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Objectives: Although CD8þ T cells play a critical role in the control of HIV-1 infection,
their antiviral efficacy can be limited by antigenic variation and immune exhaustion.
The latter phenomenon is characterized by the upregulation of multiple inhibitory
receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation
gene-3 (LAG-3), which modulate the functional capabilities of CD8þ T cells.

Design and methods: Here, we used an array of different human leukocyte antigen
(HLA)-B�15 : 03 and HLA-B�42 : 01 tetramers to characterize inhibitory receptor
expression as a function of differentiation on HIV-1-specific CD8þ T-cell populations
(n¼128) spanning 11 different epitope targets.

Results: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across
epitope specificities both within and between individuals. Differential expression of
PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8þ T-cell
populations was also apparent, independent of clonal dominance hierarchies. Positive
correlations were detected between PD-1 expression and plasma viral load, which were
reinforced by stratification for epitope sequence stability and dictated by effector
memory CD8þ T cells.

Conclusion: Collectively, these data suggest that PD-1 expression on HIV-1-specific
CD8þ T cells tracks antigen load at the level of epitope specificity and TCR clonotype
usage. These findings are important because they provide evidence that PD-1
expression levels are influenced by peptide/HLA class I antigen exposure.
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Introduction

Persistent viral infections necessitate lifelong host immu-
nity. In this setting, efficacy is mediated predominantly by
CD8þ T cells, which recognize virus-derived peptide
epitopespresentedon the surfaceof infected cells byhuman
leukocyte antigen (HLA) class I molecules. Polymorphisms
within the HLA class I locus contribute significantly to
diseaseoutcome in many such infections, including HIV-1,
most likely via effects that intertwine with the qualityof the
cognate CD8þ T-cell response [1–3].

In addition to the requirement for durable protection and
surveillance, there is a concomitant need to limit the
pathology associated with continuous immune activation
in the face of viral persistence [4]. The systematic
upregulation of multiple inhibitory receptors on the
surface of antigen-specific CD8þ T cells provides one
such mechanism, which operates via the delivery of
negative signals at various stages of the cellular
differentiation programme [5,6]. This process is inti-
mately linked with the phenomenon of ‘exhaustion,’
whereby effector T-cell functions are progressively lost
according to a predictable hierarchy [7]. A finely tuned
balance between the differentiation-linked acquisition
and inhibitory receptor-mediated modulation of func-
tional competence must therefore be achieved, either
within a specialized phenotype [8] or within the
heterogeneous pool of memory CD8þ T cells, to ensure
an optimal outcome for the host.

Programmed death-1 (PD-1), a member of the CD28/
CTLA-4 family, represents the prototype inhibitory
receptor. The importance of PD-1 with respect to CD8þ

T-cell exhaustion was first realized in the lymphocytic
choriomeningitis virus (LCMV) model with the demon-
stration that antibody-mediated blockade reversed
effector dysfunction and enhanced viral control [9].
Subsequent studies confirmed the human disease
relevance of these findings, describing profound PD-1
upregulation on CD8þ T-cell populations specific for
hepatitis C virus (HCV) [10,11], hepatitis B virus (HBV)
[12,13] and HIV-1 [14–17]. In the latter case, PD-1
expression levels correlated with disease progression [14]
and were shown to be reduced by either viral escape or
treatment-induced suppression of antigen exposure.
These observations strongly suggest that antigen-specific
stimulation via the T-cell receptor (TCR) plays an
important role in the regulation of PD-1 expression
[14,16,18]. Moreover, treatment of simian immunode-
ficiency virus (SIV)-infected macaques with PD-1-
blocking antibodies enhanced CD8þ T-cell immunity
and prolonged survival [19].

Recently, it has been shown that PD-1 inhibits CD8þ

T-cell function via upregulation of the basic leucine
zipper transcription factor (BATF) [20]. It is also clear that
other inhibitory receptors contribute to the functional
pyright © Lippincott Williams & Wilkins. Unautho
impairment of CD8þ T cells in the setting of persistent
viral infections, including CD160, CD244, lymphocyte
activation gene-3 (LAG-3) and T-cell immunoglobulin
and mucin domain-3 (Tim-3) [21–26]. Although these
molecules offer novel opportunities for therapeutic
intervention, a detailed understanding of the correspond-
ing immunobiology will likely be required to inform
rational progress in the clinic. In this light, it is established
that inhibitory receptor expression profiles are tightly
regulated at the transcriptional level [5,6]. Beyond a
requirement for antigen exposure per se, however, the
environmental cues associated with these transcriptional
programmes remain less well defined.

In this study, we set out to determine the factors that govern
inhibitory receptor expression on HIV-1-specific CD8þ

T cells during the chronic phase of infection. Our analysis
was restricted to two HLA class I molecules, HLA-
B�15 : 03 and HLA-B�42 : 01, both of which occur at high
frequencies in sub-Saharan Africa and present multiple
different HIV-1-derived epitopes. This experimental
design enabled controlled comparisons across epitope
specificities within and between individuals. The import-
ance of our approach is highlighted by observations of
epitope-linked differences in HIV-1-specific CD8þ T-cell
efficacy [1,27–30], which can further segregate at the level
of individual TCR clonotypes [31,32].
Methods

Subjects
Individuals expressing either HLA-B�15 : 03 (n¼ 15) or
HLA-B�42 : 01 (n¼ 17) were selected from a total cohort
of 237 antiretroviral treatment-naı̈ve participants with
chronic HIV-1 infection [33,34]. The only additional
criterion for selection was the availability of cryopreserved
peripheral blood samples. All 32 participants were infected
with HIV-1 clade C and harbored virus-specific CD8þ

T-cell responses characterized previously by comprehen-
sive interferon (IFN)g ELISpot screening [28]. For
the purposes of this study, 11 different CD8þ T-cell
specificities were considered for detailed evaluation
(Table S1, http://links.lww.com/QAD/A536). Informed
consent was obtained from all participating individuals,
and institutional review boards at the University of Oxford
approved the study (E028/99). The use of material from
human participants was conducted in accordance with the
guidelines of the World Medical Association’s Declaration
of Helsinki (59th General Assembly).

Human leukocyte antigen class I genotyping and
viral load determination
Four-digit genotyping of HLA-A, HLA-B and HLA-C
alleles was performed using Dynal REALTIME reverse
sequence-specific oligonucleotide kits as described
previously [28]. Viral loads were determined using the
rized reproduction of this article is prohibited.
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Roche Amplicor assay (version 1.5; Roche Molecular
Diagnostics).

Human leukocyte antigen class I tetramers
Biotinylated HLA-B�42 : 01 monomers were generated
according to standard protocols [35]. Tetramerization was
performed by conjugation to extravidin-R-phycoerythrin
(Sigma-Aldrich, St Louis, Missouri, USA). Tetrameric
HLA-B�15 : 03 complexes were generated as described
previously [36]. The peptides used for HLA class I tetramer
generation are shown in Table S1, http://links.lww.com/
QAD/A536.

Flow cytometry
A total of 128 HIV-1-specific CD8þ T-cell populations
were studied. Frozen peripheral blood mononuclear cells
(PBMCs) were thawed into Roswell Park Memorial
Institute (RPMI) medium containing 20% fetal calf
serum, rested for 1 h at 378C in a 5% CO2 atmosphere,
stained with the appropriate HLA class I tetramer for
30 min at room temperature, washed and then surface-
stained with an anchor panel of monoclonal antibodies
(mAbs) comprising aCD3 PacificOrange, aCD8
QD605, aCD14 PacificBlue and aCD19 PacificBlue
(Life Technologies, Invitrogen). Dead cells were excluded
from the analysis using LIVE/DEAD Fixable Violet
(Life Technologies). Two distinct phenotypic panels
were used for HLA-B�15 : 03-restricted and HLA-
B�42 : 01-restricted responses, respectively: aCD45RA
AlexaFluor700 (BD Biosciences, San Jose, California,
USA), aCD57 FITC (BD Biosciences), aCD127
PE-Cy5 (eBioscience, San Diego, California, USA),
aCCR7 PE-Cy7 (BD Biosciences) and aPD-1 APC
(eBioscience); aCD45RA AlexaFluor700 (BD Bios-
ciences), aCCR7 PE-Cy7 (BD Biosciences), aCD244
PE-Cy5 (BioLegend, San Diego, California, USA),
aLAG-3 FITC (R&D Systems, Minneapolis, Minnesota,
USA) and aPD-1 APC (eBioscience). In a subset
of HLA-B�42 : 01þ individuals, HIV-1-specific CD8þ

T-cell populations were stained with PE-conjugated
tetramers as described above, then surface-stained with
aCD3 PacificOrange (Life Technologies), aCD8 V450
(BD Biosciences), aCD45RA AlexaFluor700 (BD
Biosciences), aCCR7 PE-Cy7 (BD Biosciences),
aCD244 PE-Cy5 (BioLegend), aPD-1 APC
(eBioscience) and aTCRVb mAbs conjugated to FITC
(Beckman Coulter Inc, Miami, Florida, USA). Dead cells
were excluded in the near-red spectrum (Life Technol-
ogies). In all cases, cells were stained with pretitrated
mAbs for 30 min at room temperature, washed in PBS
and fixed in 2% paraformaldehyde. Data were acquired
within 12 h using an LSR II flow cytometer (BD
Biosciences) and analyzed with FlowJo software version
8.8.6 (TreeStar Inc, Ashland, Oregon, USA), PESTLE
version 1.6.2 and SPICE version 4.3 (Mario Roederer,
National Institutes of Health, USA). Cells were
hierarchically gated on singlets, lymphocytes and live
CD3þ cells prior to Boolean analysis of tetramer-positive
Copyright © Lippincott Williams & Wilkins. Unaut
and tetramer-negative CD8þ cells, and further down-
stream gating on phenotypic markers as indicated.
Median fluorescence intensity (MFI) values were
calculated using FlowJo software version 8.8.6 (TreeStar
Inc). All samples were run simultaneously to reduce assay
variability. Fluorescence minus one (FMO) controls were
used to set gates for markers with nondiscrete
expression profiles.

Analysis of T-cell receptor usage
Viable CD3þCD8þ HLA-B�42 : 01 tetramer-positive
cells were sorted at more than 98% purity using a
modified FACSAria II flow cytometer (BD Biosciences)
directly into 1.5-ml microfuge tubes (Sarstedt) containing
100 ml of RNAlater (Life Technologies). Molecular
analysis of all expressed TRB gene rearrangements was
subsequently conducted using an unbiased template-
switch anchored reverse transcription PCR as described
previously [37–39]. The international ImMunoGe-
neTics (IMGT) nomenclature is used throughout this
manuscript [40].

Quantification of functional sensitivity (EC50)
The peptide concentration required to elicit 50% of the
maximum response magnitude [EC50 (mg/ml)] was
determined by IFNg ELISpot analysis [28]. Optimal
peptides were used as stimulants and titrated across a
concentration gradient of eight logs in 10-fold serial
dilutions.

Autologous proviral DNA sequencing
Genomic DNA was extracted from PBMCs and amplified
by nested PCR using previously published primers [41,42].
The resultant PCR products were purified as described
previously [43]. Sequencing was performed using the
Big Dye Terminator v3.1 Cycle Sequencing Kit (Life
Technologies) [44,45].

Statistical analysis
The Mann–Whitney U test was used to compare median
values with respect to the expression of phenotypic
markers on bulk and tetramer-positive CD8þ T cells,
both in terms of cell percentages and fluorescence
intensities. The Holm–Sidak analysis of variance test was
used for multiple comparisons across responses with
respect to both parent gate percentage and MFI values.
The Wilcoxon signed-rank test was used to compare
median values with respect to differences between CD8þ

T-cell memory populations. The Spearman rank test
was used to determine correlations between cell
percentages with respect to the parent gate and MFI
values. Analyses were conducted using GraphPad Prism
version 6.0 (GraphPad Software, La Jolla, California,
USA). The Student t test was used to calculate differences
between CD8þ T-cell populations specific for FL9-Vpr
and other HIV-1-derived epitopes as determined by
Boolean gating (SPICE version 4.3).
horized reproduction of this article is prohibited.
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Results

Increased programmed death-1 and CD244
expression on HIV-1-specific CD8R T cells
To investigate the expression of exhaustion markers on
HIV-1-specific CD8þ T cells across multiple epitope
targets with identical restriction elements, we used four
HLA-B�15 : 03 and seven HLA-B�42 : 01 tetramers
(Table S1, http://links.lww.com/QAD/A536) to stain
PBMC samples directly ex vivo from individuals with
chronic untreated HIV-1 clade C infection (n¼ 15 and
n¼ 17, respectively). Surface expression of the differen-
tiation marker CD57 and three inhibitory markers (PD-1,
CD244 and LAG-3), previously shown to be upregulated
during chronic viral infections [21,24,25], was deter-
mined by polychromatic flow cytometry. The vast
majority of HIV-1-specific CD8þ T cells were found
pyright © Lippincott Williams & Wilkins. Unautho

(a)

(b)

Bulk CD8 Tet CD8
0

200

400

600

800
 P < 0.0001

P
D

-1
M

ed
ia

n 
flu

or
es

ce
nc

e 
in

te
ns

ity

Bulk CD8
0

200

400

600

800 P

C
D

57
M

ed
ia

n 
flu

or
es

ce
nc

e 
in

te
ns

ity

0.9

47.0

CD8 PD-1 CD57

T
et

ra
m

er

C
el

ls

C
el

ls

B*15:03 VF9-p24

Bulk CD8 Tet CD8
0

1000

2000

3000
P <0.0001 

P
D

-1
M

ed
ia

n 
flu

or
es

ce
nc

e 
in

te
ns

ity

Bulk CD8
0

1000

2000

3000

P

C
D

24
4

M
ed

ia
n 

flu
or

es
ce

nc
e 

in
te

ns
ity

0.9

54.5

CD8 PD-1 CD244

T
et

ra
m

er

C
el

ls

C
el

ls

B*42:01 FL9-Vpr

Fig. 1. Increased programmed death-1 (PD-1) and CD244 ex
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(black lines) CD8þ T cells (top). Median fluorescence intensity v
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conducted using the Mann–Whitney U test.
to reside in the PD-1high, CD244high and CD57low

compartments (Fig. 1). Analysis of all HLA-B�15 :
03-restricted (n¼ 52) and HLA-B�42 : 01-restricted
(n¼ 76) HIV-1-specific CD8þ T-cell populations
revealed that both PD-1 and CD244 were upregulated
compared with tetramer-negative bulk CD8þ T cells
(P< 0.0001), whereas CD57 expression was decreased
(P¼ 0.0001) (Fig. 1a and b). No differences in LAG-3
expression were detected between HIV-1-specific and
bulk CD8þ T cells (Fig. 1b).

Differential epitope-linked expression of
programmed death-1 on HIV-1-specific
CD8R T cells
Previous studies have compared the expression of
negative regulatory molecules on HIV-1-specific
CD8þ T cells to other persistent viral specificities, such
rized reproduction of this article is prohibited.
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as cytomegalovirus and Epstein-Barr virus (EBV)
[25,38,46]. However, such comparisons ignore potential
differences related to the targeted viral proteins or
epitopes, even though fine specificity is linked to
disparate CD8þ T-cell-mediated outcomes in HIV-1
infection [2]. To seek evidence of differential epitope-
linked exhaustion, we first examined the expression of
PD-1, CD57 and CD127 on CD8þ T-cell populations
specific for distinct HIV-1-derived epitopes (n¼ 4)
restricted by HLA-B�15 : 03 (Table S1, http://
links.lww.com/QAD/A536). Substantial differences
were apparent across epitope specificities, most notably
Copyright © Lippincott Williams & Wilkins. Unaut
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Fig. 2. Differential epitope-linked expression of programmed dea
and CD127 expression on human leukocyte antigen (HLA)-B�15 :
FY10-Int tetramer-positive (red lines) CD8þ T cells (top), with c
(bottom). (b) Median fluorescence intensity values for PD-1, CD
B�15 : 03-restricted epitope-specific CD8þ T-cell populations and
lymphocyte activation gene-3 (LAG-3) expression on HLA-B�42 :
FL9-Vpr tetramer-positive (red lines) CD8þ T cells (top), with corresp
(d) Median fluorescence intensity values for PD-1, CD244 and LA
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Adjusted P values (P<0.05) for multiple comparisons in (b) and (d
test. Significant differences with respect to bulk CD8þ T cells are
with respect to PD-1 expression (Fig. 2a and b). In
particular, CD8þ T-cell populations specific for VF9-
p24, previously associated with effective immune control
of HIV-1 replication [28], expressed high levels of PD-1
and low levels of CD127. The converse applied to CD8þ

T-cell populations specific for FY10-Tat, which are not
associated with protection [28]. These epitope-specific
phenotypic differences were also apparent in terms of
percentage expression frequencies (Fig. S1a and c, http://
links.lww.com/QAD/A536). The expression of CD57
was more consistent across epitope specificities (Fig. 2a
and b, Fig S1b, http://links.lww.com/QAD/A536).
horized reproduction of this article is prohibited.
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Fig. 2. (Continued ).
Next, we studied an array of HIV-1-specific CD8þ T-cell
populations restricted by HLA-B�42 : 01, spanning seven
different epitopes derived from six different viral proteins
(Table S1, http://links.lww.com/QAD/A536). In these
experiments, we focused on the inhibitory markers PD-
1, CD244 and LAG-3. Again, PD-1 expression levels
differed markedly between epitope specificities (Fig. 2c
and d). The highest levels were found on CD8þ T cells
specific for FL9-Vpr (P< 0.01) (Fig. 2d, Fig S1d, http://
links.lww.com/QAD/A536). In comparison, expression
levels of CD244 and LAG-3 were more consistent across
epitope specificities (Fig. 2d, Fig S1e and f; http://
links.lww.com/QAD/A536). Boolean gating of all seven
pyright © Lippincott Williams & Wilkins. Unautho
different HLA-B�42 : 01-restricted CD8þ T-cell popu-
lations confirmed the dominant role of PD-1 within
the CD244high subsets in terms of percentage expression
frequency, especially with respect to the FL9-Vpr
specificity (Fig. 2e). Furthermore, tight correlations were
observed between MFI values and percentage expression
frequencies for all differentially expressed markers
(Fig S2a–d, http://links.lww.com/QAD/A536).

These findings demonstrate that significant epitope-
linked differences in PD-1 expression levels exist between
HIV-1-specific CD8þT-cell populations restricted by the
same HLA class I molecule. The lack of contemporaneous
rized reproduction of this article is prohibited.
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phenotypic differences related to CD244 and LAG-3
suggests that distinct mechanisms may be driving the
differential expression of these exhaustion markers.

A recent study found a positive correlation between TCR
avidity and PD-1 expression [47], thereby providing a
potential explanation for differential epitope-linked
phenotypes. To test this possibility, we examined the
functional sensitivity of HIV-1-specific CD8þ T-cell
responses in IFNg ELISpot assays conducted directly
ex vivo using sample-matched PBMCs (Fig S3a–d,
http://links.lww.com/QAD/A536). No correlations
were detected between PD-1 expression and functional
sensitivity for a total of 30 different CD8þ T-cell responses
spanning 10 different HIV-1-derived epitopes (Fig S3e,
http://links.lww.com/QAD/A536). Furthermore, there
was no correlation between PD-1 expression and response
magnitude (Fig S3f, http://links.lww.com/QAD/A536).

Programmed death-1 expression on HIV-1-
specific CD8R T cells is a measure of antigen
load
A previous study demonstrated that different epitope-
specific CD8þ T-cell populations in the same individual
expressed different levels of PD-1 [14]. However, the
basis for such disparities was not fully elucidated. To
pursue this line of investigation, we analyzed PD-1
expression at a given time point in an individual with
CD8þ T-cell responses directed against five different
epitopes derived from four different HIV-1 proteins
restricted by two different HLA-B molecules (Fig. 3a).
The PD-1high population varied from 86% (FL9-Vpr) to
37% (TL9-p24) of tetramer-positive CD8þ T cells. In
contrast, CD244 expression exceeded 96% for all five
CD8þ T-cell populations. Furthermore, we found
distinct patterns of PD-1 expression across different
HIV-1-derived epitope-specific CD8þ T-cell popu-
lations in participants with different levels of viremia
(Fig. 3b). These epitope-linked differences within and
between samples applied to each of 33 participants
analyzed in a similar manner (data not shown).

Next, we extended this analysis to the entire dataset
(Fig. 3c). A weak correlation with viral load was detected
for PD-1 expression levels across all HIV-1-specific
CD8þ T-cell populations (r¼ 0.21, P¼ 0.02). To dissect
this observation further, we stratified for viral escape
mutations by separating epitopes with high (>40%)
sequence variability (IY9-Int, FY10-Int, FY10-Tat,
RM9-p17, LI9-Int, IM9-Int, FL9-Vpr and HI10-Vif)
and low (<40%) sequence variability (VF9-p24, TL9-p24
and TL10-Nef) (Table S1, http://links.lww.com/QAD/
A536). Strikingly, we found a stronger positive corre-
lation between PD-1 expression and viral load for CD8þ

T-cell populations targeting less variable epitopes
(r¼ 0.37, P¼ 0.03). In contrast, no significant correlation
was observed either for CD8þ T-cell populations
targeting variable epitopes (r¼ 0.17, P¼ 0.13) or for
Copyright © Lippincott Williams & Wilkins. Unaut
bulk CD8þ T cells (r¼�0.56, P¼ 0.56). Collectively,
these data reveal a direct correlation between antigen load
and PD-1 expression, which is lost when the virus
generates escape mutations. This relationship suggests that
PD-1 expression at the cellular level is driven directly by
exposure to the cognate peptide/HLA complex.

Different T-cell receptor clonotypes within
individual HIV-1-specific CD8R T-cell
populations express different levels of
programmed death-1
To dissect inhibitory receptor expression patterns in more
detail, we examined the phenotypic profiles of individual
clonotypes within HIV-1-specific CD8þ T-cell popu-
lations. Initially, we determined the clonotypic compo-
sition of HLA-B�42 : 01 TL9-p24 tetramer-positive
CD8þ T cells in a single participant (Fig. 4a). The
corresponding aTCRVb mAbs were then used to
identify clonotypic subsets within the epitope-specific
CD8þ T-cell population, enabling their phenotypic
characterization by flow cytometry (Fig. 4b). Clear
interclonotypic differences were apparent with respect to
PD-1 expression; in contrast, no such differences were
detected for CD244 (Fig. 4c). Similar patterns were
observed for a further five HIV-1-specific CD8þ T-cell
populations targeting four distinct epitopes across five
different participants (Fig. 4d–f). However, there was no
correlation between clonotypic dominance and PD-1
expression (Fig. 4g) [47].

Programmed death-1 expression on HIV-1-
specific CD8R T cells is driven by the effector
memory population
It has been shown previously that PD-1 expression is
enriched within the effector memory population of HIV-
1-specific CD8þ T cells [46] and differentially expressed
with CD57 [48]. To investigate differentiation-linked
expression of PD-1 in our cohort, we pregated on PD-
1high and CD57high populations, then compared tetra-
mer-positive HIV-1-specific CD8þ T cells and tetramer-
negative bulk CD8þ T cells with respect to memory
phenotype (Fig. 5a). Both PD-1high and CD57high

populations were enriched in the TEM compartment
(Fig. 5b and c), and differentially expressed on TEM

(CCR7�/CD45RA�) and terminally differentiated
TEMRA (CCR7�/CD45RAþ) cells (Fig. 5d and e).
Furthermore, PD-1high CD8þ T cells across all HIV-
1-derived epitope specificities resided predominantly in
the effector memory (CCR7low/CD45RAlow) rather
than the TEMRA (CCR7low/CD45RAhigh) pool (Fig. 5f
and g), thereby supporting the hypothesis that PD-1
expression is driven by repetitive antigen exposure [49].
Discussion

In this study, we conducted a detailed analysis of
inhibitory receptor expression across a large number of
horized reproduction of this article is prohibited.
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Fig. 3. Programmed death-1 (PD-1) expression on HIV-1-specific CD8R T cells is a measure of antigen load. (a) PD-1 and CD244
expression on two different human leukocyte antigen (HLA)-B�15 : 03-restricted and three different HLA-B�42 : 01-restricted
HIV-1-derived epitope-specific CD8þ T-cell populations present in the same sample from a single participant (N080). Tetramer-
positive CD8þ T cells (red), gated as shown (top), are overlaid on bulk CD8þ cells (grey) in the cloud plots (middle). The pie charts
show the proportion of PD-1high (red) and PD-1low (green) tetramer-positive CD8þ T cells within each antigen-specific population
(bottom). Escape mutation residues in the corresponding cognate epitope sequences are underlined in bold. (b) Bars represent
percentage frequencies for PD-1 expression on HIV-1-specific CD8þ T cells targeting different epitopes in four participants with
different plasma viral loads. (c) Percentage frequencies for PD-1 expression on HIV-1-specific CD8þ T cells versus plasma viral
loads (RNA copies/ml plasma) stratified for all epitope-specific responses (top left), responses targeting epitopes with low sequence
variability (VF9-p24, TL9-p24 and TL10-Nef) (top right), and responses targeting epitopes with high sequence variability (IY9-Int,
FY10-Int, FY10-Tat, RM9-p17, LI9-Int, IM9-Int, FL9-Vpr and HI10-Vif) (bottom left). The same correlation is also shown for
tetramer-negative bulk CD8þ T cells (bottom right). Statistical values were calculated using the Spearman rank test.
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Fig. 3. (Continued ).
different HIV-1-derived epitope-specific CD8þ T-cell
populations restricted by either HLA-B�15 : 03 or HLA-
B�42 : 01 to inform our understanding of the processes
that regulate and potentially compromise antiviral
immune responses. Major differences were observed
for PD-1 expression levels across epitope specificities both
within and between individuals. Differential interclono-
typic expression of PD-1 was also apparent within
individual HIV-1-specific CD8þ T-cell populations.
Positive correlations were detected between PD-1
expression and plasma viral load, which were reinforced
by stratification for epitope sequence stability and dictated
by effector memory CD8þ T cells. Thus, PD-1
expression on HIV-1-specific CD8þ T cells is shaped
by epitope specificity as a function of differentiation and
driven by antigen load.

Our finding that PD-1 expression is increased on HIV-1-
specific CD8þ T cells confirms previous studies [14,16]
and concurs with similar observations in other persistent
viral infections, including LCMV [9] and SIV [50].
However, it is established that multiple inhibitory
receptors beyond PD-1 are involved in the negative
regulation of CD8þ T-cell immunity [21]. Accordingly,
we examined CD244 and LAG-3 expression in parallel.
Consistent with a recent study [25], CD244 expression
levels were increased on HIV-1-specific CD8þ T cells. In
contrast, we found no evidence for elevated LAG-
3 expression.
Copyright © Lippincott Williams & Wilkins. Unaut
In addition to profound upregulation on HIV-1-specific
CD8þ T cells as a whole, PD-1 expression also exhibited
substantial differences between epitope specificities. The
large number of HIV-1-derived epitopes restricted by
only two HLA-B molecules examined in our study
provides a distinct advantage over previous reports
[16,17,47,51] in that it enables intraindividual compari-
sons between epitope specificities with an inbuilt control
for the restriction element. In this setting, concomitant
epitope-linked differences in CD244 and LAG-3
expression were not detected. These findings indicate
that PD-1 expression is regulated more stringently in an
antigen-dependent manner.

Previous reports have suggested that TCR avidity is
linked to PD-1 expression as a function of signal strength
[47]. In functional assays across a subset of matched
samples, we found no evidence to support this hypothesis
[52]. However, this finding is subject to one important
caveat. Specifically, the measurement of functional
sensitivity in this setting does not necessarily act as a
reliable surrogate for TCR avidity because cytokine
output cannot be assumed as a constant. Indeed, PD-1
expression preferentially inhibits poorly sensitive func-
tions, such as IFNg, thereby skewing functional assays
toward an inverse relationship.

One important aspect of our study is the identification of
multiple different HIV-1-derived epitope-specific CD8þ
horized reproduction of this article is prohibited.
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Fig. 4. Different T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8R T-cell populations express different
levels of programmed death-1 (PD-1). (a) Clonotypic composition of human leukocyte antigen (HLA)-B�42 : 01 TL9-p24 tetramer-
positive CD8þ T cells from participant N021 showing T-cell receptor beta variable (TRBV) usage, CDR3 amino acid sequence,
T-cell receptor beta joining (TRBJ) usage and percentage frequency. Coloured highlights depict clonotypes with identical TRBV
usage. (b) PD-1 and CD244 expression on HLA-B�42 : 01 TL9-p24 tetramer-positive CD8þ T cells (red) overlaid on bulk CD8þ

T cells (grey); data correspond to those shown in (a) from subject N021 (top). Combined tetramer and aTCRVb staining, matched to
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and Vb� (black) cells shown in (d). (g) Comparison of PD-1 and CD244 expression frequencies on dominant, defined as the most
frequent sequences identified in each epitope-specific CD8þ T-cell population depicted in (a) and (d), and subdominant
clonotypes. Statistical analyses were conducted using the paired Student t test.
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Fig. 4. (Continued ).
T-cell populations within individual samples, thereby
providing intrinsic controls for interparticipant variables,
such as plasma viral load. Accordingly, we could link
differences in PD-1 expression to individual epitope-
specific CD8þ T-cell populations in the absence of
important confounders. The large variations in PD-1
expression between different epitope specificities were
not limited to participants with high levels of viremia, but
applied across the spectrum of plasma viral loads detected
in the present cohort. This finding suggests that epitope-
specific effects on PD-1 expression levels are paramount.
Similar data have recently been reported for different
EBV-specific CD8þ T-cell populations restricted by
HLA-A�02 : 01 [53].

Strikingly, PD-1 expression levels also differed between
TCR clonotypes within HIV-1-specific CD8þ T-cell
populations. However, we found no relationship with
Copyright © Lippincott Williams & Wilkins. Unaut
clonal dominance, in contrast to a previous report [47].
Nonetheless, this observation is consistent with the lack
of correlation between response magnitude and PD-1
expression in our cohort. A recent study demonstrated
that PD-1 expression on CD8þ T cells is maintained by a
mechanism of high production and high clearance [54].
Accordingly, if high avidity clonotypes preferentially
acquire PD-1 expression, they may fail to dominate
despite the operation of avidity-based selection [39].
These considerations add another layer of complexity to
the array of forces that govern the clonotypic architecture
of antigen-specific CD8þ T-cell populations. It remains
to be determined whether interclonotypic differences in
PD-1 expression are linked to differential antiviral activity
[31,32,55,56].

The correlation between plasma viral load and PD-1
expression across all HIV-1-specific CD8þ T-cell
horized reproduction of this article is prohibited.
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Fig. 5. Programmed death-1 (PD-1) expression on HIV-1-specific CD8R T cells is driven by the effecter memory population. (a)
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of 52 different HLA-B�15 : 03-restricted HIV-1-specific CD8þ T-cell populations from 15 participants pregated for PD-1
(b) or CD57 (c) positivity. (d and e) Expression of PD-1 and CD57 (x-axis key) on a total of 52 different HLA-B�15 : 03-restricted
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population. In (f and g), ‘�’ indicates P<0.05 compared with FL9-Vpr values. Statistical analyses were conducted using the Student
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populations is consistent with previous studies [14,17,25].
Moreover, this correlation was strengthened by stratifica-
tion for targeted epitopes that undergo mutation less
frequently, whereas no such association was detected for
CD8þ T-cell populations directed against more variable
epitopes. These findings suggest that PD-1 expression is
regulated in an antigen-dependent manner, although the
effect of viral load in this regard may still be indirect.
Longitudinal studies demonstrating reduced PD-1
expression after mutational escape [18] and treatment-
induced suppression of viral antigen load [25,51], as well
as increased PD-1 expression after treatment interruption
[52], support this interpretation. Nonetheless, multiple
host-specific and virus-specific factors undoubtedly affect
epitope processing and presentation [57], confounding
pyright © Lippincott Williams & Wilkins. Unautho
any simplistic relationships between the parameters
measured in this study. The previously reported inverse
correlation between plasma viral load and PD-1
expression on HIV-1-specific CD8þ T cells during acute
infection likely represents a separate scenario occurring
before the onset of functional exhaustion [58], although
the PD-1 promoter remains unmethylated and active
throughout the course of infection [59].

Collectively, our data show that PD-1 expression on HIV-
1-specific CD8þ T cells is tightly linked to epitope
specificity and TCR clonotype usage regardless of plasma
viral load during the chronic phase of infection. The
observation that PD-1 levels are most strongly correlated
with antigenemia stratified for epitope sequence stability
rized reproduction of this article is prohibited.
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Fig. 5. (Continued ).
suggests that PD-1 tracks peptide/HLA complexes visible
to the cognate TCR. Accordingly, PD-1 expression on
the mobilized CD8þ T-cell population may serve as a
surrogate marker for epitope density on the surface of
infected target cells.
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