (db/db) mouse, 

Zucker diabetic fatty (ZDF) rat, and Otsuka Long Evans Tokushima Fatty (OLETF) 

rat, which majorly represent the obese type of human T2DM. Although a large 

number of genes can either be knocked out or overexpressed to produce the insulin-
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resistant phenotype, the development and the availability of polygenic non-obese 

T2DM animal models are still very limited and expensive for experimental studies 

(Almon et al. 2009).  

In this study, GK (Goto-Kakizaki) rats were chosen as the experimental animal 

model. GK rat is a commercially available non-obese polygenic model of T2DM. 

The diabetic strain in animal models was established in Japan by Goto and his 

collaborators, through selective inbreeding of Wistar rats with abnormal glucose 

tolerance rats, repeated over several generations in 1973 (Goto and Kakizaki 1981). 

The progression of diabetes in GK rats had been reported to start as early as 4 weeks 

and continued to progress up to 12 weeks of life. After that, the hyperglycaemia 

stage was found to be constant throughout their lives. Plasma insulin demonstrated a 

steep increase between 4 and 8 weeks and after that period, the decline of insulin in 

GK suggested β-cell failure. A functional analysis of these genes indicated that 

disruption of lipid metabolism in the liver is a major consequence of the chronic 

hyperglycaemia in the GK strain. In addition, the results suggested that chronic 

inflammation contributed significantly to the development of diabetes in the GK rats 

(Almon et al. 2009). GK rats also exhibited mild hyperglycaemia as early as 1 week 

of age, indicating that these animals had pancreatic abnormalities in embryonic 

stages, which seemed likely comparable to T2DM cases in recent cases of maternal 

and paediatric human population (Fujii et al. 2008). Even though the pathology of 

T2DM in GK rats are not entirely analogous to human T2DM, these present the main 

characteristics that exhibit similar metabolic, hormonal, and vascular disorders to 

human diabetes, demonstrating fasting hyperglycaemia, impaired secretion of insulin 

in response to glucose, as well as hepatic and peripheral insulin resistance at early 

stage of life, which are likely to make these a valid model for the T2DM in human 

population. 

1.5 Alterations of osseous healing in Type 2 Diabetes Mellitus 

T2DM has been acknowledged to impair the bone remodelling and osseointegration 

processes (Lu et al. 2003; Valero et al. 2007; Prisby et al. 2008; Colombo et al. 2011; 

Graves et al. 2011). Therefore, T2DM is often associated with increased risk of 

implant failure, owing to compromise healing progress and higher occurrence of 
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post-surgical complications. For example, clinical studies addressing the survival 

rates of titanium dental implants reported that diabetes patients had a significantly 

higher risk of implant failure in comparison to healthy controls, as 85.7% of survival 

rate had been reported in diabetic subjects over 6.5 years of functional use, as 

opposed to 99.9% of success rate documented in healthy individuals (Fiorellini et al. 

2000). 

Hence, alterations in cellular microenvironments and molecular signalling pathways 

have been suggested as the major cause of physiological and pathological 

perturbations in T2DM. Despite extensive studies dedicated to characterise the roles 

of hyperglycaemia and hyperinsulinaemia on impairment of osseous healing status in 

T2DM, the exact mechanisms involved in perturbation of diabetic bone healing are 

still under investigation. Overall, understanding the alteration mechanisms of 

diabetic bone healing is considerably essential in providing further knowledge to 

assist in the formulation of therapeutic strategies to promote rapid healing in diabetic 

environment. 

1.5.1 Unifying hypothesis in diabetic alterations 

There are various hypothesized mechanisms to explain hyperglycaemia, insulin 

resistance, and islet β-cell dysfunction roles in etiology of T2DM. However, it is 

rather difficult to determine the most relevant and important mechanism in each 

tissue, in different model or individual with T2DM. The general hypotheses 

proposed to explain T2DM pathogenesis include oxidative stress and generation of 

reactive oxygen species (ROS); activation of stress activated pathways; endoplasmic 

reticulum stress; lipotoxicity and glucotoxicity; dysfunction of endothelial progenitor 

cells; and inflammatory role by alterations in cytokines release (Baynes 1991; Evans 

et al. 2003; Forbes et al. 2003; Eizirik et al. 2008; Donath and Shoelson 2011). 

Hence, a unified hypothesis was proposed to combine all the important factors in 

regard of diabetes-induced alterations within the biological system (Evans et al. 

2002). By linking all these key mechanisms, it may further assist researchers to 

understand the precise roles of hyperglycaemia and hyperinsulinaemia in the 

stimulation of complex pathophysiological events during T2DM.  
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1.5.1.1 Hyperglycaemia-induced cell and tissue damage 

In addition, many experimental work has indicated that hyperglycaemia is known to 

activate several major signalling pathways that are significant in etiology of diabetic 

complications. Four major signalling pathways that have been implicated in 

hyperglycaemia-induced tissue damage include, advance glycation end products 

(AGEs), protein kinase C (PKC), hexosamine, and polyol pathway flux (Figure 1.2). 

Besides, it has been postulated that hyperglycaemia participates in activation of these 

major pathways by inhibiting glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

which is mediated through the activation of poly-ADP ribose polymerase (PARP) 

(Brownlee 2005). 

Moreover, hyperglycaemia is often associated with the generation of ROS, which 

leads to induction of oxidative stress in a variety of tissues (Baynes 1991; Rolo and 

Palmeira 2006; Feng et al. 2013). Oxidative stress is a state in which the presence of 

ROS exceeds the endogenous antioxidant production. ROS will induce oxidant 

production, which is harmful to cell environments. The detrimental effect of ROS 

and oxidative stress in cells and tissue are worsened by further absence of response 

and regulation of endogenous antioxidant in the system. A recent study claimed that 

free fatty acids (FFA) also play an important role in activating the oxidative stress, as 

proven in culture of human hepatocytes (Soardo et al. 2011). Hence, protein carbonyl 

content has been suggested as a biomarker for the development of oxidative stress 

status in diabetic tissues (Dalle-Donne et al. 2003). Up to now, the excessive level of 

ROS has often led to the damage of proteins, lipid, and DNA (Waddington et al. 

2000; Moseley et al. 2004).  
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Figure 1.2 Interrelations between hyperglycaemia, reactive oxygen species 
(ROS), and impairment of healing in diabetes. Adapted from Elmarakby et al. 
(2010). 
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In normal physiology, glucose is metabolised via tricarboxylic acid cycle (TCA 

cycle), which activates electron pump channels to transfer electrons across the 

mitochondrial membrane and to create a certain amount of energy within the cells. 

However, higher concentrations of glucose in the system result in an increase of 

voltage across the mitochondrial membrane, which results in the formation of 

superoxide (O2
•‾), mediated by NADPH oxidases. This mechanism was established 

when no significant changes to ROS level was observed, following suppression of 

the mitochondrial voltage gradient by mitochondrial uncoupling proteins (UCP) 

overexpression (Brownlee 2005).  

O2
�‾, one of the most important ROS in the vasculature, is formed by the univalent 

reduction of oxygen. Later on, dismutation of O2
�‾ by superoxide dismutase (SOD) 

generates more stable ROS, hydrogen peroxide (H2O2), which is then converted 

enzymatically into H2O by catalase and glutathione peroxidase (GPx) (Taniyama and 

Griendling 2003). Significantly, reduction and absence of catalase have been 

reported in diabetic tissues (Goth 2008; Waddington et al. 2011b). Both O2
�‾ and 

H2O2 are essential for the formation of more reactive ROS, ·OH (Ahmad 1995). 

Besides, the imbalances of cellular antioxidants and ·OH levels accelerate the 

detrimental mechanisms on cellular damage (Waddington et al. 2000). 

Furthermore, bioavailability of nitric oxide (�NO) is significantly lower in T2DM 

patients, which results in a decrease in number and functionality of endothelial 

progenitor cells that can cause impaired vascularisation in healing tissue of bone 

healing (Hamed et al. 2010). Osteoclasts have been demonstrated to contain �NO and 

actively produce O2
�‾ during the bone resorption process (Steinbeck et al. 1994) and 

both are found to increase in the study pertaining to impaired fracture healing (Kayal 

et al. 2007).  
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1.5.1.2 AGE/RAGE pathway 

Advance glycation end (AGE) product formation leads to increased cellular 

apoptosis (Bierhaus et al. 1997). AGE is chemical modification of long-lived 

proteins. The formation of AGE products within the biological system involves the 

formation of covalent bond between reducing sugars and free amino groups in 

proteins (as reviewed by Singh et al. in 2001). Besides, AGE binds to cognate cell-

surface receptor, RAGE, in order to activate signalling and generation of intracellular 

ROS, induces activation of gene expression (Schmidt et al. 1994; Bierhaus et al. 

1997). AGE products are claimed to be responsible for their detrimental effects on 

bone modelling by inhibiting the proliferation and differentiation of osteoblast cells. 

O�
2‾ is postulated to activate the AGE pathway when glucose-3-phosphate is 

converted to methylglyoxal (Kanwar and Kowluru 2009; Madsen-Bouterse et al. 

2010). 

1.5.1.3 Protein kinase C (PKC) pathway 

Chronic hyperglycaemia is known to increase PKC expression in cellular 

environments. Activation of PKC pathways are associated with many micro- and 

macro-vascular complications of diabetes mellitus (Koya and King 1998; Igarashi et 

al. 1999). Activation of PKC isoforms is generated by de novo synthesis of the lipid 

second messenger; diacylglycerol (DAG) (Xia et al. 1994; Meier and King 2000). 

Moreover, a recent experimental work demonstrated bFGF stimulation increased 

membrane translocation of various PKC isoforms, including α, β, €, and δ in primary 

osteoblastic cultures, which indicated the role of β1 in bone formation through PKC-

dependent pathway (Tang et al. 2004). Both high glucose level and palmitate are 

suggested to stimulate ROS production through PKC-dependent activation of 

NADPH oxidase in both vascular MSCs and endothelial cell. This finding may 

involve the excessive acceleration of atherosclerosis in patients with diabetes and 

insulin resistance syndrome (Inoguchi et al. 2000). 
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1.5.1.4 Polyol pathway 

The aldose reductase (AR) polyol pathway contributes to diabetic microvascular 

complications, but how it mediates vascular damage in response to hyperglycaemia 

is less understood. Aldose reductase activity is stimulated in chronic hyperglycaemia 

environment, which particularly is associated with the existence of insulin resistance, 

such as in T2DM (Kador 1988). Besides, sorbitol accumulation within the cells has 

been validated to cause cellular damage. Moreover, a recent study suggested that 

Runx2 activation and cellular wound healing in diabetic tissue had been regulated 

through the AR polyol pathway (D'Souza et al. 2009). 

1.5.1.5 Hexosamine bisynthesis pathway  

Activation of the hexosamine biosynthesis pathways (HBP) is triggered by 

hyperglycaemia and produces excessive flux of FFA and UDP-GlcNAc (Uridine 5-

diphospho N-acetylglucosamine) in circulation, and consequently, develops 

progression of insulin resistance (Hebert et al. 1996; McClain and Crook 1996; Buse 

2006). N-acetyl glucosamine is converted from the fructose-6 phosphate by an 

enzyme, glutamine fructose-6-phosphate amidotransferase (GFAT). Post-

translational modification, known as O-GlcNAc glycosylation (O-GlcNAcylation), 

consists of addition of N-acetylglucosamine on serine and threonine residues of 

transcription factors. This reversible O-GlcNAcylation often results in pathologic 

changes in gene expression, with capability of modifying protein based on glucose 

availability (Issad and Kuo 2008). Therefore, the activation of HBP and GFAT 

expressions in animal model, along with O-GlcNAcylation, has demonstrated 

various pathological perturbations, which directly participate in several micro- and 

macro-vascular complications, such as insulin resistance (Buse 2006); development 

of hyperlipidaemia and obesity (Veerababu et al. 2000); as well as increased NF-κB -

dependent promoter activation (James et al. 2002).  

1.5.1.6 Lipotoxicity and glucotoxicity  

Several years ago, some studies revealed the role of endocrine organs, such as bone 

and adipose tissues, in regulating hormones and growth of cells (Kershaw and Flier 

2004; Lee et al. 2007). The interaction between bone and adipose tissues is 
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significant as bone marrow stem cells can give rise to osteoblasts and adipocytes. 

Leptin and adiponectin, two adipokines secreted by fat tissues, have been identified 

to have complex actions on the skeleton and indirectly effect bone remodelling by 

modulation of adipose cell sensitivity and insulin secretion (Das et al. 2009; de Paula 

et al. 2010). High glucose concentrations have long been known to induce toxicity in 

osteoblasts by decreasing cells activity and suppressing proliferation. In vitro 

osteoblast cell culture in diabetic glucose concentrations demonstrated a slight 

decrease in expression of proteins associated with the stem cell state, in comparison 

to culture in normal physiological glucose, suggesting an impairment in osteoblasts 

and osteoclasts differentiation (Dienelt and zur Nieden 2011). In addition, 

hyperglycaemia stimulates changes in circulating calciotropic hormones and growth 

factors, alters regulation of biochemical processes, and subsequently, results in 

impaired bone quality.  

1.5.1.7 Activation of stress-induced pathways  

Hyperglycaemia and an abundance of ROS create imbalance within the cellular 

compartment and activate the stress-induced pathways responsible for the late 

complications of diabetes. These mechanisms lead to activation of other signalling 

pathways that mediate insulin resistance and impaired insulin secretion (Evans et al. 

2002). The stress sensitive signalling systems and transduction mechanisms that are 

potentially activated include JNK/SAPK pathway, P38 MAPK pathway, NF-κB 

pathway, and matrix metalloproteinases (MMPs). Recently, it has been proven that 

MMPs play an important role in vascularisations, which potentially indicate the 

activation of this transcription factor during bone healing (Rogowicz et al. 2007). 

Expression of MMPs is stimulated by signalling biomolecules, including 

proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, as well as hormones and 

growth factors, including TGF-β, EGF, PDGF, and bFGF. Meanwhile, the regulation 

of MMPs is suppressed by corticosteroids, retinoic acid, heparin, and IL-4 (Murphy 

et al. 1994). 
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1.5.1.8 Inflammatory role: altered cytokines response 

Several experimental studies were carried out to investigate the pathological 

mechanisms in T2DM, including the association of insulin resistance and islet β-cell 

failure in correlation with tissue inflammation. Pro-inflammatory cytokines cascade, 

which comprises of various signalling biomolecules, such as IL-I α, IL-Iβ, TNFα, IL-

6, and IL-8; is mainly activated in response to infection, immunological stress or 

tissue injury. Apart from immunological effects, these cytokines have inhibitory and 

stimulatory effect on bone formation. For example, IL-I is closely linked with 

osteocalcin, the non-collagenous protein that has an important role in bone formation 

(Li and Stashenko 1992). Moreover, TNF-α and other cytokines are found to alter 

glucose metabolism in adipose, skeletal muscle cells, and liver. TNF-α is a key 

mediator of insulin resistance in animal models of non-insulin-dependent diabetes 

mellitus. TNF-α interferes with insulin action and induced insulin resistance through 

down-regulation of the insulin-regulated glucose transporter, (GLUT4) mRNA, and 

protein (Hotamisligil et al. 1994). 

1.5.1.9 Endoplasmic reticulum (ER) stress  

Despite the increasing number of experimental work dedicated to elucidating the 

underlying pathogenesis of β-cell failure, the exact mechanism of the disorder has 

remained unknown. In T2DM, β-cells demonstrate an inability to recognize insulin, 

which results in a condition known as insulin resistance. It causes a flux of protein 

across endoplasmic reticulum and leads to imbalances of energy in cellular 

compartment, leading to ER stress (Harding and Ron 2002). Besides, recent evidence 

in genetic, experimental, and clinical data had proposed the role of ER stress in 

inducing β-cell dysfunction and apoptosis (Eizirik et al. 2008). Furthermore, 

hyperactivation of the unfolded protein response (UPR) to counteract metabolic 

stress was identified as the major mechanism associated with β-cell dysfunction and 

apoptosis (Back et al. 2012). 

1.5.2 Alterations of bone cellular activity in diabetic environments 

Hyperglycaemia condition in diabetes is strongly correlated with the decreased rate 

of bone formation, resulting in the production of bone with reduced bone density and 
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quality (Okazaki 2013). Moreover, numerous studies have demonstrated that 

hyperglycaemia significantly increases the generation of ROS in both mitochondrial 

and cytoplasm (Rolo and Palmeira 2006; Giacco and Brownlee 2010). Diabetic-

induced mitochondrial dysfunction leads to overproduction of ROS levels, which 

further attenuates osteoblast apoptosis (Zhen et al. 2010), osteoblast dysfunction, and 

inhibition of cell proliferative capacity (Nishikawa and Araki 2007; Cunha et al. 

2014). Elevation of ROS was identified to induce cellular dysfunction of most bone 

cellular components, including osteoprogenitor cells, osteoblasts, and osteoclasts, 

which negatively influence bone formation processes, and thereby compromises in 

vivo osseointegration of titanium implant in animals (Feng et al. 2013). Similarly, 

diabetes is associated with higher outcome variability and increased rate of infectious 

complications during de novo bone formation, which compromise implant 

osseointegration processes (Retzepi et al. 2010). Furthermore, the oxidative stress 

marker was markedly increased in T2DM group, accompanied with less osteoid, 

osteoblast, and osteoclast deposition on the bone surface; lower mineral apposition; 

and decreased rate of bone formation, significantly indicating an impaired bone 

turnover in diabetic animal (Fujii et al. 2008). Diabetic animals also exhibit 

decreased number of osteoprogenitor cells, which lead to reduced osteoblastogenesis 

and bone formation (Weinberg et al. 2014). Significantly, co-culture MSCs with 

osteoblast in hyperglycaemic levels exhibit diminished interactions between these 

bone cellular components, along with reduced MSCs viability and clonogenicity 

(Rinker et al. 2014). In fact, glucose levels and extracellular matrix during culture 

significantly induce a different metabolic state in osteoprogenitor cells, which affects 

the viability and the terminal differentiation of the MSCs (Deorosan and Nauman 

2011). 

1.6 Macrophages in high glucose environments 

The primary issue of macrophages plasticity remains controversial, although more 

evidence and experimental approaches have now become widely available to 

potentially differentiate between classical activated macrophages (CAM) and 

alternatively activated macrophages (AAM). These two terms were introduced to 

identify two phenotypic subtypes of macrophages, based on gene expression induced 

in response to cytokine and pathogen-derived stimulation. Besides, high glucose has 
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been known to alter inflammatory responses in bone healing (Brown et al. 2012). To 

date, animal studies have demonstrated that diabetes-induced hyperglycaemia causes 

polarisation in macrophages phenotype and function, inducing the production of 

CAMs with pro-inflammatory phenotype (M1 macrophages), rather than the 

reparative/proliferative phenotype of AAMs (M2 macrophages), indirectly 

suggesting that alterations in macrophages profiles represent cellular mechanism, are 

partly responsible for delayed bone healing (Schmidt-Bleek et al. 2012). However, 

only a few studies have examined the specific effects of macrophage polarization 

through insertion of implant in compromised patients, such as T2DM; restricting our 

understanding on the mechanisms of controlling macrophage polarization; and our 

subsequent manipulation of any effectors with advantageous effects upon improving 

the tissue remodelling outcome. 

1.7 Aims of the thesis 

Prolonged inflammatory signalling cascade, altered cytokine growth factor 

activation, and delayed bone healing responses in the hyperglycaemic environment 

are some of the major consequences of diabetic perturbations, compromising the 

long-term comfort and stability following implant surgical procedures. Although 

many investigations have greatly contributed towards better understanding of the 

mechanisms in regulating growth factors-mediated osseointegration, many questions 

have remained unanswered about the regulation and the responsiveness of these 

growth factors in high glucose environments. It is still not clear if one type of growth 

factor is directly or indirectly affected in diabetic bone mineralisation, or if more 

types of growth factors are involved. Hyperglycaemia might possibly trigger 

different responses of growth factors between different tissues. Therefore, the aim of 

this study is to gain a greater insight into the processes that take place during the 

initiation of cell-mediated mineralisation during diabetic bone repairs and the role of 

relevant effectors involved in these processes. 

Chapter 2 is dedicated to the isolation, the expansion, and the characterisation of 

MSCs from rat adult tissues. Hence, comparative analysis performed on rat MSCs 

population derived from different tissue niches assisted in the selection of suitable 

progenitor cell types for in vitro disease model application in this study.  
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Chapter 3 assesses the effect of hyperglycaemia on bone-derived MSCs proliferative 

and differentiation capacity. Besides, the exposure of MSCs to long-term and short-

term high glucose concentrations revealed a significant change in cells; doubling 

time and gene expression of both osteogenic and adipogenic markers. 

Chapter 4 depicts the investigation on the availability of the growth factor, TGF-β1; 

and proteoglycans response to high glucose exposure. The results from in vivo 

osseointegration model demonstrated a significant increase of TGF-β1 in the young-

diabetic group, in comparison to the control group. Further in vitro study within 

hyperglycaemic environment revealed a significant alteration of TGF-β1, decorin, and 

biglycans. Therefore, a combination of in vivo and in vitro osseointegration analyses 

facilitated in further elucidating the synergistic role of the above biomolecules during 

bone repair. 

Apart from MSCs, macrophages have also been identified as another potential source 

of TGF-β1 expression within the bone healing area.. Hence, Chapter 5 demonstrates 

subsequent investigations concerning the effects of high glucose on macrophage 

polarisation, which potentially altered TGF-β1 expression during the inflammatory 

stages of bone repair. Detailed analysis of macrophage cytokine expression in 

diabetic environments excluded their associated role in supporting elevation of TGF-

β1 expression. It further led to fundamental changes in our understanding on the 

plasticity of macrophage phenotype and their actual involvement in diabetic 

pathologies. Finally, Chapter 6 summarises the main conclusions of this thesis. 
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Chapter 2 

Isolation and Characterisation of Bone-Derived Rat Mesenchymal 
Progenitor Cells Populations 

  



 

 

 48 

2.0 Introduction 

Mesenchymal stem cells (MSCs) are a distinct type of progenitor cells with unique 

capabilities for programmed self-renewal and differentiation into broad lineages of 

mesenchymal origins, such as bone, fat, and cartilage (Bruder et al. 1997; Krebsbach 

et al. 1999; Pittenger et al. 1999). Adult multipotent MSCs can be found in nearly all 

tissues, but are often associated or limited within the perivascular niches (Shi and 

Gronthos 2003; Tropel et al. 2004). Apart from the migratory abilities of MSCs to re-

populate the repair site, they were also found to secrete protective factors for tissue 

regeneration during inflammation, tissue injury, and certain cancers; suggesting the 

huge potential benefit to study these cells types further (Batouli et al. 2003; Abraham 

et al. 2008; Chatterjee et al. 2010).  

Due to these outstanding features, MSCs offer great potential for application in stem 

cell repair and regenerative therapies; involvement in developing in vitro models of 

disease progress; and also in monitoring prognosis of drug or therapeutic 

components in accelerating a wide variety of clinical outcomes (Dimitriou et al. 

2005; Chatterjee et al. 2010; Fiorina et al. 2010; Scotti et al. 2010). The improvement 

of bone repair and regeneration through cell engineering, modification of implant 

surface, gene therapy, and the optimisation of pro-lineages inducing medium have 

been extensively studied in recent years (Brown et al. 1989; Franceschi et al. 2000; 

Krebsbach et al. 2000; Franceschi et al. 2004; Koh et al. 2008). However, to achieve 

the desired objectives for the application of MSCs and in accelerating bone repair, it 

is undeniably crucial for researchers to optimise and fully characterise every detail of 

these MSCs, starting from their isolation techniques until their senescence stage to 

assist a smooth transfer of knowledge from laboratory-based technology to clinical 

practice. Furthermore, the successful application of stem cells for bone reparative 

care relies heavily on the efficiency of the isolated MSCs to maintain their 

proliferative capacity, pluripotency, and differentiation ability over prolonged in 

vitro culture. 

The universally accepted characteristic of MSCs and the proposed biological 

properties have only been provided after years of studying in vitro expanded cells, 

primarily analysing the behaviour of MSCs out of their native context.  In vivo, the 
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cellular identification of MSCs, along with their exact localisation and biological 

functions in co-ordinating tissue homeostasis, have been partly understood 

(Nombela-Arrieta et al. 2011). However, compared to other tissue-derived stem cells, 

bone marrow MSCs has been well characterised in terms of their biological function 

in vivo, particularly in maintaining tissue homeostasis and skeletal repair in the bone 

marrow environment.  

Moreover, bone stromal niches are richly populated by various important cell types, 

which represent the heterogeneous marrow stroma. The complexity of cells residing 

within the stromal niche provides a microenvironment for haematopoiesis and 

contributes to the maintenance, as well as regeneration of skeletal tissues. Bone 

marrow is considered as one of the most feasible sources of MSCs due to the 

straightforward approach in isolating, expanding, and manipulating the cells in 

culture (Silva et al. 2001). However, the use of bone marrow-derived cells is not 

always acceptable due to high risk of contamination with macrophages and 

monocytes, with high susceptibility of viral infection and inconsistency in 

proliferative, plus differentiation capacity over cultivation time (Minguell et al. 2001; 

Barry and Murphy 2004; Choudhery et al. 2012). Reports have also highlighted the 

variations in BM-MSCs behaviour, as clonal populations demonstrated inconsistent 

proliferative capacity and differentiation potential in comparison to heterogeneous 

BM-MSCs culture (Phinney et al. 1999; Pittenger et al. 1999; Muraglia et al. 2000; 

Peister et al. 2004). For these reasons, more researches are looking at possible 

alternatives for MSCs source other than bone marrow, which is considerably 

valuable.  

Classically, MSCs were isolated from bone marrow of human and rodent species by 

manipulating their distinct ability to expand in culture following adherence to plastic 

culture surfaces, as the techniques have shown a potential in reducing the co-culture 

of haematopoietic cells (Friedenstein et al. 1976). However, the property of plastic 

adherence itself is not sufficient for isolation of MSCs due to the abundant existence 

of unwanted hematopoietic cells, endothelial cells, and granulo-monocytic cells, 

reported in early and later stages of passage culture (Pittenger et al. 1999; Deans and 

Moseley 2000). Frequently, bone marrow stromal cells are subjected to fractionation 
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on a density gradient solution, such as FicollTM, to improve the purification 

strategies; followed by low density plating method (Phinney et al. 1999; Pittenger et 

al. 1999; Neuhuber et al. 2008). However, recent evidence demonstrated growing 

interest in using fibronectin-coated plates for MSCs isolation, from both human and 

animal species, manipulating the binding capacity of fibronectin receptors and 

surface α5β1 integrin to promote rapid adhesion of multipotent primitive cells (Jones 

and Watt 1993; Pimton et al. 2011). 

Despite the growing interest in the application of MSCs for repair strategies, there is 

no well-defined protocol for the isolation of prospective MSC populations in order to 

accurately study the cells biological properties prior to regenerative treatment. 

Optimisation of MSCs isolation protocols by manipulating cell behaviour and 

responses in growth culture conditions will not only ensure a high yield number of 

MSCs with the desired characteristics, but also maximise the potential use of MSCs, 

indirectly expanding the beneficial effects of these cells in future medical 

applications. For example, apart from the common idea of cell-driven technology 

involving tissue engraftment and wound healing, studies are now looking into the 

potential applications of MSCs as growth factor delivery and release, insulin, as well 

as other hormonal-producing supply. 

As of now, inconsistency does exist, in general, for the identification of MSCs, as no 

specific marker has been universally accepted to confirm the definitive MSCs 

phenotype. However, the vast majority of stem cells studies have identified MSCs 

populations by fulfilling these minimum three criteria; 1) the ability to proliferate by 

adherence to tissue culture plastic; 2) positive expression of at least three pro-

mesenchymal stem cells markers, such as CD90/Thy1, CD105/endoglin, and  

CD73/ecto-5'-nucleotidase; and 3) the ability to differentiate mesenchyme lineages 

cells, through osteogenic, adipogenic or chondrogenic induction (Horwitz et al. 

2005; Dominici et al. 2006; Le Blanc 2006). Extensive studies of MSCs from various 

species and tissue sources, together with variations in isolation techniques, will 

generate comprehensive data and provide in depth analysis to further comprehend 

the behaviour of MSCs, prior to their application in bone repair therapies. 
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For over four decades, several different protocols had been evaluated for the 

isolation of MSCs populations of rats, whereby most of the work had focused on 

extraction from bone marrow, in addition to other tissues, such as dental pulp, fat, 

muscle, cartilage, and synovial fluid (Jones et al. 2002; Tropel et al. 2004; Sung et al. 

2008; Nakamura et al. 2010b; Zhu et al. 2010). With the growing development and 

technologies in bone engraftment and skeletal tissue repair, the search for potential 

MSCs candidate with specific pro-osteoinductive and osteoconductive capacities 

directly derived from endosteal niches seems promising for application in bone 

repair treatments. Interestingly, recent studies have successfully performed the 

isolation of MSCs from mouse compact bone explants, suggesting the potential 

application of this method as an alternative in providing MSCs for bone repair 

therapies and for in vitro models of cellular behaviour (Sung et al. 2008; Nakamura 

et al. 2010b; Zhu et al. 2010). 

This Chapter presents the data comprising of isolation, expansion, and 

characterisation of purified homogenous and heterogeneous rat MSCs from bone 

marrow and compact bone explants. Briefly, these MSC populations were isolated 

using three different protocols, which were adopted by technically manipulating the 

known classical biological components of the cells. Much attention was given to 

compare the efficiency of each purification method by analysing cells proliferative 

capacity and differentiation potential towards osteogenic and adipogenic lineages, 

following a long-term in vitro culture. The successful isolation and characterisation 

of these MSCs revealed that both bone marrow and compact bone offered a 

promising suitable source of MSCs for the development of a rat MSC model.  
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2.1 Materials and Methods 

2.1.1 Animals    

28 days old, male Wistar rats were obtained from the colony maintained by
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each well of fibronectin-coated plates, immediately after removing PBS. Cells were 

then incubated for 20min at 37°C, to select the α-5/β-1 integrin positive immature 

mesenchymal cells population that adhered to fibronectin. After 20min incubation, 

non-adherent cells were removed by washing with PBS. Adherent cells were 

incubated in complete culture medium (CCM) consisting of alpha modification 

Minimum Essential Medium (αMEM), with ribonucleosides and 

deoxyribonuclosides (Invitrogen, Renfrewshire, UK), supplemented with 20% heat-

inactivated fetal bovine serum (FBS) (Invitrogen), 1% antibiotic-antimycotic 

(Sigma) and 100µm L-ascorbic acid 2-phosphate (Sigma) at 37°C in a humidified 

atmosphere containing 5% CO2 to allow colony formation. The colony formation 

(>32 cells) within each wells were counted on days 3, 6, 10 and 12 and each colony 

was marked and allowed to expand in culture. On day 14, colonies were isolated 

using StemPro® Accutase® enzyme (Invitrogen), to dissociate the cells colonies from 

the plastic surface of culture flask and forming a population of single cells. The 6-

well plate was washed three times with PBS before 150µl StemPro® Accutase® was 

added and incubated at 37°C for 8min. Cells were recovered and collected together, 

prior to cell counting and seeding in a new 96-well plate at 10,000 cells/cm2 for 

expansion. Cells were maintained in CCM and the medium was changed every two 

or three days until the cell culture reach approximately 70% confluence. Cells were 

then passaged with StemPro® Accutase® and cell counts were conducted accordingly.  

2.1.1.2 Isolation of bone marrow heterogeneous population by plastic adherence 
 and fibronectin selection 

Bone marrow was isolated from the long bones of Wistar rats using the method 

previously described in Section 2.1.1.1 and passed through a 70µm cell strainer. 

Bone marrow from each femur and humerus was flushed into one T-75 tissue culture 

flask. After 24h, non-adherent cells were removed by washing twice with PBS and 

adherent cells were further cultured in CCM for 2 supplementary days. On day 3, the 

adherent cells were retrieved using StemPro® Accutase® and cell count was 

conducted accordingly. The cells were seeded at 4,000 cells/cm2 in 1ml working 

medium, into each well of fibronectin-coated plates. After 20min incubation, non-

adherent cells were removed by washing with PBS. Heterogeneous adherent cells 
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population were then supplemented with CCM and incubated at 37°C in a 5% CO2 

atmosphere. Culture medium was changed every two or three days. 

2.1.1.3 Isolation of heterogeneous populations from rat bone chip explant 

 culture by collagenase digestion and plastic adherence 

The femur and humerus were aseptically removed, cleaned of all connective tissue 

and placed on ice in 10ml in isolation medium (IM). IM consisted of αMEM with 

10% antibiotic-antimycotic. Bone marrow cells were removed by strong flushing of 

each femur and humerus with 10ml of IM through a 21-G needle. After the bone 

marrow was flushed, the femur and humerus were scraped to remove any remaining 

soft tissue. The diaphysis were then cut into 1-3mm2 bone chips and digested under 

agitation in 3mg/ml collagenase II (Sigma) in αMEM for 2h at 37°C. After 2h, the 

digestion medium and released cells were removed and the bone chips washed three 

times with 5ml complete culture medium (CCM, as described in Section 2.1.2). The 

digested bone chips were then supplemented further with CCM and incubated at 

37°C in a 5% CO2 atmosphere. On day 3, the bone chips and non-adherent cells were 

removed and remaining adherent cells were cultured to allow for colony formation 

and expansion. After 12 days from initial plating, the adherent cells were harvested 

using StemPro® Accutase® for 7min at 37°C (Passage 0), counted on a 

haemocytometer, and re-plated at 4,000 cells/cm2 in T25 culture flask for further 

expansion. Culture medium was changed every two or three days. Once the cells 

have reached 70% confluence, they were further passaged and counted on a 

haemocytometer to determine the fold increases in expansion.  

2.1.1.4 Assessment of population doubling levels 

Each of the isolated MSC populations was assessed for their population doubling 

levels (PDs) to monitor their proliferation potential during the expansion period. Cell 

counts were performed at each passage and population doubling values were 

assessed as a proportion of the original number of cells seeded using the formula:  
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where the final cell number represents the cell number at 70% confluence, divided by 

the initial number of cells seeded. The final population doublings value for each 

colony was represented as the sum of population doubling values obtained at each 

passage. Each type of isolation protocol was repeated at least twice to ascertain the 

reproducibility of each protocol and provide reliable definitive characteristics for 

each established MSC population. 

2.1.1.5 Mycoplasma testing of primary cultures 

Mycoplasma testing was conducted using VenorGeM Mycoplasma Detection Kit for 

Conventional PCR standard protocol (Cambio, Cambridge, UK). Briefly, 100µl of 

supernatant sample was used from cell cultures at approximately 90% confluency. 

The sample was incubated at 95oC for 5min, centrifuged to pellet cellular debris; and 

2µl of supernatant used for PCR in a final volume of 25µl containing master-mix kit. 

PCR cycling condition used is as following: 1 cycle at 94°C for 2min, 94°C for 30s, 

55°C for 30s, 72°C for 3s, and hold at 4°C. Products were separated using 2% 

agarose/safeview gels and captured using UV light. Bands were seen at 191bp for 

negative sample and 270bp for positive sample. RNA free water was used as a 

negative control and DNA template used as positive control. Mycoplasma testing 

was routinely conducted every 2 weeks for each culture. If found positive, cell 

cultures were treated with 10µg/ml BM cyclin 1 and 5µg/ml BM Cyclin 2 (Roche, 

Burgess Hill, UK) for 2 weeks until tested negative. 

2.1.1.6 Cryopreservation of cells  

Cryopreservation of cultured cells was conducted by resuspending the cells in sterile 

FBS with 10% v/v dimethylsulfoxide (DMSO), at a concentration of 1x106 cells/ml. 

The vials were then transferred into Mr. Frosty containers, with isopropanol; and 

maintained at -80°C overnight before being transferred into liquid nitrogen for long-

term storage. 

Population doubling levels = log final cell number − log seeding cell number	  

     log2 × days in culture 
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2.1.2 Characterisation of MSC populations at early-, mid- and late-

 population doubling levels 

2.1.2.1 Cell morphological analysis by light microscopy 

Cellular morphology was compared in the various isolated populations, from early- 

(PD15), mid-(PD50) and late-(PD100) population doubling level, by using light 

microscopy with serial images captured on digital cameras Canon PC1234 (Canon 

UK Ltd., Surrey, UK). 

2.1.2.2 Phalloidin-FITC staining and fluorescence microscopy 

The actin cytoskeleton of cells was stained with phalloidin-FITC (Sigma) to further 

examine cellular morphology. The cells cultured in BD Falcon™ glass chamber 

slides (BD Biosciences, Oxford, UK) were washed with PBS and fixed with 

200µl/well 4% paraformaldehyde (PFA, Santa Cruz Biotechnology Inc., California, 

USA), for 10min at room temperature The PFA was then aspirated and cells washed 

twice with 200 µl/well PBS at 5min interval. The PBS was then replaced with 200 

µl/well 0.1% Triton-X100 (Sigma) for 30min, with gentle shaking at room 

temperature. The Triton-X100 was aspirated and the cells were washed twice with 

Tris buffered saline (TBS, pH 7.5). The cells were blocked with 200µl/well 1% 

bovine serum albumin (BSA, Fisher Scientific, Loughborough, UK) in TBS (1% 

BSA-TBS), for 1h at room temperature with gentle shaking. The blocking buffer was 

then removed before the addition of 100 µl/well phalloidin-FITC (20µg/ml, Sigma), 

in 1% BSA-TBS; and incubated for 1h under darkness at 4°C with gentle shaking. 

The stains were aspirated and cells were washed twice with 200 µl/well TBS at 5min 

intervals. The cells chamber was removed and the cells were stained with 

Vectashield® mounting medium with DAPI (Vector Laboratories Ltd, Peterborough, 

UK) prior to attachment of cover slips. Images were captured using an ultraviolet 

(UV) microscope (Olympus AX70 with Digital Eclipse DXM1200 digital camera 

attachment, Olympus Optical Co. Ltd., Tokyo, Japan). The images were captured 

using Automatic Camera Tamer (ACT-1) control software (Nikon Instruments UK, 

Surrey, United Kingdom) at 373nm/456nm (FITC). 
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2.1.2.3 Total RNA isolation from MSCs and quantification  

For RNA extraction, cells were seeded at 4,000 cells/cm2 in 3 wells of 6 well-plate. 

Once the culture reached 70% confluence, total RNA was extracted using the 

RNeasy® Mini kit and QIAShredder (Qiagen Ltd., Crawley, UK). Cells were 

washed twice with PBS before addition of lysis buffer and centrifuged at 13,300rpm 

for 2min at room temperature. The lysis buffer consists of RLT buffer (Qiagen) 

supplemented with 10µl/ml of β-mercaptoethanol. RNA pellets in the column were 

washed with 600µL of 70% ethanol, followed by centrifugation for 15s at 

13,300rpm. RNA solutions were treated with DNase to remove genomic DNA using 

the DNA-free kit (Qiagen), according to manufacturer's instructions. RNA was 

eluted from the column in a final volume of 30µl elution buffer. The RNA template 

was quantified using NanoVue™ (GE Healthcare, Chalfont St Giles, UK) 

spectrophotometry, using A260/A280 absorbance. The RNA products were stored at 

-80°C for use in reverse transcription reactions.  

RNA from the isolated MSCs was analysed at three different time-points during 

cultivation time, early-(PD15), mid-(PD50) and late-(PD100). At each selected 

population doublings level, the cells were analysed for the expression of selected 

mesenchymal progenitor cells surface antigens; CD90 (Thy-1); CD105 (endoglin) 

and CD73 (ecto-5-nucleotidase), hematopoietic surface antigens; CD45 and CD34; 

and embryonic stem cells surface markers; Oct4, Sox-2 and Nanog. The cells were 

also assessed for transcription markers of osteogenesis and adipogenesis, to further 

investigate the potential existence of mesenchymal lineages progenitor cells within 

the isolated cells population derived from each bone microenvironment. 

2.1.2.4 Reverse transcription of MSC RNA 

cDNA was synthesized from 500ng of total RNA using 1µl random primer 

(Promega, Southampton, UK), added to RNA-free water to a final volume of 15µl. 

The sample was run at 70oC for 5 min. RT reaction mix was prepared, containing 5µl 

5X Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV) reaction 

buffer, 3.4µl 10mM deoxynucleotide triphosphates (dNTPs), 0.6µl RNasin and 1µl 

MMLV enzyme, added to RNA-free water to give a volume of 10µl. Next, 15µl of 
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random primer/RNA mix was added to the RT reagents to produce a final volume of 

25µl cDNA. The 25µl final volume was run at 37°C for 1h. All reactions were run on 

a G-Storm™ GSI thermal cycler Software 45 V3.3.0.0 (Genetic Research 

Instrumentation Ltd., Braintree, UK). For each cDNA preparation, a negative control 

was produced, where primers and RT enzyme were subject to the same synthesis 

conditions, minus mRNA. All resulting cDNA was stored at -20°C for use in PCR 

reactions. 

2.1.2.5 Polymerase chain reaction (PCR) and product visualisation 

PCR was carried out using PCR reagents (Promega) and 1µl cDNA. The PCR 

reagents used for each reaction contain 5µl 5x buffer, 0.5µl 10mM dNTP, 1.25µl 

10µm forward and reverse primer (as shown in Table 2.1), 1µl 25mM magnesium 

chloride, 0.25µl Taq polymerase; and reconstituted with RNA-free water to a total 

volume of 25µl per reaction. For each PCR preparation, a negative control was 

produced, where primers and enzyme were subject to the same synthesis conditions, 

minus cDNA sample. Primers sequences were obtained from various related studies 

that fulfil the corresponding PCR criteria and a basic local alignment tools (BLAST) 

search was run on each primer, to ensure specificity for the intended amplification 

target (Altschul S.F. 1990). β-actin was used as a housekeeping gene. Reactions were 

performed in G-Storm™ GSI Thermal Cycler, with an initial denaturing step of 94°C 

for 5min, followed by 35 cycles of 1min 94°C denaturing step, 30s 55°C annealing 

step and 30s 72°C extension step, with final run of 72°C extension step for 7min. 

The same condition was applied to all primers with exception for Nanog, Oct4, 

CD73, CD105 and osteocalcin.  RT-negatives and PCR-negatives were used as the 

experimental controls and β-actin was used as the housekeeping gene. PCR products 

were kept at -20°C until visualisation. Products were separated using 2% agarose 

(Geneflow, Staffordshire, UK)/0.5X TBE (Sigma) with 1% Safeview (NBS 

Biological Ltd., Cambridge, UK). 10µl of PCR product were loaded and run in 0.5X 

TBE buffer at 90V for 1h. Gel was viewed on a GelDoc™ Scanner (Bio-Rad 

Laboratories Ltd., Hemel Hempstead, UK), using UV light. Images were captured 

using Quantity One Image Analysis Software (Bio-Rad) 
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Table 2.1 Primer sequences and product sizes of selected mesenchymal stem  
  cell markers and differentiation negative control for PCR analysis 

 

  

Gene 
cDNA sequence (5’-3’) F, Forward; R, 

Reverse 
Length 

(bp) 
References 

Nanog 
F:GGGGATTCCTCGCCGATGCCTGCCGTT 

R:GGGATACTCCACCGGCGCTGAGCCCTT 
477 

Nozaki and 
Ohura, 2011 

Oct4 
F:GCCCACCTTCCCCATGGCTGGACACCT 

R:GCAGGGCCTCGAAGCGGCAGATGGTTG 
563 

Gonzalez et al. 
2009 

CD73 
F:TCCCGCGGCTGCTACGGCACCCAAGTG 

R:ACCTTGGTGAAGAGCCGGGCCACGCCG 
204 

Scherer et al. 
2012 

CD90 
F:CCTGACCCGAGAGAAGAA 

R:TGAAGTTGGCTAGAGTAAGGA 
125 

Nakamura et 
al. 2010 

CD105 
F:ACATGGTGCCCACACCCGCAGCTGGCA 

R:CACTGCCACCACGGGCTCCCGCTTGCT 
263 

Meurer et al. 
2005 

CD34 
F:GTCACACTGCCTACTACTTC 

R:TCCTCGGATTCCTGAACAT 
210 

Shyu et al. 
2006 

CD45 
F:AGCAATACCAGTTCCTCTATGA 

R:TCCGTCCACTTCGTTATGA 
113 

Wang et al. 
2010b 

Runx2 
F:CCAGATGGGACTGTGGTTACC 

R: ACTTGGTGCAGAGTTCAGGG 
381 

Gilbert et al. 
2002 

OCN 
F:ACAGACAAGTCCCACACAGCAACT 

R:CCTGCTTGGACATGAAGGCTTTGT 
161 

Hak Auth, 
2008 

PPARγ 
F:GGAAAGACAACAGACAAATCAC 

R:GAACTTCACAGCAAACTCAAAC 
408 

Tholpady et al. 
2003 

Sox-9 
F:CCCTTCAACCTCCCACACTACAGC 

R:TGTGTAGACGGGTTGTTCCCAGTG 
249 

Schumacher et 
al. 2008 

β-actin 
F:TGAAGATCAAGATCATTGCTCCTCC 

R:CTAGAAGCATTTGCGGTGGACGATG 
155 

Gatto et al. 
2008 



 

 

 60 

2.1.2.6 β-galactosidase stain for cell senescence  

Cell senescence was analysed by the presence of β-galactosidase staining using a 

Senescence Cells Histochemical Staining Kit (Sigma), according to manufacturer’s 

instruction. Briefly, the cells were seeded in 3 well of 6-well plate at density of 2,000 

cells/cm2. At 24h, the culture medium was removed from the cells and washed twice 

with 1X PBS per well/plate. 1X fixation buffer was added and incubated for 6-7 

minutes at room temperature. Cells were rinsed thrice with 1X PBS. Staining mixture 

was added and left overnight at 37°C without CO2. The number of blue-stained 

positive cells out of 100 was counted from at least 5 five random fields of 30µm2 of 

view, to give an average percentage.  

2.1.3 Differentiation of MSCs into osteogenic and adipogenic lineages 

In order to assess the bi-potential differentiation capacity of the isolated MSCs, the 

expression of stem cell specific differentiation markers and transcription factors were 

examined, both at gene and protein level.  

2.1.3.1 Cell source 

MSCs taken at 50PDs of each cell population were selected for osteogenic and 

adipogenic induction. Protocol was carried out to confirm the ability of isolated cells 

to differentiate along the chosen mesenchymal lineages. 

2.1.3.2 Osteogenic differentiation 

Osteogenic medium consisted of αMEM with ribonucleosides and 

deoxyribonuclosides, supplemented with 10% FBS, 1% antibiotics-antimycotics, 

100µm L-ascorbic acid 2-phosphate, 10nM dexamethasone and 100uM β-

glycerophosphate (all from Sigma).  

For osteogenesis, the cells were plated in duplicate at 4,000 cells/cm2, in 3 wells of 6-

well plates for total RNA extraction; and 8-well chamber slides for histological 

staining. Cells were cultured in CCM for 24h, before the medium was removed and 

replaced with osteogenic mineralising medium and further incubated in 37°C, 5% 

CO2 for 28 days, with medium changes every 2 or 3 days. As a control for 
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mineralisation, the cells were also cultured in non-conditioned medium (NCM), 

consisted of αMEM with 10% FBS, 1% antibiotics-antimycotics and 100µm L-

ascorbic acid 2-phosphate only. 

2.1.3.3 Adipogenic differentiation 

The adipogenic medium was formulated based on supplementation used in Davies et 

al. 2010, which consisted of adipogenic induction medium (AIM) and adipogenic 

maintenance medium (AMM). AIM consist of αMEM with ribonucleosides and 

deoxyribonuclosides, supplemented with 10% FBS, 1% antibiotics-antimycotics, 

100µm L-ascorbic acid 2-phosphate, 1µM dexamethasone, 100uM indomethacin and 

100uM 3-isobutyl-1-methylxanthine (all from Sigma). AMM consist of αMEM with 

ribonucleosides and deoxyribonuclosides, supplemented with 10% FBS, 1% 

antibiotics-antimycotics, 100µm L-ascorbic acid 2-phosphate and 10µg/ml insulin 

(all from Sigma).  

For adipogenesis, the cells were plated in duplicate at 10,000 cells/cm2, in wells of 6-

well plates for total RNA extraction, and 8-well chamber slides for histological 

staining with LipidTOX™ (Life Technologies, Paisley, UK). The cells were cultured 

in CCM (as described in Section 2.1.1.2), until the culture reached 90% confluence, 

before the medium was removed and replaced with AIM and cultured in 37°C and 

5% CO2 for 14 days. Medium was changed every 72h. At day 6, cultures were 

supplemented with AMM for 48h to replace the AIM. Each of the adipogenic media 

was freshly prepared, prior to use. As a control for adipogenesis, the cells were also 

cultured in non-conditioned medium (NCM), consisted of αMEM with 10% FBS, 

1% antibiotics-antimycotics and 100µm L-ascorbic acid 2-phosphate only. 

2.1.4 Cellular imaging and gene expression analysis of differentiated cultures 

2.1.4.1 Alizarin red S staining 

The alizarin red S solution was prepared prior to staining, by dissolving 20g/L 

alizarin red S in double-distilled water, pH 4.2.  On day 14, samples were washed 

twice with PBS, followed by 10min fixation with 4% paraformaldehyde (PFA) at 

room temperature. The PFA was then removed and the fixed cells were washed twice 
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with PBS, before 100uL alizarin red S solution added and gently agitated for 2-5min. 

The excess staining solution was then removed and washed with distilled water. 

Slides were left to dry at room temperature, before viewing under light microscopy 

with serial images captured on digital cameras Canon PC1234 (Canon UK Ltd., 

Surrey, UK). 

2.1.4.2 Oil Red O staining 

The Oil red O staining solution was freshly prepared prior to staining, by mixing oil 

red O stock (3.5 g/L oil red O dissolved in propanol) and double-distilled water in a 

4:6 ratio. The staining mixture was agitated for 10min at room temperature, before 

being filtered through WhatmanTM grade 42 (2.5uM) filter paper (Sigma). The 

adipogenic and control cultures were gently washed with 60% isopropanol for 5min, 

followed by addition of 100uL oil red O working solution into each chamber well. 

After 10min, the excess staining solution was removed by gentle washing steps with 

double-distilled water and immediately followed by staining with haematoxylin 

(Sigma) for 2min at room temperature before final rinsing with double-distilled 

water. The samples were then immersed in 70% glycerol and before viewing under 

light microscopy with serial images captured on digital cameras Canon PC1234 

(Canon UK Ltd). 

2.1.4.3 Immunofluorescent detection of lipid vesicles in differentiated cultures 
 using LipidTOX™ 

1000X LipidTOX™ neutral lipid stain was diluted 1:1000 in buffer to make 1X 

solution. After removal of second PBS wash, the cells in each chamber were 

incubated with 200µl LipidTOX™ for 30min. Following 3 final washes with PBS, 

the chamber was removed and the cells were stained with Vectashield® mounting 

medium with DAPI (Vector Laboratories Ltd.) prior to attachment of cover slips. 

Images were viewed under ultraviolet (UV) microscope Olympus AX70. The images 

were captured using Automatic Camera Tamer (ACT-1) v.2.63 software (Nikon 

Digital, Tokyo, Japan) at 373nm/456nm. 
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2.1.4.4 PCR of differentiated cultures 

PCR analysis was conducted on osteogenic, adipogenic and control-treated cultures, 

by collecting the RNA on day 14 and day 28, following the respective induction 

processes. Control-treated cultures, supplemented with NCM were used as pre-

differentiation negative control. RNA was collected once the culture reaches 

confluence. Meanwhile, another control culture was carried out alongside the 

differentiation culture to act as a negative control culture, supplemented with NCM 

for 14 and 28 days accordingly. PCR reactions were carried out using the same 

cycling condition as stated in Section 2.1.2.5, with exception to osteocalcin as the 

annealing temperature was set at 62°C. Details of the selected differentiation markers 

are summarised in Table 2.2. 
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Table 2.2 Primer sequences and product sizes of selected osteogenic and 
adipogenic differential markers for qRT-PCR analysis. 

 

 

 

  

Gene 
cDNA sequence (5’-3’) F, Forward; R, 

Reverse 
Length 

(bp) 
References 

 

Osteocalcin 

 

F: ACAGACAAGTCCCACACAGCAACT 

R:  CCTGCTTGGACATGAAGGCTTTGT 
161 Owen et al. 

2012 

 

Osteopontin 

 

F:TCCAAGGAGTATAAGCAGAGGGCCA 

R: CTCTTAGGGTCTAGGACTAGCTTGT 
200 Singh et al. 

1992 

 

Osterix 

 

F: GCTTTTCTGTGGCAAGAGGTTC 

R:  CTGATGTTTGCTCAAGTGGTCG 
136 Georgiou et 

al. 2012 

 

Lipoprotein 
Lipase 

 

F:  AGGTCAGAGCCAAGAGAAGCA 

R: GGAGTAGGTTTTATTTGTGGCG 
215 Levak-Frank 

et al. 1995 

 

FABP4 

 

F: GGAATTCGATGAAATCACCCC 

R: TGGTCGACTTTCCATCCCACT 
104 Minoura et 

al. 2007 

 

C/EBPα 

 

F:  GGGAGAACTCTAACTCCCCCAT 

R:  CTCTGGAGGTGGCTGCTCATC 
82 Calkhoven et 

al. 2000 

 

Adiponectin 

 

F: GAATCATTATGACGGCAGCAC 

R: CTTGGAGCCAGACTTGGTCTC 
224 Puerta et al. 

2002 

 

β-actin 

 

F: GGGTCGAGTCCGCGTCCAC 

R: CGACGAGCGCAGCGATATC 
108 Park et al. 

1997 
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2.1.4.5 Time-based quantitative real-time PCR (qRT-PCR) analysis of 

 osteogenic and adipogenic differentiation markers 

For osteogenic induction, mRNA sample of 50PDs cells was collected on day 2, 7, 

14 and 28 following the differentiation protocol, whereas mRNA sample from 

adipogenic induction was collected on day 2, 7 and 14. RNA isolations and reverse 

transcription reactions were performed as described in Section 2.1.2.2 and section 

2.1.2.3. cDNA was pre-diluted 1:5 with RNA-free water prior to analysis. Each qRT-

PCR reaction was performed using 2.5µl 3µm primers (forward and reverse), 5µl 

diluted cDNA sample and 10µl SYBR Green Precision qRT-PCR Master Mix 

(Primerdesign Ltd., Southampton, UK). All samples were analysed in triplicate in 

Bright White 96-well plates (Primer Design Ltd), using ABI Prism 7000 Sequence 

Detection System and ABI Prism 7000 SDS Software V1.0 (Life Technologies Ltd., 

Paisley, UK). Reactions conditions were: 1 cycle of 95°C for 10min, 40 cycles of 

95°C for 15s, 55°C for 30s and 72°C for 30s for all primers except for osteocalcin, as 

the annealing temperature was set at 62°C. Primers sequences were obtained from 

various related studies that fulfil the corresponding qRT-PCR criteria (see Table 2.2). 

For quantitative analysis, the gene expression profile were normalised to expression 

of β-actin as the housekeeping gene, using the 2–ΔΔCt method (Livak and 

Schmittgen 2001). Gene expression in 28 days osteogenic medium and 14 days 

adipogenic medium were presented as the fold increase or decrease of that in basal, 

non-differentiating medium at day 0, prior to induction in osteogenic or adipogenic 

medium. Error bars represent SD. Products were separated by electrophoresis using 

2% agarose/Safeview gels and captured using UV light to confirm the amplified 

product band.  

2.1.5 Protein expression profile of osteogenic cultures 

Western Blot was performed to determine if osteogenic gene expression in the 

conditioned medium led to the expression of bone specific proteins (osteocalcin and 

osteopontin) by MSCs. 
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2.1.5.1 Protein extraction  

For protein analysis, MSCs were seeded at density of 4,000 cells/cm2 in T25 tissue 

culture flask. Protein was extracted from MSCs grown in the osteogenic medium at 

day 28. Cultured cells were washed twice in ice-cold PBS and scraped into ice-cold 

RIPA extraction buffer 1X (Fisher Scientific UK Ltd., Loughborough, UK), 

supplemented with protease inhibitors CompleteTM Protease Inhibitor Cocktail 

(Roche). Cells suspensions were sonicated using Digital SLPe Cell Disruptor 

(Branson Ultrasonics Corp., Danbury, USA) and debris collected by centrifugation at 

8,000rpm for 5min. The protein concentration of cell supernatant was analysed using 

a BCA Protein Assay Kit (Fisher Scientific), according to manufacturer’s 

instructions. 

2.1.5.2 Western Blot  

20µg of proteins samples were diluted 1:1 with 1X Laemmi buffer (62.5mM Tris-

HCl buffer, pH 6.8, 2% (v/v) SDS in distilled water, 10% (v/v) glycerol, 0.5% (w/v) 

bromophenol blue in distilled water and 2.5% (v/v) β-mercaptoethanol), before being 

loaded on 4-15% Mini-Protean® TGX™ Precast Gels (Bio-Rad) along with 10µl 

Kaleidoscope™ Prestained Standard Markers (Bio-Rad). Protein samples were 

separated under reducing conditions by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) at 200V, for 35min (Mini-Protean® Tetra Cell System, 

BioRad). Proteins were electrotransferred onto Hybond™-ECL extra nitrocellulose 

membrane (GE Healthcare, Little Chalfont, UK) at 15V for 30min, using Semi-Dry 

Trans-Blot System (Bio-Rad). Membranes were blocked with 5% semi-skimmed 

milk with TBS-T (Tris-buffered saline and 1% Tween 20), at 4oC overnight.   

2.1.5.3 Protein detection  

Following the blocking procedure, membranes were immuno-probed with polyclonal 

anti-goat osteocalcin (1:100) and polyclonal anti-rabbit osteopontin (1:100) (Insight 

Biotechnology, Wembley, UK), in 5% semi-skimmed milk with TBS-T, at room 

temperature for 1h. Membranes were rinsed 3 times with TBS-T and incubated with 

rabbit anti-goat horseradish peroxidase (HRP)-conjugated secondary antibody 

(1:3000, Insight Biotechnology) in 5% semi-skimmed milk in TBS-T at room 
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temperature for 1h. In parallel, β-actin control samples were incubated in polyclonal 

swine anti-rabbit HRP-conjugated secondary antibody (1:3000, Dako UK Ltd., 

Cambridge, UK) in 5% semi-skimmed milk in TBS-T at room temperature for 1h. 

Normalised protein loading was confirmed by β-actin Loading Control immuno-

probing (1:1000, Abcam, Cambridge, UK). Membranes were washed three times and 

incubated in ECL™ Plus Detection Reagent (GE Healthcare) for 2min. 

Chemiluminescence was detected by exposing the membrane to Hyperfilm™ (Fisher 

Scientific UK Ltd.) and developed using a Curix 60 Auto-developer (AGFA, 

Mortsel, Belgium), according to manufacturer’s instructions.  

2.1.6 Statistical analysis 

Unless otherwise stated, data was expressed as mean±standard deviation (SD). All 

statistical analyses were performed using SPSS version 20.0 (IBM, NY, USA). Data 

were analysed by two-way Analysis of Variance (ANOVA), followed with a Tukey's 

post-hoc test, with a significance level accepted at *p<0.05 and **p<0.01. 
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2.2 Results 

2.2.1 Establishment of rat MSC populations from bone explants and bone 

 marrow 

2.2.1.1 MSCs morphological analysis 

MSCs were successfully isolated from rats bone chip explants and bone marrow, 

using different selection methods; 1) collagenase digested bone chips explants 

culture followed by plastic adherence selection (BCE), 2) Plastic adherence selection 

of bone marrow stromal cells, followed by fibronectin preferential adherence 

(PFNA), 3) Histopaque® gradient separation of bone marrow cells, followed by 

fibronectin adherence selection (FNA). Adherent cells were observed in the 

heterogeneous samples; BCE and PFNA as early as 1-5 days in culture. BCE and 

PFNA at 15PDs rapidly generated a confluent layer of monolayer cell, mainly 

consist of stellate-shaped cells, with large flattened and nucleated spread body, 

mixed with smaller amount of spindle-shaped, fibroblastic-like morphology cells 

(Figure 2.1a-b).  

The actin staining of heterogeneous cells population taken from early PDs, revealed 

clear observation of wide spread actin filaments, located within the periphery of the 

cells (Figure 2.2a-b). However, after 60 to 70 days post-isolation, a new cell 

population appeared within the heterogeneous culture and rapidly became the most 

predominant cell type present in the culture, replacing the former widespread and 

stellate shaped cells (Figure 2.1d and 2.1e). Similarly, this can be seen in Figure 2.2d 

and 2.2e, as the cells from mid PDs showed an organised pattern of actin 

cytoskeleton, formed centrally within a spindle-shaped cells. 

Adherent cells from clonal bone marrow (FNA) were observed only after a minimum 

of 12 days following the initial seeding date. The cells demonstrating uniform 

spindle-shaped cells morphology from early to late PDs with only slight increase in 

nucleus size (Figure 2.1c, 2.1f and 2.1i). The homogenous appearances of FNA cells 

were also consistently observed from 15PDs, 50PDs and 100PDs with an actin 

filaments staining (Figure 2.2c, 2.2f and 2.2i). In contrast, BCE and PFNA 



 

 

 69 

populations demonstrated short stellate-like processes and a more polygonal 

morphology with flattened body over expansion time, from 50PDs to 100PDs 

(Figure 2.1g-h and 2.2g-h). Comparison made between all MSCs groups at 50PDs 

demonstrated similar predominant pattern of fibroblastic-like appearances despite 

different tissue source and separation methods applied in isolation steps.  
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Figure 2.1 Phenotype and morphology of isolated MSCs viewed under light 
microscopy. Both heterogenous MSCs population, BCE and PFNA showed 
alteration of cells morphologies with increase level of cells doubling time, whereas 
clonal MSCs (FNA) demonstrated more uniform cells shape along the expansion 
period. Scale bar= 100µm. BCE, bone chips explant MSCs; PFNA, plastic and 
fibronectin adherence BMMSCs; FNA, Histopaque® and fibronectin adherence 
clonal BMMSCs; PD, population doubling level. 
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Figure 2.2 Phenotype and morphology of isolated rats MSCs following the 
Phalloidin-FITC staining. BCE= bone chips explant MSCs, PFNA=plastic and 
fibronectin adherence BMMSCs, FNA= Histopaque® and fibronectin adherence 
clonal BMMSCs. Different actin filament distribution was observed in intact MSCs, 
from early-PD and late-PD culture, particularly in between cells with different 
homogeneity. Scale bar= 50µm. PD, population doubling level. 

 

  

PD
 1

00
 

PD
 5

0 
PD

 1
5 

a b c  

i hg

f e d

BCE PFNA  FNA 



 

 

 72 

2.2.1.2 Proliferative capacity of isolated MSCs 

Consistent numbers of cells with an average number of 4.18x106 progenitor cells/ml 

per raw bone marrow were collected from both femurs and humerus of 2 combined 

animals, as well as 2.43x106 progenitor cells/ml from the mononuclear fraction. 

Meanwhile, an average of 5.4X105 progenitor cells/ml was recovered from the bone 

chip explants, growing outward and adhering to the plastic surfaces after 5 days in 

culture.  

In order to compare the effects of the 3 different separation methods and different 

tissue source on the proliferative capacity of MSCs, the cumulative population 

doubling level (PDs) was evaluated for all isolated MSC populations, as shown in 

Figure 2.3. After 60 days of an initial lag phase, both heterogeneous BCE and PFNA 

MSCs began to demonstrate a consistent proliferation pattern, with rapid exponential 

growth until 100PDs were reached. The variability in MSCs PD profiles amongst the 

different BCE and PFNA cell populations was less apparent. In contrast, the clonal 

MSCs (FNA) demonstrated inconsistent proliferative capacity with huge variation 

during plateau stages between the same isolation techniques. FNA2 exhibit twice 

much longer lag phase of 120 days before the rapid proliferative stage began to take 

place, in comparison to FNA1, which demonstrate 60 days of lag phase, in 

equivalence with other isolated cell populations. In addition, starting from 15PDs, 

the isolated MSCs reach 70%-80% confluence every 2 to 3 days and the average PDs 

recorded per week was 5.42 for BCE, 5.2 for PFNA and 5.194 for FNA. The isolated 

MSCs were maintained for a minimum of 100PDs in culture, without any signs of 

cellular aging, which were confirmed by assessing the doubling rate, showed 

consistent at >4.9 PD/week and β-galactosidase staining (Figure 2.4), which 

demonstrated an average of <2% blue-stained cells in every 30µm2 random selected 

field, indicating good cells viability and the absence of cellular senescence. 
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Figure 2.4 β-galactosidase expressions in MSCs at late PDs (100PDs) from PFNA 
cells. X-gal staining was performed two days after seeding. Scale bar= 100µm. 

Figure 2.3 Cumulative population doubling levels (PDs) of MSCs for each clonal 
and non-clonal population. All of the MSCs were plated at 10,000 cells/cm2 and 
cultured until reaching 70% confluence, before further expansion. BCE, bone chips 
explant MSCs; PFNA, plastic and fibronectin adherence BMMSCs; FNA, 
Histopaque® and fibronectin adherence clonal BMMSCs. Each isolation protocols 
were repeated twice, n=2. Both replicate of heterogenous cells populations (BCE and 
PFNA) showed uniform proliferative capacity, whereas the homogenous populations 
(FNA), demonstrated inconsistent pattern of proliferative potential between each 
clonal expansion.  
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2.2.1.3 MSCs gene expression profiles 

The complete analysis of expressed surface antigens by MSCs isolated using all three 

different methods, are summarised in Figure 2.5. MSCs from the heterogeneous 

populations, BCE and PFNA consisted of a mixture of cell types, with variant 

phenotypes at selected PD time-points. Cells from BCE and PFNA positively 

expressed the mesenchymal stem cells markers, CD73, CD90 and CD105; and were 

found to be negative for the expression of leukocyte common antigen CD45. 

However, cells from both BCE and PFNA demonstrated low expression of the 

lipopolysaccharide receptor, CD34, at 15PDs, which was eventually lost over 

cultivation time. The expression of adipogenic differentiation markers, PPARγ, was 

negative in MSCs from BCE and PFNA groups. Findings also demonstrated positive 

expression of Runx2, along with detectable low expression of osteocalcin and Sox9 

in BCE and PFNA cells from all tested PDs. 

In contrast, the cultured clonal FNA cells comprised of a single phenotypic 

population at all tested PDs, as these attached cells were found uniformly positive for 

CD73, CD90, CD105, Nanog and Runx2; as well as consistently negative for 

expression of hematopoietic lineage marker, CD34, embryonic marker, Oct4, and 

differentiation markers, PPARγ. However, the FNA cells exhibit positive low 

expression of osteocalcin, CD34 and Sox9, in which the last two markers were no 

longer detected over expansion of culture. 

The cultured MSCs, both homogenous and heterogeneous cell populations were 

identified by consistent high expression of an embryonic stem cell marker, Nanog 

through all selected PDs. Nevertheless, only BCE cells taken from 15PDs were 

positively confirmed with low expression of Oct4, which was lost over expansion in 

culture.  
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Figure 2.5 Representative expressions of various stem cell surface markers. 
mRNA isolated from bone marrow and compact bone was subjected to RT-PCR 
analysis (N, biological replicate=2; n, experimental repeats=2). The expression 
of mesenchymal cell markers (CD73, CD90 and CD105) was detected. 
Hematopoietic stem cell marker, CD45, was not detected in all MSC 
populations, but CD34 was observed in the early PDs and eventually 
disappeared over time. β-actin was used as the internal control. Negative 
controls were the PCR runs without mRNA samples. BCE, bone chips explant 
MSCs; PFNA, plastic and fibronectin adherence BMMSCs; FNA, Histopaque® 
and fibronectin adherence clonal BMMSCs; PD, population doubling level. 
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2.2.2 Functional characterisation of MSCs  

2.2.2.1 Osteogenic differentiation and mineralised bone formation 

The osteogenic potential of rat MSCs isolated using three different methods was 

tested by culturing PD50 cells from all samples in osteogenic conditioned medium. 

As early as 10 days in culture, the cultured MSCs exhibited some morphological 

modifications, with morphological changes from an elongated fibroblastic-like shape 

to a more cuboidal shape. Following 28 days culture in osteogenic medium, the 

isolated MSC populations demonstrated the clear formation of stained mineralised 

bone nodules, with much lower bone formation observed in the clonal MSCs (FNA) 

compared to the heterogeneous MSC group (BCE and PFNA), as shown in Figure 

2.6. To further demonstrate the differentiation potential of the purified cells, the 

expression of osteoblast-specific markers before and after treatment with the 

inductive medium was examined. As demonstrated in Figure 2.7, osteogenic 

differentiation was confirmed by the positive gene expression of osteoprogenitor 

transcription factor, osterix and later stage of osteoblastic cells marker, osteocalcin 

that were strongly detected after 28 days induction in osteogenic culture. However, 

very low expression of osteocalcin and osterix were detected in undifferentiated 

culture of PFNA cells (day 0), indicating the presence of pro-osteogenic subsets 

within the heterogeneous bone marrow-derived population. RT-PCR analysis 

demonstrated the undetectable level of precursor osteoblast marker, osteopontin, in 

all stages of PDs. In contrast, osteocalcin and osterix mRNA expression were barely 

noticeable in the non-conditioned medium (day 0). β-actin expression was uniformly 

detected in samples from all selected PDs. 

Western Blotting was performed to validate the osteogenic potential of MSCs at 

protein level. In Figure 2.8, bands indicating the expression of osteocalcin, 

osteopontin and housekeeping control, β-actin were seen across all MSC populations 

after 28 days in osteogenic medium. The osteocalcin fusion proteins were detected at 

60kDa, 39kDa and 30kDa molecular weight, while a discrete osteopontin labelling 

was detected at 62kDa band, with extra bands observed at 55kDa and 75kDa, 

possibly due to posttranslational modifications. 
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Figure 2.6 Differentiation of MSCs (PD50) isolated from rats bone chips explant 
and bone marrow, cultured in osteogenic medium for 28 days and stained with 
Alizarin red. The red colour formation represents calcified deposition of the 
extracellular matrix. Scale bar= 100µm. BCE, bone chips explant MSCs; PFNA, 
plastic and fibronectin adherence BMMSCs; FNA, Histopaque® and fibronectin 
adherence clonal BMMSCs. 
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Figure 2.7 Expression of bone specific cell surface markers. mRNA isolated 
from bone marrow and compact bone, grown in osteogenic medium was subjected 
to RT-PCR analysis. The expression of osteoblast cell markers (osteocalcin) and 
transcription factors markers (osterix) were detected following 28 days induction in 
the osteogenic medium (N=2, n=3). BCE, bone chips explant MSCs; PFNA, plastic 
and fibronectin adherence BMMSCs; FNA, Histopaque® and fibronectin adherence 
clonal BMMSCs. 
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Figure 2.8 Western Blot analysis of osteocalcin and osteopontin in MSC 
culture grown in osteogenic induction medium for 28 days. BCE, bone chips 
explant MSCs; PFNA, plastic and fibronectin adherence BMMSCs; FNA, 
Histopaque® and fibronectin adherence clonal BMMSCs. 
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2.2.2.2 Quantitative analysis of MSCs osteogenic gene expression 

Quantitative real-time RT-PCR was used in this study to examine whether alteration 

in the differentiation potential of MSCs were accompanied by changes in the 

expression of osteogenic-related gene markers after 28 days in culture (Figure 2.9). 

In all cell population, osteocalcin expression was found to be 10-fold higher in 

osteogenic medium than the control non-conditioned medium on day 2. However, 

PFNA cells reported a significant increase of osteocalcin expression on day 7 

(p<0.05), and day 21 (p<0.01) in comparison to BCE and FNA cells. Meanwhile, 

there was a fluctuation in the expression of osteogenic transcription factor, osterix, 

from day 2 to day 14 in all isolated cultures, with noticeable increased expression in 

BCE and FNA cells on day 2 (p<0.05), followed by evident increase of PFNA 

(p<0.05) on the subsequent week. Moreover, a major significant difference of osterix 

expression in PFNA cells over BCE and FNA cells was detected on day 21 of bone 

induction. Interestingly, qRT-PCR also revealed that upregulation of osteopontin 

expression was only detectable in both heterogeneous cultures (BCE and PFNA) 

after 21 days culture in osteogenic medium, with significant changes reported on day 

21 (p<0.01) and day 28 (p<0.01), whereas osteopontin was downregulated in clonal 

bone marrow cultures (FNA) throughout the 28 days of bone induction period. 
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Figure 2.9 Gene expression of osteoblast markers in MSCs at 50PDs. Values 
were normalised to the expression of β-actin and expression in 28 days osteogenic-
induced medium is presented as the fold increase or decrease of that in basal, non-
differentiating medium, at day 0. Each bar represent mean fold change±SD. N=2, 
n=3 and *p<0.05, **p<0.01. All p values were based on two-way ANOVA. BCE, 
bone chips explant MSCs; PFNA, plastic and fibronectin adherence BMMSCs; 
FNA, Histopaque® and fibronectin adherence clonal BMMSCs. 
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2.2.2.3 Adipogenic differentiation and formation of lipid vacuoles 

Adipogenic differentiation was successfully induced in the expanded mesenchymal 

stem cell cultures, by treatment with dexamethasone, insulin, indomethacin and 1-

methyl-3-isobutylxanthine. 14 days after induction, the cultured MSCs were 

successfully stained for the accumulation of lipid-rich vacuoles with LipidTox™ 

green neutral lipid stain, as demonstrated in Figure 2.10 (a-c). Similar adipocytes 

staining patterns were obtained with Oil Red O, by detection of red lipid droplets in 

sample, as shown in Figure 2.10 (d-f). All MSCs induced into differentiation with 

specific adipogenic medium, demonstrated high potential and capacity to develop 

into adipocytes lineage cells in culture. The bone marrow MSCs, both PFNA and 

FNA, showed higher capacity to form adipocytes as the accumulation of lipid 

vesicles were observed as early as 7 days in culture, in comparison to compact bone-

derived MSCs which took a minimum of 11 days to form the lipid droplets. In 

addition, the observed formation of lipid vacuoles in bone marrow MSCs were found 

to be much larger in size at day 14, in comparison to the lipid vacuoles formed in 

compact bone MSCs. Longer treatment in the adipogenic medium resulted in MSC 

fat-committed lineages, supporting further development of lipid vacuoles formation, 

which eventually merged and filled up the whole cell. However, the prolongation 

culture of bone marrow MSCs in the adipogenic medium for more than 16 days, 

revealed cells rupture due to the progressive droplet formation within these cell 

populations (data not shown). Therefore, adipogenic induction for 14 days was 

specifically chosen for this study.  

Adipogenic differentiation was further confirmed by RT-PCR analysis, which 

demonstrated the positive expression of PPARγ, lipoprotein lipase, adiponectin and 

C/EBPα, as illustrated in Figure 2.11. However, MSCs cultured in basal medium 

(day 0) also demonstrated positive expression of C/EBPα and lipoprotein lipase, 

whereas clonal bone marrow cells (FNA) only showed faint expression of 

adiponectin before the adipogenic treatment.  
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Figure 2.10 Differentiation of MSCs (PD50) isolated from rats bone marrow and 
compact bone and cultured in adipogenic medium for 14 days before staining with 
LipidTox™ (a-c) and Oil Red O (d-f). The green and red coloured droplets 
represent lipid deposition in MSCs, following adipogenic induction. BCE, bone 
chips explant MSCs; PFNA, plastic and fibronectin adherence BMMSCs; FNA, 
Histopaque® and fibronectin adherence clonal BMMSCs. 

 

Figure 2.11 Expression of adipocyte cell surface markers. mRNA isolated from 
bone marrow and compact bone, grown in adipogenic medium, was subjected to 
RT-PCR analysis. The expression of adipogenic cell markers (adiponectin, PPARγ 
and lipoprotein lipase) and transcription factor, C/EBPα was detected following 14 
days adipogenic induction. (N=2, n=2). BCE, bone chips explant MSCs; PFNA, 
plastic and fibronectin adherence BMMSCs; FNA, Histopaque® and fibronectin 
adherence clonal BMMSCs. 
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2.2.2.4 Quantitative analysis of MSC adipogenic gene expression 

Quantitative real-time RT-PCR was performed to examine in further details whether 

gene expression profiles detected by RT-PCR analysis (Section 2.2.1.3) correlated 

with changes in the expression of adipogenic related gene markers on a time-based 

analysis (Figure 2.12). In all tested MSC samples, expression of fatty acid binding 

protein 4 (FABP4) demonstrated gradual upregulation beginning from day 2, with a 

marked 1000-fold increase on day 14, with BCE and PFNA significantly 

demonstrated higher fold change of gene expression compared to clonal bone 

marrow MSCs (p<0.01).  The same pattern of elevated gene expression was also 

identified for transcription factor, C/EBPα, with a 10-fold increase of expression on 

day 14, with a significant higher expression reported in BCE compared to PFNA and 

FNA (p<0.05). However, adipocytes from the cultured MSCs demonstrated slight 

variation in the expression of lipoprotein lipase, as the clonal FNA cells showed a 

consistent high fold expression of lipoprotein lipase (p<0.01) from the beginning 

until the completion of treatment, as opposed to significant lower fold change of 

lipoprotein lipase seen in PFNA and in particular, CBE cells which indicate a 

downregulation of lipoprotein lipase on day 2.  

Interestingly, qRT-PCR also revealed that 2 days after the induction, adiponectin 

level in PFNA cells was significantly increased by 44-fold change, whereas in both 

heterogeneous samples (BCE and PFNA), adiponectin mRNA level was barely 

detectable. At 14 day, as the MSCs progressed along the adipogenic lineage, 

endogenous adiponectin level in clonal FNA group has significantly upregulated by 

10-fold change compared to BCE and PFNA (p<0.05). 
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Figure 2.12 Gene expression of adipogenic markers in MSCs at 50PDs. Values 
were normalised to the expression of β-actin and expression in 14 days adipogenic-
induced medium is presented as the fold increase or decrease of that in basal 
medium. Each bar represent mean fold change±SD. N=1, n=3 and *p<0.05, 
**p<0.01. All p values were based on two-way ANOVA. FABP4, fatty acid binding 
protein-4; C/EBPα, CCAAT enhancer binding protein alpha; LPL, lipoprotein lipase. 
BCE, bone chips explant MSCs; PFNA, plastic and fibronectin adherence BMMSCs; 
FNA, Histopaque® and fibronectin adherence clonal BMMSCs. 
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2.3 Discussion 

This is a novel comparative study pertaining to isolation, expansion, and 

characterisation of MSCs from bone marrow and bone chip explants, which does not 

only combine and compare the application of fibronectin adherence selection with or 

without gradient density method, but also examines the different niches of bone-

derived mesenchymal progenitor cells collected from rats. The data presented in this 

study portray the purification of adult mesenchymal progenitor cell populations from 

rats’ bone marrow and bone chip explants, providing detailed analysis of the more 

advantageous protocol for the purification of proliferative MSCs precursors, with the 

capability of maintaining pluripotency during long-term in vitro culture. In addition 

to cell surface markers expression analysis, the study was extended by fully 

demonstrating the MSC differentiation properties along two classical mesenchymal 

pathways; the osteoblastic and the adipocytic lineages. The complete 

characterisation, along with the multipotency assessment, further allowed for an 

appropriate definitive hierarchy of these cells, as committed progenitor cells or 

multipotent MSCs (Bianco and Robey 2000, 2004; Kuznetsov et al. 2004). The most 

striking finding of the present study had been the discovery of multipotent progenitor 

cells population derived from bone chips explant culture, which exhibited great 

proliferative capacity in long-term expansion of in vitro culture. 

From these observations, all three isolation methods applied in this study led to the 

successful selection of clonal and non-clonal MSC populations, from both bone 

marrow and bone chip explant cultures. The combination of gradient density 

fractionation and fibronectin adherence method permitted the establishment of 

homogenous MSC populations, with limitation in terms of starting cell numbers due 

to lower densities of clones observed in culture (data not shown). Interestingly, the 

clonal MSC expansion demonstrated major differences in terms of cell 

morphologies, length of the lag-phase, and total cumulative PDs, indicating 

variations among the isolated clonogenic populations, as suggested by the vast 

majority of MSCs studies (Caplan 1997; Colter et al. 2001; Harrington et al. 2014). 

The demonstrated higher proliferation and differentiative capacities of bone marrow 

clonal cells population in this study might be associated with the proposed 

hierarchical position of the transit, amplifying cells in relation to the mother stem 
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cells, as demonstrated in earlier bone marrow clonal cells study (Harrington et al. 

2014). Of note, the two morphologically distinct clonal bone marrow MSC observed 

in separate homogenous culture showed huge discrepancies in their proliferation 

rates, as the fibroblastoid shaped cells exhibited speedy expansion capacity, whilst 

the stellate-shaped and wide nucleated cells grew at a slower rate. The presence of 

stellate cells in culture also suggested the differentiation state of the cells, as shown 

in cultured pancreatic stellate cells derived from bone marrow and mature 

osteoblastic culture (Colter et al. 2001; Sparmann et al. 2010). The differences 

between these two types of cells, with diverse phenotype and growth pattern in in 

vitro cultures has been reported in human and mouse bone marrow MSC cultures 

(Karaoz et al. 2009; Karaöz et al. 2011; Mareschi et al. 2012). Owing to the 

increasing trials for application of MSCs in reparative treatments, more cell culture 

studies have now focus on identifying a rapid and straightforward method for 

isolating multipotent MSCs. Hence, the disadvantages of using density gradient 

techniques over plating whole bone marrow stromal cells was shown, as the latter 

techniques were found to provide higher colony forming efficiency and allowed 

remarkable expansions of mesenchymal progenitor cells, following the initial plating 

step (Capelli et al. 2009; Mareschi et al. 2012). Evidence from previous studies also 

suggests that only a small fraction of clonal bone marrow MSCs has the ability to 

expand >20 PDs, while maintaining the high proliferative potential, genuine 

character of MSCs in subsequent passage (Menicanin et al. 2010; Jones and Yang 

2011). Taking that into consideration, the application of density gradient techniques 

possibly acted as a limitation factor in terms of the starting cell numbers for MSCs 

isolation strategy, with clonal bone marrow MSCs population also exhibited clear 

evidences of specific MSCs character, showing distinct proliferation rate over the 

whole cultivation period, thus limiting the potentiality of these cells populations to 

be used in general cell culture studies due to the presence of variations among clonal 

bone marrow MSCs.  

Therefore, the next experimental approach was initiated based on the modification of 

previously published protocols, which described isolation of heterogeneous MSCs 

from either bone marrow or bone explant culture, but without any further long-term 

cell culture expansion, characterisation or differentiation potentialities (Bruder et al. 
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1998; Sung et al. 2008; Nakamura et al. 2010b; Huang et al. 2012). The isolation of 

heterogeneous bone marrow MSCs, which was performed by overnight plating of 

whole bone marrow stromal onto plastic followed by re-plating the adherence cells 

onto fibronectin-coated wells, had been proven to positively purify multipotent 

MSCs. Application of fibronectin in MSCs study was first demonstrated by Jones 

and Watt (1993), by manipulating the binding capacity of immature progenitor cells 

towards the RGD domain of fibronectin via cell-surface α5β1 integrin. Recent studies 

on fibronectin adherence selection performed with CD14+ monocytes demonstrated 

the presence of multipotential cells within isolated cultures, showing similar 

morphologic, phenotypic, and functional characteristics of mesenchymal cell types, 

indicating the potential use of fibronectin in purifying primitive cell populations 

within multi-differentiation monocytic-derived cells (Seta et al. 2013). However, the 

detailed processes of intracellular signal transduction via this α5β1 integrin are still 

unclear due to the use of commercially available fibronectin in many isolation 

studies, leading to the possible effects of fibronectin degradation products that act by 

inducing cytokines secretion from progenitor cells rather than intact fibronectin 

(Feghali and Grenier 2012). Interestingly, the applied technique of digested bone 

chips explant cultures also exhibited similar success in isolating heterogeneous MSC 

populations, representing a unique population derived from skeletal tissue, with 

promising features of multipotent capacity. Hence, based on the total cumulative 

population doubling levels, the isolated bone chips explant cells (BCE) and bone 

marrow derived cells (PFNA) demonstrated consistent expandability over prolonged 

culture periods, respectively. Early culture of heterogeneous MSCs from both tissue 

sources showed the presence of mixed cell populations in culture, with distinct 

morphological features that potentially represented the primitive cells, tissue-

committed cells, transit amplifying cells or differentiating cells. However, the 

analysis of mid- and late- PDs MSCs demonstrated the uniform appearance of 

spindle-shaped cells, which gradually replaced the earlier broad-shaped cells in the 

culture. 

Taken together, the results obtained from this study demonstrated the presence of 

relevant differences among the different isolated groups, though all the tested MSC 

populations clearly showed evidence of long-term expansion with highly 
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proliferative capacity. It was observed that the initial number of heterogeneous 

MSCs from both bone and bone marrow was likely to be higher, while the 

proliferation rate was more consistent for each batch of isolated cells compared to 

homogenous bone marrow MSC populations, as described for human bone marrow 

MSCs and rat bone marrow MSC studies (Krebsbach et al. 2003; Karaoz et al. 2009). 

Apart from the different isolation methods, cell heterogeneity, a potential variation, 

may also be present between the isolated MSCs because they originated from 

different niche environments, such as the endosteum or periosteum, which consisted 

of diverse subpopulations, offering various roles in maintenance and supporting the 

initial growth of cultured MSCs. Rat MSCs isolated by the various techniques in this 

study also showed similar proliferation ability as human MSCs, if not better in terms 

of high number of passages and population doubling levels without losing their high 

clonogenic potential, prime antigenic markers, and differentiation ability throughout 

the analysed culture period, as opposed to a lower proliferation rate reported in 

human bone marrow MSCs studies (Muraglia et al. 2000; Tong et al. 2007). 

However, the major differences seen between human isolated MSCs and rats isolated 

MSCs in this study may potentially indicate the variation that existed between cells 

derived from various species. 

Regardless of cell origin and isolation techniques, all the purified MSCs populations 

were found to be positive for selected MSCs markers; CD105 (endoglin), CD90 

(Thy-1), and CD73 (ecto-5-nucleotidase), indicating that they were indeed of 

mesenchyme origin. Nevertheless, no contaminated CD45 hematopoietic cell 

population was observed throughout the whole culture period, but the presence of 

CD34+ cells was detected in both early heterogeneous MSCs cultures. In agreement 

with results obtained from other murine bone marrow MSCs studies, the weak 

presentation hematopoietic markers in early passage for heterogeneous MSCs, 

suggested the presence of undefined cells that potentially supported the rapid 

expansion of isolated cells during in vitro culture (Mareschi et al. 2012). Apart from 

that, CD34+ cells have the ability to transform into CD34- cells in experimental 

culture, suggesting that CD34 antigen may also serve to define activated stem cells, 

rather than conclude their hematopoietic origin. Even though it might not be 

applicable for all adult MSCs, the activation of CD34+ cells hypothetically 

correlated with the stimulation of hematopoietic components, which directly 
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controlled the self-renewal activity, as well as proliferative and differentiation 

capacities of immature cells. Thus, it is important to take this into consideration, as a 

similar pattern of CD34+ expression was found in both cultured heterogeneous 

MSCs during earlier culture, which suggested the possible existence of activated 

CD34+ stem cells that potentially supported the feasibility of primitive MSCs 

manipulation in the early stages of cell cultivation. 

Other than that, the analysis of embryonic stem cells markers in all isolated MSC 

populations demonstrated the consistent expression of Nanog at all stages of culture, 

regardless of cell isolation techniques and MSC origin. Furthermore, only BCE 

MSCs taken from early culture were found to be positive for the expression of Oct4, 

suggesting a unique characteristics of bone-derived cells originated from the cortical 

bone niche, comprised of bone-lining cells with heterogeneity in function and degree 

of differentiation, as demonstrated in other MSCs studies (Kiel and Morrison, 2008; 

Yin and Li, 2006). In addition, certain Sca-1 populations, derived from compact 

bone, were found to support the enrichment of osteoblastic markers and 

differentiation potential, indirectly suggesting the localization of MSCs and skeletal 

progenitor within the perivascular niche of bone (Nakamura et al. 2010b). The 

unique heterogeneity observed in early culture of BCE MSCs may also correlate with 

the presence of contaminating satellite cells in cultured populations. Satellite cells 

are widely isolated using collagenase digestion, grown in 20% of FBS culture 

medium with preferential adherence to plastic or ECM component-coated surfaces; 

and enrichment using CD45-CD34+ markers (Danoviz and Yablonka-Reuveni 2012). 

Therefore, it may be assumed that MSCs derived from bone chips explants contain 

mixed sub-population of pre-osteoblastic cells, some of which might be immature 

niche cells that are capable of expressing pluripotent marker–related genes; and other 

progenitor populations that possess restricted proliferative and differentiation 

potentials, compared to bone marrow localized, and primitive MSCs.  

Meanwhile, Runx2 was reported to promote osteoblast differentiation at an early 

stage of induction, but inhibited terminal osteoblast differentiation (Komori 2002), 

whereas endogenous Runx2 expression was detected in non-osteoblastic cells, 

without activating the differentiation process, suggesting the unknown mechanism in 
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regulating its expression (Komori et al. 1997). Besides, inhibition of Smad3 in 

primary cells was reported to induce activation of Runx2 in non-conditioned medium 

(Hjelmeland et al. 2005). Significantly, Smad3 phosphorylation decreased in 

cirrhotic rats after bone marrow MSC treatment, suggesting the potential role of bone 

marrow MSCs in inhibiting Smad3 phosphorylation through modulation of the TGF-

β1/Smad signalling pathway (Jang et al. 2014). Irrespective of population doubling 

levels, all isolated MSCs in this study showed strong positive expression of Runx2 

during expansion culture in basal medium, suggesting the inhibition of Smad3 

expression in the isolated MSC populations, which led to the endogenous expression 

of Runx2 without stimulating osteogenic differentiation. 

The mesenchymal cells described in this study had been presented with bi-potential 

differentiation capacity towards osteogenic and adipogenic lineages, with the 

presence of variable inductive capabilities. This is in agreement with recent evidence 

from adult MSCs studies, which proposed the theory of ‘trans-differentiation’ in 

stem cells to explain MSCs ability to re-differentiate and de-differentiate into 

alternate mesenchymal lineages, by solely manipulating and changing the induction 

medium (Song and Tuan 2004). All isolated MSCs in this study possessed the 

osteogenic potential, shown by positive expression of osteogenic differentiation and 

transcription markers, such as osteocalcin, osteopontin, and osterix. The isolated cell 

populations also exhibited similar patterns of morphological changes during the 

osteogenic induction process, as previously mentioned in another study conducted by 

Arrigoni et al. (2009), which indicated alteration from fibroblastic-like shape cells to 

a rounder cuboidal shape during osteogenic differentiation process. The observed 

formation of calcified extracellular matrix by alizarin red staining, demonstrated a 

high capacity of heterogeneous bone marrow MSCs to form bone nodules, with signs 

of calcified tissue after just 7 days in culture, compared to clonal bone marrow 

MSCs, which took longer time to produce bone nodules in osteogenic culture. 

Further analysis via qRT-PCR reported the downregulation of osteopontin in clonal 

MSCs even after 28 days of osteogenic induction, along with the low expression of 

osteocalcin and osterix, in comparison to upregulation of all osteoblastic markers in 

both BCE and PFNA cells populations, with significant differences of fold change 

expression reported on day 21 (p<0.01). These findings suggested that the clonal 
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bone marrow MSCs isolated and characterised in this study represented a restricted 

capacity to differentiate into bone. Moreover, it had been demonstrated in previous 

studies that only 31-33% of the established clonal bone marrow stem cell populations 

exhibited in vivo bone formed capacity (Kuznetsov et al. 1997; Prins et al. 2014). 

 

From the RT-PCR analysis, the observed high expressions of PPARγ in all MSCs 

populations following 14 days of culture in adipogenic medium suggested that the 

isolated cells possessed the capacity to induce key regulator in adipogenesis, PPARγ. 

In fact, the positive expression of C/EBPα and lipoprotein lipase by confluent MSCs 

cultured in basal medium, may suggest spontaneous adipogenic differentiation of the 

cells. In fact, recent findings indicated that the presence of ascorbic acid in pre-

adipocytes populations, as applied in this study, might enhance adipogenesis through 

the upregulation of transcription factor, C/EBPα (Kim et al. 2013). Apart from 

demonstrating low capacity to form bone nodules during osteogenic differentiation, 

the low expression of adiponectin observed in basal medium of clonal bone marrow 

MSCs, might indicate the commitment of these FNA cells towards adipogenesis, as 

adiponectin is rather well-known in promoting adipocyte differentiation, insulin 

sensitivity, and lipid accumulation in progenitor cells (Fu et al. 2005; Abbassy et al. 

2010; Shin et al. 2012). Within this study, the heterogeneous MSC populations 

significantly demonstrated 1000-fold change increased expression of FABP4, after 

14 days of adipogenic differentiation compared to the clonal MSC (p<0.01). The 

upregulation of FABP4 expression was observed on day 2 and gradually increased as 

the adipocytes reached the maturity stage. Hence, the presented results further 

supported findings of similar previous studies, which demonstrated FABP4 

expression in mature adipocytes, which play an important role in lipid metabolism 

and homeostasis (Elmasri et al. 2009). A significant elevation of lipogenic enzyme, 

lipoprotein lipase, was observed in bone marrow-derived MSCs, compared to bone 

chip explants cells, indicating the differences in lipid metabolism and transport 

between adipocytes differentiated from bone marrow and periosteum-derived 

progenitor cells. Similarly, enhanced capacity of bone marrow MSCs to express 

lipoprotein lipase compared to bone explants MSCs, following adipogenic induction 

was demonstrated in human cell study (Eyckmans et al. 2012). In light of the 

significant findings derived from this study, it is reasonably appropriate to include 
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adiponectin and osterix for osteogenic and adipogenic differentiation analysis of 

stem cells, to conclusively define the pro-lineage commitment of the cells, due to the 

complexity of progenitor cells behaviour in various in vitro culture conditions. 

Together, the results gathered from this chapter have provided important insights in 

understanding the cellular characteristics of clonal and non-clonal derived MSCs, 

from either bone marrow or bone explant cultures, with respect to their proliferative 

and differentiation capacities. These MSC populations were assessed after 

cryopreservation and no difference was observed at any passage time-point, 

following the initial isolation period, suggesting their potential use for bone repair 

and regeneration. In addition, the simplicity of the protocols for the isolation of 

MSCs from digested bone chip explants acted as another promising platform for 

obtaining characterised skeletal stem cells for bone repair studies. In fact, bone chip 

explant MSCs possessed an outstanding proliferative capacity and differentiation 

potential into osteogenic and adipogenic lineages, which indicated the prospective 

application of these cells for the development of an in vitro disease model, such as 

Type 2 Diabetes Mellitus. Therefore, investigation depicted in the next Chapter 

investigated the effects of high glucose medium on proliferation and differentiation 

potentials of bone chip explant MSCs to characterise the behaviour of the cells 

within diabetic environment and further elucidate their role in diabetic bone repair. 
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Chapter 3 

Effect of High Glucose Level on Expansion Cultures of Bone Chip 
Explant-Derived, Mesenchymal Stem Cells 
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3.0 Introduction 

MSCs have been isolated from various adult tissues and organs, demonstrating the 

ability to differentiate into multiple mesodermal cell types, such as osteoblasts, 

adipocytes, chondrocytes, hepatocytes, and neuronal cells (Mareschi et al. 2012; 

Sharma et al. 2014). The immunosuppressive properties of these cells also offer great 

potential in improving transplantation tolerance (Ding et al. 2010). The extended 

knowledge on stem cells metabolism has facilitate in treating a wide variety of 

diseases, such as myocardial infarction, diabetes, and Parkinson’s disease (Lovell-

Badge 2001; Kuo et al. 2011; Choudhery et al. 2012). Moreover, the promising hope 

of stem cell replacement therapy has extended to tissue regeneration and repair 

during bone, spinal cord, periodontal, and craniofacial reconstructive procedures. 

High glucose levels act as an independent risk factor for short- and long-term 

deterioration in the progression of micro-vascular damage in the affected organs (as 

reviewed by Rolo and Palmeira in 2006). In vivo, chronic hyperglycaemia had been 

proven to have detrimental effects on insulin secretion by limiting the response of 

cellular glucose uptake level (Rossetti et al. 1987). In fact, most studies that 

investigated the influence of hyperglycaemia on cellular behaviour were performed 

in vitro, with the assumption that glucotoxicity-induced in culture might reflect the 

actual mechanisms with in vivo systems. High glucose is associated with induction of 

early senescence and potentially leads to numerous perturbations in cellular 

behaviour and metabolic activity in the skeletal system (Stolzing et al. 2006). 

Experimental data suggested reductions in cells proliferative capacity in high glucose 

concentrations, followed by preferential differentiative capacity of cells towards 

adipogenic lineages, while both osteogenic and chondrogenic potentials were 

suppressed (Dominici et al. 2006; Cramer et al. 2010). Osteoblastic culture in high 

glucose medium also displayed a marked reduction in the number of nodules formed 

and calcium deposition  (Zhen et al. 2010). In fact, both murine and primate stem cell 

studies demonstrated impaired interplay between osteoblast and osteoclast lineages 

in hyperglycaemic condition (Steiler et al. 2003). 

The actual mechanism by which high glucose-levels might have altered MSC 

behaviour in both in vivo and in vitro systems is still unclear. High glucose increased 
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osteoprotegerin (OPG) expression over RANKL, while suppressed ALP production, 

induced defects in matrix mineralisation and led to impaired bone remodelling 

(Cunha et al. 2014). Furthermore, it had been found that hyperglycaemia stimulated 

the production of reactive oxygen species (ROS) and the secretion of growth factors; 

TGF-β1 through PKC and hexosamine pathways (Kolm-Litty et al. 1998; Inoguchi et 

al. 2000). In other studies, high glucose levels were shown to reduce Runx2 

expression in stem cells, which resulted in altered wound healing through AR polyol 

pathway (D'Souza et al. 2009). In T2DM models, alterations in mitochondrial DNA 

and oxidative stress had been associated with glucose-stimulated and insulin 

resistance of β-cell (Rolo and Palmeira 2006). Persistent exposure to high glucose 

levels increased ROS and the production of advance glycated end products (AGEs) 

(Kume et al. 2005). Moreover, prolonged high glucose levels also inhibited stem cell 

function and proliferative capacity; besides inducing apoptosis through production of 

ROS (Li et al. 2007; Petrelli et al. 2012). High glucose levels and hyperosmotic 

conditions were also involved in provoking increased susceptibility of osteoblastic 

cells towards osmotic stress, leading to somatic reprogramming of stem cells 

(Madonna et al. 2013).  

Although hyperglycaemia is known to represent a major feature in diabetic progress, 

the on-going debate about hypothetical effect of high glucose on MSCs functions has 

remained controversial. High glucose had been reported to enhance the ESCs 

proliferations growth (Kim et al. 2006), but decreased that in rat MSCs (Stolzing et 

al. 2012). Meanwhile, glucose has no effect on proliferation of human bone marrow-

derived MSCs (Weil et al. 2009). These contradictory findings serve as important 

evidence to further investigate the critical use of stem cells as treatment in disease 

conditions associated with high glucose environments, elucidating the actual 

mechanisms involved in alterations to progenitor cells growth and function.  

Moreover, bone-derived MSCs have only been studied in recent years, owing to the 

successful isolation and characterisation of these progenitor cells from trabecular 

bone chip explant culture of murine and human origin (Nöth et al. 2002; Sottile et al. 

2002; Guo et al. 2006; Zhu et al. 2010). Bone-derived MSCs have demonstrated the 

capacity for in vitro multilineage differentiation and offer remarkable potential for 

application in tissue engineered therapy, as well as the development of 
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musculoskeletal disease model, due to their straightforward isolation protocols, 

highly proliferative features, and great differentiation capacity into mesenchymal 

lineages. However, little is known about the main elements in typical cell culture 

medium, such as glucose, which provides the main fuel source for bone chip explant 

MSCs and a great potential in affecting cells proliferation rate, as well as 

differentiation capacity.  

In spite of recent advance in using MSCs as key components in cell-based therapy 

for treating degenerative disorders and accelerating repair of tissue injury, studies 

providing an exhaustive model of glucose-induced toxicity in 2D culture are still 

lacking. Precisely, the most strategic way to improve MSC-based therapies for 

skeletal repair with diabetes complications must first embrace a deeper insight on the 

influence of glucose on MSCs, even prior to their clinical administration. To date, 

this issue is only partially discovered. Therefore, further understanding on the effects 

of glucose on MSCs does not only assist in identifying and clarifying the 

pathophysiology of hyperglycaemia, but more importantly, it provides an alternative 

approach in minimising the impact that glucose has on the metabolism and the 

therapeutic potential of MSC populations. 

With that, this chapter offers understanding of bone progenitor cells proliferation and 

survival, in response to hyperglycaemic conditions, and further elucidates if the 

diabetic environment significantly promoted alterations in cellular behaviour. The 

information gained from this study would further assist in our better understanding of 

cellular and biological functions of MSCs, for application in disease models, and 

regenerative therapies. 
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3.1 Materials and Methods 

3.1.1 Animals  

Briefly, bone explants were obtained from the femurs and humerus bone of 28 days 

Wistar rats, as described in Section 2.1.1.  

3.1.2 Cell culture 

The previous chapter provided details about the isolation, expansion and 

characterisation of MSCs derived from rat bone chips explants, as described in 

Section 2.1.1.3. Bone chip explant MSCs showed great potential in maintaining high 

proliferative rate in long-term culture, without losing the prime features of 

differentiation along the osteogenic lineage. Within this chapter, bone chip explant 

MSCs (BCE-MSCs) taken from population doubling levels (PD) 10 of earlier 

cultures, were thawed from nitrogen storage and maintained for ~200days in 

different glucose level medium, to monitor the effect of high glucose level on MSCs 

proliferation potential and differentiation capacity. The experimental culture was 

incubated in high-glucose culture medium (HGCM), which consisting of complete 

culture medium (CCM, as described in Section 2.1.1.1) supplemented with sterile D-

glucose 100g/L (Sigma Aldrich, Dorset, UK) to reach a final concentration of 

25.0mM glucose. Meanwhile, experimental control of BCE-MSCs was maintained in 

CCM (5.5mM glucose). Both cultured BCE-MSCs was incubated at 37oC in a 

humidified atmosphere containing 5% CO2. Images of cultured cells were captured 

using light microscopy at each PD. 

3.1.3 Assessment of cell proliferative capacity 

PDs of BCE-MSCs cultures were assessed, as described in Section 2.1.1.4, up to 200 

days. 

3.1.4 Differentiation along the osteogenic lineage and assessment of bone 

 formation 

Prior to osteogenic differentiation, BCE-MSCs taken at PD50 and PD150 for each 

cell population were plated at 4000 cells/cm2 in 6-well plates (for RNA extraction 

and immunohistochemical analysis) and also in T25 flask (for protein extraction). 
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The cells were cultured in either CCM or HGCM for 24hr, prior to supplementation 

of osteogenic induction medium. BCE-MSCs were differentiated for 28 days in 

either 5.5mM control osteogenic medium (COM), as described in Section 2.1.3.2; or 

D-glucose (Sigma Aldrich) supplemented 25.0mM high-glucose osteogenic medium 

(HGOM), with 2 to 3 days change of culture medium. At day 28, adhered cells in the 

6-well plate were prepared for cellular staining with Alizarin Red (as performed in 

Section 2.1.5.1). RNA was extracted (as described in Section 2.1.4.4) from cultured 

BCE-MSCs on day 2, 7, 14, 21 and 28, to assess the temporal expression of 

osteogenic-related differentiation gene markers, osteocalcin (OCN), osteopontin 

(OPN) and osterix (OSX) using qRT-PCR analysis (as described in Section 2.1.4.4). 

Details of the selected osteogenic differentiation markers are summarised in Table 

3.1. RNA extraction and reverse transcription reactions were performed on the 

osteogenic and control-treated cultures, as described in Sections 2.1.3.3 and 2.1.3.4. 

PCR reactions were carried out using the same cycling condition as stated in Section 

2.1.3.5, with exception to OCN, as the annealing temperature was set at 62°C. 

Control-treated culture, supplemented with CCM (as described in Section 2.1.1.1) 

was used as pre-differentiation negative control; and the RNA was collected once the 

culture reaches confluent. Meanwhile, another control culture was carried out 

alongside the differentiation culture to act as a negative control, supplemented with 

CCM for 28 days. 

  



 

 

 99 

Table 3.1 Primer sequences and product sizes of selected osteogenic and 

adipogenic differential markers for qRT-PCR analysis. 

 

  

Gene 
cDNA sequence (5’-3’) F, Forward; R, 

Reverse 

Length 

(bp) 
References 

β-actin F: GGGTCGAGTCCGCGTCCAC 

R: CGACGAGCGCAGCGATATC 
108 

Park et al. 

1997 

OCN F: ACAGACAAGTCCCACACAGCAACT 

R:  CCTGCTTGGACATGAAGGCTTTGT 
161 

Owen et al. 

2012 

OPN F: TCCAAGGAGTATAAGCAGAGGGCCA 

R: CTCTTAGGGTCTAGGACTAGCTTGT 
200 

Singh et al. 

1992 

Osterix F: GCTTTTCTGTGGCAAGAGGTTC 

R:  CTGATGTTTGCTCAAGTGGTCG 
136 

Georgiou et 

al. 2012 

LPL F:  AGGTCAGAGCCAAGAGAAGCA 

R: GGAGTAGGTTTTATTTGTGGCG 
215 

Levak-Frank 

et al. 1995 

FABP4 F: GGAATTCGATGAAATCACCCC 

R: TGGTCGACTTTCCATCCCACT 
104 

Minoura et 

al. 2007 

C/EBPα F:  GGGAGAACTCTAACTCCCCCAT 

R:  CTCTGGAGGTGGCTGCTCATC 
82 

Calkhoven et 

al. 2000 

Adiponectin F: GAATCATTATGACGGCAGCAC 

R: CTTGGAGCCAGACTTGGTCTC 
224 

Puerta et al. 

2002 
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3.1.5 Differentiation along the adipogenic lineage and assessment of lipid 

 vacuoles formation  

The CCM-treated and HGCM-treated BCE-MSCs were taken at PD50 and PD150 

for adipogenic induction process. For adipogenesis, protocol was performed as 

previously described in Section 2.1.3.3. In addition, cells were also maintained in 

different glucose levels in adipogenic induction medium, with the addition of D-

glucose at 5.5mM and 25.0mM, respectively. Along the adipogenic induction 

process, RNA extraction and qRT-PCR analysis was conducted on day 2, 7 and 14, 

to assess transcription of adipogenic genes, lipoprotein lipase (LPL), FABP4, 

C/EBPα and adiponectin during the induction procedure (as described in Sections 

2.1.3.3 to 2.1.3.5). Details of the selected adipogenic differentiation markers are 

summarised in Table 3.1. On day 14, the cultured cells were processed for 

LipidTOX™ staining (Life Technologies, Paisley, UK) and images were viewed 

under UV microscopy, as previously described in Section 2.1.2.2. RNA extraction 

and reverse transcription reactions were performed on the adipogenic and control-

treated cultures, as described in Sections 2.1.2.3 and 2.1.2.4. PCR reactions were 

carried out using the same cycling condition as stated in Section 2.1.3.5. Control-

treated culture, supplemented with CCM (as described in Section 2.1.1.1) was used 

as a pre-differentiation negative control, and the RNA was collected once the culture 

reaches confluent. Meanwhile, another control culture was carried out alongside the 

differentiation culture to act as a negative control, supplemented with CCM for 28 

days. 

3.1.6 Statistical analysis 

Values are expressed as means ± standard deviation (SD). Analyses were performed 

by the software package, SPSS 20.0 (IBM, NY, USA). The statistical significance of 

differences among experimental group was evaluated by two-way and three-way 

ANOVA followed by multiple comparison using Tukey’s test with*p<0.05, 

**p<0.01 being considered statistically significant. The number of replicates used is 

stated in the figure legends.  
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3.2 Results 

3.2.1 Morphology of bone chip explant MSCs in high glucose medium  

Within this chapter, the study explored potential morphological changes of BCE-

MSCs during long-term culture in control/normoglycaemic level (5.5mM) and 

hyperglycaemic level (25.0mM) culture medium. Over 200 days during the total 

expansion period, the cultured BCE-MSCs exhibited considerable alterations in 

cellular features as time increased. As displayed in Figure 3.1a and 3.1b, MSCs 

derived from early PD (PD15) demonstrated no difference in cell morphology 

between the different glucose cultures, with the presence of uniform spindle-like 

shaped cells when viewed under light microscopy. At PD50, cells of 

normoglycaemic-cultured medium (Figure 3.1c) exhibit the presence of 

heterogenous cells with two morphological phenotypes; with one group consist of 

thin, spindle-like features and another type with broadened cell body and shorter 

projectors. In contrast, PD50 HGCM-treated c consisted of cells with bigger 

nucleated bodies (Figure 3.1d). No difference was observed between PD150 BCE-

MSCs cultured in normoglycaemic or hyperglycaemic treatments, as the cells 

demonstrated homogenous features with broadened, flat-shaped cells with dispersed 

cytoplasm (Figure 3.1e and 3.1f).  
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Figure 3.1 Morphology of long-term BCE-MSCs cultured in CCM (Figure 3.1 
a,c and e) and in HGCM (Figure 3.1 b, d and f). Arrows indicate the presence of 
two distinct morphological phenotypes within the culture. PD, population doubling 
level; CCM, complete culture medium; HGCM, high-glucose culture medium. 
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3.2.2 Proliferative capacity of bone chip explant MCSs in different glucose 

 level 

The assessment of BCE-MSC PDs was performed to investigate the influence of 

high glucose concentration on cell expansion rates (Figure 3.2). Initially, high 

glucose concentrations were found to promote BCE-MSCs proliferation because 

within 58 days following initial incubation, cells cultured in high glucose level 

exhibit slight elevations in doubling time, in comparison to normoglycaemic 

medium. However, subsequent culture of BCE-MSCs in high glucose concentration 

demonstrated major discrepancies in proliferation rate, as the 5.5mM glucose-treated 

cells showed consistent highly proliferative capacity reaching up to 226 PDs in over 

200 days, in contrast to high glucose-treated cells, which exhibited much lower 

doubling time (only 182 PDs) over the same experimental period. The data suggested 

that 25mM glucose medium has a notable effect on BCE-MSCs proliferation rate. 

Further analysis on cell doubling times revealed strong evidence of changes in the 

proliferative growth between different conditioned media. An average of 10.51 

PD/week was recorded for CCM-treated cells, whereas much lower 8.89 PD/week 

reported in HGCM-treated cells. Although reduction of cells doubling time was seen 

during later stage of culture, BCE-MSCs cultured in both conditioned medium 

maintained a good proliferative capacity without showing signs of senescence. 

Collectively, the results suggested that increased glucose concentration in culture 

potentially decreased MSCs proliferation rate in long-term expansion culture. 
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Figure 3.2 Cell proliferation of BCE-MSCs subjected to 5.5mM and 25.0mM 
glucose variations in culture. Cell doublings time for populations of CCM-treated 
and HGCM-treated BCE-MSCs during exponential growth for 200 days period of 
culture showed distinct proliferative capacity.  Data is presented as calculated PDs at 
each time point, plotted on a linear scale. CCM, Complete culture medium; HGCM, 
High glucose culture medium. 
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3.2.3 Osteogenic staining of high glucose-cultured bone chip explant MSCs 

As glucose level were known to effect differentiation capacity of adherent MSC 

cultures, the CCM-treated and HGCM-treated BCE-MSCs were further incubated for 

28 days under two different osteogenic medium (OM) configurations; 5.5mM OM 

and 25.0mM OM. The early PD cell populations exhibited distinctive capacity to 

form bone nodules in both glucose level of osteoblastic medium (Figure 3.3a-d). In 

contrast, marked decreases in Alizarin red staining patterns were observed in BCE-

MSCs at PD150, regardless of glucose supplementation in culture medium or 

induction medium (Figure 3.3 e-h), indicating an overall perturbations in BCE-MSC 

capacity to form new bone at higher PDs.  
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Figure 3.3 Histological analysis by light microscopy of CCM-treated and 
HGCM-treated BCE-MSCs. Monolayer cultures of early-PD (a-d) and late-PD (e-
h) cells in six–well plates were induced for osteogenesis in 5.5mM and 25.0mM 
osteogenic medium (OM) for 28 days. Osteogenesis was indicated by bone 
nodules deposition that stained with Alizarin Red. PD, population doubling level; 
CCM, Complete culture medium; HGCM, high glucose culture medium. 
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3.2.4 Osteogenic gene expression of bone chip explant MCSs in high glucose 

 medium  

Multivariate analysis was performed to investigate BCE-MSCs gene expression data, 

to provide in depth analysis of glucose-induced alteration in osteblastic gene 

expression during differentiation. As shown in Figure 3.4, high glucose significantly 

increased calcification in PD50 BCE-MSCs derived from CCM-treated cultures, in 

comparison to HGCM-treated cells. 28 days induction process in 25.0mM osteogenic 

medium seems to suggest that short-term high glucose-supplemented induction 

medium has a profound effect in increasing the expression of osteogenic markers. 

Significant differences were seen in OSX (osterix) expression on day 2 (p<0.05) and 

7 (p<0.01), accompanied by elevated OCN (osteocalcin) expression on day 2 

(p<0.01) and 14 (p<0.05). Conversely, a significant reduction in OPN (osteopontin) 

expression was reported in high glucose-treated cells on day 28 (p<0.01).  

The most striking observation to emerge from the qRT-PCR gene expression data 

was derived from the PD150 cell populations (Figure 3.5). Discrepancies in 

osteogenic differentiation potential were observed between CCM-treated cells and 

HGCM-treated cells, reflected by the statistically significant increase in expression 

of OSX (p<0.01) and OCN (p<0.01) on day 28 of osteogenic induction. Analysis 

made on the same data, however, showed no significant differences in expression of 

OSX and OCN between 5.5mM and 25.mM osteogenic differentiation medium. The 

results on day 21, demonstrated statistically significant increase of OSX (p<0.05), 

and OCN (p<0.01) expression in CCM treated cells, differentiated in high glucose 

osteogenic medium, compared to the normoglycaemic osteogenic medium. Hence, 

these findings may suggested that a combination of long-term high glucose culture 

and high glucose in osteogenic induction medium significantly induced the 

expression of osteogenic markers, OSX and OCN by BCE-MSCs. Furthermore, the 

upregulation of OPN expression in HGCM-treated late PD MSCs was detected as 

early as 7 days, in comparison to 21 days reported in early-PD MSCs. The CCM-

treated late PD cells, which were differentiated in high glucose osteogenic medium, 

exhibited a statistically significant increased of OPN (p<0.01) along the 

differentiation process, beginning from day 2 until day 28, with the highest peak 

reached on day 21 which demonstrated 1000-fold elevation in expression on OPN. 
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Figure 3.4 qRT-PCR gene expression data of PD50 BCE-MSCs, induced for 
osteogenesis in normoglycaemic and hyperglycaemic osteogenic medium (OM). 
Values were normalised to the expression of β-actin and expression in 28 days 
osteogenic-induced medium is presented as the fold increase or decrease of that in 
basal, non-differentiating medium at day 0. Each bar represent mean fold 
change±SD. N=2, n=3 and *p<0.05, **p<0.01. All p values were based on two-way 
ANOVA.  
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Figure 3.5 qRT-PCR gene expression data of CCM-treated and HGCM-treated 
PD150 BCE-MSCs, induced for ostenegenesis in normoglycaemic and 
hyperglycaemic osteogenic medium (OM). Values were normalised to the expression 
of β-actin and expression in 28 days osteogenic-induced medium is presented as the 
fold increase or decrease of that in basal, non-differentiating medium. Each bar 
represent mean fold change±SD. N=2, n=3 and *p<0.05, **p<0.01. All p values were 
based on three-way ANOVA.  
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3.2.5 Adipogenic staining of high glucose-cultured bone chip explant MSCs  

To examine the effects of high glucose on the expression of adipogenesis-related 

markers, pre-adipocytes derived from CCM-treated and HGCM-treated groups were 

cultured in 5.5mM or 25.0mM glucose adipogenic medium (AM), for 2, 7 and 14 

day. The Oil Red O staining pattern of lipid vacuoles from both cell group indicated 

comparable ability of each BCE-MSCs to differentiate into adipogenic lineage 

(Figure 3.6), with each group showing consistent formation of lipid vesicles in the 

cellular compartment. The data seemed to suggest that early-PD BCE-MSCs 

populations demonstrated similar capacity to form adipocytes, following the 

induction protocol. Both PD50 CCM-treated and HGCM-treated cells demonstrated 

capacity to form lipid deposition within the cellular compartment of thin, elongated-

shaped of early PD cells (Figure 3.6a-d). The cellular morphology of HGCM-treated 

PD150 cells (Figure 3.6f and h) exposed to either normoglycaemic or 

hyperglycaemic adipogenic medium exhibit broadened shape, with slightly larger 

size of lipid vacuoles formed in clusters within the cytoplasm areas, in comparison to 

early-PD cells. Similarly, the CCM-treated cells cultured in 25.0mM adipogenic 

medium demonstrated parallel findings to the PD150 HGCM-treated cells. 

Collectively, the results suggested that lipid formation in the cellular compartments 

of pre-adipocytes correlated with glucose level supplementation in both normal 

culture and differentiation medium. 
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Figure 3.6 Histological analysis by light microscopy of CCM-treated and 
HGCM-treated BCE-MSCs induced to undergo adipogenesis. Monolayer cultures of 
mid-PD (a-d) and aged-PD (e-h) cells in six–well plates were induced in 5.5mM and 
25.0 mM adipogenic medium (AM) for 14 days. Adipogenesis was indicated by 
vesicles formation, stained with Oil Red O. PD, population doubling level; CCM, 
Complete culture medium; HGCM, high glucose culture medium. 
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3.2.6 Adipogenic gene expression of bone chip explant MCSs in high glucose 

 medium  

Quantitative PCR analysis of CCM-cultured PD50 BCE-MSCs demonstrated that 

high glucose adipogenic medium significantly induced an overall increase in 

expression of adipogenic markers, FABP4, C/EBPα and LPL, with adiponectin 

exhibit the most prominent increase in gene expression in glucose-induced 

environment, as demonstrated on day 2, 7 and 14 (Figure 3.7). As we analyses 

further, qRT-PCR analysis conducted on PD150 BCE-MSCs (Figure 3.8) revealed 

10-fold lower overall expression of FABP4, in comparison to PD50 BCE-MSC, 

whereas C/EBPα, LPL and adiponectin gene expression remained comparable with 

PD50 cells. 

The adipogenic gene expression in PD150 HGCM-treated cells revealed a distinctive 

alteration in glucose-induced cultures, showing significant elevation of FABP4 and 

LPL (p<0.01) on day 7 and 14 following the induction protocol. Likewise, 

significant increases in C/EBPα level were observed in PD150 HGCM-treated cells 

on day 7. The data also indicated a significant upregulation of adiponectin expression 

in PD150 HGCM-treated BCE-MSCs, as oppose to the downregulation seen in 

CCM-treated cells. The results suggested that short-term, high glucose adipogenic 

medium has significantly induced upregulation of adipogenic lineage within the 

younger MSCs. However, introduction of high glucose adipogenic medium to long-

term expanded MSCs does not revealed a similar stimulatory effect on adipogenesis 

marker expression. In fact, the long-term hyperglycaemic-induced cell culture 

protocol has significantly increased adipogenesis gene expression when exposed to 

either 5.5mM or 25.0mM adipogenic medium. 
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Figure 3.7 qRT-PCR gene expression data of PD50 BCE-MSCs, induced for 
adipogenesis in normoglycaemic and hyperglycaemic adipogenic medium (AM). 
Values were normalised to the expression of β-actin and expression in 14 days 
adipogenic-induced medium is presented as the fold increase or decrease of that in 
basal, non-differentiating medium. Each bar represent mean fold change±SD. N=2, 
n=3 and *p<0.05, **p<0.01. All p values were based on two-way ANOVA. FABP4, 
fatty acid binding protein-4, C/EBPα, CCAAT/enhancer binding protein. 
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CCM-treated 5.5mM AM 
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Figure 3.8 qRT-PCR gene expression data of CCM-treated and HGCM-treated 
PD150 BCE-MSCs, induced for adipogenesis in normoglycaemic and 
hyperglycaemic adipogenic medium (AM). Values were normalised to the 
expression of β-actin and expression in 14 days adipogenic-induced medium is 
presented as the fold increase or decrease of that in basal, non-differentiating 
medium. Each bar represent mean fold change±SD. N=2, n=3 and *p<0.05, 
**p<0.01. All p values were based on three-way ANOVA. FABP4, fatty acid 
binding protein-4, C/EBPα, CCAAT/enhancer binding protein. 
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3.3 Discussion 

The current Chapter represents a novel in vitro study of bone explant-derived MSCs, 

to assess the long-term effects of hyperglycaemic culture condition on bone 

progenitor cells behaviour and activities. Briefly, evidence gathered from the present 

2D cell culture study revealed that prolonged high glucose concentrations had a 

detrimental impact on BCE-MSC proliferative rates. However, prolonged and short-

term hyperglycaemia were found to induce the differentiation capacity into 

osteogenic and adipogenic lineages. For the first time, this study had provided great 

evidence to support the claim that persistent hyperglycaemia plays an important role 

in generating overall cellular perturbations that may indirectly impair MSCs 

reparative role in bone repair processes. Comparisons were made between the two 

different stages of progenitor cells, taken at early and late PDs in the 

hyperglycaemic-induced state also revealed the various impacts of intermittent high-

glucose induction on cellular differentiative capacity towards different mesenchymal 

lineages. Hence, the data also suggested the importance of glycaemic control in 

controlling bone repair progress.  

The exact mechanism by which glucose levels might exert the impact on the 

behaviour of stem cells and the rate of expansion is a highly fascinating subject. Of 

note, the in vitro experiments conducted in this Chapter revealed very interesting 

evidences, indicating partial agreement with the stereotypical negative influence of 

glucose-inducing condition on MSCs behaviour. Contrary to the initial hypothesis, 

the short-term exposure to high glucose was found to increase the proliferative 

capacity of MSCs and their differentiation potential, showing stimulation of growth 

and differentiation ability. Within 50 days of culture in high glucose medium, the 

BCE-MSCs showed higher doubling time per week, in comparison to 

normoglycaemic conditions. Similarly, the short-term culture of MSCs displayed 

higher cell population doubling when cultured in higher glucose concentrations 

(Deorosan and Nauman 2011). In comparison, experiments conducted using human 

MSCs demonstrated insignificant effect on the proliferation rates and growth factor 

production in cells, following short-term high glucose condition (Weil et al. 2009). 

Therefore, the present data postulated that short-term effects of high glucose had 

been heavily dependent on the cell-type and the cell source in question. 
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On top of that, the stemness of MSCs might play a role in exerting the resistance 

effect of stem cells towards high glucose toxicity (Weil et al. 2009). However, this 

study confirmed that a long-term culture in high glucose medium eventually 

suppressed rat BCE-MSCs proliferative capacity. These perturbations led to lower 

PDs in high-glucose cultures, in comparison to parallel normoglycaemic cultures. 

Similarly, adipose–derived MSCs obtained from T2DM patients showed 

significantly decreased proliferative capacity, as well as induced cellular senescence 

and apoptosis, compared to normal patient MSCs (Cramer et al. 2010). The observed 

morphology of BCE-MSCs taken from mid-PDs also indicated relative differences in 

phenotype upon culture under these differing conditions. Comparatively, glucose-

induced endothelial cells demonstrated a significant alteration in actin pattern and 

total cellular cytoplasmic area (Salameh et al. 1997). The observation that there was 

a parallel change in cell morphology is consistent with the idea that intracellular 

defects are responsible for the abnormalities of MSCs glucose metabolism, seen in 

patients with a T2DM condition. Collectively, these data evidenced that high glucose 

concentrations caused prominent disparities in cell behaviour and activity. However, 

in light of the insufficient available data, it is practically inappropriate to assume that 

the alteration in cellular behaviour discovered within this study is solely dependent 

on high glucose-induced stress, without consideration of the aging factor effect on 

MSCs.  

Significantly, the present data revealed that short- and long-term exposure to 

hyperglycaemic medium induced higher mRNA expression of both osteogenic and 

adipogenic markers. This study demonstrated high tendencies of the hyperglycaemic 

condition to induce early expression of OPN and OCN in BCE-MSCs, confirming 

the alterations to matrix formation and the mineralisation process within high 

glucose environments. Similarly, high glucose was found to stimulate 

biomineralisation in osteoblastic cells and increased mRNA expression of OCN, 

Runx2, together with bone matrix protein synthesis, in mouse embryonic stem cells 

(ESC) studies (Chen et al. 2006; Kim et al. 2006; García-Hernández et al. 2012). 

However, analysis on bone structural properties demonstrated marked deterioration 

in the quality of the mineral produced, despite increased mRNA expression of 

osteoblastic genes (García-Hernández et al. 2012). The present analysis on 
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osteogenic induction of BCE-MSCs from late-PDs also demonstrated 10-fold 

increase of OCN, OSX, and LPL, in comparison to mid-PD cells, particularly in the 

high glucose-treated group. MSCs exhibited decreased proliferative properties as the 

cells progressed towards differentiation lineage (Chan et al. 2004). However, the 

effect of high glucose on the transient amplifying compartment was different to 

mature and developed functional cells (Li et al. 2007). Within this study, further 

proliferation of BCE-MSCs in the 2D system was found to subsequently reduce the 

presence of quiescent stem cells in the culture, nurturing a pool of more 

differentiated transit amplifying (TA) cells, with the capacity to rapidly proliferative 

and further develop into fully functional cells. Knowing that stem cells will 

preferentially undergo either a proliferation or differentiation route at one time-point, 

the data potentially suggested that high glucose might alter the biological activity of 

MSCs, particularly in generating pools of TA cells, which have a primary role in 

responding to cues generated for bone repair. Hence, the overall perturbations 

discovered from the hyperglycaemic level might be potentially caused by the shift of 

cells’ proliferative capacity towards the differentiation route, thus limiting the 

regenerative potential, which led to impairment or delay in tissue healing. 

The data also reported an increase in all adipogenesis markers, particularly 

adiponectin, which demonstrated a significant upregulation in hyperglycaemic 

cultures, in comparison to normoglycaemic control. Besides, it had been postulated 

that hyperglycaemia seemed to alter gene expression and skewed the differentiation 

of MSCs towards the adipogenic lineage (Bastianelli et al. 2014). Recent studies 

suggest the important role of adiponectin in T2DM as an insulin-sensitizing 

adipokine, due to the anti-inflammatory properties. Therefore, the present study 

proposed that a long-term culture in high glucose could cause major alteration in 

MSCs behaviour, resulting in preferential osteogenesis and adipogenesis. 

Unfortunately, the actual mechanism of how adiponectin might exert their effect on 

MSCs phenotypic alteration, to drive differentiation in the MSC populations, has 

remained unknown.  

The cellular functions of MSCs is paramount in maintaining the ability of these cells 

to release beneficial growth factors to protect the cells and the surrounding matrix 
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components against injury during tissue repair. In vitro evidence demonstrated that 

various technical manipulations were applied to optimise the MSCs biological 

properties in ex vivo culture, including alterations of culture conditions with growth 

factor pre-conditioning, hypoxia treatment, genetic modifications, and pre-

transplantation adjustment (Bouletreau et al. 2002; Song et al. 2005; Yu et al. 2011). 

However, much of the performance of the stem cells observed to this point had been 

limited to early passage MSCs that were grown in normoglycaemic culture, without 

considering the fact that a large number of transplanted cells failed to survive and 

proliferate.  It might be partly due to major dissimilarities that existed between the 

2D cell culture element and complex physiological environment within the 3D 

transplanted organ (Brinster 2002). The cited problem is particularly relevant, given 

that the presence of hyperglycaemia is a commonly encountered condition in many 

of the potentially treated diseases, which MSC transplant might bring substantial 

positive impact, such as T2DM. 

Significantly, this Chapter has demonstrated that proliferation potential, metabolic 

activity, and differentiation capacity of in vitro cultured progenitor stem cells were 

influenced by high glucose concentrations. Hyperglycaemic culture seemed to 

suppress the proliferative capacity of the cells for a long-term, but induced their 

functional role towards a differentiation route, particularly the adipogenic lineage. 

Moreover, further damage and alterations caused by the high glucose level exerted a 

negative impact on stem cell properties in the long-term and irreversible fashion, 

leading to impaired regenerative capacity, as well as promoting the progression of 

diabetic perturbations in the affected tissues.  Therefore, more investigations would 

be valuable to gain better insight into the exact molecular mechanisms of high 

glucose-induced alterations in MSCs using different cell types and origins, in order 

to develop a suitable in vitro bone repair model of T2DM. Therefore, the next 

Chapter portrays the investigation on growth factors responsiveness in BCE-MSCs 

during diabetic bone repair, by using both in vivo and in vitro animal models. 

Attention was also given to look into the potential alterations in proteoglycans 

expression within the ECM compartment, which potentially influenced growth factor 

signalling and MSCs reparative role in T2DM.  
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Chapter 4 

Growth Factor Responsiveness of MSCs During Bone Repair in Type 2 
Diabetes Mellitus (T2DM) 
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4.0 Introduction 

Diabetes has long been associated with physiological and pathological disturbances 

that have led to the impairment of biological activities within the skeletal 

environment. A number of experimental studies, from immunohistological and 

ultrastructural observation, to in vitro analysis; have indicated the correlation of 

diabetes with progressive alteration in cellular functions and delayed bone 

metabolism, resulting in lower bone quality and mechanical properties (Prisby et al. 

2008; Yaturu et al. 2009; Retzepi et al. 2010). Various hypotheses have been 

proposed to elucidate the underlying mechanisms of diabetic alterations in a 

hyperglycaemic environment. However, these experimental analyses often neglected 

the fact that there is a distinct pathological progress between the different types of 

diabetes. Moreover, from the vast majority of osseointegration studies in diabetic 

animals, only a few studies specifically focused on Type 2 Diabetes Mellitus 

(T2DM) repair models, either using genetically modified or selective inbreeding 

animals, which developed late onset hyperglycaemia and obesity that mimicked 

human T2DM (Casap et al. 2008; Sakai et al. 2008; Wang et al. 2010b; Colombo et 

al. 2011). In view of the lack of evidence of osseointegration studies in the T2DM 

microenvironment, it further justifies the necessity to perform more studies to obtain 

better insight of bone healing mechanisms in T2DM model. 

Mesenchymal stem cells (MSCs) are multipotent progenitor cell populations derived 

from adult tissues, which exhibit great capacity to differentiate into a multiple type of 

functional cells. Successful isolation of bone progenitor cell populations from 

trabecular bone has emerged as an attractive cell source for bone repair studies, 

particularly in the development of diabetic-induced in vitro models (Guo et al. 2006; 

Sung et al. 2008; Zhu et al. 2010). Besides, MSCs play an important role during 

reparative phases to co-ordinate the expression of growth factors and stimulate the 

production of matrix proteoglycans, which resulted in overall tissue remodelling 

within the healing site (Lieberman et al. 2002). Meanwhile, growth factors, such as 

TGF-β1, have been demonstrated to influence bone resorption and bone formation 

(Tang et al. 2009). TGF-β1 also acts as a mediator in the formation of collagen 

matrix during bone healing process (Ignotz and Massagué 1986). However, to the 

best of the researcher’s knowledge, nothing has been reported so far concerning the 
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role of growth factor activity, particularly TGF-β1, in response to glucose stress 

within bone progenitor cell populations. Thus, the question of whether TGF-β1 has 

any role in the biological response to glucose in bone chip explant MSCs has 

remained unexplored. The present Chapter depicts the investigation of the in vitro 

short- and long-term effects of TGF-β1 bioavailability in bone-derived MSCs, in 

response to high glucose concentrations, as their significance in the pathogenesis of 

T2DM remains to be clarified. 

Proteoglycans are integral biomolecules of the extracellular matrix (ECM) in all 

tissues that play various important roles in regulating innate immunity, inflammation, 

and regulating matrix assembly (Bianco et al. 1990; Frey et al. 2013). Biglycan and 

decorin are among two of the most commonly studied small leucine rich 

proteoglycans (SLRPs) family found to be highly expressed in skin and bone, 

respectively (Corsi et al. 2002; Waddington et al. 2003). Evidence indicates a critical 

role for biglycan in modulating the osteogenic differentiation of MSCs by regulating 

the early stages of cell proliferation and differentiation (Chen et al. 2004; Roberts et 

al. 2008). Biglycan and decorin also act as important modulators in the inhibition and 

sequestration of growth factors within ECM, such as TGF-β, FGF, and BMP-4, by 

modulating the cell-matrix cross-talks (Fernig and Gallagher 1994; Corsi et al. 2002; 

Bi et al. 2005; Merline et al. 2009). Apart from their primary roles in assembling 

matrix ultrastructures, both biglycan and decorin also interact with various cell 

surface receptors and indirectly control cellular proliferation, differentiation, and 

apoptosis, depending on the cell type and signalling milieu (Frey et al. 2013). 

Moreover, in vitro analysis of primary bone cells revealed temporal expression of 

both biglycan and decorin, which were linked to their co-operative role in regulating 

cell proliferation, matrix deposition, and mineralisation (Waddington et al. 2003). 

Furthermore, hyperglycaemia has been reported to produce significant alterations in 

biglycan and decorin expression of matrix tissues, leading to further perturbations in 

wound repair and progressive development of diabetic pathogenesis (Roberts et al. 

2008; Yang et al. 2009; Nikolovska et al. 2014). Hyperglycaemia-induced expression 

of TGF-β1 through Smad2/3 and p38 MAP kinase led to GAG elongation during 

proteoglycan synthesis and increased affinity of progenitor cells to bind to low 

density lipoprotein (Dadlani et al. 2008). To date, hyperglycaemia has been 
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associated with induced proteoglycan synthesis, increased expression of TGF-β1, and 

stimulation of collagen expression, as demonstrated in the vast majority of mesangial 

cells and endothelial cells culture studies (Kolm-Litty et al. 1998; Iglesias-de la Cruz 

et al. 2002; Vogl-Willis and Edwards 2004). However, no studies has addressed the 

actual mechanism of TGF-β1 mediated, biglycan and decorin activity, in regulating 

the proliferative and osteogenic potential of MSCs, in view of their bone restorative 

capacity.  

Hence, this Chapter provides substantial evidence on bone progenitor cell 

proliferation and survival in response to hyperglycaemic conditions. By using non-

obese type 2 diabetic models, the study further elucidated if hyperglycaemia alone 

could significantly promote alterations in cellular behaviour and responsiveness 

towards growth factors administration and matrix proteoglycans in both in vitro and 

in vivo conditions. 

 

 

  



 

 

 123 

4.1 Materials and methods  

4.1.1  In vivo analysis of diabetic bone repair  

4.1.1.1 Animal 

Twelve male diabetic GK rats and twelve male Wistar rats were used in the 

experiment (Shimizu Laboratory Supplies Co. Ltd., Kyoto, Japan).  Each of the 

diabetic and control group consisted 6 of 10 weeks-old rats and 6 of 18 months-old 

rats. Implantology method was carried out by Professor Diago Sakai and Professor 

Joji Okazaki, at the Dental University of Osaka, Japan, for 3 weeks and 9 weeks, on 

both groups of male Wistar and Goto Kakizaki rats, as described in previous studies 

(Sakai et al, 2008). All experiments performed were reviewed and approved by the 

Animal Committee of Osaka Dental University (with approval number of 08-03009) 

and conformed to the procedures described in the “Guiding principles for the Use of 

Laboratory Animals Handbook” at the Laboratory Animal Facilities in the Institute 

of Osaka Dental Research, Osaka Dental University. 

4.1.1.2 Implant procedure 

Implant procedures were conducted by our collaborators from Institute of Osaka 

Dental Research, Osaka Dental University, Osaka, Japan. The erupting incisors of 

the rats were trimmed at 14, 11, 7 and 4 days prior to extraction in order to stimulate 

eruption. The trimming step helps to loosen the incisors and facilitate the later 

extraction process. Pre-treatment trimming procedures were carried out under 

infiltration anaesthesia with isoflurane (Isoflurane Rhodia TM, Nissan Chemical 

Industries Ltd, Tokyo, Japan). Weights of all rats were measured prior to tooth 

extraction, which were carried out under the general anaesthesia sodium 

pentobarbital (Nembutal R, Dainippon Pharmaceutical Co. Ltd, Osaka, Japan), 

delivered by intraperitoneal injection. The blood glucose level was measured as an 

indicator of diabetes at the time of extraction using the enzymatic method (Medisafe 

Mini Terumo, Tokyo, Japan). The implant socket was curetted to remove any 

remaining debris and the majority of periodontal ligament. Sterilised titanium alloy 

(Ti-6A1-4V) implants, with a length of 17.0mm and 1.2mm diameter (SNK 
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screwpost Ti-tan R, Dentsply-Sankin K.K., Tokyo, Japan), were immediately placed 

in the socket of left mandibular incisor and stabilized via the alveolar plate, while the 

right mandibular incisor was left alone for food ingestion. 

4.1.1.3 Preparation of mandibles and fixation 

At 3 and 9 weeks after the implant placement, both groups of rats were euthanised by 

intraperitoneal injection of sodium pentobarbital, 30min after an intraperitoneal 

injection of the anticoagulant sodium heparin (Novo-Heparin Injection 1000®; 

Mochida Pharmaceutical, Tokyo, Japan). After perfusion fixation with 10% neutral-

buffered formalin according to standard methods for 7 days, the entire mandible was 

removed and dissected centrally into left and right halves, with a surgical scalpel. 

The left side was retained as a control sample. Finally, the mandibles were put into 

10% neutral-buffered formalin solution and transported to Cardiff University, UK. 

4.1.1.4 Microtomy and embedding process 

Implants were carefully removed from each mandible by gently unscrewing them out 

from the socket. After removal of the ramus and condyle, the mandibles were then 

cut into approximately 2mm thick sections running perpendicular to the implant 

socket, using a bone saw; and placed in 10% formic acid with agitation for 72h to 

demineralise the tissue sections. The tissue sections were then placed in embedding 

cassettes for automatic processing machine, Leica ASP300S (Leica Microsystems 

UK Ltd., Milton Keynes, UK, through a series of 70%, 90% and 100% graded 

alcohol solutions, which served to dehydrate them; and cleared with a xylene rinse. 

Tissue sections were then removed from the processing machine and embedded in 

molten paraffin wax (Thermo Scientific Raymond Lamb, Loughborough, UK). 5µm 

sections were cut using Leica SM2400 sliding microtome (Leica) and mounted on 

poly-L-Lysine coated glass slide (Sigma Aldrich, Poole, UK), before being placed in 

an oven at 65°C overnight.  

4.1.1.5 Haematoxylin and eosin staining 

Sections were stained with haematoxylin and eosin (H&E) using an automated 

staining machine, in order to visualize the tissue and cell architecture around the 
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implant site. First, the automated staining system passed the slide mounted sections 

through a series of xylene, graded alcohol and water rinses, in order to remove all 

paraffin and to rehydrate them. The sections were then immersed in haematoxylin to 

colour the nucleus of cells, washed and blued in Scott’s tap water; and differentiated 

in 1% alcohol. After further rinse in tap water, sections were stained with eosin 

which stains cytoplasmic components red. Finally, the sections were rinsed in tap 

water, dehydrated in alcohol and immersed in xylene. Cover slips were mounted onto 

the sections using DPX mounting medium (Thermo Scientific). Images were 

captured using Olympus AX-70 microscope (Olympus Co. Ltd., Tokyo, Japan) 

incorporating a Nikon DXM1200 digital camera and ACT-1 software (Nikon 

Instruments UK, Surrey, UK). Sections were examined by analysing the healing 

sockets along the entire length of the implant, starting from the insertion site to the 

tip of the implant, where the growing root tip had once been.  

4.1.2 Transmission electron microscopy (TEM) analysis 

4.1.2.1 Tissue preparation  

Specimens for histological and immunohistochemical staining were prepared and 

fixed, as described in Sections 4.1.1.2 and 4.1.1.3. Then, 2mm thick blocks obtained 

from Section 4.1.1.3 were cut into four pieces with each piece encompassing the hole 

and being placed in phosphate-buffered saline (PBS). The sections were 

demineralised using 6% ethylenediaminetetraacetic acid (EDTA) solution (pH 7.4) 

for 4 weeks, followed by calcium oxalate test to ensure complete decalcification. 

Briefly, 5ml of decalcifying solution was transferred into bijoux bottle and followed 

by drops of ammonia hydroxide until litmus indicated pH 7.0. 5ml of saturated 

ammonium oxalate was added and solution is allowed to stand for 30min. Clear 

solution indicated completion of decalcification. Specimens were thoroughly washed 

in PBS, dehydrated in graded concentrations of ethanol and embedded in Lowicryl 

HM20 (Agar Scientific Elektron UK Ltd., Stansted, UK) by using Progressive 

Lowering of Temperature (PLT) Protocol, as previously described in Hobot and 

Newman (1996). Sample pieces were then placed into gelatine capsules (size ‘0’/vol 

0.68ml), followed by indirect UV-light polymerisation at 35°C for 24h and direct 

UV-light for another 72h at room temperature. 
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4.1.2.2 Primary antibodies and secondary probes 

Affinity-purified polyclonal rabbit IgGs, raised against rat transforming growth 

factor-β1 (TGF-β1) were obtained from Santa Cruz Biotechnology (Insight 

Biotechnology, Wembley, UK). Goat anti-rabbit IgGs (Sigma) tagged to 10nm 

colloidal gold (GAR-10) was conjugated in house (Bioclinical Services, Cardiff, 

UK). GAR-10 stock was diluted 1/5 in filtered 20mM Tris-HCl (pH 8.2) and 

centrifuged, prior to use for 4min at 10,000g to remove larger gold clusters. A 

modified 0.01M PBS containing 0.6% w/v BSA (pH 7.4) was used throughout all the 

following procedures for all dilutions of antibodies or serum. 

4.1.2.3 Immunogold labelling of selected growth factors 

Established methods were used to perform immunogold TEM (Newman and Hobot 

1999). Four µm sections from each diabetic and control groups, embedded in 

Lowicryl HM20 were cut using a LKB III ultramicrotome (Cambridge Instruments, 

Cambridge, UK) and collected on 400 mesh nickel grids. For negative controls, 

antibody was omitted and only PBS and BSA were used. Immunolabelling of 

sections was by immersing the grids in 50µl of solution, initially in PBS and BSA 

solution for 10min, then in the appropriate antibody (diluted 1:10) for 60min (or PBS 

and BSA for controls). Sections were then washed with (1 x 1min) PBS and BSA 

and (2 x 1min) 20mM Tris-HCl (pH8.2), followed by 60min in GAR-10; washed 

once for 1min with Tris-HCl and twice for 1min with water from Elga Option 7 

water purifier (Elga Labwater, High Wycombe, UK) and post-stained in 4% w/v 

aqueous uranyl acetate for 20min, water washed (500µl) and air dried. The sections 

were viewed in a Philips CM12 (Phillips Ltd., Cambridge, UK) operating at 80kV. 

Images were recorded using a SIS MegaView III (SIS Company, Münster, Germany) 

digital camera. The immunogold labelling was counted from at least 25 random field 

of 30µm area.  
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4.1.3  In vitro cell culture study 

4.1.3.1 Time-based analysis of rat progenitor cells osteogenic culture 

Rats MSCs were isolated by the explant method and expanded in culture as 

previously described in Chapter 2, (Section 2.1.1 and 2.1.1.3). The BCE-MSCs used 

in this study were assessed at early population doubling levels (PD) of PD15 and late 

PDs (PD150). These cells were grown in either complete culture medium (CCM) or 

high glucose culture medium (HGCM), to represent cells of different proliferation 

rate and glucose-induced treatment, as previously described in Chapter 3, (Section 

3.1.2). Cultures were maintained at 37°C in 5% CO2/95% air, with the medium 

changed every 2 or 3 days. 

4.1.3.2 RNA extraction and qRT-PCR reactions 

At selected PDs, following a StemPro® Accutase® digestion step, BCE-MSCs were 

seeded at density of 4000 cell/cm2 into 3 of 6-well plates and maintained in either 

CCM or HGCM at 37°C in 5% CO2/95% air. At 24h, CCM and HGCM were 

replaced with osteogenic induction medium, 5.5mM OM or 25.0mM OM (as 

described in Section 2.1.3.2. The cells were further incubated at 37°C in 5% 

CO2/95% air, with samples taken at 2, 7, 14 and 21 days, to assess the expression of 

TGF-β1, biglycan and decorin by the MSCs. At the specific time intervals, the culture 

medium was removed and total mRNA was extracted from approximately 600,000 

cells using the RNeasy® Mini Kit and QIAShredder (Qiagen Ltd., Crawley, UK); and 

transcribed into cDNA as described in Section 2.1.2.3 and 2.1.2.4. For qRT-PCR 

reactions, cDNA was pre-diluted 1:10 with RNA free water immediately, prior to 

analysis. Each qRT-PCR reaction was performed using 2.5µl 3µm primers (forward 

and reverse), 5µl diluted cDNA sample and 10µl SYBR Green Precision qRT-PCR 

Master Mix (Primer Design Ltd, Southampton, UK) and RNA-free water added for a 

final volume of 20µl. All samples were triplicates in Bright White 96-well plates 

(Primer Design) using ABI Prism 7000 Sequence Detection System and ABI Prism 

7000 SDS Software V1.0 (Applied Biosystems, Warrington, UK). Reactions 

conditions were: 1 cycle of 95°C for 10 min, 40 cycles of 95°C for 15s, 55°C for 30s 

and 72°C for 30s. Specific primers for the detection of selected growth factor and 
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proteoglycans gene markers are described in Table 4.1 and the primer sequences 

were ordered from Eurofins MWG Operon, Ebersberg, Germany. 
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Table 4.1 Specific primers for the detection of selected growth factor and 
proteoglycans gene markers. 

 

  

Gene cDNA sequence (5’-3’) F, Forward; R, 
Reverse 

Length
(bp) 

References 

β-actin 
F: TGAAGATCAAGATCATTGCTCCTCC 

R: CTAGAAGCATTTGCGGTGGACGATG 

155 Gao et al. 
2009 

Decorin 
F: ACCCGGATTAAAAGGTGGTGA 

R:   TCTCTGCTCAAATGGTCCAGC 

104 Roberts et al. 
2008 

Biglycan 
F: CCTCCAGCACCTCTATGCTC 

R: ACTTTGAGGATACGGTTGTC 

186 Roberts et al. 
2008 

TGF-β1 
F: AAGAAGTCACCCGCGTGCTA 

R: GGCACTGCTTCCCGAATG 

82 Gao et al. 
2009 
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4.1.3.3 Protein extraction and dialysis 

Protein synthesis and localisation was investigated in three ways within this study. 

First, by detecting the protein that was released into the culture medium (CM); 

second, by examining the intracellularly produced TGF-β1 by analysing the cells 

lysate extracts (CE) and third, by analysing the expression of TGF-β1 localised and 

sequestrated within the extracellular matrix (ECM) component.  Collectively, the 

results of Western blot analysis may provide conclusive evidence on TGF-β1 

expression by MSCs derived from different expansion period, in response to 

normoglycaemic and hyperglycaemic exposure. Prior to protein analysis, 

immediately after the Accutase digestion step, each different group of BCE-MSC 

were seeded in two T25 tissue culture flasks (BD Biosciences, Oxford, UK), 

incubated either with 5ml of CCM or HGCM at a plating density of 4000cells/cm2; 

and maintained at 37°C in 5% CO2/95% air. At 24h, culture medium was replaced 

with 5ml of osteogenic induction medium, each containing 5.5mM glucose or 

25.0mM glucose, respectively.  MSCs were maintained at 37°C in 5% CO2/95% air. 

At day 2, 7, 14 and 21, the osteogenic induction medium was collected and 

centrifuged (8,000 rpm, 5min) to pellet cell debris.  MSCs were washed twice in ice-

cold PBS (2x), and cell extracts was obtained by addition of 2ml of extraction buffer 

I (0.1% TritonX-100, 0.05M sodium acetate buffer, pH 6.8, supplemented with 

Complete™ protease inhibitor cocktail (Roche, Diagnostics Ltd, Burgess Hill, UK) 

as per manufacturer’s instruction) and cell were further incubated at 37°C for 15 

mins before the cell extracts suspension was collected. The remaining matrix in the 

flask were washed twice in ice-cold PBS, prior to addition of 2ml of extraction 

buffer II (2% TritonX-100/4M guanidinium hydrochloride, 0.05M sodium acetate 

buffer, pH 6.8, supplemented with Complete™ protease inhibitor cocktail (Roche); 

and further incubated and collected, as previously mentioned above. The collected 

cell supernatants, cell extracts and extracellular matrix extracts were put into 33mm 

width cellulose membrane dialysis tubing. Tubing contents was dialysed for 3 days 

in protease inhibitor solution (0.5mM iodoacetic acid, 0.5mM benzamidine, and 

0.1mM N-ethylmaleimide) at 4°C on magnetic stirrer for continuous agitation. 

Dialysed contents were subsequently lyophilised (Edwards Freeze-dryer Modulyo, 

Crawley, UK). The protein concentration of the cell supernatants, cell lysates and 



 

 

 131 

ECM extracts were quantified using Pierce® BCA Protein Assay Kit (Thermo Fisher 

Scientific, Loughborough, UK) according to manufacturer’s instructions. 

4.1.3.4 Protein separation and Western blot  

20µg of proteins samples were diluted 1:1 with 1X Laemmi buffer (62.5mM Tris-

HCL pH 6.8, 2% (v/v) SDS in distilled water, 10% (v/v) glycerol, 0.5% (w/v) 

bromophenol blue in distilled water and 2.5% (v/v) β-mercaptoethanol) and boiled 

for 5min. Samples were loaded onto 4-15% Mini-PROTEAN® TGX™ Precast Gels 

(BioRad, Hemel Hempstead, UK) along with 10µl Kaleidoscope™ Prestained 

Standard (Bio-Rad). Separation of protein was performed under reducing conditions 

by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) at 

200V for 40min, using the Mini-Protean® Tetra Cell System (Bio-Rad). The proteins 

were electrotransferred onto polyvinylidene difluoride membranes (Hybond™-P, 

Thermo Fisher Scientific) at 15V for 30min, using the Semi-Dry Trans-Blot System 

(BioRad). Membranes were then blocked with 5% semi-skimmed milk/1% Tween 20 

(Thermo Fisher Scientific) in Tris-buffered saline (TBS), at 4oC overnight.   

4.1.3.5 Protein detection  

Following the blocking procedure, membranes were probed with polyclonal anti-goat 

TGFβ1 (1:100) (Santa Cruz, Middlesex, UK), monoclonal antibodies against the core 

protein of decorin and biglycan (generous gifts from Professor Bruce Caterson, 

School of Biosciences, Cardiff University) and monoclonal anti-rabbit Smad 2/3 

(1:1000, New England Biolabs, Hitchin, UK) in 5% semi-skimmed milk /1% Tween 

20, at room temperature for 1h. Addition of 10X amount of TGF-β1 blocking peptide 

(1:10, Santa Cruz) to primary antibody, prior to incubation served as a negative 

control. Normalised protein loading was confirmed by β-actin loading control 

probing (1:1000, Abcam, Cambridge, UK). Membranes were washed 3 times in 5% 

semi-skimmed milk/1% Tween 20/TBS and incubated for 1h in secondary antibody 

for TGF-β1 (1:3000, HRP-conjugated rabbit anti-goat IgG, Santa Cruz), decorin and 

biglycan (1:50,000, HRP-conjugated rabbit anti mouse IgG, Abcam); diluted in 5% 

semi-skimmed milk/1% Tween 20/PBS; at room temperature for 1h. In parallel, the 

β-actin loading control samples were incubated in secondary antibody (1:3000, HRP-
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conjugated polyclonal swine anti-rabbit Ig’s, Dako UK Ltd, Cambridge, UK) in 5% 

semi-skimmed milk/1% Tween 20/PBS; at room temperature for 1hr. Membranes 

were washed (x3) as above and chemiluminescent detection was performed using the 

ECL™ Prime Detection Reagent (GE Healthcare, Chalfont St., Giles, UK). The 

enhanced chemiluminescents substrate were captured and developed on 

autoradiographic films (Hyperfilm™-ECL, GE Healthcare) according to 

manufacturer’s instructions. Immunoblots were later scanned to digital images, using 

a transparency scanner Epson Perfection V600 (Epson UK Ltd. Hemel Hempstead, 

UK) and further analysed.  

4.1.4 Statistical analysis 

Unless otherwise stated, values are expressed as means ± standard deviation (SD). 

Analyses were performed by the software package, SPSS 20.0 (IBM, NY, USA). 

The statistical significance of differences among experimental group was evaluated 

by three-way ANOVA or mixed ANOVA, followed by multiple comparison using 

Tukey’s test with *p<0.05 and **p<0.01 being considered statistically significant. 

The number of replicates used is stated in the figure legends.  
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4.2 Results 

4.2.1 Histological observation of bone repair site 

Histological sections of bone-implant area following haematoxylin and eosin 

staining in young group and aged group, are shown in Figure 4.1 and 4.2. In the 

young-control group (Figure 4.1a), observations made within the repair site at 3 

weeks post-surgery demonstrated that large areas of the healing site were filled with 

pink coloured immature soft tissues, consisting of an irregular deposition of collagen 

fibres. However, at 9 weeks after implant placement (Figure 4.1b), the healing socket 

revealed a clear formation of new bone, represented by dense red-coloured staining 

of the tissue. Magnified images showed osteoid deposition rimmed by osteoblasts in 

the newly formed bone. In contrast, histological examination in young-diabetic group 

after 3 weeks of surgery procedure showed that the bone-implant contact is mainly 

occupied with non-collagenous matrix (Figure 4.1c). Later on, at 9 weeks post-

surgery (Figure. 4.1d), the young-GK group showed slight increases in new bone 

formation, as oppose to the 3 week time-point. The newly formed mandibular bone 

tissue was represented by a red-staining pattern within the healing site, accompanied 

by a small proportion of soft pink matrix formation. Briefly, histological 

observations of bone-implant contact from the young group within the present study 

showed that new bone formation is higher in 9 week groups, compared to 3 week 

groups, which suggested that the healing processes within the insertion site is 

considerably increasing with time. 

Next, analysis was made within the aged animal groups. In general, the findings 

demonstrated that new bone formation in the aged-control group was much less, in 

comparison to young-control group, at both time-point post-surgery. However, aged-

control tissue exhibits considerable progress in healing capacity as time progressed 

(Figure 4.2a and 4.2b). Interestingly, comparison made within the aged group alone, 

exhibited a clear delay of osseointegration in diabetic rats in comparison to control 

animal, regardless of the chosen time-point of analysis (Figure 4.2c and 4.2d). The 

aged-diabetic tissue displayed less organised collagen fibres architecture around the 

implant. The healing site was also occupied with immature non-collagenous matrix 

components and a high presence of inflammatory cells. Clearly, the longer period 

given for the repair process does not considerably improve the progress of bone 
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formation in aged-diabetic groups, as oppose to better healing capacity observed in 

control animals. 
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Figure 4.1 Haematoxylin-eosin section from the young Wistar and GK rats, at 3 
weeks and 9 weeks post-surgery. a) young-Wistar 3 weeks, b) young-Wistar 9 
weeks, c) young-GK 3 weeks, d) young-GK 9 weeks. GT: Granulation tissue. 
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Figure 4.2 Haematoxylin-eosin section from the aged Wistar and GK rats, 3 
weeks and 9 weeks post-surgery. a) aged-Wistar 3 weeks, b) aged-Wistar 9 weeks, c) 
aged-GK 3 weeks, d) aged-GK 9 weeks. GT: Granulation tissue. 
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4.2.2 Immunolocalisation of TGF-β1 

Localisation of TGF-β1 within the bone-implant contact region showed moderate 

sequestration of TGF-β1 throughout the ECM of healing tissue sites in young–control 

and young-diabetic tissue (Figure 4.3c and 4.3d). TGF-β1 labelling was 

predominantly deposited along the formation of collagen fibres and woven bone 

structure within the ECM region, but only at intermittent points. Observation of TEM 

images also demonstrated that TGF-β1 was intracellularly synthesised, before being 

transported and incorporated into the ECM (Figure 4.3c). The image also revealed 

specific gold labelling in cellular regions for TGF-β1, but none over the bare resin 

showing that the specificity of labelling is fairly good even though the tissue was 

initially perfused fixed in formalin. Negative-control image over areas of collagen 

fibres show no gold labelling (Figure 4.3d), indicating that the labelling was specific. 

This evidence demonstrated that prolonged formalin fixation did not significantly 

reduce immunoreactivity for TGF-β1 antigen, even if fixation was prolonged to 120 

days. Hence, it further justified the semi-quantitative analysis performed on TGF-β1 

immunogold-labeled particles in the next section. 
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c d 

Figure 4.3 a) Immunolocalisation of TGF-β1 in young-Wistar rats sample at 
3 weeks post-implant surgery. Regular labelling is seen around the collagen 
fibres. b) Immunolabelling of young-GK samples with TGF-β1 at 3 weeks. c) 
Specific gold label is seen only within the cellular regions (arrowed). The resin 
background is free of any gold particles indicating high spesificity of TGF-β1 

labelling within the tissue sample. d) Immunolabelling of young-Wistar rat with 
antibody omitted. The negative control showed no gold labelling throughout the 
tissue. Scale bar =2µm. 
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4.2.3 Quantification of TGF-β1 immunolabelling 

Following the successful TGF-β1 immunolabelling techniques, further analysis was 

conducted by quantifying the number of gold-labelled particles in a random field of 

30µm2-sized ECM of the bone-implant contact area. Minimums of 23 images were 

counted per experimental group. Based on three-way ANOVA analysis results, a 

significant increase of TGF-β1 localisation in the matrix area (p<0.01) was reported 

in the young-diabetic group, in comparison to young-control group at 9 weeks, 

following surgical implant insertion (Figure 4.4). Similarly, comparisons made 

within the diabetic group at 9 weeks post-surgery, between young and aged animals, 

also showed significant differences in TGF-β1 sequestration within the ECM. 

However, further analysis made between aged-control and aged-diabetic groups, 

either at 3 week or 9 weeks post-surgery, did not reveal any significant differences in 

TGF-β1 localisation within the bone repair sites.  
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Figure 4.4 Quantification of TGF-β1 immunolabellling from diabetic and 
control group. Each bar represent mean ± SEM. N=3, n=23 and **p<0.01 
accepted as statistically significant between experimental groups. All p values 
were based on three-way ANOVA.  
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4.2.4 Validation of high glucose effect on TGF-β1 gene expression and 

 protein synthesis  

MSC gene expression patterns for TGF-β1 were examined at different time point, 

leading to matrix deposition and bone formation within bone repair sites (Figure 4.5). 

Relative to housekeeping gene as controls, the results suggested downregulation of 

TGF-β1 expression in early PD cells. No significant differences of TGF-β1 

expression were observed between PD15 cells that were cultured in either 5.5mM or 

25.0mM osteogenic medium. On the other hand, a significant variation in gene 

expression was seen among PD150 cells induced in different glucose levels within 

osteogenic medium. At day 21, PD150 cells which were long-term expanded in 

normoglycaemic culture medium exhibit significant increases in TGF-β1 expression 

(p<0.01), when differentatiated in high glucose osteogenic medium. In contrast, 

hyperglycaemic-cultured PD150 cells demonstrated downregulation of TGF-β1 

expression (p<0.01) following osteogenesis in high glucose medium, in comparison 

to 5.5mM osteogenic medium. These results are likely to suggest that 

hyperglycaemic osteogenic medium exerts different effects on late PD cells, which 

are closely linked to the glucose-stimulation applied during the expansion period. 

Moreover, comparison made between PD150 cells which were differentiated in 

25.0mM osteogenic medium, demonstrated that CCM-expanded cells posses 

significantly higher capacity to upregulate TGF-β1 on day 21, as opposed to HGCM-

expanded cells. The data indicated that high glucose exposure throughout the 

expansion period might alter MSCs responsiveness on TGF-β1 expression, in 

subsequent exposure to osteogenic medium. 
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Figure 4.5 BCE-MSCs were induced to undergo osteogenesis in 
normoglycaemic and hyperglycaemic osteogenic medium (OM). TGF-β1 

expression levels of BCE-MSCs assessed by qRT-PCR are reported as fold 
changes from day 0. Solid boxes represented 5.5mM OM-cultured and hatched 
box represented 25.0mM OM-cultured cells. Each bar represent mean±SD. 
N=2, n=3.  *p<0.05, **p<0.01, when statistically compared between group. All 
p values were based on mixed ANOVA. PD, population doubling; CCM, 
complete culture medium; HGCM, high-glucose culture medium. 
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The expression of TGF-β1 by MSCs at protein level was determined by Western blot 

over the full duration of the culture. As shown in Figure 4.6, PD15 BCE-MSCs cell 

culture extracts revealed a few TGF-β1 band at different molecular weights, 

corresponding to one high molecular weight protein with approximate size of 

110kDa and fewer proteins at 45kDa and 25kDa. However, the 110kDa band was not 

observed in the ECM extracts. 

The control sample, which only contain 10% FBS+OM without any cells showed 

detection of TGF-β1 precursor protein bands at 45kDa and 110kDa. Similarly, 

abundance of TGF-β1 expression was present in the culture medium extracts, with 

strong blotting patterns observed in the high glucose osteogenic medium. The same 

trend of staining was seen in cell extracts, with distinct TGF-β1 expression of 110kDa 

protein, stimulated on day 7 and 21, in high glucose OM. In contrast, examination on 

ECM extracts showed the presence of one strong band detected at approximately 

45kDa on day 21 following culture in 25.0mM osteogenic medium and less amount 

of TGF-β1 expression observed on day 14 and 21 in the 5.5mM osteogenic medium. 

Similar analysis on culture medium extracts of PD150 BCE-MSCs (Figure 4.7) 

demontrated a greater amount of TGF-β1 band expression in CCM-treated pools, 

compared to HGCM-treated cells. However, comparison made between induction 

medium of different glucose levels revealed almost similar patterns in the 

normoglycaemic-culture expended cells, as oppose to contrasting patterns of 

expression observed in the HGCM-treated cells.  

The specificity of these TGF-β1 bands was determined by preincubating the antibody 

with the blocking peptide against which the antiserum was raised. The antibody was 

preincubated in a 10-fold excess of peptide overnight at 4°C and then used for 

immunoblotting. Preincubation with TGF-β1 blocking peptide led to disappearance of 

all associated bands (data not shown). Therefore, this data suggests that the antibody 

used in this study specifically recognised the TGF-β1 protein. 
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Figure 4.6 Representative blot of a time-course high glucose level effect on 
TGF-β1 synthesis of PD15, CCM-cultured BCE-MSCs. The BCE-MSCs were 
differentiated in 5.0mM OM and 25.0mM OM for the indicated time period. 20µg 
of protein derived from culture medium, cell lysates and extracellular matrix 
extracts were loaded onto SDS-PAGE gels and electrotransferred onto PVDF 
membranes. The blots were then developed with TGF-β1 antibody. Control 
sample, which contain 10% FBS+OM without any cells showed detection of 
TGF-β1 precursor protein bands. OM, osteogenic medium; PD, population 
doubling level; CCM, complete culture medium. 
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Figure 4.7 Representative blot of a time-course high glucose level effect on 
TGF-β1 synthesis by PD150 MSCs from CCM-treated and HGCM-treated group. 
The BCE-MSCs were differentiated in 5.0mM OM and 25.0mM OM for the 
indicated time period. 20µg of protein derived from culture medium, cell lysates 
and extracellular matrix (ECM) extracts were loaded onto SDS-PAGE gels and 
electrotransferred onto PVDF membranes. The blots were then developed with 
TGF-β1 antibody. PD, population doubling level; OM, osteogenic medium; CCM, 
complete culture medium; HGCM, high-glucose culture medium. 
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4.2.5 Validation of high glucose level on biglycan gene expression and 

 protein synthesis  

TGF-β1 is mainly associated with stimulation of biglycan core protein synthesis. To 

determine whether TGF-β1 regulation and localisation within the ECM was directly 

affected by the relative amount of proteoglycans existed within the cellular 

environment, both qRT-PCR and Western blot analysis were conducted to detect the 

expression of biglycan by the osteo-induced MSCs. Biglycan gene expression 

profiling was performed on PD15, PD150 CCM-treated and PD150 HGCM-treated 

MSCs, which were differentiated in either 5.5mM osteogenic medium or 25.0mM 

osteogenic medium (Figure 4.8). Under osteogenic conditions, biglycan expression 

observed in the early proliferative stage of BCE-MSCs osteogenic culture (PD15) 

exhibit an average fold change below 1.0, indicating the downregulation of the gene. 

While hyperglycaemic osteogenic medium did not reveal considerable changes in 

biglycan expression in the early PD cells, statistically significant biglycan 

upregulation in cells of late PD were observed, particularly between the CCM-

cultured and HGCM-cultured cells.  

Bone explant cells which were long-term expanded in normal glucose medium 

showed significant increases in biglycan expression at day 21 (p<0.01), when 

induced for osteogenesis in high glucose medium, indicating the stimulation effect of 

short-term high glucose on diabetic-induced MSCs to produce higher biglycan 

levels. Likewise, analysis made on cells from late PD HGCM-cultured MSCs, that 

was induced in 25.0mM of osteogenic medium showed a significant increased in 

mRNA expression for biglycan on day 2 of osteogenesis (p<0.01). However, 

subsequent observation at day 14 and 21, reported significantly marked reduction of 

biglycan expression in late PD HGCM-treated cells in the hyperglycaemia induced 

medium. Overall, these results suggested different alterations in biglycan gene 

expression of MSCs induced in different level of glucose, in respect to prior short- or 

long-term exposure in diabetic-induced medium.  
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Figure 4.8 Biglycan expression levels in BCE-MSCs assessed by qRT-PCR 
are reported as fold changes. Solid boxes represented 5.5mM OM-cultured and 
hatched boxes represented 25.0mM OM-cultured cells. Data is presented as 
means ± SD. N=2, n=3. *p<0.05, **p<0.01, when statistically compared 
between group. All p values were based on mixed ANOVA. PD, population 
doubling level; OM, osteogenic medium; CCM, complete culture medium; 
HGCM, high-glucose culture medium. 
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Biglycan core protein synthesis by MSCs was examined using Western blot. 

Observation made on secreted proteoglycans from early (Figure 4.9) and late PD 

BCE-MSCs (Figure 4.10), revealed the presence of one particular biglycan band at 

45kDa in all extracts. There are considerable changes in biglycan band formation in 

early PD cells, particularly observed on cells extracts and ECM extracts samples. 

The results demonstrated that stronger biglycan bands were formed in high glucose 

osteo-induction medium, compared to normolycemic medium, throughout culture 

from day 2 until day 21 of induction in PD15 cells. 

Further analysis of biglycan core protein was conducted on PD150 cells group, 

which was either previously prolonged cultured in normoglycaemic level or diabetic-

induced condition. Less staining pattern of biglycan core protein band was observed 

in the cell extracts sample of BCE-MSCs grown in prolonged high glucose culture 

medium. Moreover, short-term high glucose osteo-induction medium seems to reveal 

no changes for the staining pattern in biglycan band between the CCM-treated and 

HGCM-treated, PD150 cells. Analysis on ECM extracts displayed a presence of 

strong biglycan protein band in the 5.5mM OM on day 2, whereas the band only 

appear in the 25.0mM treated group on day 7 after ostegenic induction. Similarly, a 

pattern of delayed biglycan localisation in the extracellular matrix compartment was 

seen in ECM extracts of HGCM-treated cell, as biglycan protein band was observed 

on day 7 in normal OM and was later observed on day 14 in the 25.0mM induction 

medium. Indirectly, these findings are likely suggesting a relative alteration and 

delay of biglycan expression by the bone progenitor cell populations within the 

uncontrolled high glucose-induced environment, which possibly occurs in the 

inflammatory stage of diabetic bone repair.  
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Figure 4.9 Representative blot of a time-course high glucose level effect on 
biglycan core protein synthesis by MSCs from PD15 CCM-treated cells. Rat BCE-
MSCs were cultured in 5.5mM OM and 25.0mM OM for the indicated time period. 
20µg of protein derived from culture medium, cell lysates and extracellular matrix 
extracts were loaded onto SDS-PAGE gels and electrotransferred onto PVDF 
membranes. The blots were developed with biglycan antibody. PD, population 
doubling level; OM, osteogenic medium; CCM, complete culture medium. 
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Figure 4.10 Representative blot of a time-course high glucose level effect on 
biglycan core protein synthesis by MSCs from PD150, CCM-treated and HGCM-
treated group. Rat BCE-MSCs were cultured in 5.5mM OM and 25.0mM OM for 
the indicated time period. 20µg of protein derived from culture medium, cell 
lysates and extracellular matrix (ECM) extracts were loaded onto SDS-PAGE gels 
and electrotransferred onto PVDF membranes. The blots were developed with 
biglycan antibody. PD, population doubling level; OM, osteogenic medium; 
CCM, complete culture medium; HGCM, high-glucose culture medium. 
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4.2.6 Validation of high glucose effect on decorin gene expression and 

 protein synthesis  

Decorin is another type of relevant proteoglycan that are commonly linked with 

TGF-β1 regulation and sequestration within the ECM. MSC gene expression of 

decorin was analysed over a period of 21 days, in normal and high-glucose 

osteogenic medium. From Figure 4.11, the gene expression levels of decorin in early 

PD cells were not significantly changed throughout the differentation period, with 

the level of expression maintained at relatively low levels. Conversely, the 

expression of decorin in late PD CCM-cultured cells indicated a significant decrease 

with strong fold changes (p<0.01), reported on days 2 following the osteo-induction 

in high glucose level. However, observation on day 21, demonstrated that decorin 

expression was significantly elevated in CCM-cultured cells, which undergo osteo-

induction in hyperglycaemic environments (p<0.01). A similar pattern of alteration 

in decorin gene expression was seen in the diabetic-induced MSCs, particularly in 

the hyperglycaemic osteoblast cultures, although the data did not reveal statistically 

significant differences between the treated group. Although decorin gene expression 

in PD150 HGCM-treated cells was only reported to be significantly increased on day 

21 in 5.5mM osteogenic medium, the results suggested that subsequent 

hyperglycaemic osteo-inductions, however, may play a role in suppression of decorin 

gene expression and influence the regulatory mechanism of TGF-β1 activity, at a 

cellular level. 
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Figure 4.11 Comparison of decorin expression levels in BCE-MSCs 
measured with qRT-PCR is reported in fold changes. Solid box represented 
5.5mM OM-cultured and hatched box represented 25.0mM OM-cultured 
cells. Data is presented as means ± SD. N=2, n=3. *p<0.05, **p<0.01, when 
statistically compared between group. All p values were based on mixed 
ANOVA. PD, population doubling level; OM, osteogenic medium; CCM, 
complete culture medium; HGCM, high-glucose culture medium. 
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MSCs decorin synthesis over a 21 day period in either normoglycaemic or 

hyperglycaemic osteo-induction medium was determined by Western blot. From the 

SDS-PAGE of culture medium extracts (Figure 4.12), 3 distinct protein bands with 

the size of approximately 120kDa, 90kDa and 40kDa were detected in high glucose 

osteo-induction PD15 BCE-MSCs culture, while the normoglycaemic level only 

revealed the formation of 40kDa protein bands. Further analysis on cell extracts 

cultured in 25.0mM osteogenic medium revealed the presence of single decorin 

protein at 40kDa, compared to none or very low level of bands formation observed in 

the 5.5mM osteo-induction medium. On the other hand, analysis of ECM extracts of 

PD15 samples exhibited the presence of few decorin bands at different molecular 

weights corresponding to approximate size of 110kDa, 40kDa and 25kDa. However, 

comparisons made between different osteogenic treatments likely suggest that 

decorin band formation on days 14 and 21 in high glucose level is more concentrated 

compared to similar days synthesis in the normolycemic condition. 

Western blots of culture medium extracts from PD150 MSCs (Figure 4.13) revealed 

the presence of 4 decorin protein bands, with approximate size of 120kDa, 90kDa 

and 40kDa, as previously decscribed in early PD BCE-MSCs. Analysis on cell 

extracts and ECM extracts revealed considerable reductions in decorin band staining 

pattern of BCE-MSCs which had undergo long-term diabetic-induced culture, in 

comparison to the normoglycaemic-expanded cultures. An additional band was 

detected in PD150 HGCM-cultured cells, at an approximate size of 25kDa. Decorin 

protein band of PD150, ECM extracts from 5.5mM osteogenic medium were 

detected at day 7, while a band with similar staining pattern were only present in 

hypeglycaemic-OM cells at days 14 and 21, which likely suggests a delay in decorin 

localisation into the ECM compartment. 
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Figure 4.12 Representative blot of a time-course high glucose level effect on 
decorin synthesis by MSCs from PD15, CCM-treated cells. Rat BCE-MSCs were 
cultured in 5.5mM OM and 25.0mM OM for the indicated time period. 20µg of 
protein derived from culture medium, cell lysates and extracellular matrix (ECM) 
extracts were loaded onto SDS-PAGE gels and electrotransferred onto PVDF 
membranes. The blots were developed with decorin antibody. PD, population 
doubling level; OM, osteogenic medium; CCM, complete culture medium. 
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Figure 4.13 Representative blot of a time-course high glucose level effect on 
decorin synthesis by MSCs from PD150, CCM-treated and HGCM-treated cells. 
Rat BCE-MSCs were cultured in either 5.5mM OM or 25.0mM OM for the 
indicated time period. 20µg of protein derived from culture medium, cell lysates 
and ECM extracts were loaded onto SDS-PAGE gels and electrotransferred onto 
PVDF membranes. The blots were developed with decorin antibody. PD, 
population doubling level; OM, osteogenic medium; CCM, complete culture 
medium; HGCM, high-glucose culture medium. 
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4.2.7 SMAD expression in osteo-induced rat BCE- MSCs 

Immunoblotting was performed with anti-Smad2 antibodies that cross reacts with 

Smad3. As shown in Figure 4.14, particularly from PD150 CCM-treated samples, the 

antibody revealed two bands: one at 60kDa, the expected size of Smad2, and one at 

52kDa, the expected size of Smad3. Although Smad3 protein was consistently 

expressed during the differentation period in PD150 CCM-treated MSCs, the result 

reported an absence of Smad2 protein band on day 7 of induction in normoglycaemic 

osteogenic medium. In contrast, Smad2/3 protein bands from PD15 and PD150 

HGCM-treated cells only show one strong band located between the sizes of 52kDa 

to 60kDa, which potentially resulted from the fusion of two separate bands. Smad 

2/3 protein expression seen in PD15 and PD150 HGCM-treated cells is also 

relatively unchanged during the osteogenic induction, regardless of the different 

glucose levels. 
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Figure 4.14 Representative blot of a time-course high glucose level effect on 
Smad 2/3 expression by MSCs from PD15 and PD150, CCM-treated and HGCM-
treated cultures. BCE-MSCs were cultured in normal OM and high glucose OM for 
the indicated time period. 20µg of protein derived from cell lysates, were loaded 
onto SDS-PAGE gels, electrotransferred onto PVDF membranes and the blot were 
developed with anti-Smad 2/3 antibody. β-actin was used as a loading control.  
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4.3 Discussion 

The present Chapter provides detailed investigation of T2DM environment effects on 

implant osseointegration, with attention given for investigating the responsiveness of 

bone-derived MSC populations to stimulate the expression and to modulate the 

bioavailability of matrix bound-growth factors. Immunohistochemical and 

histological staining enabled characterization of new bone tissue formation at the 

bone-implant interface in the in vivo study, which allowed further representation of 

cellular changes within the healing area. Profound impairments were observed in the 

aged and diabetic groups, even after longer duration was given for the reparative 

process to take in place, suggesting a delay in bone repair capacity. These results had 

further extended previous studies on bone repair impairment, which had been 

reported in much younger animal models (Hasegawa et al. 2008; Sakai et al. 2008; 

Wang et al. 2010a; Colombo et al. 2011). Therefore, this study has extended the 

current knowledge on bone repair capacity in aged animal populations that 

confirmed the role of aging in the deterioration of regenerative capacity, which was 

progressively worsened by diabetic condition. 

A significant increase of TGF-β1 expression was observed in young diabetic rats, in 

comparison to healthy controls, at nine weeks post-implant surgery, as previously 

demonstrated in similar in vivo studies of T2DM models in young animal models 

(Colombo et al. 2011). However, the present data showed insignificant difference in 

TGF-β1 localisation within the ECM of the healing area in the aged group, regardless 

of implant duration and diabetic status. TGF-β1 localisation in the bone area had been 

highly associated with the functional role of bone progenitor cell populations to 

produce and to control the availability of growth factor within cellular 

microenvironment (Janssens et al. 2005). Again, the data suggested that both diabetic 

and aging potentially altered growth factor expression by MSCs, particularly TGF-β1 

during the healing progress, which affected their essential roles in bone metabolism, 

and led to subsequent delays in bone repair and remodelling. This interpretation has 

never been mentioned in any previous osseointegration studies in T2DM animal 

models (Hasegawa et al. 2008; Sakai et al. 2008; Wang et al. 2010a; Colombo et al. 

2011), due to the lack of evidence provided in aged populations.  
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TGF-β1 serves a major role in inducing the migration of MSCs to the repair site in 

order to co-ordinate new bone formation (Tang et al. 2009). Therefore, TGF-β1 

alterations within the healing site of diabetic animals from the in vivo study might 

potentially be associated with the response properties of MSCs within diabetic-

induced condition. To further explain the in vivo results, the present study continued 

to analyse in vitro evidence of the cellular and molecular responses of bone 

progenitor cell populations within hyperglycaemic-induced environments. In order to 

investigate the cellular mechanisms in diabetic alterations, cells that were isolated 

and expanded in long-term culture had been induced in osteogenic medium and 

investigated for their capacity to express and synthesis TGF-β1, in response to 

different glucose stimulation. The result might not be interpreted as a direct 

comparison to the in vivo model, which was represented by young and aged animal 

groups, but it fit the main purpose of studying ageing influence on cells’ regenerative 

capacity, in which both aged cells from in vivo or in vitro experiments involving 

cells that had undergone a large number of population doubling levels. 

Within this study, reduced regenerative capacity of MSCs was found to mask the 

delayed diabetic influences on healing cascades. TGF-β1 expression in cultured 

mature osteoblasts was significantly altered, depending on the duration of exposure 

to high glucose medium. Bone marrow-derived MSCs isolated from aged animals 

were reported to have lower proliferative capacity and less regenerative potential 

(Scutt et al. 1996). Therefore, the present data suggested a possible association 

between MSCs proliferative capacity and TGF-β1 production, which is related to the 

capacity of MSCs to differentiate bone-forming cells and to further synthesise the 

reparative endogenous molecules. Besides, prolonged hyperglycaemic-cultured 

MSCs demonstrated a delay in TGF-β1 protein synthesis and sequestration within the 

ECM. Although the mechanisms of how hyperglycaemic might induce differentials 

expression and synthesis level of TGF-β1 are partially understood, as the present 

findings suggested that MSCs demonstrated similar responsiveness towards growth 

factor expression, either in vivo or in vitro. Growth factors had been proposed to 

have a role in regulating glucose uptake and co-ordinating the metabolic pathway for 

cell growth (Vander Heiden et al. 2001). Thus, it might be possible that the delayed 

expression of TGF-β1 in MSCs may potentially compromise their metabolic capacity 
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and proliferative rate, leading to a weakened repair process in aged and diabetic 

animals.  

Knowing that biglycan and decorin are bound to growth factors, the present study 

also investigated potential alterations in these SLRPs, in response to 

hyperglycaemic-induced condition. For the first time, this study demonstrated a 

positive correlation between biglycan and decorin production with increased in vitro 

cell maturity. The in vitro study demonstrated that high biglycan production is 

relatively important to support the osteogenic pathway of MSCs by activation of 

TGF-β1 signalling, stimulating the expression of osteoblastic gene markers, and 

matrix mineralisation (Wu et al. 2013). Biglycan also plays an important role in 

controlling osteoblast differentiation and supporting the skeletal maturation by 

modulating BMP-4-induced signalling (Young et al. 2002; Chen et al. 2004). Hence, 

biglycan deficient-mice and decorin null-mice showed lower capacity to produce 

bone precursor cells, poor responsiveness to TGF-β1, reductions in collagen type I 

synthesis, and diminished osteogenic capacity, leading to increased skin and bone 

fragility (Danielson et al. 1997; Young et al. 2002). Within the present study, the 

results suggested that Smad2 and Smad3 were activated in response to both TGF-β1-

induced glucose exposure in osteoblastic cultures of rat bone derived-MSCs. Parallel 

to mRNA analysis, protein extracts from prolonged diabetic-induced cells revealed 

less biglycan and decorin band staining. Protein extracts from the ECM showed 

delays in biglycan and decorin protein sequestration under hyperglycaemic 

condition. Owing to the fact that SLRPs expression are expressed in a temporal 

pattern during mineral deposition (Waddington et al. 2003), the limitation of time-

based analysis performed within this study might have missed an important 

timeframe whereby these SLPRs reached their highest peaks in expression. In view 

of the existing limitation in interpreting the data, the results could only suggest that 

prolonged high glucose exposure has a potential role in causing the delay of biglycan 

and decorin expressions and syntheses. The delayed expressions of biglycan and 

decorin may involve a causative role in diminishing the protective capacities of these 

SLRPs to inhibit the digestion of bone matrix during bone remodelling, resulted in 

alteration of TGF-β1 bioavailability, which led to impaired osseointegration.  
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Collectively, evidences obtained from the present Chapter has provided a deeper 

understanding of the relative functions of MSCs in the regulation, growth factor 

availability, and proteoglycan localisation in the ECM compartment during 

reparative phase of diabetic bone healing. This may further explain important factors 

that determine MSC survival, migration, and activities, which are inter-dependant on 

various signalling molecules and matrix component within the repair site. Although 

the data seem to best fit with the overlapping of in vivo and in vitro models, the 

interpretation of results only represented a specific type of diabetic animal model and 

cell culture types. Further experimental procedure, including other types of relevant 

growth factors and the direct mapping of alternative activated signalling pathways 

that are involved in the diabetic alterations, would be required to further validate the 

underlying perturbation of healing progress in these model. Apart from MSCs, 

inflammatory components, such as macrophages, are well associated with alterations 

in growth factor signalling during diabetic tissue repair. Therefore, the next Chapter 

portrays the investigation on the potential involvement of macrophages population in 

regulating TGF-β1 expression, within hyperglycaemic conditions. The potential 

causal relationships identified among these identified inflammatory biomolecules 

may provide relative evidence for finding the therapeutic target for bone reparative 

treatment in T2DM.  

 

 

 
 

  



 

 

 160 

 

Chapter 5 

Investigating the Role of Macrophages TGF-β1 Expression in High 
Glucose Environment 
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5.0 Introduction 

Macrophages are well-known to play an important role in innate and adaptive 

immune responses, by controlling tissue homeostasis and various biological 

functions, including the complex stages of wound and bone healing. These cells 

produce a vast majority of important cytokines throughout the inflammatory phase of 

tissue repair (Murray and Wynn 2011). Evidence obtained from in vitro studies of 

activated-macrophages population showed that the combination of cytokines 

stimulation and choice of basal medium were found to have a significant influence 

on macrophages polarisation (Rey-Giraud et al. 2012). Depending on the variation of 

stimulus, different types of macrophages activation might be triggered and further 

maintained by simultaneous activity of the inflammatory cascade. These different 

types of activated-macrophages also play an important role in coordinating the 

expression of growth factors and other inflammatory molecules that regulate tissue 

regenerative properties.  

Macrophage studies in animal models suggest a causal role of macrophages in the 

development of diabetic complications. Impaired macrophage functions have been 

associated with the deterioration in immunity, which has led to the elevated rate of 

infection (Espinoza-Jimenez et al. 2012). Furthermore, a study on insulin–resistant 

adipose tissue in humans demonstrated increased localisation and activity of 

transforming growth factor-β (TGF-β), associated with M2 macrophages, which led 

to overall increase in fibrosis (Spencer et al. 2010). Significantly, macrophages of 

T2DM patients also demonstrated alterations in fatty acid content, which resulted in 

permanent alterations of cytokine signalling and impaired IL-4 anti-inflammatory 

responses (O’Connor et al. 2007; Senanayake et al. 2007). 

Macrophage polarisation is a recent mechanism proposed to explain two distinct 

types of activated-macrophage populations, involved in immunological response. 

From gene expression and phenotype analysis, M1-like macrophages represent the 

classical activated macrophage pathway, primarily induced in early stages of tissue 

repair to stimulate the expression of various pro-inflammatory molecules (Liu et al. 

2012). Meanwhile, the M2 macrophages phenotype is associated with the 

alternatively activated pathway and is predominantly represented by anti-
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inflammatory features. M2 macrophages are mainly involved in later stages of 

healing due to their vital role in sustaining proper tissue repair capacity by secreting 

growth factors and cytokines. This activation may further regulate progenitor stem 

cells activity, supporting angiogenesis and extracellular matrix (ECM) deposition 

(Kharraz et al. 2013). The phagocytic role of macrophages also plays an important 

role during osseointegration stages, to remove unwanted foreign molecules, such as 

implant debris and dead cells, within the healing site. However, alterations in bone 

metabolism and local glycaemic levels were identified to impair osseointegration and 

might lead to early implant failure (Olmedo et al. 2003). 

Moreover, elevated expression of circulating inflammatory markers, such as C-

reactive protein and interleukin-6 (IL-6), has long been associated with the 

pathological progress of T2DM (Pickup 2004). Widespread activation of pro-

inflammatory responses, and the prolongation of the innate immune system, have a 

significant impact on the associated complications observed during the reparative 

phase of wound healing. Osseointegration studies on healing T2DM bone tissue 

demonstrated alterations in growth factor production, prolongation, and increased 

expression of pro-inflammatory cytokines, such as interleukin 1β (IL-1β), tumour 

necrosis factor-α (TNF-α), and macrophages (Colombo et al. 2011). The associated 

hyperglycaemic condition in diabetes was also established to promote pro-

inflammatory, pro-fibrotic, and diminished capacity of the alternatively activated 

macrophages phenotype (Reddy et al. 2014). The alterations to the pro-inflammatory 

stage might potentially influence the activities of MSCs and their differentiation 

towards bone synthesising osteoblasts, mediated by growth factors bioavailability 

within the healing site. Furthermore, high glucose levels were postulated to promote 

alterations in the fatty acid component of macrophages, resulting in the progression 

of diabetic pathology and insulin resistance (Senanayake et al. 2007). In addition, 

TGF-β1 plays a critical role in T-cell immunity and has been identified to promote 

alternative activation in macrophages. TGF-β1 signalling is impaired in 

hyperglycaemic states, as shown in a study of alveolar-derived macrophages 

(Sunahara and Martins 2012). The combination of various components in T2DM 

pathology, which includes hyperglycaemia, accumulation of AGE products; and 

increased production and binding affinity of macrophages to lipoprotein lipase 



 

 

 163 

(LPL), may cumulatively set an overall transformation on the availability and the 

functional activity of macrophages that exist within the diabetic tissue (Tesch 2007). 

Moreover, lack of in vitro studies on macrophages polarisation, added to the 

plasticity of macrophages switching between the two distinct phenotype, might have 

hindered further characterisation on the different macrophage activated phenotypes. 

Therefore, an in vitro analysis of bone marrow macrophage phenotypic 

characterisation seems promising to assist better understanding of their role in 

regulating tissue repair, particularly in looking the cellular inflammatory response 

towards high glucose levels. This study hypothesised that the hyperglycaemic-

induced condition might affect the monocyte differentiation process, resulting in 

altered macrophage phenotypes and cytokine/growth factor production at the healing 

site, which would subsequently impair overall tissue restorative capacity. On 

completion of this Chapter, better understanding of monocyte maturation and 

cytokine/growth factor production in both activated macrophage phenotypes is 

offered. In fact, more focus had been given to the influence of high glucose level on 

in vitro culture of bone marrow-derived monocytes. 
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5.1 Material and methods 

5.1.1 Isolation of bone marrow-derived macrophages 

Bone marrow cells were flushed from femurs and tibia of combined 2 Wistar rats, at 

4 weeks old (Charles River UK Ltd., Margate, UK), using 21-gauge syringe filled 

with ice-cold PBS, passing through a 70µm cell strainer. After centrifugation at 

1800rpm for 5min, the cell pellets were resuspended with 2ml of Lysing Buffer (BD 

Biosciences, Oxford, UK) and gently agitated for 2min. The samples were 

centrifuged and the pellets were washed twice, resuspended and counted before 

seeded at density of 1x 106 cells/cm2 in T25 flasks (Sarstedt Ltd., Beaumont Leys, 

UK). The cells were cultured in RPMI 1640 (Invitrogen, Renshaw, UK) contained 

10% FBS, supplemented with either granulocyte-macrophage colony-stimulating 

factor (GM-CSF, 10ng/ml)(Peprotech, London, UK), or a combination of 

macrophage colony-stimulating factor (M-CSF, 10ng/ml) and interleukin-4 (IL-4, 

10ng/ml), to allow differentiation of monocytes into M1 or M2 macrophages, 

respectively. The monocytes were incubated in 37°C, 5% CO2 for 7 days. The 

supernatant was collected and the medium was changed on days 1, 3, 5 and 7. 

5.1.2 Cell morphological analysis by light microscopy 

Comparison of cellular morphology was made between different types of isolated M-

CSF-induced and GM-CSF and IL-4-induced macrophages populations by light 

microscopy with serial images captured on digital cameras Canon PC1234 (Canon 

UK Ltd., Surrey, UK). 

5.1.3 RNA extraction, PCR and qRT-PCR 

At day 7, adherent cells were harvested and the RNA collected for both RT-PCR and 

qRT-PCR analysis. The culture medium was removed and total mRNA was extracted 

from approximately 600,000 cells, using the RNeasy® Mini kit and QIAShredder 

(Qiagen Ltd., Crawley, UK) and transcribed into cDNA, as described in Sections 

2.1.2.3 and 2.1.2.4. PCR was then carried out, as previously described in Section 

2.1.2.4. For qRT-PCR reactions, cDNA was pre-diluted 1:10 with RNA-free water 

immediately prior to analysis and qRT-PCR reaction was performed, as described in 

Section 2.2.4.4. All the PCR and qRT-PCR analysis was performed using forward 
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and reverse primer (as shown in Table 5.1). Reactions conditions were: 1 cycle of 

95°C for 10min, 40 cycles of 95°C for 15s, 55°C for 30s and 72°C for 30s.   
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Table 5.1 Primer sequences and product sizes of selected macrophages markers 

Gene cDNA sequence (5’-3’) F, Forward; R, 
Reverse 

Length 

(bp) 
References 

β-actin 
F: TGAAGATCAAGATCATTGCTCCTCC 

R: CTAGAAGCATTTGCGGTGGACGATG 
155 

Gatto et. al, 
2008 

ArgI 
F: GCAGAGACCCAGAAGAATGGAAC 

R: CGGAGTGTTGATGTCAGTGTGAGC 
144 

Kanyo et al. 
1992 

IL-
12p40 

F: CAAGGCCCAGCAGCAGAATAAATA 

R: GTGCTCCAGGAGTCAGGGTACT 
153 

Winnall et 
al. 2011 

IL-6 
F: GAGTCACAGAAGGAGTGGCTAA 

R: ACAGTGAGGAATGTCCACAAAC 
146 

Simonic-
Kocijan et al. 

2012 

TNFα 
F: TGTCTGTGCCTCAGCCTCTTC 

R: TTTGGGAACTTCTCCTCCTTGT 
114 

Zhang et al. 
2011 

iNOS 
F: CTTGGAAGAGGAACAACTACTGCT 

R: GCCAAATACCGCATACCTGAA 
139 Li et al. 2013 

MRC1 
F: AAGGTTCCGGTTTGTGGAG 

R: TGCATTGCCCAGTAAGGAG 
98 

Ohnishi et al. 
2012 

TGF-β1 
F: AAGAAGTCACCCGCGTGCTA 

R: GGCACTGCTTCCCGAATG 
118 

Gao et al. 
2009 

VEGF 
F: ATCATGCGGATCAAACC 

R: ATTCACATCTGCTATGCT 
73 

Bastide et al. 
2008 

CD163 
F: TGTAGTTCATCATCTTCGGTCC 

R: CACCTACCAAGCGGAGTTGAC 
97 

Zhang et al. 
2012 
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5.1.4 Enzyme Linked-Immunosorbent Assay (ELISA) of rat TGF-β1 in     

 media from macrophages culture 

Macrophages cell culture medium samples were collected at days 1, 3, 5 and 7. The 

secreted TGF-β1 in the supernatants were evaluated using TGF-β1 Platinum ELISA 

Kit (eBioscience, Hatfield, UK). The assay was performed according to the 

manufacturer’s protocol. Briefly, the wells of a microtiter plate coated with a pre-

tittered amount of anti-rat TGF-β1 monoclonal antibodies were loaded and incubated 

with 20µL volumes of duplicate pre-diluted medium samples and TGF-β1 standards 

in order of ascending concentration. The wells were washed five times with assay 

buffer (phosphate-buffered saline, with 0.1% Tween 20 and 1% bovine serum 

albumin (BSA). Biotinylated anti-rat polyclonal antibody was added to each well and 

washed, as the above. 100µL of enzyme solution (streptavidin-horseradish 

peroxidase) and 100µL of substrate solution (3,3,5,5-tetramethylbenzidine) were 

added to each well with five washing steps in between. The enzyme activity was 

terminated by addition of stop solution (1M phosphoric acid), and the microtiter 

plate measured spectrophotometrically at 450nm, with 620nm as the reference 

wavelength. The amount of captured TGF-β1 in the samples was calculated from a 

reference curve generated in the same assay with reference standards of known 

concentrations of TGF-β1. Experiments were performed in triplicates of two 

independent experiments (n=6) and results were expressed as pg/ml. 

5.1.5 Statistical analysis 

Unless otherwise stated, data was expressed as mean ± standard deviation (SD). All 

statistical analyses were performed using SPSS version 20.0 (IBM, NY, USA). Data 

were analysed by two-way and mixed analysis of variance (ANOVA), with a 

significance level accepted at *p<0.05 and **p<0.01.  
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5.2 Results  

5.2.1 Morphological observation of macrophages culture 

Monocytes from either GM-CSF or M-CSF and IL-4 supplemented culture medium 

exhibited a homogenous round shape with short processes, 24hr after initial plating 

(Figure 5.1a-b). During 7 days in culture, the monocytes showed considerable 

changes in cell morphology and increased in cell size. Stimulation with GM-CSF in 

RPMI 10% fetal bovine serum (FBS) revealed a comparable morphology with M-

CSF and IL-4 in RPMI 10% FBS media, which demonstrated the formation of 

mostly stretched, spindle-like shaped cells on day 3, possessing long cytoplasmic 

processes (Figure 5.1 c-d). These elongated-shaped macrophages exhibit rapid 

expansion capacity, compared to the round-shaped cells observed at earlier time-

points. At day 7, the cultured monocytes have fully differentiated into 

morphologically heterogeneous populations, depending on the cytokine stimulation 

used. Both GM-CSF in RPMI 10% FBS and M-CSF and IL-4, in RPMI 10%, led to 

formation of mostly round or oval macrophages, with the fried egg morphology 

(Figure 5.1e and 5.1f). Similar tendencies were observed among monocytes culture 

of RPMI 10% FBS when supplemented with 25.0mM glucose, for each cytokines 

stimulation.  
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Figure 5.1 The identified macrophage populations of GM-SCF and M-CSF 
and IL-4 stimulated monocytes activation. Images were taken at day 1 (a,b), day 
3 (c,d) and day 7 (e,f) in culture. 
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5.2.2 Gene expression of M1 and M2 activated macrophages 

Preliminary RT-PCR confirmed the expression of TGF-β1 in the differentiated 

macrophages population. Regardless of glucose concentration in the culture medium, 

GM-SCF in RPMI 10% FBS (M1-activation) and combination of M-CSF and IL-4 in 

RPMI 10% FBS (M2-activation) showed monocyte activation and induced the 

expression of TGF-β1, IL-6 and TNF-α. However, high concentration of glucose in 

each macrophage induction media seems to differentially stimulate the expression of 

IL-6, in comparison to the normoglycaemic medium.  
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Figure 5.2 PCR analysis of macrophages induction in different cytokines 
stimulation and glucose level. β-actin was used as an internal control. 
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5.2.3 Quantitative RT-PCR analysis of M1 and M2 activated macrophages 

The phenotype of the differently activated macrophages was further assessed by 

investigating macrophage marker expression, using quantitative RT-PCR analysis. 

Activated M1 macrophages in GM-CSF-stimulated cultures displayed increased 

TNFα, IL-6 and iNOS expression (Fig. 5.3). The data displayed marked differences 

in M1 populations, dependent on the concentration of glucose used in the culture 

medium. High glucose seems to inhibit the expression of IL-6 and iNOS in the M1 

culture, but no significant differences were seen in TNF-α expression.  

In contrast, the M2 differentiated macrophages demonstrated a statistically 

significant increase in expression of CD163, arginase 1 (Arg1) and mannose receptor 

C; type 1 (MRC1), in comparison to M1 macrophages. The upregulation was also 

observed in the expression of growth factors, such as TGF-β1 and VEGF (Figure 

5.3). However, the M2-stimulated population cultured in high glucose exhibited a 

significant reduction in the expression of M2-related markers, indicating changes in 

the regulation of gene expression under high glucose, M-SCF and IL-4 medium.  

Another important finding observed was with IL-12p40 expression, which was the 

most common M1-associated marker. The data showed a significant increased in IL-

12p40 in M2 activated populations, as opposed to M1 activated cells. Moreover, high 

glucose levels in M-SCF and IL-4 medium were found to inhibit expression of IL-

12p40 in the M2 activated cells. 
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Figure 5.3 Quantitative PCR analysis of M1 and M2 macrophage gene 
expression, following different cytokines stimulation and glucose levels. M1-activated 
macrophages showed increase TNFα, IL-6 and iNOS expression, while M2-activated 
macrophages demonstrated increases CD163, Arg1, MRC1, TGF-β1 and VEGF. 
Results are presented in relative expression to β-actin as the internal control. Each bar 
represent mean±SD. N=2, n=6,  *p<0.05 and **p<0.01. All p values were based on 
two-way ANOVA.  
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5.2.4 Determination of released TGF-β1 in the cell culture medium  

ELISA was performed to measure the released TGF-β1 in cell culture, at day 1,3,5 

and 7 (Figure 5.4). Statistically significant increase in early expression of TGF-β1 

(p<0.01), from hyperglycaemic culture of M1- and M2-activated macrophages was 

observed on days 1. At day 3, TGF-β1 was significantly decreased in high glucose 

M1- and M2- stimulated medium (p<0.01). However, at day 5 the M2-activated 

macrophages cultured in high-glucose levels demonstrated marked reduction in 

TGF-β1 levels, as opposed to the marked elevation of TGF-β1 observed in the M1-

activated cells. The subsequent culture of monocytes in high-glucose levels, at day 7 

also inhibited the release of TGF-β1 from M2-activated macrophages, although the 

M1-activated cells demonstrated slight increased in TGF-β1 level. Together, the 

present data indicated that TGF-β1 production within the macrophage population was 

highly associated with the type of macrophages formed and the relative levels of 

glucose exposure presented in culture condition.  
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Figure 5.4 Phenotype of bone marrow-derived macrophages at a translational 
level, in culture. The released cytokines was measured and the data presented as 
mean±SD. N=2, n=6, *p<0.05, **p<0.01, accepted as statistically significant. All 
p values were based on mixed ANOVA. Comparison made between macrophages 
activated group and between days in culture, within different glucose levels. 
Released TGF-β1 was measured by an enzyme-linked immunosorbent assay 
(ELISA) at days 1,3,5 and 7. From day 3 onwards, TGF-β1 release from high-
glucose macrophages cultures was suppressed.  
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5.3 Discussion 

The previous in vitro study confirmed that the activation of bone marrow 

macrophages phenotype is associated with cytokine stimulation present in the culture 

medium (Rao et al. 2014). Although this study did not seem to demonstrate clear 

distinction of phenotype switch between M1 and M2 populations, which potentially 

associated with prolonged inflammatory responses, the present results established 

that high glucose concentrations might suppress TGF-β1 and VEGF expressions from 

alternatively activated macrophages, within high glucose environments.  

Significantly, this is the first study to investigate the potential involvement of 

macrophages polarisation, in response to hyperglycaemic conditions to further 

investigate their role in growth factors expression during the inflammatory stage of 

bone repair.  

Within this study, GM-CSF and M-CSF with IL-4 in RPMI 10% FBS activated 

macrophages revealed no distinct morphological appearances when the monocytes 

differentiated from homogenous round-shaped cells to heterogeneous populations 

consisting of oval and flattened-shaped macrophages. These findings are partly in 

agreement to those described recently, when human monocytes were differentiated 

by GM-CSF in RPMI 10% FBS, whereas the M2 activated macrophages of human 

monocytes tended to exhibit stretched, elongated fibroblast-like shaped cells with 

prominent processes; as opposed to round and oval shapes morphology, as seen in rat 

bone marrow macrophages (Rey-Giraud et al. 2012). Phenotypic and functional 

heterogeneity is known to be highly dependent on a wide range of factors, including 

the type of precursor cells, differentiation stages, cellular microenvironments, and 

variations in key stimulatory cytokines (Chakraborty et al. 2005). Moreover, the 

basal medium used for macrophage culture showed profound effect on macrophages 

morphology, as comparison made between RPMI with 10% FBS and X-Vivo 

medium revealed the production of different macrophages phenotypes, whereas the 

latter is found to produce macrophages with elongated morphology and increased 

adherence properties (Rey-Giraud et al. 2012).  

Within this study, the data revealed that in vitro macrophages polarisation might 

possibly be activated without lipopolysaccharides (LPS) stimulation, to produce a 

similar characteristic of LPS stimulated bone marrow M1 macrophages (high iNOS 
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and TNF-α) and M2 type that correlated with elevated level of Arg1 (Zheng et al. 

2013). Moreover, gene expression analysis indicated that two distinct populations of 

rat macrophages were successfully isolated and activated following the adapted 

induction protocol, as described in earlier murine macrophages isolation and 

characterisation studies (Davies and Gordon 2005; Ho and Sly 2009). GM-CSF 

clearly stimulated expression of IL-6, TNF-α, and iNOS, which fit the characteristics 

of M1-like macrophage phenotype, as proposed by earlier studies of adipose-derived 

M1 macrophages in a mouse model (Fujisaka et al. 2009). Meanwhile, M-CSF and 

IL-4 displayed the capacity to stimulate the production of M2 activated 

macrophages, showing relative increment in the expression of cytokine and related 

growth factors, including CD163, Arg1, MRC1, TGF-β1, and VEGF. The correlation 

of these gene expression markers and M2 activated phenotype was previously 

established in macrophages polarisation studies, which proposed that alternatively 

activated macrophages can be defined by expression of the above markers, as 

identified within the present study, along with expression of IL-10, CD206, CXCL2, 

SOCS1, Ym1, and Fizz1 expression (Stout 2010).  

Moreover, the data showed thrice higher expression of IL-12p40 in M2 activated 

macrophages than the level observed in M1 activated populations, suggesting an 

association between IL-12p40 and elevated TGF-β1 expression in non-LPS activated 

macrophages. Although LPS activation was found to be unrelated to TGF-β mRNA 

expression, it might likely induce the secretion of TGF-β in alveolar macrophages 

(Assoian et al. 1987). Therefore, recent evidence postulated that IL-12p40 might 

upregulate TGF-β1 expression and exhibited a potential role in driving macrophage 

polarisation (Bastos et al. 2002; Sindrilaru et al. 2011; Zhang et al. 2013). However, 

ELISA analysis of M2 activated macrophages in the present study revealed that 

hyperglycaemic culture inhibited the secretion of TGF-β1 in culture medium. In view 

of this relevant evidence, the present study demonstrated a further influence of high 

glucose concentration on macrophage function and phenotype switching capacity, 

without the presence of LPS stimulation. Thus, it further suggests a high degree of 

complexity for macrophages polarisation, which is strictly controlled by various 

microenvironments, particularly the sensitive M2 phenotype. 
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In addition, experimental evidence suggested that diabetes promotes pro-

inflammatory and pro-fibrotic stages in tissue repair, which exacerbate the 

dysfunction of the M2 macrophage phenotype (Brown et al. 2012). In fact, recent 

analyses showed that diabetes altered levels of several long non-coding RNAs, which 

play a functional role in activation of pro-inflammatory genes in T2DM 

macrophages (Reddy et al. 2014). Furthermore, in vivo implant osseointegration in 

T2DM animal models revealed prolonged expression of pro-inflammatory cytokines, 

IL-1β, and TNF-α during bone repair, along with increased levels of TGF-β1, 

suggestively in part of increased macrophage activation (Colombo et al. 2011). 

Significantly, the data derived from the present study suggested the involvement of 

the M1-activated phenotype to increase the level of TNF-α in hyperglycaemic 

cultures, which further explained the prolonged and delayed pro-inflammatory stage 

seen in healing diabetic tissues. Likewise, qRT-PCR analysis reported the late 

expression of macrophage activity following the onset of hyperglycaemia in diabetic 

animals (Doxey et al. 1998; Barbu-Tudoran et al. 2013). Macrophages from insulin-

resistant subjects also indicated the dominant feature of anti-inflammatory M2-like 

character, with high susceptibility to produce extensive amounts of pro-inflammatory 

cytokines that are closely linked to increase the rate of fibrosis and the development 

of further insulin resistance (Zeyda et al. 2007; Spencer et al. 2010). Experiment of 

bone marrow stem cells exposed to diabetic conditions exhibited alteration in TLR4 

response, which resulted in elevated expression of IL-12p40, TNFα, IL-6, and iNOS, 

which further explain the alterations of inflammatory responses discovered in 

diabetic-mediated complications (Mohammad et al. 2006). In addition, the present 

study revealed that essential growth factors (VEGF and TGF-β1) and pro-

inflammatory cytokines (IL-6 and TNFα) of M1 and M2 activated macrophages 

population were both inhibited in high glucose.  

Collectively, the present study demonstrated for the first time that high glucose 

levels might restrict M2 activated polarisation in bone marrow-derived macrophages; 

and might further enhance the pro-inflammatory stages during the healing process. 

The proposed mechanisms of hyperglycaemic-induced response might either be 

initiated by inducing M2 to M1 phenotype transformation, to prolong the pro-

inflammatory stage, or by limiting the production of TGF-β1, which led to defective 
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signalling and regulatory interactions; resulting in overall delayed tissue repair 

process. Collectively, the findings extend our current understanding of rat 

macrophage phenotype upon stimulation in various cytokines and offer huge 

potential for in vitro application of a disease model in studying immunological 

responses. Further studies on high glucose-mediated macrophage polarisation, 

particularly in regard to growth factors production, may clarify the exact mechanisms 

and enhance understanding of immune responses in T2DM environments.  
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Chapter 6 

General Discussion 
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6.0 General discussion 

The role of growth factor in bone repair is widely recognized, particularly the TGF-

β1. In vivo findings, as well as in vitro studies of osteoprogenitor cell populations in 

this study, strongly suggested that diabetes induced the alterations of TGF-β1 

bioavailability within hyperglycaemic environments. In vivo implant 

osseointegration studies demonstrated increased expression of TGF-β1 in the diabetic 

healing bone of the young group, at 9 weeks of post-implantation, which was not 

apparent in the aged group. Likewise, in a previous study on TGF-β1 expression in 

the bone repair area, TGF-β1 was reported to be significantly increased in a 

comparable young diabetic group at similar post-implant time intervals (Colombo et 

al. 2011). However, insignificant differences in TGF-β1 immunolabelling had been 

observed in the bone-implant area of aged-diabetic animal, suggestive of masked 

TGF-β1 alterations in ageing cells, which is represented by the higher proliferative 

cells populations, from in vitro culture. However, in vitro analysis on mature 

osteoprogenitor cells populations exhibited marked increase of responsiveness to 

express and synthesise TGF-β1, along with biglycan and decorin, but the capacity was 

markedly reduced in hyperglycaemic differentiation medium. In normal healing 

bone, TGF-β1 acts through paracrine signalling, as these cells are secreted by 

osteoblast, but at the same time, involved in recruitment and inducing proliferative 

capacity of mesenchymal progenitor cells towards osteoblastic lineage (Ehnert et al. 

2010). Besides, the temporal expression of TGF-β1 is highly correlated with the 

specific stage of bone healing progress (Würgler-Hauri et al. 2007). TGF-β1 plays an 

important role during the early phase of osteoblast differentiation pathway, 

particularly within the injury site, to induce migration and proliferation of progenitor 

cells that are capable of forming bone cells and further synthesising new bone. 

Within this study, Western blot on the extracellular matrix (ECM) protein of cultured 

osteoblastic cells indicated a delay in TGF-β1 expression in the hyperglycaemic-

induced cells. The late expression of TGF-β1 had been related to their functional role 

to inhibit terminal differentiation of osteoblast, during the late stage of mineral 

deposition and lamellar bone formation. Together, the significant alterations of 

temporal expression seen within the diabetic tissue and hyperglycaemic-induced 

MSCs may, therefore, be an indicator of significant changes in the signalling cascade 

and extracellular matrix (ECM) protein modifications, which modulate the 
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bioavailability of TGF-β1 expression, synthesis, and sequestration within the repair 

site. 

Biglycan and decorin are mainly expressed and localised in a range of specialised 

developing tissues, with the main role to regulate the sequestration of matrix-bound 

growth factors, such as TGF-β1 (Bianco et al. 1990). Biglycan and decorin may 

protect TGF-β1 from degradation and modulating their survival and release to the 

progenitor cells (Baker et al. 2009). In vitro studies on vascular smooth muscles and 

mesangial cells have suggested an association between hyperglycaemia and elevated 

TGF-β1, which acts as a potent regulator of ECM synthesis leading to accelerated 

progression of atherosclerosis and glomerulosclerosis (Kolm-Litty et al. 1998; Yang 

et al. 2010). However, less evidence and relevance information was found to explain 

on how high glucose exposure may alter TGF-β1 expression and availability, 

particularly with the known mediating role of biglycan and decorin in supporting the 

ECM synthesis. Furthermore, in vitro studies investigating the effects of 

hyperglycaemia on proliferation and functional activities of bone mesenchymal 

progenitor cells is still lacking, particularly concerning their biological functions in 

pathological progress of diabetic bone healing. Hence, to the researcher’s 

knowledge, this thesis is the first to document that long-term and short-term high 

glucose exposure could upregulate the mRNA expression and protein synthesis of 

biglycan and decorin in long-term in vitro expanded cells, as well as exerting a delay 

on their sequestration within the ECM. However, owing to the temporal expression 

of TGF-β1 and SLRPs during bone formation (Waddington et al. 2003), caution 

should be taken in interpreting the present data because the peak of gene expression 

for these biomolecules might have been missed between the chosen sampling points. 

Significant elevations in biglycan and decorin expression and synthesis were also 

observed in the cells with higher proliferative stage. These novel results might 

explain, in part, the molecular mechanism underlying the impaired bone healing 

potential in diabetic and aged population. Collectively, findings from this study 

suggest a strong correlation between the stemness of progenitor cells and expression 

of SLRPs (biglycan and decorin), to regulate the bioavailability and the bioactivity of 

sequestrated TGF-β1 in the bone-implant contact area, in order to maintain the cues 

for bone remodelling and repair. 
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Prior to the 21st century, the discussion on proposed bone repair mechanisms in 

Type 2 Diabetes Mellitus (T2DM) mainly consists of speculations, owing to the lack 

of reasonably supported data derived from both in vitro and in vivo experiments. 

Growing evidence on osseointegration has now confirmed the delay and impaired 

bone repair capacity in T2DM subjects (Jung et al. 2013; Tatarakis et al. 2014). 

Histological observations on bone-implant contact area of T2DM animal 

demonstrated extended formation of soft, fibrous tissue, and less mature bone, 

compared to control subjects (Casap et al. 2008; Hasegawa et al. 2008; Sakai et al. 

2008; Wang et al. 2010a). Likewise, delayed osseointegration has been reported in 

adult populations, which indicated a significant increase of tooth loss in mature 

groups, when compared to young groups (Jung et al. 2013). Within this study, the 

diabetic group demonstrated impaired bone healing progress, with the worst effect 

seen in the older age group. However, for the first time, this thesis revealed that 

T2DM condition significantly altered the sequestration of growth factors within the 

healing tissue. In vitro evidence from the current thesis also showed that long-term 

expanded, hyperglycaemic-induced mesenchymal progenitor cells exhibited a 

decrease in the proliferative capacity. Altogether, these findings suggest that the 

reported in vivo impairment of bone repair in osseointegration studies correlated with 

the proliferative and the differentiative capacities of bone progenitor cells that exist 

within the repair sites to support osteogenesis and survival of implant. 

Besides, one of the important aims in this study had been to investigate and select a 

suitable progenitor stem cell population, for in vitro analysis of the cellular 

biological function. Successful isolation, expansion, and characterisation of adult 

mesenchymal progenitor cells residing within the rat bone marrow stroma and 

skeletal niche demonstrated the feasibility and a practical approach of the method in 

generating MSCs for cell culture study. In fact, this study confirmed the great 

capacity of the isolated bone chips explant MSCs (BCE-MSCs), to maintain the bi-

potent characteristics in long-term in vitro expansion culture. The findings also 

indicated that exposure to short- and long-term hyperglycaemic environments 

significantly induced both osteogenic and adipogenic potentials of MSCs, while 

suppressing their proliferative potential. Hence, the functional role of these MSCs is 
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highly dependent on different stimulatory factors present in the culture environment, 

which might influence their reparative role in healing processes. 

On top of that, uncontrolled diabetes has long been associated with compromised 

osseointegration rate, which weakens implant survival and stabilisation in T2DM 

patients (Dowell et al. 2007; Oates et al. 2007; Gomez-Moreno et al. 2014). 

Hyperglycaemia increases oxidative stress levels within the diabetic tissue, and 

worsens by reducing or without catalase (Goth 2008; Waddington et al. 2011a). In 

vivo studies that monitored implant placed in rat mandible also identified delayed 

osteoblast differentiation and prolonged inflammatory responses in the T2DM model 

(Colombo et al. 2011). The perturbations in the healing process might also be linked 

with increased apoptosis and aging, mediated by advanced glycation end products 

(AGEs, Evans et al. 2003). Collectively, various hypotheses have been suggested to 

explain the mechanism of how the diabetes environment potentially influences the 

reparative process. However, the number of in vitro studies performed using MSCs 

populations is still relatively low; and only limited to human cells, which have been 

proven to demonstrate insignificant alterations in proliferative capacity and 

differentiation potential upon exposure to high glucose condition (Li et al. 2007; 

Weil et al. 2009; Cramer et al. 2010). In reviewing the literature, very few reasonable 

arguments were found to link the in vivo and in vitro evidence to explain in detail the 

possible mechanism of diabetic-induced alterations on cellular behaviour. 

Nonetheless, the only evidence found using MSCs to explore the delayed bone 

repair, as demonstrated in previous rat T2DM model, was found in streptozocin-

induced model of T1DM, which suggested that diabetes reduced osteoblastic and 

chondrogenic capacity of MSCs, while inducing their adipogenic lineages, leading to 

higher nett loss of new bone formation (Stolzing et al. 2010). Moreover, in the 

present study, a novel combination of in vivo and in vitro analyses conducted within 

perspectives of T2DM revealed that the alterations of growth factors availability in 

the diabetic tissue might be associated with the significant delay of small 

proteoglycans expression and synthesis at the cellular level, which could potentially 

lead to overall impairment of bone healing.  
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Furthermore, different roles of hyperglycaemia on various types of progenitor cells 

have been postulated in previous studies, which include inhibition of stem cell 

function (Dienelt and zur Nieden 2011; Cunha et al. 2014), inducing early 

senescence and apoptosis through the production of reactive oxygen species (ROS) 

(D'Souza et al. 2009; Cramer et al. 2010) increased susceptibility to osmotic stress 

(Madonna et al. 2013), and decreased bone quality despite a marked elevation in 

matrix deposition (D'Souza et al. 2009; Abbassy et al. 2010). For the first time, this 

study had monitored the influence of diabetic-induced hyperglycaemia on long-term 

MSCs culture, to demonstrate the accumulated impact of hyperglycaemia on the 

proliferative potential of the cells. It further supports the rationale of using these 

hyperglycaemic-induced MSCs to represent the cells derived from T2DM animals. 

However, the analysis performed on these cells must always reflect on the fact that 

considerable differences do exist in the pathological progress of diabetic-induced 

condition between the 2D culture settings and the complex in vivo system.  

The current study also showed that macrophages could also play an important role in 

regulating TGF-β1 expression during the inflammatory phase of bone repair. 

Previous bone repair studies in rats indicated prolonged inflammatory responses in 

diabetic animal models, represented by elevated expression of TNF-α and IL-1β 

(Colombo et al. 2011). On comparing the classically activated macrophage (M1) and 

the alternatively activated macrophages (M2), data revealed that high glucose levels 

significantly inhibited the expression of both M1- and M2-activated macrophages 

markers, particularly growth factors, such as VEGF and TGF-β1. The activation of 

stress-induced signalling pathways, on the other hand, was mainly activated by 

oxidative stress, which led to the increased production of IL-1β, TNF-α, and iNOS 

that might further stimulate insulin resistance in the tissues (Kaneto et al. 2005). 

Significantly, the present finding suggested that the macrophages involved in the 

prolongation of the inflammatory response observed in prior T2DM models, 

comprised mostly of pro-inflammatory M1-activated macrophages. Polarisation of 

M2 to M1-type macrophages and prolonged high levels of pro-inflammatory cells 

within the injury site may explain the delayed bone repair in diabetic environments, 

as demonstrated in the in vivo sample. Current evidence also showed that MSCs 

could secrete factors that are capable of polarising the monocytes to M2-type 
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activated macrophages (Ezquer et al. 2009), which is beneficial in accelerating bone 

repair in the affected tissue. Altogether, this study could have assisted towards 

enhanced understanding of the cross-talk between MSC populations and 

inflammatory mediators, which offer great potential and beneficial aspects for future 

application in regenerative therapy. 

Despite the interesting findings observed within this study, there are certain 

limitations that need to be taken into account. First, extra caution needs to be 

considered in extrapolating findings from in vitro study to reflect the in vivo 

condition. The differences of cellular mechanisms that exist between the 2D culture 

and the more complex animal model system will need to be considered, prior to 

making any conclusion. Second, within this study, diabetic-induced long-term 

culture of isolated MSCs was performed due to the unsuccessful isolation of MSCs 

from bone chips explant of aged animal. This might further explain the absence of 

any report conducted using freshly isolated MSCs from aged animals, particularly 

the diabetic GK rats that exhibited constant hyperglycaemia from 12 weeks’ old.  

6.1 Future directions 

Interestingly, the novel findings gathered from this study have raised more questions 

to deepen our comprehension on pathological and physiological perturbations in 

diabetic bone healing. Indeed, future studies are needed to address the mechanisms 

underlying the observations and outcomes herein discussed. Although the diabetic-

induced bone-derived osteoprogenitor cells showed remarkable response in 

subsequent culture in hyperglycaemic osteogenic medium, the actual diabetic-bone 

cells were not been studied in this regard. Therefore, a systematic approach of in 

vitro studies, conducted using freshly isolated cells from both Wistar and T2DM 

animal itself may provide valuable findings to compare with the current data. It is 

also unclear by which mechanisms, hyperglycaemic environment may exert its 

impact on the osteoprogenitor cell populations, proteoglycans, growth factors, and 

bioavailability, which would directly influence the metabolic state and the oxidative 

stress levels of the cells. Thus, studies looking at systemic or local TGF-β1 delivery 

on bone formation will be needed to sort between TGF-β1's direct effects on bone 

cells versus the more complex MSCs reaction to a combined administration of TGF-
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β1 and biglycan/decorin. Moreover, studies designed to look at selected 

hyperglycaemic-induced signalling pathways in bone cells should be pursued as 

well, as it may further elucidate the potential therapeutic target in reversing the 

detrimental effects of high glucose environment on cellular damage.  

6.2 Contribution of this work to the field of reparative medicine  

This thesis has presented information indicating that bone healing is a complex and 

very controlled process, which involves a series of biological events that take place 

following an injury to the tissue. The original contribution of this study to the field of 

knowledge, particularly in reparative medicine is founded on successful 

identification of important cells and biomolecules that drive the changes in signalling 

cascade that lead to impairment of osseointegration in T2DM bone tissues. The 

marked alterations of TGF-β1 expression and synthesis, obtained from both in vivo 

and in vitro analyses indicated an inter-dependant interactions between the bone 

progenitor cells, growth factors, and matrix proteoglycans, which potentially 

determine the subsequent bioactivity and bioavailability of each component in 

modulating bone repair process. Along with the current application of antioxidants, 

the delivery of growth factors and the demineralised bone matrix in accelerating 

bone-repair (Bouletreau et al. 2002; Sheweita and Khoshhal 2007; Ozdemir and Kir 

2011), enhanced understanding on the identified repair mediators in this study may 

further assist in elucidating other potential targets for therapeutic options in 

promoting bone repair in T2DM, thereby improve the rate of implant survival in 

diabetic patients. 
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