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Abstract

We apply the coupled cluster method to high orders of approximation and exact diagonalizations

to study the ground-state properties of the triangular-lattice spin-s Heisenberg antiferromagnet.

We calculate the fundamental ground-state quantities, namely, the energy e0, the sublattice mag-

netization Msub, the in-plane spin stiffness ρs and the in-plane magnetic susceptibility χ for spin

quantum numbers s = 1/2, 1, . . . , smax, where smax = 9/2 for e0 and Msub, smax = 4 for ρs and

smax = 3 for χ. We use the data for s ≥ 3/2 to estimate the leading quantum corrections to the

classical values of e0, Msub, ρs, and χ. In addition, we study the magnetization process, the width

of the 1/3 plateau as well as the sublattice magnetizations in the plateau state as a function of the

spin quantum number s.
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I. INTRODUCTION

In the 1970s Anderson and Fazekas[1, 2] first considered the quantum spin-1/2 Heisen-

berg antiferromagnet (HAFM) for the geometrically frustrated triangular lattice and they

proposed a liquid-like ground state (GS) without magnetic long-range order (LRO). Later

on it was found that the spin-1/2 HAFM on the triangular lattice possesses semi-classical

three-sublattice Néel order, see, e.g., Refs. [3–19]. However, the sublattice magnetization

Msub is drastically diminished in the s = 1/2 model [11, 14–18] because of the interplay

between quantum fluctuations and strong frustration. The small magnetic order parameter

indicates that the semi-classical magnetic LRO is fragile and that small additional terms in

the Hamiltonian may destroy the magnetic LRO, see, e.g., Refs. [20–28].

Although very precise data for the relevant GS quantities are available for unfrustrated

HAFM’s on bipartite two-dimensional lattices, see, e.g., Refs. [29–32] related to the square

lattice, the corresponding data for the triangular lattice are less precise. This lack of precision

is related to the strong frustration in the system that, e.g., does not allow one to apply

the quantum Monte Carlo method. Moreover, the spin-wave approach is less efficient for

frustrated lattices than it is for non-frustrated lattices. Nevertheless, spin-wave theories

are considered as appropriate, in particular, if the spin quantum number s is not s =

1/2 or s = 1. Perhaps the most accurate result for the GS order parameter (i.e., the

sublattice magnetization Msub) for s = 1/2 has been obtained by a recent density matrix

renormalization group study [16], where a result of Msub = 0.205 has been found.

The continuous interest in the triangular-lattice HAFM is (last but not least) also re-

lated to a fluctuation-induced magnetization plateau at 1/3 of the saturation magnetization

[33–53]. In particular, two model compounds, namely Ba3CoSb2O9 with s = 1/2 and

Ba3NiSb2O9 with s = 1, have been shown very recently to demonstrate an excellent agree-

ment between the experimentally measured magnetization curves and those curves from

theoretical predictions, see Refs. [39, 45, 46] for s = 1/2 and Refs. [44, 48] for s = 1.

In the present paper we consider the Hamiltonian

H =
∑

〈ij〉

sisj − h
∑

i

szi , (1)

where the sum runs over nearest-neighbor bonds 〈ij〉 on the triangular lattice, (si)
2 =

s(s + 1), and h is an external magnetic field. We consider arbitrary spin quantum number
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s. We use the coupled cluster method (CCM) to high orders of approximation to determine

the GS properties in zero magnetic field, i.e., the GS energy per spin e0, the sublattice

magnetizationMsub (order parameter), the spin stiffness ρs, and the uniform susceptibility χ.

These quantities constitute the fundamental parameters determining the low-energy physics

of the triangular Heisenberg antiferromagnet. Moreover, the stiffness and the susceptibility

are used as input parameters in scaling functions for various observables [54].

In addition to the zero-field quantities we also consider the magnetization process M(h)

and determine the 1/3 plateau in the M(h)-curve. We complement the CCM calculations

by carrying out Lanczos exact diagonalization of finite lattices.

A B

C

A B

CC

A B

αααα

I II III
magnetic

field

β

FIG. 1: Reference states used for the CCM calculations.

II. METHODS

A. Lanczos exact diagonalization

The Lanzcos exact diagonaliazion (ED) is one of the most useful methods that can be

used to investigate frustrated quantum spin systems, see, e.g., Refs. [55–62]. Although

lattices of size N = 36 are common for ED calculations for spin s = 1/2, the system size

N accessible for ED shrinks significantly, see, e.g., Refs. [48, 57, 60, 63–65]. Hence, we use

the ED here in order to complement the results of the CCM (that yields results in the limit

N → ∞). We use J. Schulenburg’s spinpack code[66] to calculate the magnetization curves

for s = 1/2, 1, . . . , 5/2. The maximum lattice size for s = 2 and 5/2 is N = 12, whereas for

s = 3/2 we have results for N = 12, 18, 21. For s = 1 the largest lattice we can consider is

N = 27. We use these data to analyze the s-dependence of the 1/3 plateau.
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B. Coupled cluster method

The coupled cluster method (CCM) is a universal many-body method widely used in

various fields of quantum many-body physics, see, e.g. Refs. [67, 68]. Meanwhile, the CCM

has been established as an effective tool in the theory of frustrated quantum spin systems,

see, e.g., the recent papers [14, 27, 39, 48, 69–80]. Here we illustrate only some features of

the CCM relevant for the present paper. For more general information on the methodology

of the CCM, see, e.g., Refs. [68, 81–85].

The CCM calculation starts with the choice of a normalized reference state |Φ〉. We choose

the classical GS of the model as reference state, which is well known for the triangular HAFM

for arbitrary fields, see, e.g., Refs. [35, 39, 40] and Fig. 1. For zero field it is three-sublattice

Néel state, i.e., state I with α = 60o in Fig. 1. For finite magnetic fields non-collinear planar

states with field dependent pitch angles α and β are classical GS’s, see Fig. 1. The reference

state is a collinear state (so-called up-up-down state, see state II in Fig. 1) only at the 1/3

plateau. With respect to the corresponding reference state, we then define a set of mutually

commuting multispin creation operators C+
I , which are themselves defined over a complete

set of many-body configurations I. We perform a rotation of the local axis of the spins such

that all spins in the reference state align along the negative z axis. The specific form of the

spin-operator transformation depends on the pitch angles of the reference state. In this new

set of local spin coordinates the reference state and the corresponding multispin creation

operators C+
I are given by

|Φ̂〉 = | ↓↓↓ · · · 〉; C+
I = ŝ+n , ŝ+n ŝ

+
m , ŝ+n ŝ

+
mŝ

+
k , . . . , (2)

where the indices n,m, k, . . . denote arbitrary lattice sites. In the rotated coordinate frame

the Hamiltonian becomes dependent on the pitch angles. With the set {|Φ〉, C+
I } the CCM

parametrization of the exact ket and bra GS eigenvectors |Ψ〉 and 〈Ψ̃| of the many-body

system is given by

|Ψ〉 = eS|Φ〉 , S =
∑

I 6=0

aIC
+
I (3)

〈Ψ̃| = 〈Φ|S̃e−S , S̃ = 1 +
∑

I 6=0

ãIC
−
I , (4)

where C−
I =

(

C+
I

)†
. The CCM correlation operators, S and S̃, contain the correlation coef-
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ficients, aI and ãI , which can be determined by the CCM ket-state and bra-state equations

〈Φ|C−
I e

−SHeS|Φ〉 = 0 ; ∀I 6= 0 (5)

〈Φ|S̃e−S[H,C+
I ]e

S|Φ〉 = 0 ; ∀I 6= 0. (6)

Note that each ket-state equation belongs to a specific creation operator

C+
I = s+n , s+n s

+
m, s+n s

+
ms

+
k , · · · , i.e., it corresponds to a specific set (configuration) of

lattice sites n,m, k, . . . . By using the Schrödinger equation, H|Ψ〉 = E|Ψ〉, we can

write the GS energy as E = 〈Φ|e−SHeS|Φ〉. The sublattice magnetization is given by

Msub = −(1/N)
∑N

i 〈Ψ̃|szi |Ψ〉, where szi is expressed in the transformed coordinate system.

The total magnetization M aligned in the direction of the applied magnetic field h in terms

of the global axes prior to rotation of the local spin axes is given byM = (MA+MB+MC)/3,

whereMA, MB, andMC are the magnetizations of the three individual sublattices, cf. Fig. 1,

given by

MA,B,C =
1

NA,B,C

∑

iA,B,C

〈Ψ̃|sziA,B,C
|Ψ〉, (7)

where the index iA runs over all NA sites on sublattice A, the index iB runs over all NB

sites on sublattice B, and the index iC runs over all NC sites on sublattice C, and N =

NA+NB+NC . The CCM results for the ground state energy and the total magnetization as

a function of the magnetic field can be used to calculate the uniform magnetic susceptibility,

given by

χ ≡ dM

dh
= − 1

N

d2E

dh2
. (8)

Note that we consider here χ as susceptibility per site [86].

The GS energy depends (in a certain CCM approximation, see below) on the pitch angles.

In the quantum model the pitch angles may be different to the corresponding classical values.

Therefore, we do not choose the classical result for the pitch angles in the quantum model.

Indeed, we consider them as a free parameter in the CCM calculation, which has to be

determined by minimization of the CCM GS energy with respect to the pitch angles. An

exception is the zero-field case, where the pitch angle is fixed to α = 60o (the three-sublattice

Néel state).

The spin stiffness ρs measures the increase of energy rotating the order parameter of

a magnetically long-range ordered system along a given direction by a small twist (pitch)
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angle θ per unit length, i.e.,

E(θ)

N
=

E(θ = 0)

N
+

1

2
ρsθ

2 +O(θ4), (9)

where E(θ) is the ground-state energy as a function of the twist angle. For the triangular

lattice the twist is imposed along a lattice basis vector and it is within the plane defined

by the order parameter, see Refs. [8, 10], where the twist along both directions leads to

identical results [87].

For the many-body quantum system under consideration it is necessary to use approx-

imation schemes in order to truncate the expansions of S and S̃ in Eqs. (3) and (4) in a

practical calculation. We use the well established SUBn-n approximation scheme, cf., e.g.,

Refs. [14, 27, 39, 48, 70–80, 82–85], where the correlation operators contain no more than n

spin flips spanning a range of no more than n contiguous lattice sites [88].

Using an efficient parallelized CCM code [89] we are able to solve the CCM equations up

to SUB10-10 for s = 1/2 (where, e.g., for the zero-field case reference state a set of 1 054 841

coupled ket-state equations has to be solved). For s > 1/2 the number of CCM equations

increases noticeably. Hence, the highest order of approximation is then SUB8-8 (where, e.g.,

for the susceptibility for s = 3 a set of 2 179 007 equations has to be solved).

The SUBn-n approximation becomes exact only for n → ∞. We extrapolate the ‘raw’

SUBn-n data to n → ∞. Much experience exists relating to the extrapolation of the

GS energy per site e0(n) ≡ E(n)/N , the magnetic order parameter Msub, the spin stiff-

ness ρs, and the susceptibility χ. Thus e0(n) = a0 + a1(1/n)
2 + a2(1/n)

4 is a very well-

tested extrapolation ansatz for the GS energy per spin [70–73, 78, 83, 85]. An appropriate

extrapolation rule for the magnetic order parameter of antiferomagnets with GS LRO is

Msub = b0 + b1(1/n) + b2(1/n)
2 [39, 77, 78, 83, 85]. For the stiffness ρs as well as for the

susceptibility χ we use the same rule as for Msub, i.e., X(n) = c0 + c1(1/n) + c2(1/n)
2,

X = ρs, χ, which is able to describe the asymptotic behavior of the CCM-SUBn-n data for

ρs well, see Refs. [14, 71], and χ, see Ref. [39].

The selection of the SUBn-n data included in the extrapolation is a subtle issue. Often it

is argued that the lowest-order data (i.e., SUB2-2 and SUB3-3) ought to be excluded from

the extrapolation because these points are rather far from the asymptotic regime [27, 76, 78].

This argument is particularly valid for models which include larger-distance exchange bonds

(e.g., so-called J1-J2 models) [27, 71, 72, 74, 75]. However, for the triangular Heisenberg
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antiferromagnet with only nearest-neighbor bonds even the lowest approximation orders fit

well to the extrapolation [14, 39, 48]. Another point is the odd-even problem, i.e., for odd

and even numbers n of the SUBn-n approximation the extrapolation may have different

fit parameters [73, 78]. However, this problem occurs primarily for bipartite systems (with

collinear reference states, where no odd-numbered spin flips enter the correlation operators S

and S̃), whereas for noncollinear reference states (where odd-numbered spin flips are present

in S and S̃) relevant for many frustrated systems both, odd and even SUBn-n, might be

combined in one and the same extrapolation formula [14, 76, 78].

In order to fit the data to the extrapolation formulas given above (which contain three

unknown parameters), it is desirable (as a rule) to have at least four data points to obtain a

robust and stable fit. To obey this rule we apply here the above given extrapolation formulas

using (i) even n = 2, 4, 6, . . . and (ii) odd and even n = 3, 4, 5, 6, 7, . . .[90]. The maximum

approximation level SUBnmax-nmax for s = 1/2 is nmax = 10 for e0 and Msub and nmax = 9

for χ and ρs, whereas for s > 1/2 we have nmax = 8. In the following we call case (i) ’extra1’

and case (ii) ’extra2’. The difference between both cases can be considered as a measure

of accuracy of our CCM results. To illustrate our extrapolation procedure, we present in

Fig. 2 the extrapolations of e0, Msub, χ, and ρs for s = 1/2 and s = 1. Obviously, the

extrapolations work very well for e0, Msub, and ρs, and, both schemes, ’extra1’ and ’extra2’,

lead to very similar results. There is some scattering of the SUBn-n data only for χ, and, as

a consequence, there is a visible difference between the extrapolations ’extra1’ and ’extra2’.

III. RESULTS

A. The zero-field case

In this section we present CCM results for the GS energy per spin e0, the sublattice

magnetization Msub (order parameter), the spin stiffness ρs, and the uniform susceptibility

χ for spin quantum numbers s = 1/2, 1, . . . , 9/2 (for e0 and Msub), for s = 1/2, 1, . . . , 4 (for

ρs ), and for s = 1/2, 1, . . . , 3 (for χ). Moreover, we use the data for s ≥ 3/2 to estimate

the leading quantum corrections to the classical values to compare with the 1/s spin-wave

expansion [5, 6, 8, 17].

The data for the GS energy and the sublattice magnetization are collected in Table I.
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TABLE I: Extrapolated CCM results for the GS energy per spin, e0|n→∞, the GS sublattice

magnetization, Msub|n→∞, the spin stiffness, ρs|n→∞, and the susceptibility, χ|n→∞. We mention

that the spin-wave velocity cswt can be calculated from ρs and χ by using the hydrodynamic relation

c2swt = ρs/χ.

extra1 extra2

e0/s
2 Msub/s ρs/s

2 χ e0/s
2 Msub/s ρs/s

2 χ

s = 1/2 -2.2056 0.4307 0.3103 0.0652 -2.2045 0.4248 0.2990 0.0553

s = 1 -1.8384 0.7303 0.6429 0.0956 -1.8367 0.7350 0.6572 0.0902

s = 3/2 -1.7234 0.8169 0.7636 0.0996 -1.7223 0.8232 0.7757 0.0972

s = 2 -1.6667 0.8628 0.8246 0.1023 -1.6659 0.8695 0.8342 0.1012

s = 5/2 -1.6329 0.8909 0.8610 0.1041 -1.6323 0.8973 0.8687 0.1035

s = 3 -1.6105 0.9096 0.8850 0.1054 -1.6000 0.9155 0.8913 0.1050

s = 7/2 -1.5946 0.9229 0.9019 - -1.5941 0.9282 0.9071 -

s = 4 -1.5826 0.9328 0.9145 - -1.5823 0.9376 0.9188 -

s = 9/2 -1.5734 0.9404 - - -1.5731 0.9448 - -

The difference between both extrapolation schemes, ’extra1’ and ’extra2’, is largest for lower

spin quantum numbers s, although it is still small for all values of s. In the extreme quantum

limit s = 1/2 the density matrix renormalization group result [16] Msub/s = 0.410 is slightly

lower than our CCM result.

Let us now compare our data for e0 and Msub with recent higher-order spin-wave results

by Chernyshev and Zhitomirsky [17]. Chernyshev and Zhitomirsky found that e0(s) =

−1.5s2(1+0.218412/s+0.0053525/s2) and Msub(s) = s(1−0.261303/s+0.0055225/s2). We

fit our extrapolated CCM data for s = 3/2, 2, . . . , 9/2 using the ansatz

X(s) = X|s→∞ (1− x1/s− x2/s
2), X = e0,Msub. The classical values are e0|s→∞ = −3s2/2,

and Msub|s→∞ = s.

The values for the 1/s expansion parameters x1 and x2 are listed in Table II and the

corresponding results are depicted in Fig. 3. For the GS energy x1 and x2 are in very

good agreement with the spin-wave results [17]. The leading coefficient x1 for the order
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FIG. 2: Extrapolation of the CCM-SUBn-n for the GS energy e0 (a), the sublattice magnetization

Msub (b), the susceptibility χ (c), and the spin stiffness ρs (d) for spin quantum numbers s = 1/2

and 1 using two different extrapolation schemes (labeled by ’extra1’ and ’extra2’), cf. main text.

parameter also fits well to the spin-wave term. However, we obtain (small) negative values

instead of a (small) positive one for the next-order coefficient x2. The good agreement

between the spin-wave and the CCM results for the GS energy is also evident in Fig. 3(a).

Moreover, the 1/s expansion up to second order yields reasonable results for e0 even for

the extreme quantum case s = 1/2. On the other hand, the deviation for the sublattice

magnetization becomes noticeable for s < 3/2, see Fig. 3(b). Thus, by contrast to the

GS energy, the 1/s expansion of Msub/s up to order s−2 leads to values for s = 1/2 with
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FIG. 3: Extrapolated CCM data (schemes ’extra1’ and ’extra2’, see main text) as a function

of 1/s compared with higher-order spin-wave theory (SWT, blue line) taken from Ref.[17]. The

symbols represent the CCM data points, the corresponding red and black lines show the fit function

X(s) = X|s→∞

(

1− x1/s− x2/s
2
)

, where the data for s ≥ 3/2 were used for the fit. (a): GS energy

e0. (b) Sublattice magnetization Msub (the green symbol shows the density matrix renormalization

group result (DMRG) for s = 1/2 from Ref. [16]).

limited accuracy. We know that the sublattice magnetization of the unfrustrated square-

lattice s = 1/2 Heisenberg antiferromagnet obtained by higher-order spin-wave theory[30]

agrees well with quantum Monte Carlo[29] and CCM[32] results. Thus the deviation for

the triangular lattice might be attributed to the enhanced quantum fluctuations caused by

frustration leading to a particularly small value of Msub for s = 1/2.

Next we discuss the in-plane spin stiffness ρs and the in-plane magnetic susceptibility χ.

Results are given in Table I. As already mentioned above, the extrapolation of the CCM-

SUBn-n data works well for ρs, although it is less accurate for χ, i.e. for χ the deviation

between the schemes ’extra1’ and ’extra2’ is noticeable, cf. Table I and Fig. 2. The spin-wave

large-s relations are ρs = s2(1− 0.3392/s) (Ref. [8]) and χ = (1/9)(1− 0.1425/s) (Ref. [6]).

Fitting the data from Table I for s ≥ 3/2 using the ansatzX(s) = X|s→∞ (1− x1/s− x2/s
2),

X = ρs, χ, ρs|s→∞ = s2, and χ|s→∞ = 1/9, gives values for the 1/s expansion parameters

10



TABLE II: Parameters x1 and x2 of the 1/s expansion X(s) = X|s→∞

(

1− x1/s− x2/s
2
)

obtained

from the extrapolated CCM results for the GS energy e0, the sublattice magnetization Msub, the

spin stiffness ρs and the susceptibility χ.

e0 Msub

x1 x2 x1 x2

extra1 0.2176 0.0071 -0.2671 -0.0120

extra2 0.2186 0.0073 -0.2416 -0.0362

ρs χ

x1 x2 x1 x2

extra1 -0.3355 -0.0292 -0.1587 0.0045

extra2 -0.3166 -0.0297 -0.1440 -0.0662

x1 and x2 which are listed in Table II. The leading coefficient x1 fits reasonably well to

the spin-wave term. The deviation between the schemes ’extra1’ and ’extra2’ for χ results

in different signs of the second-order term x2. We show the 1/s dependence of ρs and χ

in Fig. 4. It is obvious that the large-s approach works surprisingly well for ρs down to

s = 1/2, whereas it seems to fail for χ for s = 1/2.

B. The magnetization process

As already mentioned in the introduction, the magnetization process M(h) for s = 1/2

was investigated previously in numerous papers [34–36, 38, 39, 41, 42, 45–47, 49, 51–53]. The

M(h) curve for the specific case s = 1 was much less studied [48, 60]. Several quasi-classical

large-s approaches[35, 40, 42, 50, 52] can be used to obtain an estimate for M(h) and the

1/3 plateau also for lower spin quantum numbers. However, it is likely that these results

have limited accuracy (see also the discussion in Sec. IIIA). We mention again that very

good agreement between experimental and theoretical CCM data for s = 1/2 and s = 1 has

been reported [45, 48] very recently.

Let us mention that the CCM calculations of the M(h) curves are extremely time con-
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FIG. 4: Extrapolated CCM data (schemes ’extra1’ and ’extra2’, see main text) for the spin stiffness

ρs (a) and the susceptibility χ (b) as a function of 1/s compared with spin-wave theory (SWT, blue

line) taken from Ref. [8] (for ρs) and Ref. [6] (for χ). The symbols represent the CCM data points,

the corresponding red and black lines show the fit function X(s) = X|s→∞

(

1− x1/s− x2/s
2
)

,

where for the fit the data for s ≥ 3/2 were used.

suming, because the field dependent quantum pitch angles for each value of the magnetic

field have to be determined by minimization of the CCM-SUBn-n GS energy with respect

to the pitch angles. Hence we consider only even SUBn-n approximations until n = 6. We

have data for SUB8-8 only for the critical fields, hc1 and hc2, which bound the 1/3 plateau,

and only for the most interesting extreme quantum cases of s = 1 and s = 1/2. We show

the CCM-SUB6-6 magnetization curves for s = 1/2, 1, 3/2, 2, and 5/2 in the main panel of

Fig. 5. The width of the 1/3 plateau shrinks with increasing spin quantum number s which

is clearly seen in Fig. 5. From the experimental point of view this shrinking of the plateau

width is relevant. Thus for s = 2 the plateau width (hc2 − hc1)/s is only about 25% of the

width for s = 1/2 which makes its detection for large s by measurements at low (but finite)

temperatures more challenging. From Fig. 5 it is obvious that all curves for s > 1/2 are

close to each other. Below and above the plateau they show almost the classical linear h

dependence of M . The s = 1/2 curve is well separated and shows a pronounced deviation
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FIG. 5: Main: The magnetization curve calculated within CCM-SUB6-6 approximation for

s = 1/2, 1, 3/2, 2 and 5/2. Inset: The magnetization curve for s = 3/2 calculated with exact

diagonalization for finite lattices of N = 18 and 21 sites compared with the CCM-SUB6-6 data.

from linearity. The curves shown in the inset demonstrate that CCM and ED data agree

well.

The CCM approach allows to calculate the individual sublattice magnetizations MA =

MB and MC as well as the quantum pitch angles α and β, cf. Fig. 1. These quantities, are

accessible, in principle, in neutron scattering experiments. They provide a deeper insight

in the details of the magnetization process and the role of quantum fluctuations. We show

MA,MB andMC in Fig. 6 and α and β in Fig. 7. An interesting feature is the non-monotonic

behavior of MC for h < hc1 (present only in the quantum model) and of MA,MB and α

above the plateau. There is a strong increase in the slopes (except for MC and β near hc1)

as one one approaches the plateau from below or above.

For the collinear plateau state at one third of the saturation (the so-called ’up-up-down’

state, see state II in Fig. 1) we have calculated SUBn-n data of the sublattice magnetizations

Mup = MA = MB and Mdown = MC up to nmax = 10 for s = 1/2 and 1 and up to nmax = 8
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for s = 3/2, 2, . . . , 4. Again we perform an extrapolation of the CCM-SUBn-n data applying

MX = b0 + b1(1/n) + b2(1/n)
2, X = A,B,C. We use only even SUBn-n approximations for

the extrapolation and the corresponding scheme is therefore ’extra1’ (see Sec. II B). The

resulting data forMA = MB andMC are given in Table III. We find thatMup is always larger
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than |Mdown|. In particular, the difference in the magnitude of both quantities is remarkably

large for s = 1/2. As for the zero-field case, the sublattice magnetizations within the plateau

state are reduced by quantum fluctuations. This reduction is, however, much smaller than

that for the canted zero-field state.

We obtain the 1/s dependence for MA = MB and MC by fitting our extrapolated CCM

data for s ≥ 3/2 using (as previously) the ansatz X(s) = X|s→∞ (1− x1/s− x2/s
2), X =

MA,B,C . The classical values are MA,B|s→∞ = s and MC |s→∞ = −s. The values for 1/s

expansion parameters x1 and x2 are x1 = −0.1003 and x2 = 0.0091 for MA,B and x1 =

+0.2006 and x2 = −0.0182 for MC and the corresponding 1/s behavior is shown in Fig. 8.

TABLE III: Extrapolated CCM results (extrapolation scheme ’extra1’) for the sublattice magne-

tizations in the plateau state, MX |n→∞, X = A,B,C.

s = 1/2 s = 1 s = 3/2 s = 2 s = 5/2 s = 3 s = 7/2 s = 4

MA,B 0.8392 0.9095 0.9372 0.9521 0.9614 0.9676 0.9721 0.9755

MC -0.6783 -0.8190 -0.8743 -0.9043 -0.9227 -0.9352 -0.9441 -0.9509

We shall now discuss in some detail the critical fields, hc1 and hc2, that define the position

and the width of the plateau in the M(h) curve. These results are also relevant for the

experimental searches of the magetization plateau in magnetic compounds with triangular-

lattice structure, cf. Refs. [44–46, 48]. We present our data in Table IV and show the 1/s

dependences of hc1 and hc2 in Fig. 9. In addition to our CCM and ED data, we show also

relevant data for hc1 and hc2 from Refs. [35, 42, 51, 52] for comparison. The monotonic

shrinking of the plateau widths known for the large-s approaches is also clearly seen in our

CCM and ED data.

We notice that the plateau ends at hc1 and hc2 behave differently with increasing s.

Although the lower plateau end is only slightly shifted, the shift of the upper one at hc2 is

more pronounced, see also Figs. 5-7. We also see that the data for hc1 and hc2 provided in the

literature for the extreme quantum case s = 1/2 exhibit a rather large amount of scattering.

As already found for the zero-field sublattice magnetization and susceptibility, cf. Sec. III A,

the quasi-classical large-s approaches [35, 42, 52] for s = 1/2 noticeably deviate from our

data directly calculated for s = 1/2. Moreover, the recent real-space perturbation theory[52]
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.

yields an 1/s-dependence of hc1 and hc2 that significantly deviates from the spin-wave, ED

as well as the CCM behavior. On the other hand, the recent large-scale cluster mean-field

approach of Ref. [51] yields hc1/s = 2.690 and hc2/s = 4.226 for the s = 1/2 case, and these

values are close to the CCM-SUB8-8 results.

IV. SUMMARY

The HAFM on the triangular lattice is a basic model of quantum magnetism. The

theoretical treatment of this frustrated spin model is challenging and the precision of the

existing data for the basic parameters determining the low-energy physics of the model

is less than that of corresponding unfrustrated models such as the square-lattice HAFM.

Furthermore several magnetic compounds exist, see e.g. Refs. [44–46, 91–94], that are

described by this model. Hence, there is a need to improve the accuracy of the data available
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TABLE IV: Critical fields hc1 and hc2, where the one-third plateau begins and ends. Note that for

s = 1/2 ED data also for N = 36 and 39 are available [36, 38, 61].

CCM

SUB2-2 SUB4-4 SUB6-6 SUB8-8

s hc1/s hc2/s hc1/s hc2/s hc1/s hc2/s hc1/s hc2/s

1/2 2.382 4.344 2.624 4.482 2.714 4.370 2.740 4.290

1 2.727 3.617 2.788 3.674 2.809 3.648 2.814 3.637

3/2 2.826 3.405 2.854 3.440 2.862 3.429 – –

2 2.873 3.303 2.888 3.327 2.892 3.322 – –

5/2 2.900 3.242 2.909 3.261 2.911 3.257 – –

3 2.917 3.202 2.923 3.217 2.925 3.214 – –

ED

N = 12 N = 18 N = 21 N = 27

s hc1/s hc2/s hc1/s hc2/s hc1/s hc2/s hc1/s hc2/s

1/2 2.615 4.934 2.805 4.578 2.794 4.425 2.745 4.382

1 2.816 3.916 2.879 3.786 2.851 3.717 2.817 3.695

3/2 2.864 3.613 2.913 3.523 2.890 3.479 – –

2 2.893 3.461 2.932 3.391 – – – –

5/2 2.911 3.369 – – – – – –

3 2.924 3.308 – – – – – –

from theoretical investigations also from the experimental point of view.

In the present paper we present large-scale CCM calculations for the basic GS parameters,

energy e0, sublattice magnetization Msub, in-plane spin stiffness ρs and in-plane magnetic

susceptibility χ, for arbitrary spin quantum number s. In addition to these zero-field quan-

tities, we also consider the magnetization process. It is known from many previous studies

for other frustrated quantum spin models, such as the kagome HAFM and the J1-J2 square-

lattice HAFM, that the CCM provides accurate GS results. Hence, the results presented
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from Ref. [51] and Ref. [42], respectively.

here will contribute to improve available theoretical data, especially for the extreme quan-

tum cases s = 1/2 and s = 1 where large-s (spin-wave) theories do not to provide sufficently

precise data.

Although the present study is purely theoretical, the data presented here might be used to

interpret experimental results for magnetic compounds that are described by the triangular-

lattice HAFM, see e.g. Refs. [44–46, 91–94]. As already mentioned above, the compounds

Ba3CoSb2O9 and Ba3NiSb2O9 are described well by the Heisenberg model considered here

with spin quantum number s = 1/2 (Ba3CoSb2O9)[45] and s = 1 (Ba3NiSb2O9)[44, 48]. We

remark that very good agreement between the theoretical CCM data and experimental data

has been reported for these cases. The CCM data presented here for s = 3/2 and s = 2

might be useful for further studies of the magnetic compounds La2Ca2MnO7 (with s = 3/2)
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[93, 94] and FeGa2S4 (with s = 2) [91, 92].
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