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Abstract 

Surfaces can present high levels of topographic asymmetry and, therefore, theories based on 

the assumption of symmetry cannot be effectively employed. 

A new multi-asperity adhesion model that assumes that asperities are not perfectly 

hemispherical is presented here, this model is based on the elliptical JKR model for a single 

asperity. The adhesion between a soft tissue with asperities greatly asymmetric and a polymer 

was modelled, the predicted adhesion forces were successfully validated against 

experimentally obtained data. Moreover, simulations with a simpler model, which assumes 

symmetrical asperities, have been also carried out; these results were significantly different 

from those obtained, using both the newly developed model and those determined 

experimentally. This highlights the importance of the model presented in this work. 

Keywords: adhesion, JKR model, multi-asperity contact model, asymmetric asperities 
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1. Nomenclature 

a, b Major and minor semi-axis of ellipse of contact 

d Distance between two surfaces 

e eccentricity of ellipse of contact 

E reduced Young’s modulus 

Ex  Ey  Young modulii in orthogonal directions  

E1  E2  Young modulii of contacting materials 

E(e) Complete elliptical integral of second kind  

Fadh Adhesion force  

 
iii RRfn min,max, ,, is the adhesion force for asperity i with curvature radii Rmax,i and Rmin,i 

and deformation i based on the elliptical JKR model for a single asperity 

hi Height of asperity i  

K(e) Complete elliptical integral of first kind  

p Shape parameter of Weibull distribution 

𝑃0 = 𝐸𝑎22𝑏𝑅𝑒 𝛼′−𝛽′(𝑏𝑎)5 2⁄
1−(𝑏𝑎)1 2⁄  Contact pressure in the centre of the ellipse 

Rmax,i   Rmin,i  Principal curvature radii of asperity i 

Re = W Applied load of a single asperity 

 

 𝛼′ = 2𝑏𝑅𝑒𝐸 𝛼 

𝛽′ = 2𝑏𝑅𝑒𝐸 𝛽 
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i Deflection of asperity i   

c.i Critical deflection of asperity i  with curvature radii Rmax,i and Rmin,i 

 Scale parameter of Weibull distribution 

AB  Acid-base component of the surface free energy 

LW  Apolar component of the surface free energy 

TOT  Total surface energy 

  Electron-donor component of the acid-base surface free energy 

  Electron-acceptor component of the acid-base surface free energy 

  =
max

min

R

R
 

1 , 2  Poisson ratios of contacting materials 

  Cumulative distribution function  

 

2.  Introduction 

Adhesion is very important in many circumstances, for example in pharmaceutical 

formulations, [1] biofilm formation, [2] insects climbing, [3] particles interaction [4] and 

wear and frictional performance of  materials. [5]-[8] Because of the detrimental or required 

effect of adhesion, depending on the circumstances, the ability of predicting such phenomena 

is very helpful in technology developments. [1][1],[5] Every material exhibits surfaces that 

present geometrical irregularities, this generally random phenomena is known as surface 

roughness and is a critical aspect of adhesion [8] and other functional properties. [9],[10]  

Numerous theories have been proposed to describe the adhesion phenomena between 

surfaces; some are single asperity based, [11][11]-[15][15] whilst others consider a multi-
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asperities contact situation. [16][16]-[19][19] Generally, multi-asperity adhesion models 

starts from theories describing the interaction between a single sphere/particle or asperities to 

a flat surface [20][20],[21][21] and integrate the overall interaction between rough surfaces 

considering the distributions of the asperities geometrical properties such as height and 

curvature radii. [19][19]-[24][24] Commonly, surface asperities are assumed to have a 

perfectly symmetrical top (so called perfectly hemi-spherically tipped); this is because many 

materials present surface asperities with a minimal degree of asymmetry. [25][25] Multi-

asperity adhesion models, which assume perfectly hemispherically-tipped asperities, can still 

be used when this assumption is not verified providing that the geometrical average of the 

radii of curvature in orthogonal directions is used. [25][25] The distribution of the parameters 

representing the surface roughness are dependent on the manufacturing process and, despite, 

often following a Gaussian profile, this theory does not cover all type of surfaces; some 

materials are machined in such a way that their surface presents highly asymmetric asperities 

such as grooves. [26][26],[27][27] 

Recently, Prokopovich and Perni have developed a series of adhesion models 

[19][19],[5][5],[28][28] where, progressively, limiting assumptions were removed. In this 

paper, a new multi-asperity adhesion model, based on the elliptical JKR model for a single 

asperity, is presented and applied to the contact between a soft tissue (urethra tissue) and a 

PVC (polyvinylchloride) material. The elliptical JKR theory, removes the assumption that the 

asperities are, even mildly, hemispherically tipped; therefore, it is appropriate for surfaces 

that show a very high level of asymmetry of the radii of curvature for their asperities. In this 

work, the adhesion forces between the surface of urethra (here used a model surface for 

materials presenting surfaces with non-hemispherically tipped asperities) and PVC was 

modelled, taking into account the effects of a large number of asperities on the surfaces. 

Surface energy, elastic moduli and surface asperity properties (height and radii of curvature) 
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were determined for urethra tissue. These predictions  were successfully compared with 

experimental data.  

 

3. Theory  

3.1. Adhesive contact for an asperity with different radii of curvature (elliptical JKR 

model) 

Johnson and Greenwood [29][29] presented the solution of the JKR model for the contact 

between an asperity, with two different radii of curvature in orthogonal directions (Rmax and 

Rmin), and a perfectly flat surface. However, their solution starts from the preliminary 

knowledge of the ratio between the two semi-axes of the ellipse of contact (b/a). The 

individual values for the semi-axes of the ellipse of contact and the contact pressure can be 

calculated from this asperity deformation data. Furthermore, unlike the Hertz theory, Rmax / 

Rmin does not determine b/a univocally as the shape of the ellipse of contact varies with 

asperity deformation. 

The following parameters are used to characterise the asperity and the contact area: 

λ = √RminRmax                  Re = √RmaxRmin                    e2 = 1- (ba)2
 (1) 

The complete elliptical integrals, of first and second kind, K(e) and E(e) are estimated and the 

coefficients of the following matrix are calculated, then the corresponding system can be 

solved: 

[C(e) + D(e) - (ba)2 C(e)
-C(e) B(e) + (ba)2 C(e)] [α'β'] = [ λ1 λ⁄ ]  (2) 

Where: 

 e
2
D(e) = K(e) - E(e)             B(e) = K(e) - D(e)         e

2
C(e) = D(e) - B(e)     

Formatted: English (U.K.)
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The semi-axes of the ellipse of contact are calculated, once the unit-less coefficients ’ and 

’ have been estimated, (until this stage has been completed, only the ratio between the two 

semi-axes is known) as: 

𝑎3 2⁄ = 2𝑅𝑒√2Δ𝛾𝜋𝐸 (𝑏𝑎)1 2⁄ (1−(𝑏𝑎)1 2⁄ )
𝛽′(𝑏𝑎)2−𝛼′                (3) 

And subsequently: 

 𝑏 =  𝑎 (𝑏𝑎)      ⇒     𝑏(𝑒) (4) 

The contact pressure in the centre of the ellipse is: 

𝑃0 = 𝐸𝑎22𝑏𝑅𝑒 𝛼′−𝛽′(𝑏𝑎)5 2⁄
1−(𝑏𝑎)1 2⁄  (5) 

The asperity deformation determined as: 𝛿 =  (𝑏𝐸) [2𝑃0𝑲(𝑒) − 𝛼′𝐸2𝑏𝑅𝑒 𝑎2𝑩(𝑒) − 𝛽′𝐸2𝑏𝑅𝑒 𝑏2𝑩(𝑒)]      ⇒     𝑏(𝛿) (6) 

In our model, the deformation  is known instead of the ratio b/a as in the original 

formulation of the elliptic JKR model for one asperity. Therefore, an iterating process was 

adopted. For a known deformation, , the ratio b/a is assumed and the system in Equ. 2 is 

solved. A value of b, denoted b(e), is obtained from the solutions ’ and ’ and Equ. 3 and 4. 

Then, using the known value of the deformation  and Equ. 6, another value of b is obtained, 

this is denoted b(). The values of b(e) and  b() are compared and, if the difference is greater 

than a set accepted error, a new ratio b/a is assumed and the process repeated until 

convergence. The algorithm used is shown in Figure 1Figure 1. The error between the two 

calculated values of b() and b(e) was set to be less than 1%. 

Finally, the area of contact calculated: 

Acont =  πab  (7) 
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And the applied load is calculated according to the following equation: 

W = 2πab [P0- 13 (αa2 + βb2)] (8) 

3.2. Adhesive contact between surfaces (multi-asperity adhesion model) 

The proposed model, which estimates the contact force between one perfectly flat surface and 

one which presents non-hemispherical asperities, is presented in Figure 2Figure 2. In our 

case, the PVC is assumed to be flat and the urethra is assumed to be rough, as the roughness 

of PVC material is significantly lower than that of the urethra. The first stage of this process 

is the generation of a set of asperities (10,000) with varying heights and curvature radii, using 

the Monte Carlo method and experimentally obtained distributions of these parameters. 

The second stage of the simulation is the calculation of the total contact force Fadh as a 

function of the separation distance (d) using the elliptical JKR model for a single asperity. 

The overall contact force (Fadh(d)) is calculated as the sum of all individual contact forces, 

generated by the asperities whose heights (hi) exceed d or are within a critical distance c,i. 

[19][19],[5][5],[28][28],[30][30]:  

   



ici

i
iiiadh RRfndF

,

min,max, ,,



    (9) 

Where:  

dhii   (10) 

 
iii RRfn min,max, ,, is the adhesion force for asperity i with curvature radii Rmax,i and Rmin,i 

and deformation i based on the elliptical JKR model for a single asperity and obtained as 

described above. The critical deformation of a non-hemispherically tipped asperity was 

calculated from the definition for the original JKR theory [29][29] and taking into account its 

dependence on Rmax / Rmin (Figure A1): 
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δc,i = Kc(Rei) [3* (32)-2 3⁄ (9πRei2∆γ4E )2 3⁄
Rei ] (11) 

 

Kc was calculated from fitting the simulated data (Figure A2) as: (1 − 𝐾𝑐) = 0.0437𝑥2 + 0.0827𝑥 (12) 

where x = log10(Rmax / Rmin) 

 

Finally the calculated adhesion force was divided by the area correspondent to the number of 

asperities simulated to obtained the adhesion pressure. Simulations were repeated with 50 

times independent sets of asperities to evaluate the distribution of the adhesion forces 

predicted. 

4. Materials and Methods 

4.1. Materials 

The urethra tissues of commercial male pigs were obtained from a local abattoir. The samples 

were placed in PBS solution and stored at 4 °C during transport. Immediately after arrival in 

the laboratory, urethra tissue was carefully dissected and subsequently analysed without 

delay.  

Rüsch Simplastic PVC material  (Rüsch UK Ltd., UK) were used in this study. 

4.2. Contact angle measurements and Surface energy determination  

Pieces of urethra, approximately 1x1 cm, were cut, placed on a microscope glass-slide and 

left to dry at 37 °C until the contact angle of water was constant (about 30 minutes). Three 

probe liquids of different polarities were used: distilled water, ethylene glycol and 

hexadecane (Sigma Aldrich, UK). Images of a liquid drop of 5 l volume, deposited on the 

urethra surface, were taken immediately after deposition. Contact angles, at both the right and 

http://www.latexallergy.ndo.co.uk/Urinary_Drainage/Latex-free_project_142.jpg
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the left side, were measured using ImageJ software (National Institutes of Health, USA 

http://rsbweb.nih.gov/ij/). Contact angles, obtained from 10 individual urethra samples, were 

calculated for each liquid. This was performed on samples taken from three different animal 

specimens. 

The surface energy of a material (TOT
) comprises of four components: the apolar 

contribution associated with Lifshitz-Van der Waals interactions (LW
) and the acid-base 

component of surface free energy (AB
). The acid-base term is further expressed in term of 

the electron-donor (-) and electron-acceptor (+) parameters. 

  2AB

 
(13) 

The relationship between the contact angle of a liquid on a surface and the surface energy 

components of both the surface and the liquid is: [32][32] 

1)(2cos  
LSLS

LW

L

LW

STOT

L

S

L 


  (14) 

The determination of the contact angles of three liquids of known properties and the solution 

of the system is usually employed to estimate the surface energy parameter of a material. 

When  Equ. 14 is written for all the three liquids a system containing the three variables 

(surface properties of the materials) is obtained and the remaining four quantities for each 

liquid are known. 

4.3. Surface topography  

Urethra tissue surface coordinates were obtained using a Talysurf CLI 2000 scanner on an 

area with a size of 50 x 50 µm and at 50 µm/sec scan speed. The spacing along the x axis and 

y axis was equal to 0.5 µm. Three independent samples were scanned. Asperities were 

located setting the conditions proposed by [19][19]. This is expressed mathematically as:  

jinmandiiiiinmnmzjizasperitiesjiz ,,      2,1,,1,2    and             with),(),(),( 
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After the asperities were located, their heights were determined against a reference plane set 

as the average of all surface coordinates. The asperity height cumulative distribution was 

determined and fitted to the Gaussian model. The density of asperities was determined by 

calculating the number of observed asperities in the scanned area. 

The principal asperity curvature radii (Rmax and Rmin) were determined by fitting the 25 

coordinates of the points bordering the asperity with the following parabolid equation using 

the minimal residual squares approach (Figure 3Figure 3): 

GFxyDyCxByx Az
2  2

 (15) 

The eigenvalues (k1 and k2) of the corresponding Hessian matrix were calculated as: 

        22

2

22

1 BA BA            BA BA  FkFk   (16a,b) 

And Rmax = 
),min(

1

21 kk
  and  Rmin =

),max(

1

21 kk
  (17a,b) 

The cumulative distributions for asperity curvature radii were obtained and fitted with both 

the Gaussian (Equ. 18) and Weibull model (Equ. 19).  











 


R

dR 



 2

2

2

)(
exp

2

1
)(

 

(18) 

p
R

R 








exp1)(  (19) 

The direction of the principal radii of curvature could be determined as the eigenvectors of 

the Hessian matrix of Equ. 15. 

4.4. Stress-strain analysis  

The Young’s modulus of the urethra samples was determined by performing uniaxial stress-

strain analysis in orthogonal directions with an Instron 3366 (10 kN capacity) using the 

mechanical wedge action grips. Samples were prepared as described above. Sections 1 x 6 
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mm thick, were stretched at a speed of 35 mm/min, from an initial distance between the grips 

of 30 mm; 5 individual specimens were analysed. 

4.5. Experimental measurement of adhesion force 

The adhesion force between urethra and PVC was measured employing a texture analyser 

(TA.XT plus and a load cell equal to 30 kg) using the tensile grips (A/TG); the protocol was 

previously described. [33][33]  Adhesion force has been determined as the maximum 

detachment force from the force-elongation curve. At least six replicates were obtained to 

determine the average adhesion force presented here for each case.  

4.6. Data fitting  

Experimentally obtained cumulative distributions of asperity height and curvature radii were 

fitted with both Gaussian and Weibull distributions. The fitting parameters were determined 

using SigmaPlot (ver. 12.0) and Residual Sum of Squares (RSS) were estimated and used to 

assess the order of “best fit” of the model. 

 

5. Results  

5.1. Surface properties of urethra 

Total surface energy of urethra is predominantly due to the van der Waals contribution (LW
). 

Water (57.0 °±2.8) has the highest contact angle, whilst hexadecane has the lowest contact 

angle of the three liquids studied (Table 1Table 1).  

The cumulative distribution of the asperity height and the fitting with a Gaussian model are 

shown in Figure 4Figure 4. It is evident, that this statistical distribution describes the 

experimental data well. Urethra tissue had 6.24·10
10

 asperities per m
2 

with an average height 

of 4.37 m and a standard deviation of 3.32 m (Table A1). The actual value of asperity 

height is due to the choice of the reference plane. A negative value for this parameters means 

Formatted: English (U.K.)
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that the asperity top is below the average of all the surface coordinates (the choice as 

reference plane in this work). The condition set to identify asperity on the surface using 25 

points instead of the simpler 9 point was made because of the fitting of the asperity surface 

with a paraboloid containing 6 coefficients would not have been carried out on a sufficient 

number of experimental data. The high density of points on the surface was used to 

compensate the possible risk of missing actual asperities. 

The assumption that asperity tips are perfectly hemispherical was tested in Figure 5Figure 5, 

where the frequency of the ratio between the two radii is presented. The highest occurrence 

was at a ratio of around 18 and some asperities had a ratio Rmax/Rmin greater than 100. This 

illustrates that the asperities are far from being hemispherical and the elliptical approximation 

of asperity shape is the most suitable for modelling the adhesion of urethra. No correlation 

was found between Rmax and Rmin (coefficient of correlation = 0.13); additionally, both 

principal radii of curvature were independent from the asperity height  as the coefficient of 

correlations were 0.20 for Rmax and 0.07 for Rmin respectively (Figure A4 and A5).  

This was also evident in the 3D image of the surface of urethra (Figure A2) that clearly 

revealed how asperities on the surface were stretched along one axis and aligned in a pattern 

resulting in grooves. Histological images of urethra appeared to reveal the same type of 

surface structure. [34][34]  

The cumulative distribution of radii of curvature of the asperities, along with their respective 

fitting parameters for both Gaussian and Weibull models, are presented in Figure 6Figure 6. 

Both Rmax and Rmin were not well represented by a Gaussian model, being better described by 

the Weibull distribution. This was also confirmed by the value of the Residual Sum of 

Squares (RSS) which was almost an order of magnitude lower in case of the Weibull model 

than the Gaussian model for both the Rmax and the Rmin (Table A2). 
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The values of Young moduli in orthogonal directions (107 ± 14 and 82 ± 12 KPa) are not 

identical but similar demonstrating a small degree of anisotropy of the urethra tissue.  

5.2. Estimation of contact force and real area of contact 

The surface and material properties of PVC, used in the model presented here, were taken 

from Prokopovich and Perni [5][5], where such properties, were measured on the same type 

of PVC material.  

An example of the predicted profile of the contact force against the separation distance is 

presented in Figure 7Figure 7a. The contact force between two contacting materials decrease 

to a minimum (referred to as “adhesive force”) with increasing relative separation from an 

initial very close proximity; when the separation distance is increased further the contact 

force increases monotonically to zero when the two surfaces are far apart. 

[19][19],[5][5],[28][28] Negative values of contact force mean attraction and positive values 

mean that a force has to be applied. The profile obtained here, and shown in Figure 7Figure 

7a, was consistent with those found in many other works. [19][19],[5][5],[28][28],[35][35] 

The corresponding relationship between contact force and real area of contact is reported in 

Figure 7Figure 7b and shows a monotonic increase in contact area with increasing applied 

load, however this relation is not linear, particularly at small values of applied loads. 

The distribution of the adhesive force predicted from independent sets of asperities is shown 

in Figure 8Figure 8, the average value was 74 ± 14 N/m
2
; this was very close with the results 

of the experimental measurements of adhesive pressure between urethra and PVC that were 

65 ± 9 N/m
2
. 

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.), Check
spelling and grammar



 15 

5.3. Comparison between the elliptical JKR model and the simplified adhesion model, 

using geometrical average of radii of curvature 

Simulations were carried out with simplification of the geometrical average of the curvature 

radii and shown in Figure 7Figure 7, to determine how the predictions, using the new 

proposed model, compare to those that utilises such approximation.[25][25] Both the profiles 

for contact force and the real area of contact follow the same pattern. However, importantly, 

the values are different from those obtained with the new model based on the elliptical JKR 

theory; the adhesion forces are predicted to be 330 N/m
2
 instead of 74 N/m

2
.  

The elliptical JKR theory for a single asperity, predicts that, as the deformations increase, the 

profiles for contact area tends to the Hertzian shape. Therefore, the discrepancy between the 

use of a multi-asperity adhesion model, based on hemispherically tipped asperities, and the 

one presented in this work, which is not restricted to such a condition, increases at high 

values of deformation. 

 

6. Discussion 

The tissue structure of urethra is characterised by the presence of transitional epithelium 

(urethelium), and one of the main functions of this tissue is to act as barrier between urine 

and the rest of the body. Another function is the ability to stretch in order to cope with 

contraction and dilatation cycles. This feature is achieved through the high concentration of 

connective tissue, such as collagen. [36][36] Vena cava is also rich in collagen [37] and, 

therefore, the similarity of contact angles, and consequent surface energy parameters, 

between urethra and vena cava can be attributed to the high presence of collagen in both 

tissues. [5][5] However, for urethra, the contact angle of water is equal to 57° (Table 1Table 

1) which is lower than the contact angle of water on aorta tissue (88°). Moreover, a Gaussian 
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distribution of asperity heights was obtained also for other biological tissues, such as: aorta 

and vena cava. [5][5] 

Anisotropy of native tissues varies, depending on locations and pathological conditions. 

[38][38] Recently, several researchers studied anisotropic properties of biological tissues, 

using different methods, such as stress-strain analysis [39][39] and nanoindentation. [40][40] 

Korossis et al. [39][39] reported a major regional and directional anisotropy in the quasi-

static, uniaxial mechanical properties of the passive urinary bladder. Lillie et al. [41][41] 

studied uniaxial and biaxial mechanical properties of purified elastic tissue from the proximal 

thoracic aorta to understand physiological load distributions within the arterial wall. Sokolis 

[42][42] observed topographical variations and anisotropy in material parameters of porcine 

tissues (arteries) followed by relevant variations in histomorphometrical results. For the 

simulation a single value of Young modulus (the average of the two) was used because the 

two are very close. It has been shown that anisotropic mechanical properties determine a 

directional effect of the force of adhesion only when the values of elasticity in the principal 

directions differ for at least a few orders of magnitude. [43][43]In the current model, the two 

principal radii of curvatures are independently simulated, furthermore, they were not 

correlated as analysis of these characteristics were found not be linked. However, it is 

possible to alter this part of the simulation, when this hypothesis is not found to be true, 

through using the generated asperity height to generate both principal radii of curvature. 

In general, multiasperity adhesion models assume that asperities are symmetrical and, 

therefore, each asperity is described by its own single value of radius of curvature. 

[5][5],[17][17],[19][19],[28][28]. Greenwood’s [25][25] proposal of using models which 

assume perfectly hemispherical asperities with a radius of curvature equivalent to the 

geometrical average of Rmax and Rmin, is valid only if the ratio between the two is no more 

than about 10. [25][25] In urethra case, this is not possible as the ratio between radii is greater 
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than 10. This is also shown by the different results obtained when this assumption was 

implemented instead of the full elliptical JKR model (Figure 7Figure 7). This confirms the 

need for a new model to be adopted; moreover, the almost-disappearance of the nose of the 

area of contact curve using the full ellipsoidal model could be attributed to the lower forces 

estimated at corresponding deformation than using the simplified geometrical average. The 

lower forces are a consequence of the shorter critical distance, resulting in asperity stretching, 

when the elliptical model is employed compared to the geometrical average approximation.  

Numerous studies have reported that the adhesion force between two surfaces is not a single 

value but is described by a distribution of values as also found in this work. 

[19][19],[45][45],[46][46] This has been attributed to the fact that the properties of the 

asperities in the contact area (heights and curvature radii) can vary from one point on the 

surface to another, particularly, when the adhesion occurs between small contact areas (in the 

order of m
2
) containing a few asperities. The resulting adhesion force had different values as 

a consequence, this phenomenon was taken into account in our model through repeating the 

simulation with numerous sets of independently generated asperities. The real area of contact 

increases monotonically from zero with a typical profile. [28][28],[47][47] It can not be 

assumed to be linear along the full range of contact force, but only in restricted intervals and 

at high values of contact force.  

The assumption that contact is only between a few independent asperity is a simplification 

valid for small applied loads, when these are high the contact will involve not only asperities 

and therefore other approaches are needed. The model proposed here, can be applied to the 

contact of materials with asperities which present the highest degree of asymmetry and when 

the adhesive contribution to the contact force can not be neglected as long as the material 

does not present a great level of mechanical anisotropy. This situation seems to match very 

closely the contact involving not only biological tissues, but also materials presenting 

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)

Formatted: English (U.K.)



 18 

grooves on the surfaces, consequence of machining processes such as: turning and milling. 

[48][48] Recently, also the surface of spinal discs utilised in Total Disc Replacement 

operation have been shown to display a surface characterised by spiral grooves originating 

from the top of disc dome. [49][49] Furthermore, the use of the normal distribution to 

describe the asperity heights was a consequence of the experimental data obtained as the use 

of the Weibull theory for the curvature radii.. As the Monte Carlo method is employed in 

order to generate the set of asperities used in the calculation, any other statistical distribution 

can be implemented, if found to better describe either asperity heights or curvature radii. 

[50][50]-[54][54] 

 

7. Conclusion 

The JKR model, for the elliptical contact of a single not hemispherical asperity, has been 

employed and integrated into a new multi-asperity adhesion model. This model is capable of 

predicting the profile of the contact force and real area of contact between two materials. It 

has been used to predict the adhesion between urethra (a model for surfaces with not axial-

symmetric asperities) and PVC material. In order to do this, asperity height and curvature 

radii distributions, along with surface energy of urethra, were measured and presented for the 

first time. 

The model proposed here can be applied to any material that presents non-symmetrical 

asperities, not just urethra. For example, some machining processes can result in grooves 

present on surfaces. Such features cannot be assumed to be perfectly hemispherical. 

Therefore, such contact can only be fully described with the model proposed here. 
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Table 1.  Contact angles (°) ± S.D. of water (w), ethylene glycol (et), hexadecane (h) and 

surface energy parameters of urethra 

w  et
 h  

LW

S  

(mJ/m
2
) 


S  

(mJ/m
2
) 


S  

(mJ/m
2
) 

AB

S  

(mJ/m
2
) 

TOT

S  

(mJ/m
2
) 

57.0± 2.8 49.4 ± 4.0 15.7 ± 1.3 25.39 0.71 29.27 9.12 34.51 
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Figure captions 

Figure 1Figure 1. Algorithm for the determination of the adhesive force between surfaces 

based on the multiasperity JKR. 

 

Figure 2Figure 2. Scheme of the multiasperity adhesion model. 

 

Figure 3Figure 3. (a) 3D example of paraboidal fitting of an asperity and (b) 2D projection 

with the principal directions. 

 

Figure 4Figure 4. Asperity height cumulative distribution of urethra. 

       ●    data                       Normal distribution fitting 

 

Figure 5Figure 5. Frequency of ratio between Rmax and Rmin for asperities of urethra. 

 

Figure 6Figure 6. Cumulative distribution of radii of curvature Rmax (a) and Rmin (b) of 

urethra. 

  ●  data                        Normal distribution fitting                    Weibull distribution fitting 

 

Figure 7Figure 7. Simulated profile of contact pressure (a) and area of contact (b) between 

urethra and PVC. 
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               Elliptical model presented here                 Approximation using geometrical average 

of principal radii of curvature 

 

Figure 8Figure 8. Cumulative distribution of the simulated adhesive pressure. 
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