
A method for constructing the bilinear tension

softening diagram of concrete corresponding to

its true fracture energy

H. M. Abdalla* and B. L. Karihaloo*

Cardiff University

For the analysis of cracked concrete structures using the fictitious crack model two fracture properties of concrete

are required, namely its true specific fracture energy GF and the corresponding tension softening relation �(w). In
a recent paper, the authors proposed a simple method for the determination of the true specific fracture energy of a

concrete mix. In this paper a method is proposed based on the concept of a non-linear hinge for constructing a

bilinear approximation of the tension softening relation consistent with the true specific fracture energy GF. The

parameters of this bilinear approximation are inferred in an inverse manner. It is shown that this inverse identifica-

tion procedure predicts accurate bilinear softening relations of concrete mixes tested in three-point bend and

wedge-splitting modes.

Introduction

In the analysis of cracked concrete structures the

non-linear theory of fracture mechanics based on the

fictitious crack model is often used.
1
This model recog-

nises the fact that an extensive fracture process zone

(FPZ) exists ahead of a real traction-free crack in

which concrete softens progressively due to micro-

cracking. This tension softening FPZ is included in the

model as a fictitious crack. The term ‘fictitious’ is used

to underline the fact that this portion of the crack

cannot be continuous with full separation of its faces,

as in a real traction-free crack. The fictitious crack

faces are able to transfer some stresses across them

which are not constant over its length. In fact, they

increase from nothing at the tip of a real traction-free

crack to the full uniaxial tensile strength of concrete at

the tip of the fictitious crack (Fig. 1). In the fictitious

crack model (FCM) two material properties of concrete

are needed in addition to its tensile strength f t and

Young’s modulus, E. These are the specific fracture

energy, GF, and the corresponding tension softening

diagram �(w) relating the residual stress transfer capa-

city � to the opening displacement w of the fictitious

crack faces. In practice, the �(w) relationship is often

approximated by a linear, bilinear, polylinear or even

exponential curve
2

with the bilinear approximation

being the most common. The popularity of the bilinear

approximation of the tension softening diagram (TSD)

stems from the fact that it captures the two major

mechanisms responsible for the observed tension soft-

ening in concrete, namely microcracking and aggregate

interlock. The initial, steep branch of the bilinear TSD

is a result of microcracking, whereas the second, tail

branch is a result of aggregate interlock.

The authors have recently proposed a simple method

for the determination of the true GF of a concrete mix

that is independent of the shape and size of the test

specimen.
3,4

This method requires the determination of

the specific fracture energy Gf (Æ, W) on specimens of

the same size W but one half of which contain a very

shallow starter notch a (Æ ¼ a/W) and the other half a

deep starter notch. The two specific fracture energy

values so determined depend on Æ and W. The simpli-

city of the method lies in how the true specific fracture

energy of the concrete mix GF can be calculated from

the two size-dependent values Gf (Æ, W). It was shown
4

that for the commonly used three-point bend (TPB) and

wedge-splitting (WS) specimens the Æ values should be

0.05 and 0.50 for TPB, and 0.20 and 0.50 for WS

specimens.
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The determination of TSD has proved to be a major

problem and is still not a simple task to perform. Several

researchers have attempted to measure the TSD using

the direct tension test.
5,6

However, this requires a special

test set-up, and it is very difficult to obtain stable load-

ing condition during the test. Moreover, the direct ten-

sion test measures the average stress–deformation

response of the specimen and not the accurate relation-

ship of cohesive stress and crack opening.
7
Therefore,

other researchers
8,9

have focused on the indirect deter-

mination of TSD based on, for example, the determina-

tion of the load–displacement curve of a TPB specimen

and a subsequent inverse analysis in which a finite-

element model forms the basis of the modelling.

An analytical model based on the concept of a non-

linear hinge was proposed,
10

in which the flexural re-

sponse of concrete beams was modelled by the

development of a fictitious crack in the central region

of the beam subjected to the maximum bending mo-

ment. The width of this region, proportional to the

beam depth, fixes the width of the non-linear hinge. It

was assumed that �(w) is linear. This model was

further developed by Stang and Olesen
11

to demon-

strate its applicability to TPB beams using a bilinear

approximation for �(w).

This paper will describe an inverse procedure also

based on the non-linear hinge concept for identifying

the parameters of the TSD corresponding to the true

specific fracture energy GF. The TSD is assumed to be

bilinear in shape.

Hinge model

The basic idea of the non-linear cracked hinge model

is to isolate the part of the beam close to the propagat-

ing crack (i.e. the part under maximum bending mo-

ment) as a short beam segment subjected to a bending

moment and normal force. Fig. 2 shows a typical TPB

and a typical WS specimen.

In the non-linear hinge model the crack is viewed as

a local change in the overall stress and strain field. This

change is assumed to vanish outside a certain band of

width s (see Fig. 2). Thus, outside of this band the

structural element is modelled using the elastic beam

theory.

The constitutive relationship for each segment inside

the hinge is assumed to be linear elastic in the pre-

cracked state (phase 0), while the cracked state is

approximated by a bilinear softening curve, see Fig. 3,
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Fig. 1. (a) A real traction-free crack of length a0 terminating in a fictitious crack of length lp whose faces close smoothly near

its tip (KI ¼ 0). The material ahead of the fictitious crack tip is assumed to be linear (b), but the material within the fracture

process zone is softening; the area under softening curve equals fracture energy GF (c) (after Karihaloo2).
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� ¼ E� pre-cracked state

�(w) ¼ g(w) f t cracked state

�
(1)

where E is the elastic modulus; � is the elastic strain; w

is the crack opening; ft is the uniaxial tensile strength;

and g(w) is the function representing the shape of the

stress-crack opening relationship, normalised such that

g(0) ¼ 1. For the assumed bilinear shape (Fig. 3) we

have

g(w) ¼ bi � aiw ¼ b1 � a1w, 0 < w < w1

b2 � a2w, w1 < w < w2

�
(2)

w1 ¼
1� b2

a1 � a2
; (3a)

w2 ¼
b2

a2
, (3b)

where b1 � 1; and the limits w1 and w2 are given by

the intersection of the two line segments, and the inter-

section of the second line segment with the abscissa,

respectively (see Fig. 3).

The geometry of WS test specimens with W ¼ 200

mm is shown in more detail in Fig. 2(b) and Table 1.

The size of the cube is W and the initial notch length is

a0, while the ligament length of the hinge is

hg ¼ W � dn � a0.

Analysis of the hinge element allows for the determi-

nation of the axial load N and bending moment M for

any given hinge rotation 2j (see Fig. 4). The problem

now is solved in four stages, one for each phase of

crack propagation. Phase 0 represents the elastic state,

when no crack has formed from the initial notch, while

phases I, II and III represent different stages of crack

propagation (see Fig. 3). In phase I, the fictitious crack

of length d is such that the maximum crack opening is

less than w1. In phase II, a part of the fictitious crack

of length d has a crack opening in excess of w1 but in

the remaining part it is less than w1. In phase III, a part

of the crack has opened more than w2 and thus become

traction-free, while the opening of the remaining part is

still less than w2 or even less than w1.
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Fig. 2. Three-point notched bend beam with a non-linear hinge modelling the propagation of a crack at mid-section (a) and

geometry and the loading of wedge splitting test specimen showing the hinge element and its loading (b)
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When the complete stress distribution is established

for the non-linear hinge, a relation between the normal

force N , the moment, M and the hinge rotation, j may

be obtained in each phase of the crack propagation.

The following normalised parameters are introduced

� ¼ 6

f th
2
g t
M ; r ¼ 1

f thg t
N ; Ł ¼ hgE

sf t
j; Æh ¼

d

hg
(4)

where t is the width of the hinge in the direction

normal to the paper and d is the depth of the fictitious

crack. Given these normalisations the pre-crack elastic

behaviour of the hinge is described by Æh ¼ 0 and � ¼
Ł, where 0 < Ł , 1 � r; at the onset of cracking Ł ¼
1 � r. For TPB specimens r ¼ 0.

Application of hinge model to TPB and

wedge-splitting specimens

The opening displacement at the mouth of the pre-

existing starter crack (CMOD) in TPB and WS speci-

mens consists of three contributions. These are the

opening due to the crack emanating from the starter

crack, �COD, the opening due to elastic deformation, �e
and the opening due to geometrical considerations be-

cause the line of application of the load is shifted

relative to the mouth of the starter crack, �g

CMOD ¼ �COD þ �e þ �g (5)

�COD is the crack opening at the bottom of the crack in

the hinge, that is, at y ¼ hg, see Fig. 2 and 4,

�COD ¼ sf t

E

(1� bi þ 2ÆhŁ)

(1� �i)
(6)

where s is the width of the hinge, Æh ¼ d/hg,

Ł ¼ hgEj=sf t, j is half of the hinge rotation and the

parameter �i can be obtained from

�i ¼
sai f t

E
(7)

�e in equation (5) can be found from handbooks.
12

The

contribution from �g has been found to be negligible

for the specimen geometries tested.

The applied load in the TPB specimen is related to

the normalised moment through the following relation

P ¼ 2

3

f th
2
g t

L
�(Ł) (8)

σw/ft
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0 I
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y0 � y*
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Fig. 3. Definition of a bilinear stress–crack opening relationship and the four different phases of crack propagation. Phase 0 ¼
state of stress prior to cracking; Phases I–III ¼ states of stress during crack propagation.

Table 1. Dimensions of the 200 mm WS specimen (mm)

W a am an b bm d1 d2 d3 dn hg

200 30–82.5 3 5 174 70 75 175 50 20 140–87.5

hg

s

y
N M

2ϕϕ

y0

d

M N

hg/2

hg/2

Fig. 4. Geometry, loading and deformation of the hinge ele-

ment
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where L is the total length of the beam.

For the WS geometry no explicit expression for the

load P in the cracked phase can be derived similar to

equation (8) for the TPB specimen. For the pre-cracked

phase (phase 0), the magnitude of the load, P0 is given

by Reference 13

P0 ¼
f th

2
g t

6d2 � 3hg þ 3k(d1 � d3)
(9)

where, k ¼ 2 tanÆw depends on the wedge angle, Æw

(Æw ¼158 for the 200 mm wedge-splitting geometry

considered here).

In the cracked phases I–III, the solution for P can

be obtained in iterative manner from the following

implicit equation

�ext(P)� � j
int(Ł, P) ¼ 0: (10)

where �ext(P) represents the external loading on the

hinge which can be determined from the force balance

condition (see Fig. 1b), while � j
int(Ł, P) is the internal

loading capacity of the hinge given by analytical ex-

pressions corresponding to the actual phase of the crack

propagation. These expressions have been obtained by

considering the force and moment equilibrium of the

hinge in each crack propagation phase.
11

For an additional check on the accuracy, P can be

determined for a given value of CMOD from

CMODexp � CMOD(P , Ł) ¼ 0 (11)

where CMODexp is the experimentally measured

CMOD and CMOD(P , Ł) is determined from equation

(5).

The value of Ł corresponding to each phase is calcu-

lated from the analytical expression.
11

Then for this

value of Ł the normalised moment �(Ł) and the crack

length, Æh are calculated, followed by the theoretical

CMOD and load P (from equations (8), (9) and (10)).

Next the sum of squares of the errors between the

theoretical and experimental values of the load is mini-

mised with respect to the three unknown parameters of

the bilinear TSD

min
(a1,a2,b2)

1

n

Xn
0

(P � P exp )
2 (12)

where n is the total number of the observations repre-

senting the selected entries of Ł—that is, the selected

values of P on the experimentally recorded load–

CMOD diagram.

Results and discussion

Figures 5 and 6 show the mean of three or four

load–CMOD diagrams recorded on 200 mm TPB and

WS specimens, respectively, with two notch-to-depth

ratios (0.05, 0.50 for TPB and 0.20, 0.50 for WS)

identified for the determination of the true GF.
4
The

optimised coefficients a1, a2 and b2 obtained by using

the hinge model and minimising the difference between

the theoretical and recorded load–CMOD curves are

given in Table 2. The predictions from the hinge model

corresponding to these parameters for each value of Æ
are compared with the mean experimental results in

Figs 5 and 6. The variations in the parameters with Æ
are to be expected because of the variation in the meas-

ured Gf (Æ).

Parameters of bilinear TSD corresponding

to GF

The procedure to obtain the true specific fracture

energy GF for a concrete mix from the size-dependent

Gf (Æ,W) measured in the laboratory was described in

References 3 and 4. It is now necessary to establish

the bilinear softening diagram corresponding to this

GF.
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Fig. 5. Load–CMOD curves generated by the hinge model

using the parameters obtained from the inverse analysis and

the average experimental load–CMOD curves for TPB speci-

men size 200 mm with two notch to depth ratios (a) 0.05 and

(b) 0.50.
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As described above, the parameters of the bilinear

softening curve (Fig 7) were established by using the

hinge model. The area under the softening curve ob-

tained using the hinge model was equal not to GF but

to the measured Gf (Æ, W), (see Table 2). It will be seen

that the area under the bilinear TSD is generally less

than the true GF. Thus the true GF of the normal

strength concrete used in TPB tests
3
is 141.1 N/m,

whereas the average area under the bilinear TSD is

only 129.1 N/m (Table 2). Similarly, the true GF of

normal strength concrete used in WS tests
3
is 154.8

N/m, whereas the average area under the bilinear TSD

is only 133.5 N/m (Table 2).

The size-dependent fracture energy (i.e. the area

under the bilinear TSD) is given by

G�f Æ, Wð Þ ¼ 1

2
f
�
t w�1 þ

��1
f �t

w�2

 !
(13)

where the superscript * denotes the average parameters

of the bilinear diagram obtained from the hinge model

(Table 2).

The size-independent fracture energy (i.e. the area

under the bilinear TSD corresponding to GF) can be

similarly written as

GF ¼
1

2
f t w1 þ

�1

f t
w2

� �
(14)

where w1, w2 and �1, which are to be determined, are

the bilinear diagram parameters corresponding to the

true fracture energy GF, and f t is the direct tensile

strength of the mix obtained from an independent test,

say a split cylinder test, f st. It is assumed that f t ¼
0.65 f st.

14

The hinge model parameters corresponding to Gf

(Æ, W) are now scaled to the true fracture energy GF—

that is
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Fig. 6. The load–CMOD curve for 200 mm wedge splitting

specimen compared with the load–CMOD curve generated by

the hinge model for notch to depth ratio of (a) 0.20 and (b)

0.50.

Table 2. Bilinear softening relationship parameters for normal strength concrete NC generated from the hinge model for 200 mm

three-point bend and WS specimens for two different notch to depth ratios.

Notch-to-depth ratio, Æ TPB WS

0.05 0.50 Average 0.20 0.50 Average

a1 (mm�1) 20.850 43.120 27.480 11.515 14.245 12.880

a2 (mm�1) 0.600 0.600 0.600 1.608 1.196 1.402

b2 0.185 0.187 0.186 0.425 0.343 0.384

w1 (mm) 0.040 0.024 0.030 0.058 0.050 0.054

w2 (mm) 0.308 0.311 0.310 0.264 0.283 0.274

Gf (N/m) 141.100 122.200 129.100 116.500 150.500 133.500

1

b2

σ1/ft

a1

a2

w1 w2 w

σ/ft

Fig. 7. Bilinear tension softening diagram.
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1

2
f t w1 þ

�1

f t
w2

� �
¼ 1

2
f
�
t w�1 þ

��1
f
�
t

w�2

 !
GF

G�f Æ, Wð Þ
(15)

The coordinates of the knee of the bilinear diagram

predicted by the hinge model are related as follows

(Fig. 7)

��1
f t

¼ 1� a�1w�1 (16)

A term-by-term comparison of the two sides of equa-

tion (15) gives

w1 ¼ w�1
GF

G�f
f �t
f t

(17)

�1

f t
¼ GF

G�f
��1
f �t

w�2
w2

f �t
f t

(18)

From Fig. 7 we obtain an additional equation for the

slope a2 of the true bilinear diagram

�1

f t
¼ w2 � w1ð Þ a2 (19)

Equating the two equations (18) and (19) gives a

quadratic equation for calculating the crack opening,

w2

w2
2 � w1w2 ¼

1

a2

GF

G�f
��1
f t

w�2 (20)

once w1 has been determined from equation (17). Note

that slope a2 is chosen to coincide with a�2 of TPB

specimen, that is it is assumed that the slope of the tail

part of the bilinear diagram is not sensitive to Æ and W.

This is a reasonable assumption in view of the fact that

a2 is a result of the aggregate interlock which is pri-

marily governed by the maximum size and texture of

the coarse aggregate used in the concrete mix.

The parameters of the bilinear TSD corresponding to

the true GF values of the two concrete mixes used in

this study are given in Table 3. The TSDs are plotted in

Fig. 8. It is worth mentioning that the two normal-

strength concrete mixes are very similar in their mech-

anical properties. This remains true of their bilinear

TSDs too, despite the fact that these were inferred by

inverse analysis on TPB and WS test data. This gives

confidence in the predictions of the non-linear hinge

model for inverse analysis.

Conclusions

For the analysis of cracked concrete structures using

the non-linear theory of fracture mechanics based on

the fictitious crack model, two fracture properties of

concrete are needed, namely the specific fracture en-

ergy GF and the corresponding tension softening rela-

tion �(w). The authors have recently proposed a simple

method for the determination of the true GF of concrete

mix from the specific fracture energy Gf (Æ, W) meas-

ured on TPB or WS specimens of the same dimension

W but containing starter cracks Æ which are well sepa-

rated.

In this paper, it has been shown how the parameters

of a bilinear approximation of the tension softening

relation �(w) corresponding to the recorded load-

CMOD diagram of the TPB and WS specimens can be

inferred through an inverse analysis based on the con-

cept of a non-linear hinge. The parameters so inferred

will also depend on the shape and size of the test speci-

men, just as the specific fracture energy Gf (Æ, W). A

procedure has been proposed to scale these parameters

so that they correspond to the true GF of the concrete

mix that is independent of the shape and size of the test

specimen. Thus the two fracture properties of concrete

needed for the analysis of cracked concrete structures

can be obtained from simple tests and analysis of the

Table 3. Elastic properties and parameters of the bilinear softening diagram corresponding to the size-independent fracture

energy GF for the two concrete mixes.

Mix fc
MPa

ft
MPa

GF

N/m

E

Gpa

w1

mm

w2

mm

a1
mm�1

�1

f t

MPa

NSC for TPB 55 2.67 141 36.9 0.039 0.354 20.75 0.189

NSC for WS 60 2.80 155 38.3 0.043 0.357 18.69 0.188

NSC ¼ normal strength concrete.

0·0

0·2

0·4

0·6

0·8

1·0

TPB

WS

0·0 0·1 0·2 0·3 0·4
w : mm

σ
/f

t

Fig. 8. The normalised bilinear stress–crack opening rela-

tionship for two normal-strength concretes corresponding to

their true fracture energy GF.
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test data using the procedures described above and in

Reference 4.
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