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Abstract

Background: In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising
all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning
surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A
range of studies have proven the feasibility of natural language processing for information extraction from clinical
narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the
complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities.
In this paper we describe KneeTex, an information extraction system that operates in this domain.

Methods: As an ontology–driven information extraction system, KneeTex makes active use of an ontology to strongly
guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain–specific
ontology with sufficient detail and coverage for text mining applications. In combination with the ontology,
high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of
sophisticated lexico–semantic rules with minimal syntactic analysis. The main processing steps involve named
entity recognition combined with coordination, enumeration, ambiguity and co–reference resolution, followed by text
segmentation. Ontology–based semantic typing is then used to drive the template filling process.

Results: We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within
KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances
to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine–grained
lexico–semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction
results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template
records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier.
KneeTex extracted information with precision of 98.00 %, recall of 97.63 % and F–measure of 97.81 %, the
values of which are in line with human–like performance.

Conclusions: KneeTex is an open–source, stand–alone application for information extraction from narrative
reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding
clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK,
an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally
structured and coded information allows for complex searches to be conducted efficiently over the original MRI
reports, thereby effectively supporting epidemiologic studies of knee conditions.
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Background
Magnetic resonance imaging (MRI) is a technique used
to visualise internal body structure by recording radio
waves emitted by the tissues in the presence of a strong
magnetic field. MRI better differentiates between soft tis-
sues than does X-ray imaging, which uses high frequency
electromagnetic waves that pass through soft parts of the
human body to create a radiograph, an image resulting
from the different absorption rates of different tissues.
MRI can also produce three dimensional images. When it
comes to diagnosing knee pathology, MRI has the advan-
tage of visualising all structures within the knee joint, i.e.
both soft tissue and bone. When used in conjunction with
medical history and physical examination, this makes
MRI a valuable tool for increasing diagnostic accuracy
and planning surgical treatments [1–5]. For example,
meniscal tears are a relatively common knee injury, having
a prevalence of 22.4 % among all soft tissues injuries seen
in a trauma department [6]. The accuracy of diagnosing
meniscal tears using individual physical tests is reported
to be 74 %, but increases to 96 % when MRI is used [5].
When MRI results are combined with clinical assessments
(namely, locking, giving way and McMurray’s test), then
their diagnostic performance increases respectively as fol-
lows: accuracy – 88.3 %, 89.9 % and 89.4 %, sensitivity –
95.7 %, 97.4 % and 97.4 %, specificity – 74.2 %, 75.8 % and
74.2 %, positive predictive value – 87.5 %, 88.4 % and
87.7 %, and negative predictive value – 90.2 %, 94.0 % and
93.9 % [4]. More recently, the importance of MRI in diag-
nosis and treatment planning for cases of symptomatic
early knee osteoarthritis has been highlighted. If an X–ray
image of the knee is found to be normal, but clinical
examination produces specific findings, then MRI scan
can be performed to establish more accurate diagnosis. It
can be used to identify an appropriate surgical or nonsur-
gical treatment target and decrease the need for costly and
invasive diagnostic arthroscopy [1, 7].
In clinical practice, radiology images (e.g. produced by

X–ray or MRI) are usually accompanied by imaging re-
ports (or radiology reports), which serve the purpose of
conveying a specialist interpretation of images and relate
it to the patient’s signs and symptoms in order to suggest
diagnosis [8]. This information is then used by clinicians
to support decision making on appropriate treatment.
In terms of research, MRI evidence is often used to sup-

port epidemiologic studies of knee pathology [9, 10]. In
particular, MRI findings are indispensible features of
longitudinal studies of knee osteoarthritis [11, 12], where
lesions detected by MRI were found to precede onset of
clinical symptoms. However, many of published research
findings are probably false due to sampling bias and low
statistical power [13]. Small sample size is often the cause
underlying these two concerns although the relationship is
not simple or proportional [14]. Unfortunately, sample

size is typically subject to funding and personnel con-
straints. Given the complexity and cost of manual inter-
pretation of MRI evidence, it is, therefore, not surprising
that the size of such epidemiologic studies has been lim-
ited to hundreds (e.g. 514 [9], 710 [10]) or even dozens of
cases (e.g. 20 [11], 36 [12]). If interpretation of evidence
described in MRI reports could be automated, then it
would overcome the size limitation in retrospective cohort
studies posed by the need to manually sort through the
evidence.
We recently provided a critical overview of the current

state of the art for natural language processing (NLP) re-
lated to cancer [15], where clinical narratives such as those
found in pathology and radiology reports convey valuable
diagnostic information that is predictive of the prognosis
and biological behaviour of a disease process [16]. The
review highlighted the fact that a range of studies have
proven the feasibility of NLP for extracting structured
information from free text reports (e.g. [17–21]). For sim-
pler information extraction tasks, human–like perform-
ance of automated systems can be expected. For example,
when evaluated for the extraction of American College of
Radiology utilisation review codes from radiology reports,
M+, a system for medical text analysis, achieved recall,
precision and specificity of 87, 85 and 98 % respectively
[22]. These results were comparable to average recall, pre-
cision and specificity recorded by physicians, namely 88,
86 and 98 %. Comparably good results were achieved for
more complex tasks such as translating radiology reports
into a large database [18], where the Medical Language
Extraction and Encoding (MedLEE) system achieved recall
of 81 % and specificity of 99 % with a total of 24 clinical
conditions (diseases, abnormalities and clinical states)
being the subject of the study. Again these results were
comparable to average recall (85 %–87 %) and specificity
(98 %) achieved by expert human coders.
Typical processing steps taken in such NLP systems

include text segmentation into words, sentences, para-
graphs and/or sections, part–of–speech tagging, parsing,
named entity recognition (NER), normalisation and neg-
ation annotation [17, 23, 24]. Recognition of named en-
tities, i.e. phrases that are used to differentiate between
entities of the same semantic type (e.g. Osgood-Schlatter
disease is a name used to refer to a specific disease),
followed by normalising the representation of their
meaning (e.g. Osgood-Schlatter disease is also known as
apophysitis of the tibial tubercle or OSD), is the crucial
step towards semantic interpretation of clinical narra-
tives. In order to disambiguate named entities and assert
relationships between them (e.g. relate disease/disorder,
sign/symptom or procedure to an anatomical site), do-
main–specific knowledge needs to be available in a ma-
chine–readable form. For example, the domain knowledge
is specified in MedLEE using a table created manually

Spasić et al. Journal of Biomedical Semantics  (2015) 6:34 Page 2 of 26



based on domain expertise [17]. Similarly, Medical Text
Analysis System (MedTAS) utilises external knowledge re-
sources such as terminologies and ontologies [25]. Alterna-
tively, M+ uses Bayesian Networks to represent semantic
types and relations within a specific medical domain such
as that of chest radiology reports [22]. Ideally, when a suit-
able ontology is available it can be used to add an explicit
semantic layer over text data by linking domain–specific
terms, i.e. textual representation of concepts, to their
descriptions in the ontology [26]. This allows text to be
mined for interpretable information about domain–
specific concepts and their relationships.
In our previous work, we developed TRAK (Taxonomy

for RehAbilitation of Knee conditions), an ontology that
formally models knowledge relevant for the rehabilitation
of knee conditions [27]. This knowledge resource allowed
us to implement an NLP system able to interpret knee–re-
lated clinical findings from MRI reports. In this paper, we
describe KneeTex, an open–source, stand–alone applica-
tion developed to address the task of information extrac-
tion from narrative reports that describe an MRI scan of
the knee. KneeTex is an ontology–driven, rule–based sys-
tem. It takes an MRI report as an input and outputs the
corresponding clinical findings in the form of JavaScript
Object Notation (JSON) objects, a lightweight data–inter-
change format [28]. KneeTex not only extracts, but also
codes the extracted information by mapping it onto the
TRAK ontology. The resulting formally structured and

coded information allows complex searches to be con-
ducted efficiently over the original MRI reports, thereby
effectively supporting epidemiologic studies of knee
conditions.

Methods
System specification
Information extraction (IE) is the task of automatically
selecting specific facts about pre–specified types of entities
and relationships from free–text documents. In other
words, the goal of IE is to convert free text into a struc-
tured form by filling a template (a data structure with pre-
defined slots) with the relevant information extracted (slot
fillers) [29]. Figure 1 provides a graphical representation of
a template specific to our system, whose structure is illus-
trated using Unified Modelling Language (UML) [30]. The
template specifies the types of entities and relationships
we aim to extract in this particular study.
The goal of our system is to extract information about

clinical observations made from MRI scans. Information
extracted about individual observation is structured into
two major parts: finding and anatomy. Finding represents
a clinical manifestation (e.g. injury, disease, etc.) observed
by a radiologist. In other words, it corresponds to what is
observed. Information related to anatomy refers to a
specific part of human anatomy affected by the finding. In
other words, it corresponds to where the finding is
observed. Both finding and anatomy may have qualifiers,

Fig. 1 Information extraction template represented by UML diagram. Each slot has got the following properties: extracted text, concept identifier,
preferred concept name, start position of extracted text and its length
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which provide more specific information extracted about
them. In addition to general qualifiers, each finding is
associated with information about its certainty (as judged
by the radiologist) and negation (which specifies whether
the finding is positive or negative). Tables 1 and 2 provide
examples of a filled template based on information ex-
tracted automatically from the given sentences. The filled
template examples are represented using JSON.

Data
Between January 2001 and May 2012, a total of 6,382
individuals with an acute knee injury attended the Acute
Knee Screening Service at the Emergency Unit of the
Cardiff and Vale University Health Board (C&V UHB).
A subset of 1,657 individuals fulfilled locally agreed clin-
ical criteria for an MRI scan. Both the clinical assess-
ment and MRI findings for these individuals were stored
in a clinical database on a secure server within the C&V
UHB. This database was originally developed for the
purposes of service evaluation and auditing practice.
Out of 1,657 referred individuals, a total of 1,468 MRI
scan visits were identified retrospectively from the data-
base records. Following an MRI scan, the imaging results
were summarised by a radiologist (from a team of five)
in a diagnostic narrative report that conveys a specialist
interpretation of the MRI scan and relates it to the pa-
tient’s signs and symptoms. These MRI reports formed
the dataset used in this study.
All reports were anonymised by removing all identi-

fiable information related to either patient or radiolo-
gist together with the attendance date and the links
to the patient’s assessment and treatment details. The

anonymised reports were transferred to an encrypted
memory stick that was password protected and locked in
a filing cabinet in a lockable room. Ethical approval for
this study was obtained from the South East Wales
Research Ethics Committee (10/MRE09/29).
As part of their radiology reporting initiative whose aim

is to improve reporting practices by creating a library of
clear and consistent report templates, the Radiological
Society of North America provides a template for knee
MRI reports [31]. However, the reports in our dataset did
not follow any such predefined structure. The structure
varied across the reports, but they generally tended to or-
ganise information under the following headings: MRI OF
THE LEFT/RIGHT KNEE, INDICATION, HISTORY,
FINDINGS and CONCLUSION. Within the reports,
which were distributed in a plain text format, these sec-
tions were indicated with upper case (see Table 3 for an
example).
The size of the overall dataset was 1,002 KB with a total

of 13,991 sentences, 178,931 tokens, 3,277 distinct tokens

Table 1 An example of a filled template. Original text source:
“There is a small undisplaced vertical radial tear of the posterior
horn of the lateral meniscus.”

Table 2 An example of a filled template. Original text source:
“A peripheral tear involving the body of the lateral meniscus
extending into the posterior third is seen.”

Table 3 Knee MRI report. A sample from the training dataset
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and 2,681 distinct stems. On average, the size of an indi-
vidual MRI report was 0.68 KB (±0.40 KB) with a total of
9.53 (±5.13) sentences and 110.81 (±64.60) tokens.1 We
separated the data into training and testing sets. A test set
was created by randomly selecting a subset of 100 MRI
reports from the overall dataset. These reports were then
removed from consideration so that the performance of
the system could later be evaluated on unseen data. The
remaining 1,368 reports formed a training set, which was
used to inform system development.
For training and testing purposes, the data were manu-

ally annotated with labels that correspond to slots and
their relationships from the IE template (see Fig. 1). The
annotation was performed using BRAT, a web–based tool
for text annotation [32]. The process involved annotating
text spans with slot names (e.g. finding or anatomy) as
well as annotating dependencies between them (e.g. obser-
ved_in). Figure 2 provides a visualisation of an annotated
example. A total of 100 training documents and 100 test-
ing documents were annotated independently by two
annotators.

Ontology
We previously developed TRAK as an ontology that for-
mally models knowledge relevant for the rehabilitation
of knee conditions [27]. This information includes classi-
fication of knee conditions, detailed knowledge about
knee anatomy and an array of healthcare activities that
can be used to diagnose and treat knee conditions.
Therefore, TRAK provides a framework that can be used
to collect coded data in order to support epidemiologic
studies much in the way Read Codes, a coded thesaurus
of clinical terms [33], are used to record observational
data in the Clinical Practice Research Datalink (CPRD) –
formerly known as the General Practice Research Data-
base (GPRD) [34]. TRAK follows design principles rec-
ommended by the Open Biomedical Ontologies (OBO)
Foundry and is implemented in OBO [35], a format

widely used by this community. Its public release can be
accessed through BioPortal [36], a web portal that pro-
vides a uniform mechanism to access biomedical ontol-
ogies, where it can be browsed, searched and visualised.
TRAK was initially developed with a specific task in

mind – to formally define standard care for the rehabilita-
tion of knee conditions. At the same time, it was designed
to be extensible in order to support other tasks in the
domain. For example, the knowledge about knee anatomy,
which is cross–referenced to a total of 205 concepts in the
Foundational Model of Anatomy (FMA) [37], is directly
applicable to interpretation of reports describing knee
MRI scans. However, in order to fully support semantic
interpretation of this type of clinical narratives, the TRAK
ontology needed to be expanded with other types of
MRI–specific concepts.

Ontology expansion
In order to support semantic interpretation of the ter-
minological content found in knee MRI reports, we
needed to ensure that all relevant concepts are modelled
appropriately in the TRAK ontology. The main aspect of
this task was the expansion of a specific domain modelled
by the ontology, for example, MRI–specific observations
such as hyaline cartilage abnormality, bone bruise, cyclops
lesion, etc. In order to support NLP applications of the
ontology, its vocabulary also needed to be expanded to
include term variants commonly used in MRI reports.
Some term variants are confined to a specific clinical
sublanguage [18] and as such are typically underrepre-
sented in standardised medical dictionaries such as those
included in the Unified Medical Language System (UMLS)
[38]. For example, collateral ligament was found to have
no other synonyms in the UMLS. Yet, collateral ligaments
are colloquially referred to as collaterals in clinical narra-
tives. Thus, out of 37 references to collateral ligaments in
the training dataset, six (i.e. 16 %) accounted for this infor-
mal variant of the term.

Fig. 2 A manually annotated MRI report. A screenshot of the BRAT interface
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We devised four strategies for systematic expansion of
the coverage of the TRAK ontology. Three of these strat-
egies were data–driven. This was to ensure that the ontol-
ogy is appropriate for the intended NLP applications on
such data. Each data–driven strategy utilised a different
approach to extracting the relevant terminology from the
data either manually or automatically. The fourth strategy
was based on integration of known concepts from other
relevant knowledge sources. The two main aims of this
strategy were: (1) to avoid overfitting the ontology based
on limited data used in the data–driven strategies, and (2)
to provide an initial taxonomic structure to incorporate
new concepts.
The four strategies were applied independently and their

results were subsequently integrated (see Fig. 3). As a
result, the original TRAK ontology expanded from 1,292
concepts, 1,720 synonyms and 518 relationship instances
to 1,621 concepts, 2,550 synonyms and 560 relationship
instances. The following sections outline each strategy in
more detail.

Strategy 1: dictionary-based term recognition
The vast majority of existing TRAK concepts (more pre-
cisely, 875 out of 1,292) were originally cross–referenced

to the UMLS, a terminological resource that integrates
over 150 biomedical vocabularies [38], in an attempt to
standardise TRAK terminology and facilitate its integra-
tion with other terminological sources. During the initial
development of TRAK, the UMLS was searched collab-
oratively by a physiotherapist (who was both practitioner
and researcher) and an informatician to obtain concept
identifiers, synonyms and definitions, where such in-
formation was available. Given the availability of MRI re-
ports, we were now able to automate the process of
finding other relevant concepts in the UMLS. For this
purpose, we used MetaMap, a software tool for recognis-
ing UMLS concepts in biomedical text [39]. We applied
MetaMap against a training corpus of 1,368 MRI reports
to recognise UMLS concepts and obtain their unique
concept identifier and a preferred name in the UMLS.
Given that the majority of TRAK concepts (approxi-
mately 68 %) were already cross–referenced to the UMLS,
we used these identifiers to automatically remove known
UMLS concepts from unnecessary consideration. The
remaining MetaMap output formed a list of 1,121UMLS
concepts to be considered for inclusion in TRAK. To
facilitate the manual curation process, the list was ordered
by the frequency of occurrence of each concept within the

Fig. 3 The strategies for rapid ontology expansion. Newly identified terminology is integrated into the existing ontology
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training dataset. The frequency graph shown in Fig. 4
depicts a power law distribution [40] of UMLS concept
mentions. Using the Pareto principle (or 80:20 rule) as a
guideline [41], we focused on approximately 20 % of most
frequently mentioned concepts by considering only those
that occurred at least 100 times in the training dataset. A
total of 215 frequently mentioned UMLS concepts were
manually curated and considered for inclusion in TRAK.
Some examples of highest ranked relevant concepts
include intact, rupture, laceration, etc.

Strategy 2: automatic term recognition
Using the UMLS to identify relevant concepts in text
data has the advantage of providing not only their defini-
tions and synonyms, but also their classification and a
potential structure into which to embed them within the
TRAK ontology. However, a previous lexical study con-
ducted on a large corpus of various types of medical re-
cords (discharge summaries, radiology reports, progress
notes, emergency room reports and letters) revealed that
clinical narratives are characterised by a high degree of
misspellings, abbreviations and non–standardised termin-
ology [42]. The given study found that over 20 % of the
words used were unrecognisable, i.e. were not recognis-
able medical words, common words or names, and could
not be algorithmically or contextually converted to such
words. However, almost 78 % of unrecognisable words
were judged to be probably correctly spelled medical
terms. These findings illustrate the challenges clinical
narratives pose to dictionary–based term recognition
methods such as that implemented by MetaMap.
In order to extract additional terms from the training

dataset that were not found in the UMLS, we complemen-
ted the use of MetaMap with FlexiTerm, our own data–
driven method for automatic term recognition from a
domain–specific corpus [43]. For the original publication,
we thoroughly evaluated FlexiTerm on five biomedical
corpora including a subset of 100 MRI reports from the

dataset used in this study. The highest values for precision
(94.56 %), recall (71.31 %) and F-measure (81.31 %) were
achieved on this particular corpus.
FlexiTerm performs recognition of multi–word terms in

two steps: linguistic filtering is used to select term candi-
dates followed by calculation of termhood, a corpus–
based measure that combines strength of collocation with
frequency of occurrence. Termhood values are used as
evidence to select higher–ranked candidates as terms over
the lower–ranked ones. In order to improve statistical
distribution of termhood values, which may be affected by
term variation phenomena, FlexiTerm uses a range of
methods to neutralise the main causes of term variation
and thereby aggregate termhood values that would other-
wise be dispersed across different variants of the same
term. Firstly, FlexiTerm manages syntactic variation by
processing term candidates using a bag–of–words ap-
proach. Further, orthographic and morphological varia-
tions are neutralised by stemming in combination with
lexical and phonetic similarity measures. Consequently,
FlexiTerm not only extracts terms from text, but it also
groups term variants such as infrapatellar fat pad, infra-
patella fat pad and infra-patellar fat pad together. This
allows for identification of new concepts (e.g. posterior
horn ranked seventh by FlexiTerm was added as a new
concept in TRAK), but also identification of previously
unknown names of existing concepts, which are easily
mapped to a concept via its known names. For example,
lateral femoral condyle was identified as a new synonym
for a concept with identifier TRAK:0001037 previously
known only as lateral condyle of femur.
We ran FlexiTerm over the whole training dataset of

1,368 MRI reports and extracted 1,076 term candidates
with a total of 1,422 term variants. To facilitate the
manual curation process, the list of automatically ex-
tracted terms was ordered by their termhood calculated
by FlexiTerm. Similarly to the frequency graph shown
in Fig. 4, the termhood graph shown in Fig. 5 also

Fig. 4 Distribution of UMLS concept mentions. MetaMap was used to automatically identify concept mentions in the training set
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depicts a power law distribution. Therefore, relying on
the Pareto principle again, we focused on approxi-
mately 20 % of highest ranked terms by considering
only those with termhood over 20. A total of 222 auto-
matically extracted terms were manually curated and
considered for inclusion in TRAK.

Strategy 3: manual data annotation
As part of developing and testing our information ex-
traction system, we manually annotated the test set and
a portion of the training set. The annotated test set was
later used to create a gold standard to evaluate the sys-
tem, whereas an annotated subset of 100 training docu-
ments was used not only to test the system during its
development, but also to inform the expansion of the
ontology with terms manually annotated in text. This
strategy offers a potential to identify additional con-
cepts and their names, particularly those that are non–
standardised and occur less frequently in the training
dataset. Recall that MetaMap identifies concepts based
solely on the content of standardised medical dictio-
naries included in the UMLS. On the other hand,
FlexiTerm may identify some non–standardised termin-
ology, but in doing so it relies on the frequency of term
occurrence. Moreover, FlexiTerm only extracts multi–
word terms, thus ignoring concepts designated by a
single word (e.g. fissure, ganglion, etc.). In addition to
enabling us to identify relevant concepts overlooked by
the previous two strategies, the annotation exercise
allowed us to explore in detail how the terms were used
in context, which helped disambiguate their meaning
based on which they were embedded into the existing
ontology structure.

The annotation categories relevant for the manual
identification of terms include finding (an observation
such as the presence of a disease or an injury), finding
qualifier (further specification of the finding), certainty
(observational evidence used to assert the finding),
anatomy (anatomical entity such as tissue or an organ
to which the finding applies) and anatomy qualifier
(further specification of the affected anatomical entity).
For example, in the following sentence:

There is definite complex tearing of the posterior horn
and body of the medial meniscus.

tearing represents the finding, definite its certainty, com-
plex its qualifier, medial meniscus the anatomical entity
affected, whereas posterior horn and body are anatomy
qualifiers that provide more specific location for the
given finding.
A total of 484 unique phrases (not necessarily terms) with

2,071occurrences were annotated as instances of finding,
113 unique phrases with 284 occurrences as instances of
finding qualifier, 68 unique phrases with 202 occurrences
as instances of certainty, 208 unique phrases with 1,232 oc-
currences as instances of anatomy, and finally 178 unique
phrases with 469 occurrences as instances of anatomy
qualifier. The fact that these phrases were pre–classified
into four broad categories allowed us to focus on particular
branches of the TRAK hierarchy one at a time. In addition,
some categories (e.g. anatomy and anatomy qualifier) were
already extensively covered by the TRAK ontology. There-
fore, the removal of 137 known terms referring to 60
TRAK concepts from unnecessary consideration greatly
facilitated the manual curation and allowed us to consider
all remaining phrases for potential inclusion in TRAK.

Fig. 5 Distribution of termhood. FlexiTerm was used to automatically identify multi–word terms in the training set
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Strategy 4: manual dictionary search
So far, all three strategies for identification of new on-
tology concepts relied on the training dataset from
which candidates were selected using a combination of
automatic and manual methods. These data–driven ap-
proaches runs a risk of overfitting the ontology based on
the available data, which may result in incomplete cover-
age of the domain simply because some concepts (pos-
sibly the ones less frequently encountered in practice)
were not mentioned in the available sample of MRI re-
ports. In order to systematically cover the domain by
including potentially relevant concepts that are not seen
in the training dataset, we consulted two authoritative
knowledge sources relevant for semantic interpretation
of MRI reports.
The first source, MEDCIN, was identified through the

UMLS terminology services [44]. MEDCIN is a medical
terminology created and maintained by Medicomp Sys-
tems, Inc. as part of their system for management of
clinical information [45, 46]. MEDCIN contains more
than 250,000 concepts encompassing symptoms, history,
physical examination, tests, diagnoses and therapies struc-
tured into multiple clinical hierarchies. One such hier-
archy with the root element named magnetic resonance
imaging of knee represents a detailed taxonomy of findings
that can be identified from knee MRI scans. We extracted
this particular taxonomy from the UMLS by using MRI
knee as a search term restricted to MEDCIN as the source
vocabulary (Fig. 6 illustrates the search results).
All 703 concepts extracted from MEDCIN were

named using phrases that represent detailed descriptions
rather than traditional terms. After removing the com-
mon header, magnetic resonance imaging of knee, from
these phrases, we decomposed them into four categories:
finding, finding qualifier, anatomy and anatomy quali-
fier. For example, in the following example taken from
MEDCIN:

magnetic resonance imaging of knee: acute
osteochondral injury of posterior aspect of lateral
femoral condyle

osteochondral injury represents the finding, acute its
qualifier, lateral femoral condyle the anatomical entity
affected, whereas posterior aspect is its qualifier, which
provides more specific location for the given finding.
Most anatomical concepts were already covered in TRAK,
so the manual curation process focused mainly on con-
cepts related to findings and their qualifiers. The resulting
list consisted of 76 concepts, which were then manually
curated.
The second source, RadLex, was identified through

BioPortal, the most comprehensive repository of bio-
medical ontologies [47]. MRI is a technique used in

radiology, a medical specialty whose concepts are for-
mally described in the Radiology Lexicon (RadLex) – a
controlled terminology designed as a single unified
source of terms for radiology practice, education and
research in an attempt to fill in the gaps in other med-
ical terminology systems [48]. RadLex is currently not
distributed as a part of the UMLS. A study conducted
on a corpus of 800 radiology reports that represented a
mixture of imaging modalities including MRI revealed
that out of 11,962 mentioned terms found in RadLex,
3,310 terms (i.e. almost 28 %) could not be found in the
UMLS [49]. These facts imply that much of the RadLex
terminology would not be identified by MetaMap, used
previously to identify UMLS terms. We systematically
explored RadLex using its distribution via BioPortal
[36]. In particular, we focused on the RadLex descriptor
branch of the RadLex hierarchy (see Fig. 7), whose leaf
node children are mainly adjectives (rather than noun
phrases, which is customary for terms) that can be used
to describe radiology findings by specifying their quali-
fiers (e.g. lobulated would be a qualifier of a cyst). We
considered a total of 41 subclasses out of which 13
were relevant for MRI reports (these classes are indi-
cated with an asterisk in Fig. 7). These subclasses were
used not only as the source of potential terms for
TRAK, but also to provide a structure for incorporating
such terms into TRAK. As the end result, a total of
167 terms were cross-referenced to RadLex. The
RadLex descriptor class has been renamed to finding
descriptor and embedded into TRAK as a subclass of
quality.

Information extraction
In addition to extracted text (see Tables 1 and 2), the
JSON schema we created to formally model the IE tem-
plate shown in Fig. 1 prescribes the following properties
for each slot:
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As before, text refers to the actual content extracted
from text, whereas start and offset refer to its location
in the document. The extracted information is further
mapped onto the corresponding concept in the TRAK
ontology, whose identifier is stored within the id prop-
erty. The concept’s preferred name is retrieved from
the ontology and used to complete the name property
in order to facilitate interpretation of extracted infor-
mation. Given this more precise description of the IE
task, Tables 4 and 5 provide examples of a filled tem-
plate based on information extracted automatically
from the given sentences. As before, the filled template

examples are represented using JSON. For simplicity
reasons, we omitted start and offset properties from
these illustrations.
Once coded, the extracted information can be searched

systematically. For instance, note that in the given exam-
ples equivalent phrases, posterior horn and posterior
third, were mapped to the same concept, which allows
for the extracted information to be searched by the
underlying meaning and not merely its surface realisation
in text. Note that KneeTex is an IE system and as such
does not include an interface to search through the
extracted information. However, the JSON format of

Fig. 6 MEDCIN terminology related to MRI of knee. UMLS terminology services were used to access relevant terminology
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Fig. 7 RadLex terminology related to descriptions of radiology findings. BioPortal was used to access relevant terminology

Table 4 An example of a filled template. Original text source: “There is a small undisplaced vertical radial tear of the posterior horn of
the lateral meniscus.”
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extracted information allows for it to be stored directly
into a document–oriented database such as MongoDB
[50], from which it can be easily queried.
Figure 8 depicts the overall system architecture with

specific modules described in more detail in the follow-
ing sections.

Linguistic pre-processing
Previous lexical analysis of a large corpus of various types
of clinical narratives (discharge summaries, radiology re-
ports, progress notes, emergency room reports and letters)
revealed that they are characterised by a high degree of
misspellings, abbreviations and idioms [42]. However, the
analysis of our training corpus revealed a total of 1,138
typographical errors averaging at 0.83 errors per docu-
ment. The low percentage of typographical errors was not
expected to significantly hinder subsequent processing.
Therefore, we supported only traditional elements of
linguistic pre–processing (i.e. tokenisation and sentence
splitting) in this module and dealt with typographical
errors and spelling mistakes by choosing a method for
named entity recognition that is robust against such
variations.

Dictionary lookup
Having sufficiently expanded the original TRAK ontol-
ogy, its vocabulary can now be used to drive named
entity recognition, whose aim is to automatically identify

and classify words and phrases into predefined categor-
ies such as diseases, symptoms, anatomical entities, etc.
In effect, NER is used here to identify candidates for slot
fillers and as such represents the main vehicle of IE. The
performance of dictionary–based NER approaches varies
across different dictionaries and tools. A recent eva-
luation of three such state–of–the–art tools on a set of
eight biomedical ontologies showed that their perform-
ance in terms of F–measure varied from 14 % to 83 %
[51]. ConceptMapper (a component of the Apache UIMA
Sandbox [52]) generally provided the best performance.
Beside performance, we considered the ease of use. While
converting an OBO ontology to ConceptMapper’s diction-
ary format is straightforward, one must adopt the UIMA
framework in order to use this particular component. For
flexibility reasons, we opted to use PathNER [53] as an
alternative to ConceptMapper.
PathNER (Pathway Named Entity Recognition) is a freely

available tool originally developed for systematic identifica-
tion of pathway mentions in the literature. On a pathway–
specific gold–standard corpus, PathNER achieved F–meas-
ure of 84 % [51]. It implements soft dictionary matching
by utilising the SoftTFIDF method [54], a combination of
the term frequency–inverse document frequency (TF–
IDF) [55] and the Jaro–Winkler distance [56]. This makes
the dictionary lookup robust with respect to the problem
of term variation commonly seen in biomedical text,
which often causes dictionary lookup based on exact

Table 5 An example of a filled template. Original text source: “A peripheral tear involving the body of the lateral meniscus extending
into the posterior third is seen.”

Spasić et al. Journal of Biomedical Semantics  (2015) 6:34 Page 12 of 26



string matching to fail [57]. Typical term variations in-
clude morphological variation, where the transformation
of the content words involves inflection (e.g. lateral me-
niscus vs. lateral menisci) or derivation (e.g. meniscus tear
vs. meniscal tear), and syntactic variation, where the con-
tent words are preserved in their original form (e.g. apex
of patella vs. patella apex) [43].
In order to use PathNER to identify TRAK terms in

text, we extracted the vocabulary from the ontology and
converted it into PathNER’s internal dictionary format.
In effect, PathNER is used here to identify TRAK terms
in text as candidates for slot fillers and as such repre-
sents the basis for template filling. We identified a few
potential issues in the context of the given template.
These relate in particular to the fact that the template
requires two distinct main types of named entities:
anatomical entities (e.g. organ, tissue, etc.) and findings
(e.g. injury, disease, etc.). In order to systematically clas-
sify knee conditions, TRAK incorporates a knee–relevant
portion of the Orchard Sports Injury Classification
System (OSICS) Version 10 [58]. OSICS–10 is a classifi-
cation system in which all classes encompass two types
of information: (1) type of condition (injury or disease)
and (2) anatomical entity affected by the condition. Our
own approach to formal modelling of knee conditions
was to separate these two aspects and represent them by
two distinct semantic types that correspond to finding

and anatomy. For example, TRAK incorporates the fol-
lowing three terms: ACL rupture, ACL and rupture (see
Table 6 for details).
Obviously, the term ACL rupture, originally imported

from OSICS–10, encompasses the other two terms.
While the nature of taxonomic classification taken in
OSICS–10 is useful for a range of applications in epide-
miologic research [59], it may pose problems for NER en
route to template filling. Namely, PathNER looks for the
longest possible match. This means that, given the three
dictionary entries, the longest match in the following
sentence:

HISTORY Twisting injury, ACL rupture and medial
meniscal tear.

would result in the following annotation:

HISTORY Twisting injury, <term id = “0000513” >
ACL rupture</term > and medial meniscal tear.

Alternatively, two separate annotations of ACL and rup-
ture as follows:

HISTORY Twisting injury, <term id = “0000049” >
ACL</term > <term id = “0000211” > rupture</term >
and medial meniscal tear.

Fig. 8 The system architecture diagram. TRAK ontology and all intermediate results are saved in a relational database to enable their integrative
querying
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would greatly simplify the process of template filling,
since the two recognised named entities can be mapped
directly to the corresponding slots in the template (anat-
omy and finding respectively) based on their ancestries
in the ontology (anatomical entity and injury respect-
ively). The use of composite terms during NER could
also give rise to inconsistent annotations, because sub–
terms may occur wide apart in text, e.g.

The < term id = “0000049” > ACL</term > appears
chronically < term id = “0000211” > ruptured</term > .

To address these issues, we simply ignored those
branches of the ontology that include composite terms
and did not export them from OBO into PathNER’s
internal dictionary format. At this point, we addressed
two other problems associated with NER, namely am-
biguity resolution and recognition of informal names.
For example, we noticed that the term joint effusion
(TRAK:0001410) defined in TRAK as “Increased fluid
in synovial cavity of a joint” was commonly used in
our dataset to refer to its child node knee effusion
(TRAK:0001411). Safely assuming that in the context of
knee MRI reports, joint effusion will always refer to
knee effusion, we ignored the concept identified by
TRAK:0001410 and did not export it into PathNER’s
dictionary format. Instead, a dictionary entry was cre-
ated to map joint effusion to TRAK:0001411 instead in
order for PathNER to recognise its intended meaning
within the given context.

Further, we added some new entries to PathNER’s
dictionary in order to improve the performance of NER.
The reason why such terms were not directly included
into the ontology itself is the informal status of such
terms (e.g. tib–fib joint is an informal synonym of tibio-
femoral joint), and as such they do not belong to a con-
trolled vocabulary. Given that it is customary for terms
to be noun phrases [60], we also limited the use of adjec-
tives and verbs to the leaf nodes of the finding descriptor
branch as explained earlier. Still, we needed to use these
lexical classes as part of NER as we noticed from the
training dataset that adjectives and verbs were commonly
used to refer to concepts formally described in TRAK. For
example, in the following sentence:

There is a large < term id = “0001089” > lateral
meniscal</term> <term id = “0001396” > cyst</term > .

lateral meniscal refers to lateral meniscus (TRAK:
0001089) in which the finding, i.e. cyst (TRAK:0001396),
is noted, but it would be incorrect to specify it formally as
an official synonym of that term within the ontology. In-
stead, we encoded “unofficial” synonyms separately within
PathNER’s dictionary, thus enabling the use of informal
synonyms in NER while preserving the strict formality of
the ontology. It was in this manner that the verb form rup-
tured was mapped to the term rupture (TRAK:0000211) in
a previously discussed sentence. In total, the names of 128
concepts were ignored during ontology–to–dictionary con-
version and 250 new entries were added to the dictionary.

Table 6 An excerpt from the TRAK ontology. Exporting ontology vocabulary into PathNER’s dictionary format
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Pattern matching
Named entity recognition
Following the use of PathNER, a couple of NER–related
problems may still persist. For example, consider the
following three sentences:

The < term id = “0000045” >menisci</term > are intact.

There are tears in the posterior horns of both < term
id = “0000045” >menisci</term > .

There is some peripheral signal in both the medial
and < term id = “0001089” > lateral meniscus</term >
posteriorly.

with the terms meniscus (TRAK:0000045) and lateral
meniscus (TRAK:0001089) recognised by PathNER.
The analysis of their context reveals that all three
references should actually be mapped to two con-
cepts: lateral meniscus (TRAK:0001089) and medial
meniscus (TRAK:0001090), both children of meniscus
(TRAK:0000045). The first two annotations refer to
an abstraction of two more specific concepts mentioned,
which results in an ambiguous representation of the
intended meaning. In the third sentence, correct identi-
fication of medial meniscus requires the coordinated ex-
pression medial and lateral meniscus to be interpreted as
medial meniscus and lateral meniscus. Similarly, diction-
ary–based NER will fail to recognise enumerated terms.
For example, the following sentence mentions three types
of tear formally described in TRAK:

This possibly represents a tiny peripheral vertical
< term id = “0001390” > longitudinal tear</term > .

namely, longitudinal tear (TRAK:0001390), vertical tear
(TRAK:0001388) and peripheral tear (TRAK:0001389), but
only the rightmost one would be recognised by PathNER.
Finally, in phrases such as such as medial meniscectomy,
patellar tendinitis and prepatellar bursitis, PathNER will
succeed in identifying terms referring to findings, i.e. men-
iscectomy (TRAK: 0001511), tendinitis (TRAK: 0000229)
and bursitis (TRAK: 0000225), but it will not recognise im-
plicit references to the anatomical entities affected, i.e. med-
ial meniscus (TRAK: 0001090), patellar tendon (TRAK:
0000053) and prepatellar bursa (TRAK: 0001054).
In KneeTex, these linguistic phenomena are resolved

using a set of 109 pattern–matching rules, whose results
are used to correct or supplement annotations of named
entities generated by PathNER. These rules were im-
plemented in Mixup (My Information eXtraction and
Understanding Package), a simple pattern-matching lan-
guage [61]. For example, the following rules2 illustrate the
recognition of coordinated references to medial meniscus:

On the training subset of 100 documents, this approach
resulted in 430 annotations in addition to 4,439 generated
by PathNER, which accounts for approximately 9 % of all
named entities recognised.

Negation
In addition to supporting NER, pattern matching is used
to recognise negation terms: no, not, without and rather
than. The following examples illustrate their use to neg-
ate findings:

<negation > No</negation > bone marrow < finding >
lesion </finding > identified.

His patella lies tilted laterally though it has < negation >
not </negation > <finding > subluxed </finding > .

There is general attenuation of the body of the medial
meniscus < negation > without </negation > a discrete
< finding > tear</finding > .

This represents residual vascularity < negation > rather
than</negation > a < finding > tear</finding > .

Based on our observations on the training data, all neg-
ation terms are assumed to occur before the finding they
negate. We also defined a single exception to the negation
rule. The negation term no is ignored when it is used as
part of the phrase no further, in which case the finding is
assumed to be positive, e.g.

There is a very large < finding > cartilage defect
</finding > over the weight bearing surface of the
medial femoral condyle. There is no further
< finding > cartilage defect</finding > .

Section headings
Although their structure varied across the data set, the
given MRI reports generally tended to organise informa-
tion under the following headings: MRI OF THE LEFT/
RIGHT KNEE, INDICATION, HISTORY, FINDINGS
and CONCLUSION. Their lexical and orthographic
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features were incorporated into a single pattern–match-
ing rule designed to recognize a section heading as a
sequence of upper case tokens from a list of fifteen.

Named entity disambiguation
Once recognised, named entities are imported into a
relational database and further scrubbed in order to dis-
ambiguate them. Semantic ambiguity may arise naturally
from linguistic phenomena such as hyponymy, a relation-
ship between a general term (hypernym) and its more
specific instances (hyponyms), and polysemy, where a
term may have multiple meanings. Multiple related in-
terpretations may also arise from nested occurrences of
named entities.

Hyponymy
When a hypernym such as ligament is used, it opens
multiple possibilities for its interpretation either as itself in
general or any of its hyponyms. Based on the TRAK ontol-
ogy, a total of 15 concepts may match its intended meaning
(see Fig. 9). In a clinical discourse, hypernym and hypo-
nyms are often used as coreferring noun phrases as the
means of supporting text coherence and cohesion, e.g.

There is oedema superficial to the < term id =
“0000051” >medial collateral ligament</term >
consistent with a sprain but the < term id =
“0001027” > ligament</term > is intact.

In this example, the hypernym ligament corefers to its
hyponym medial collateral ligament, and therefore its
interpretation should coincide with that of the hyponym.
In other words, the literal interpretation of the hyper-
nym (ligament) obtained originally by dictionary lookup
should be corrected using the annotation of the corefer-
ring hyponym (medial collateral ligament), e.g.

There is oedema superficial to the < term id =
“0000051” >medial collateral ligament</term >
consistent with a sprain but the < term id = “0000051” >
ligament</term > is intact .

This type of ambiguity is resolved systematically by iden-
tifying coreferential named entities, i.e. those that refer to
the same concept. Coreference resolution is applied to
named entities recognised as one of the following concepts:
meniscus (TRAK:0000045), ligament (TRAK:0001027) or
tendon (TRAK:0000046). In such cases, coreference is re-
solved by looking for previous mentions of their ontological
descendants.

Polysemy
Sublanguages are restricted to specific semantic domains,
which in turn affect the word usage. They generally tend to
reduce the degree of polysemy. Nonetheless, the problem
may still persist. For example, the word rupture in phrases
ligament rupture and cyst rupture would be interpreted
differently. In the former case it should be mapped to the
following concept in the TRAK ontology:

Fig. 9 Subclassification of ligaments in the TRAK ontology. The
hierarchy is based on is–a relationship
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In the latter case, it should be mapped to an alterna-
tive interpretation represented by the following concept:

In such cases, co–occurrence information is used to
resolve typical ambiguities observed in the training
set. For example, when rupture co–occurs with a cyst
(i.e. any descendant of the cyst concept), e.g.

There is oedema in the soft tissues suggesting < term
id = “0000211” > rupture</term > of the < term id =
“0000222” > popliteal cyst</term > .

it is used to correct its default interpretation as a tear,
which represents an injury, to an alternative one, which
represents a morphologic descriptor:

There is oedema in the soft tissues suggesting < term
id = “0001461” > rupture</term > of the < term id =
“0000222” > popliteal cyst</term > .

Thus, we are able to differentiate between the different
uses of the term rupture in this latter example and that
of the following example:

There is grade 3 < term id = “0000211” > rupture
</term > of the MCL.

Nestedness
During dictionary lookup, PathNER will return longest
possible matches with similarity scores over a certain
threshold. As a result, there will be no overlap between
named entities recognised in this manner. However,
pattern matching used in the second phase of NER may
introduce nested annotations of named entities. For ex-
ample, in the coordinated expression medial and lateral
meniscus, PathNER will recognise two terms from the
TRAK ontology: medial (TRAK:0000031) and lateral
meniscus (TRAK:0001089). Pattern matching will sub-
sequently recognise a coordinated expression as a refer-
ence to medial meniscus (TRAK:0001090). The nested
occurrence of lateral meniscus should be retained as a
valid reference to a named entity. However, the nested
occurrence of medial represents an unsuccessful match
to another named entity, medial meniscus, and thus
should be removed. The choice between retaining and
removing nested occurrences of named entities is based

on their semantic types. For example, all nested occur-
rences of terms descending from the concept quality
(TRAK:0000133) defined as “a dependent entity that
inheres in a bearer by virtue of how the bearer is related
to other entities” are removed. This will remove nested
occurrence of medial in the previous example, but
also references to radial (TRAK:0001531) and vertical
(TRAK:0000077) in the example shown in Table 4.

Text segmentation
In an effort to separate the contexts in which multiple
findings are mentioned within the same sentence of an
MRI report, the sentences are divided into segments.
Sentence segmentation involves separation of items in lists
occurring within certain sections of MRI reports, namely
those of HISTORY and CONCLUSIONS. For example,

HISTORY Twisting injury, tender medial joint line,
positive McMurray’s

would be segmented into three parts relying on comma
as a separator. Other sentences are segmented using a
set of lexical clues such as but, which, consistent with,
etc. For example, the following sentence:

There is oedema in the soft tissues at the posterolateral
corner but the popliteal tendon is intact consistent with
a sprain.

would be separated into three segments:

1. There is oedema in the soft tissues at the posterolateral
corner

2. but the popliteal tendon is intact
3. consistent with a sprain

Segmentation greatly simplifies subsequent context ana-
lysis. When used in combination with the ontology to
infer relationships between named entities, segmentation
minimises the need for complex syntactic analysis. In fact,
other than analysing prepositional phrases, no other syn-
tactic analysis is performed as part of template filling in
KneeTex. Alternatively, syntactic parsing can be used to
support text segmentation, but such an approach would
be more computationally intensive and not necessarily
improving the accuracy. Due to ill formed sentences in
clinical narratives, lexical rules may be more robust.

Template filling
We previously described how the ontology, or more
specifically – its vocabulary, is used to support NER as
the first step in IE. Template filling as its final step is
also driven by the ontology, or more specifically – its
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structure, i.e. relationships between concepts. This involves
accessing information about semantic types by traversing
the is–a hierarchy in order to identify slot filler candidates.
In addition, relationships between the concepts are used to
check compatibility between potential slot fillers. For ex-
ample, if the extracted finding is a tear, then the anatomical
entity affected must be soft tissue such as ligament or ten-
don. Similarly, if the affected anatomical entity is cartilage,
then its qualifier must be related to bone or joint. We
originally considered using OntoCAT for this purpose, as it
provides a programming interface to query ontologies
shared on BioPortal or user–specified local OBO files [62].
However, this would separate ontology querying from
querying data, which are stored in a relational database. In
order to enable integrative querying of both data and know-
ledge, we imported the ontology into the database. This
allowed us to implement ontology–driven IE as a series of
SQL queries that simultaneously access data and the
ontology. The remainder of this section describes the

template filling process, where all semantic interpretations
mentioned imply the use of such queries.

Slot filler candidates
Once the sentences have been segmented, previously
recognised named entities are annotated as candidates for
specific slots based on their semantic type. Table 7 maps
semantic types to the corresponding slots. For example,
all named entities identified in the ontology as descen-
dants of certainty descriptor (TRAK:0001422) or visibility
descriptor (TRAK:0001495) are labelled as candidates for
filling the certainty slot in the template shown in Fig. 1. In
addition, co–occurrence of certain concepts and semantic
types is used to determine the most appropriate slot filler.
For example, when cartilage co–occurs with other ana-
tomical concepts, they are labelled as candidates for the
anatomy qualifier slot rather than the anatomy slot as
they otherwise would be, e.g.

Table 7 Mapping between template slots and semantic types

Slot Semantic type TRAK identifier Example

Finding Accident TRAK:0000362 Direct fall onto anterior tibia.

Clinical manifestation TRAK:0000092 There is some oedema superficial to the MCL.

Modality-related characteristic TRAK:0001447 The ACL returns abnormal signal.

Morphologic descriptor TRAK:0001456 There is slight thickening of the medial collateral ligament.

Normality descriptor TRAK:0001467 The articular cartilage is unremarkable.

Pathological condition TRAK:0000204 There is a small Baker’s cyst.

Physical examination TRAK:0000656 Positive McMurray’s.

Physiological condition descriptor TRAK:0001482 No evidence of articular cartilage damage.

Surgery TRAK:0000236 Presumably this had been excised during the ACL reconstruction.

Finding qualifier Clinical finding TRAK:0000091 Positive McMurray’s.

Composition descriptor TRAK:0001322 Incidental note is made of a simple popliteal cyst.

Distribution pattern TRAK:0001441 There is focal hyaline cartilage fissuring.

Orientation descriptor TRAK:0001529 This could represent a longitudinal split.

Quantity descriptor TRAK:0001468 There are also several loose bodies.

Size descriptor TRAK:0001485 There is a small Baker’s cyst.

Sport TRAK:0000323 HISTORY Squash injury.

Stage of healing descriptor TRAK:0001502 There is a healing tear of the medial collateral ligament.

Status descriptor TRAK:0001478 Focal area of severe chondromalacia in the medial compartment.

Temporal descriptor TRAK:0001488 There is acute ACL tear.

Certainty Certainty descriptor TRAK:0001422 This raises the possibility of a previous patella dislocation.

Visibility descriptor TRAK:0001495 Normal appearance of the articular cartilage.

Anatomy Anatomical entity TRAK:0001337 The menisci , collateral ligaments and the PCL are intact.

Anatomy qualifier Anatomical location descriptor TRAK:0001561 There is some oedema superficial to the MCL.

General anatomical term TRAK:0001581 There is a lot of oedema in the ACL fibres.

Meniscus zone TRAK:0001345 Complex tear of posterior horn of the lateral meniscus.

Text in a bold typeset represents instances of a given type
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There is early fissuring and irregularity of the < slot =
“anatomy” > hyaline cartilage</slot > of the < slot =
“anatomy qualifier” > lateral patellar facet</slot > .

This is based on an observation that the finding will
most likely apply to cartilage as an object, an observa-
tion drawn from the training data.

Additional text segmentation
Information about slot filler candidates is used to seg-
ment sentences yet again. We previously did not use lex-
ical clues such as and or with as they do not necessarily
indicate another statement about clinical findings, e.g.

The cruciate and collateral ligaments are <slot=
“finding”>intact</slot > .

However, now that the finding slot candidates have
been identified, we can combine this information with
such lexical clues in order to determine whether to use
them to segment a sentence. For example, when two
findings are separated by and as in:

There is no <slot=“finding”>oedema</slot> in the
lateral femoral condyle and the ACL is <slot=
“finding”>intact</slot>.

then the conjunction is used as a clue to split the sen-
tence into two segments:

1. There is no <slot=“finding”>oedema</slot> in the
lateral femoral condyle

2. and the ACL is <slot=“finding”>intact</slot>.

Slot filling
Finally, each segment is analysed in order to fill the
template. In the first step, all findings are identified
within a segment. Following the completion of the
two–step segmentation process, most segments will
contain at most two findings. The analysis of segments
with a single finding involves identification of candi-
dates for the following slots: finding qualifiers, negation,
certainty and anatomy, which are all assumed to be
linked directly to the given finding. Further analysis is
required only if there are anatomy qualifiers that need
to be linked to appropriate anatomy slot fillers. Simple
analysis of noun phrase structure is used to achieve
this. For example, in the following sentence:

There is marrow oedema at <NP>the <slot=
“anatomy qualifier”>medial</slot> aspect of the
<slot=“anatomy”>patella</slot></NP> and
<NP>the <slot=“anatomy qualifier”>lateral

</slot> aspect of the <slot=“anatomy”>lateral femoral
condyle</slot></NP>.

the structure of noun phrases, denoted here by the NP tag,
is used to link anatomy and anatomy qualifier slot fillers.
If no anatomy filler is found within a segment, an

attempt is made to identify potential filler within preced-
ing segments. In the following example:

There is a vertical longitudinal tear of the peripheral
aspect of the posterior third of the <slot=“anatomy”>
medial meniscus</slot>. The <slot=“finding”>tear
</slot> does not appear significant.

this approach would result in linking the mention of a
tear in the second sentence to medial meniscus men-
tioned in the previous sentence. In summary, when a
single finding is found within a segment, the pseudocode
given in Fig. 10 specifies the template filling rules.
When two findings are identified within a segment,

other slot fillers need to be linked to appropriate find-
ings. Using the end of the first finding as a boundary, the
remaining slot fillers are divided between the two find-
ings. In the following example where a radiologist failed
to enter a comma to separate two findings:

HISTORY <slot=“anatomy”>Lateral joint line</slot>
<slot = “finding” > tenderness</slot > <slot=“anatomy”>
meniscal</slot> <slot=“finding”>tear</slot>

this approach would correctly link tenderness to lateral
joint line and tear to meniscus. The exception is the use
of conjunction or, e.g.

There is <slot=“finding”>bone bruising</slot> or
<slot=“finding”>subchondral marrow oedema
</slot> at the <slot=“anatomy”>inferior patella</a>.

in which case the slot fillers are shared between the two
findings. In summary, when two findings are found
within a segment, the pseudocode given in Fig. 11 speci-
fies the template filling rules.

Results
Gold standard
A test dataset was created as a subset of 100 MRI re-
ports selected randomly from the dataset described pre-
viously and removed from consideration prior to system
development. Its sole purpose was to test the perform-
ance of the system on unseen data. In order to create a
gold standard, the test dataset was annotated manually
by two independent annotators (see Data).
Fleiss” Kappa coefficient [63] was used to measure the

inter–annotator agreement on slot fillers, which were
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compared at the text span level. It was calculated accord-
ing to the following formula:

k ¼ Ao−Ae
1−Ae

where Ao is observed agreement (i.e. the proportion of
items on which both annotators agree) and Ae is expected
chance agreement calculated under the assumption that:
(1) both annotators act independently, and (2) random
assignment of annotation categories to items, by either
coder, is governed by distribution of items across these
categories [64]. Fleiss’ Kappa coefficient is measured on a
−1 to 1 scale, where 1 corresponds to perfect agreement, 0
corresponds to chance agreement and negative values
indicate potential systematic disagreement between the
annotators.
We calculated the value of Fleiss’ Kappa coefficient

using an online tool [65]. The observed and expected
agreement were calculated to be Ao = 0.87, and Ae = 0.26
respectively, which resulted in K = 0.825 (see Fig. 12 for
marginal distribution of annotations across the slots).
Following the guidelines for interpreting Fleiss’ Kappa

(<0 poor, 0.01–0.20 slight, 0.21–0.40 fair, 0.41–0.60
moderate, 0.61–0.80 substantial, 0.81–1.00 perfect) [66],
the given value implies almost perfect agreement.
A gold standard was created by the third annotator

who independently resolved the inter–annotator dis-
agreements, ensured the consistency of annotations and
mapped individual annotations of text spans to the cor-
responding concepts in the TRAK ontology. Gold stand-
ard annotations were converted to filled IE templates
represented as JSON objects (see Tables 4 and 5 for
examples) in order to support their comparison to Knee-
Tex output during evaluation. Figure 13 shows the dis-
tribution of slot fillers in the gold standard.

Evaluation
We evaluated the system at the conceptual level, i.e. we
compared manually annotated and automatically ex-
tracted mappings to TRAK concepts. In other words, each
automatically filled template slot, represented by a TRAK
concept identifier, was classified either as a true positive if
it matched the slot filler in the gold standard or as a false
positive otherwise. Conversely, each slot filler in the gold
standard was classified as a false negative if was not

Fig. 10 Template filling algorithm. One template is filled for a text segment that contains a single finding. In line 17, a finding is self-contained if
it does not require anatomical localisation because it is implicitly stated by the finding itself. For example, Osgood-Schlatter disease is defined as
a traction apophysitis of the anterior tibial tubercle. To determine if an extracted finding is self-contained, it is compared against a predefined list
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extracted by the system. Given the total numbers of true
positives (TP), false positives (FP) and false negatives (FN),
precision (P) and recall (R) were calculated as the follow-
ing ratios:

P ¼ TP
TP þ FP

R ¼ TP
TP þ FN

The performance was evaluated using recall (R) and
precision (P), as well as their combination into the
F-measure:

F ¼ 2⋅P⋅R
P þ R

These values were micro–averaged across each slot
(vertical evaluation) as well as the whole entries that
take into account the links between the slot fillers (hori-
zontal evaluation). Table 8 provides evaluation results.
In order to assess the generalizability of the system we

conducted a series of stage–wise experiments in which we
removed new concepts identified from the training dataset
by using strategies 1–3. We specifically focused on
concepts outside of the finding descriptor class for two
reasons. Firstly, this class corresponds to the RadLex
descriptor branch of the RadLex hierarchy and its depend-
ency on the training data is minimal. Secondly, concepts
from this class are used to fill three “leaf” slots (finding

qualifier, anatomy qualifier and certainty – see Table 7)
that have no further dependencies (see Fig. 1) and as such
will have no ripple effect on the template filling unlike
finding and anatomy slots. For example, if finding is not
identified, it will affect text segmentation as well as linking
to other slot fillers. Therefore, the highest impact on
evaluation results would be caused by concepts outside
the finding descriptor branch.
Having identified just over 100 of such concepts, we

randomly selected 100 of them, randomized their order
and removed top k of these concepts (k = 10, 20, … ,
100) from the ontology, which was then used to run
KneeTex on the gold standard. Figure 14, provides a
comparison of evaluation results. As expected, complete-
ness of the ontology directly affected the recall of the
system. This was most obvious when frequently refer-
enced concepts such as body of meniscus (TRAK:0001346)
or joint effusion (TRAK:0001411) were removed. How-
ever, the frequency and meaning of these concepts
imply that they are of general relevance to the domain
and not the result of overfitting to the training dataset.
On the other side, the removal of less frequently re-
ferenced concepts did not have a profound effect on
recall. For example, after removing as many as 50 con-
cepts from the ontology, recall was still very high at
92.07 % dropping by 5.57 percent points. Precision
proved to be more stable reaching 94.48 % after

Fig. 11 Template filling algorithm. Two templates are filled for a text segment that contains two findings
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removing all 100 concepts dropping only by 3.52 per-
cent points.

Error analysis
Dictionary lookup
Some of the errors stem from incorrectly recognised
named entities. For example, in segment “his patella
tends to lie tilted laterally,” string similarity caused Path-
NER to incorrectly recognise patella tends as patellar
tendon, therefore failing to extract patella instead.

Coreference
Other errors are the consequence of unresolved core-
ference. For example, in the text segment “but there is
currently no evidence of a significant meniscal cyst,” the
following slot filler represents correctly extracted text:

However, if we look at the containing sentence:

There is a cleavage tear of the lateral meniscus at the
junction of the body and posterior horn which extends
through the body but there is currently no evidence of
a significant meniscal cyst.

then it becomes clear that the word meniscal here co–
refers with the previous mention of the lateral meniscus
and, therefore, should be interpreted as follows:

Preferred interpretation
Similarly, in sentence “There is some blunting of the
inner edge of the mid portion of the medial meniscus,”
the word mid was recognized as a synonym for middle
(TRAK:0001598). Its classification as an anatomical lo-
cation descriptor (TRAK:0001561) was used to fill the
anatomy qualifier slot as follows:

Fig. 12 Marginal distribution of annotations across the slots. “Not available” indicates a missing annotation
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Its literal interpretation as “an intermediate part or
section; an area that is approximately central within
some larger region” happens to be semantically cor-
rect. However, in the given context, the following an-
notation in the gold standard represents preferred
interpretation:

since body of meniscus (TRAK:0001346) most specific-
ally represents its middle third.

Negation
There were few cases where negation was not recog-
nised. For example, two findings were extracted from
the following sentence “The low signal of the anterome-
dial bundle seen in a normal ACL is completely absent”:

However, the system failed to make use of the clue
absent found at the end of the sentence to recognise that
these findings are actually negative. These errors will be
used to inform future improvements of the system.

Conclusions
In this paper, we described KneeTex, an ontology–driven
system for information extraction from narrative reports
that describe an MRI scan of the knee. The system ex-
hibited human–level performance on a gold standard.
Such performance can be attributed partly to the use of
a domain–specific ontology, which serves as a very fine–
grained lexico–semantic knowledge base and plays a piv-
otal role in guiding and constraining text analysis. In this
context, the ontology proved to be highly attuned to the
given sublanguage. The extent of knowledge engineering
involved in the development of domain–specific ontol-
ogies with sufficient detail and coverage for text mining
applications is known to present a major bottleneck in

Fig. 13 Distribution of annotations in the gold standard. Extracted text and corresponding ontology concepts
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deep semantic NLP. Therefore, many NLP systems com-
pensate for the lack of suitable semantic resources by
resorting to extensive syntactic analysis and heuristic ap-
proaches that operate at the level of the textual surface.
We have adopted an alternative approach based on a set

of strategies that can be used to systematically expand the
coverage of existing ontologies or to develop them from
scratch. Three of these strategies are data–driven and as
such are more likely to ensure that the ontology effectively
supports the intended NLP application. Each data–driven
strategy utilises a different approach to extracting the
relevant terminology from the data either manually or
automatically. The fourth strategy is based on integration
of concepts from other relevant knowledge sources. The
two main aims of this strategy are: (1) to avoid the overfit-
ting of the ontology to limited data available, and (2) to
provide an initial taxonomic structure to incorporate new
concepts.
In this study, we illustrated how these strategies were

implemented in practice to expand the coverage of the
TRAK ontology to make it suitable for a specific NLP

application. The evaluation results confirm that KneeTex
succeeded in making effective use of the ontology to
support IE from knee MRI reports. Previously, we inte-
grated TRAK into web and smartphone applications
that provide remote support for knee rehabilitation and
for collection of data that can support randomised con-
trol trials. Here we have demonstrated how the ontology
was repurposed to support an NLP application within a
clinical setting. In both cases, formally structured and
coded datasets can be easily integrated to support
large–scale multi–faceted epidemiologic studies of knee
conditions.

Availability and requirements
Project name: KneeTex
Project home page: http://www.cs.cf.ac.uk/kneetex
Operating system(s): Platform independent
Programming language: Java
Other requirements: None
License: FreeBSD
Any restrictions to use by non-academics: None

Endnotes
1The values given in brackets refer to standard deviation.
2Mixup is a pattern language for text spans, i.e. token

sequences. Keyword defSpanType defines a span type
whose structure is specified to the right of the equal
sign, where square brackets [ and ] indicate the start and
end of a span respectively, eqi(‘foo’) matches the token
foo and … matches any sequence of tokens. Postfix oper-
ator ? specifies that the preceding token can be matched
either once or not at all. Finally, operator || is used to
specify alternative patterns.

Fig. 14 Stage–wise experiments. A total of ten concepts were incrementally removed from the ontology

Table 8 Evaluation results. Performance of the system on the
test set

Slot TP FP FN P R F

Finding 1251 5 3 99.60 % 99.76 % 99.68 %

Finding qualifier 636 19 15 97.10 % 97.70 % 97.40 %

Negation 91 1 4 98.91 % 95.79 % 97.33 %

Certainty 232 8 2 96.67 % 99.15 % 97.89 %

Anatomy 1313 30 38 97.77 % 97.19 % 97.48 %

Anatomy qualifier 439 18 34 96.06 % 92.81 % 94.41 %

Overall 3962 81 96 98.00 % 97.63 % 97.81 %
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