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Abstract

Humans are often able to draw plausible conclu-
sions from incomplete information based on back-
ground knowledge about the world. As a substan-
tial part of this background knowledge is of a lex-
ical nature, a crucial challenge in automating plau-
sible reasoning consists in learning how different
words are semantically related. This paper argues
that most of the lexical relations that we need for
plausible reasoning can be identified with qualita-
tive spatial relations in semantic spaces, i.e. high-
dimensional Euclidean spaces in which words are
represented as geometric objects. This leads us to
treat lexical inference as a qualitative spatial rea-
soning problem, and allows us to combine dis-
tributional representations with relation extraction
methods and existing lexical resources.

1 Introduction

In applications such as question answering, semantic web
search and legal informatics, there is a need for systems that
can draw plausible conclusions from knowledge that may
be vague, inconsistent, uncertain or ambiguous. There are
at least two fundamental reasons why classical logic is ill-
suited for this purpose. First, while classical logic is aimed
at reasoning about tautologies, human knowledge rather
tends to capture statistical regularities (e.g. “most birds can
fly”). This discrepancy is well-understood and has been ad-
dressed in a variety of frameworks for default reasoning [25;
27; 22] and probabilistic extensions of classical logic [18;
28]. Second, in most applications, available knowledge is
based on natural language, in the sense that the atomic con-
cepts, propositions or predicates which are considered tend
to correspond to natural language concepts (e.g. because this
knowledge has been provided by an expert or has been ex-
tracted from text documents). In such cases, humans often
rely on background knowledge about the meaning of the un-
derlying concepts to find plausible conclusions. Consider the
following example:

Subsumption: Knowing that a restaurant only sells pizza,
we conclude that it only sells Italian food.

Here we rely on the knowledge that pizzas are a kind of Italian

food. Such subsumption relationships are available in many

existing lexical resources such as WordNet!, ConceptNetz,
CYC?, and many domain-specific taxonomies. Using sub-
sumption relations for logical reasoning is straightforward,
although default logics may be more suitable for this purpose
than classical logic, since most subsumption relations are not
perfect (e.g. the restaurant could also sell American-style piz-
zas). Inference methods for reasoning about natural language
statements based on subsumption relations have also been
proposed. For example, the natural logic from [24] can be
used to extend subsumption at the word level to subsumption
of phrases, e.g. deriving that “only sells pizza” entails “only
sells Italian food” while “does not sell pizza” is entailed by
“does not sell Italian food”. Beyond subsumption reasoning,
similarity based reasoning is one of the most common forms
of lexical inference:

Similarity: Knowing that Mary enjoys hiking in the Alps,
we conclude that she would also enjoy hiking in the
Pyrenees.

where we rely on the knowledge that the Alps and Pyre-
nees share many characteristics. In general, the intuition
behind similarity based reasoning is that from “if A then
B” and “A is similar to A*”, we can conclude that “if A*
then B is likely”. In some cases the conclusion can be
weakened to a statement of the form “if A* then a prop-
erty similar to B should hold”. This inference pattern has
been well-studied in the context of fuzzy set theory [43;
30; 121, although similarity based reasoning has also been
implemented using neural networks [38] and in probabilis-
tic settings [4]. Clearly, the higher the degree of similar-
ity between A and A*, the more likely that properties of
A transfer to A*. However, there seems to be no prin-
cipled way of linking degrees of similarity to probabili-
ties. As a result, in practical applications, similarity based
reasoning is mostly used to deal with near-synonyms [4;
17]. Interpolation can be seen as a variation of similarity
based reasoning, in which the use of similarity degrees can
be avoided:

Interpolation: Knowing that sandwich shops and restau-
rants in Wales are both required to display food hygiene
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ratings, we conclude that cafes in Wales are also required
to display such ratings.

The assumption underlying interpolative reasoning is that
when B is conceptually between A and C, all properties
which A and C have in common should apply to B as well. In
the example, we are able to plausibly infer something about
cafes, which we can regard as being conceptually between
sandwich shops and restaurants (e.g. offering a wider range
of food than sandwich shops as well as more seating, while
being less formal than restaurants). We can think of inter-
polation as a more robust (albeit computationally less effi-
cient) alternative to similarity based reasoning, which is not
restricted to reasoning about near-synonyms. In [11], interpo-
lation was shown to consistently outperform similarity based
reasoning in a classification setting. Other approaches that in-
corporate some of the intuitions behind similarity based rea-
soning while avoiding the use of similarity degrees include
the idea of statistical predicate invention [21] and the use of
Bayesian models with a prior probability based on the (la-
tent) structure of the considered domain [39]. The following
example illustrates how plausible reasoning can be used to
make sense of inconsistent information:

Consensus: Suppose an online shop sells an item which is
referred to as ‘original art’ in the title and as a ‘poster’
in the detailed description; we conclude that the item
may be a limited-edition art print.

The assumption in this example is that ‘original art’ and
‘poster’ are disjoints concepts, which makes the descrip-
tion inconsistent, although limited-edition art prints (e.g.
lithographs) can be seen as a borderline case for both con-
cepts and thus offer a plausible way to resolve the inconsis-
tency. Resolving inconsistencies in this way amounts to find-
ing a consensus, i.e. finding an interpretation which is similar
to interpretations of each of the conflicting pieces of infor-
mation; see [36] for a formalisation of this idea. Finally, we
consider an example where lexical knowledge is combined
with other background knowledge:

A fortiori: Knowing that university staff are not permitted
to travel in business class, we conclude that staff are not
permitted to travel in first class.

The conclusion is based on the commonsense knowledge that
the reason why staff are not permitted to travel in business
class is because it is too expensive. Given this extra piece of
information, the conclusion follows from the lexical knowl-
edge that first class travel is more expensive than business
class travel.

What each of the aforementioned examples have in com-
mon is that they rely on some kind of lexical relationship. As
most of the required lexical information cannot be obtained
from existing linguistic resources such as WordNet or Con-
ceptNet, automating plausible reasoning requires us to learn
knowledge about the meaning of words from data. The two
most popular methods for learning such knowledge are to in-
duce geometric representations from co-occurrence data [9;
42; 26; 20] and to use information extraction techniques to
obtain lexical relations from natural language statements [19;
14; 5]. As we will see in Section 2, each of the lexical rela-
tions that are needed in the aforementioned examples can be
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Figure 1: Two-dimensional semantic space of establishments.

modelled as spatial relations in a high-dimensional Euclidean
space. Subsequently, in Section 3, we explain how this view
enables us to unify information derived from geometric mod-
els with information derived from relation extraction meth-
ods, along with any lexical relations that are available in ex-
isting linguistic resources. Integrating and reasoning about
lexical information from different sources then becomes a
spatial reasoning problem, which we discuss in more detail
in Section 4.

2 Lexical relations in semantic spaces

The meaning of words is difficult to capture in logical
terms. Wittgenstein, for example, observed that ‘game’ can-
not be defined in terms of necessary and sufficient conditions.
Rather, our understanding of this concept is based on similar-
ity, where an activity is considered to be a game if it is suf-
ficiently similar to other activities that we think of as games.
This view has given rise to a range of cognitive models that
define concepts in terms of distance [29]. Such models are
usually implemented by interpreting concepts as regions in a
high-dimensional Euclidean space, which is referred to as a
semantic space or conceptual space [15].

Figure 1 illustrates the main ideas. Note, however,
that while this toy example is based on a two-dimensional
space, the semantic spaces used in applications are high-
dimensional, often using 100 to 300 dimensions. In the se-
mantic space from Figure 1, categories of establishments (e.g.
‘bar’, ‘wine bar’, ‘cafe’) correspond to regions, while spe-
cific establishments (e.g. a particular cafe) would correspond
to points (not shown). Crucially, various types of lexical rela-
tions correspond to spatial relations in this space. For exam-
ple, the fact that bar and restaurant are disjoint regions corre-
sponds to the assumption that no establishment can be a bar
and a restaurant at the same time. Containment corresponds
to subsumption, e.g. the region for ‘bistro’ is included in the
region for ‘restaurant’ because it is assumed that all bistros
are restaurants. Pub and restaurant are adjacent, which cor-
responds to the view that while they are considered as dis-
joint concepts, ‘restaurant’ and ‘pub’ may share some bor-
derline cases. Adjacent concepts are sometimes also referred



to as conceptual neighbours. We could refine how borderline
cases are modelled by representing categories as fuzzy sets,
in which case regions consist of a core (modelling normal
instances of the concept) surrounded by a gradual boundary
(modelling borderline cases). The fact that ‘pub’ is between
‘bar’ and ‘restaurant’ corresponds to the assumption that pubs
are conceptually between bars and restaurants. This interpre-
tation of geometric betweenness relies on the assumption that
natural properties correspond to convex regions, which has
been advocated in [15]. Indeed, if a region B is between re-
gions A and C (i.e. included in the convex hull of A U C),
it follows that every convex regions which contains both A
and C also contains B, from which we find that all natural
properties shared by A and C apply to B as well. Finally, the
salient features of the domain correspond to directions in the
semantic space. In this example, the more an establishment
is located towards the right, to more it is considered to be fo-
cused on food, while the more it is located towards the top,
the more formal it is considered to be.

Given a suitable semantic space model, we thus have ac-
cess to all the lexical information that is needed for the exam-
ples from the introduction. Unfortunately, learning detailed
semantic space models from data is hard, among others be-
cause the specification of most regions would require us to
select an exponential number of vertices (in the number of
dimensions), even if only convex polytopes are considered.
Instead of using regions, most methods therefore represent
words as points or vectors. Popular techniques for learn-
ing vector representations, based on the analysis of word co-
occurrence in large text corpora, include the use of matrix
factorization [9; 42], neural network embeddings [26] and
probabilistic topic modelling [20]. Alternatively, if similarity
judgments are available (e.g. provided by domain experts),
multi-dimensional scaling can be used to obtain a geometric
representation, as is common in cognitive studies.

A few authors have looked at how approximate region
boundaries could be induced from point or vector represen-
tations. For example, [16] proposes to use the Voronoi tes-
sellation induced by the point representations of a set of con-
cepts, thus implicitly assuming that the concepts are jointly
exhaustive and pairwise disjoint. A similar approach has
been proposed in [13], which models words as probability
distributions, where probability degrees are defined in func-
tion of the distance to the point representation of the word.
Another possibility is to first learn point representations for
several exemplars of a concept, and to derive a region repre-
sentation from the resulting set of points. For example, [10]
learns region representations by considering the convex hull
of the representation of exemplars, after removing outliers.
A similar approach has been considered in [13], where a k-
nearest neighbour classifier is used to define the extent of the
regions. Interestingly, similar approaches have been consid-
ered in the area of geographic information systems, for learn-
ing boundaries for vernacular regions from the web; e.g. [1]
uses Voronoi diagrams for this purpose, while [32] uses a k-
nearest neighbours based method and [7] uses one-class sup-
port vector machines.

An additional challenge when learning semantic spaces
from data is that the resulting dimensions correspond to la-

tent features which are often not interpretable. This can be
addressed by identifying directions in the space which do cor-
respond to interpretable features. An unsupervised method to
find interpretable directions in a learned semantic space has
been proposed in [11]. This approach can be used to describe
how one entity or concept differs from another, to rank enti-
ties according to how much they have a given property, or to
identify the most salient properties of the considered domain.

While learning semantic spaces from data has proven very
useful for measuring similarity and analogical relationships
between words [40; 41; 261, this approach also has a number
of important limitations. First, models of similarity which
are based on co-occurrence tend to assign high similarity de-
grees to both synonyms and antonyms [23], whereas in a cog-
nitively plausible semantic space representation, antonyms
should not be close to each other. Second, this method is not
suitable for words which are very rare, as the co-occurrence
vectors for such words are usually too noisy. Finally, the
aforementioned methods for estimating region boundaries
based on point representations are not suitable for determin-
ing whether two similar concepts are disconnected, adjacent,
or overlapping, and if they are adjacent, whether the boundary
between them is crisp or gradual.

3 Extracting lexical relations from text

While learning accurate semantic space representations is
challenging, what mostly matters in applications are the un-
derlying qualitative spatial relationships, e.g. the fact that one
region is between two others. To obtain reliable qualita-
tive spatial relations, semantic space models can be comple-
mented with evidence from natural language. For example,
the following sentence suggests that ‘original art’ and ‘poster’
are disjoint concepts:*

Some, of what we show to you, is original art, some is a
poster, and some is a print.

The next sentence suggests that ‘limited edition art print’ is a
kind of ‘poster’:’

Limited Edition Art Print: This eye catching poster ad-
vertising the female rock band, Misdemeanor is the won-
derful work of Frank Kozik.

Finally, the following sentence provides evidence that ‘lim-
ited edition art print’ is a kind of ‘original art’:®

Art Online is where you can purchase affordable and
original art, including oil paintings, limited edition art
prints and lots more types of stunning artworks.

We can reconcile these statements by considering that ‘orig-
inal art’ and ‘poster’ are disjoint concepts, which both have
‘limited edition art print’ as a borderline case. In other words,
the regions representing ‘original art’ and ‘poster’ would have

‘http://erikthevermilion.com/
art-works—for-sale-online.htm,
2015.

Shttp://www.popartuk.com/art/frank-kozik/
misdemeanor-koz29-limited-edition-print.asp,
accessed 20 May 2015.

*http://art-online.co, accessed 20 May 2015.
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disjoint cores, but overlapping gradual boundaries, covering
the region representing ‘limited edition art print’. For an
automated system to arrive at this conclusion, it would first
need to identify the spatial constraints that are implied by the
three sentences. This can be accomplished by using existing
methods for relation extraction, for example based on lexico-
syntactic patterns [19] such as “[NP], including [NP], [NP]
and [NP]”. Then, it would need the ability to reason about
these spatial constraints, in order to recognise that they are
in conflict; we will discuss this spatial reasoning problem in
the next section. Finally, the initial spatial constraints need
to be weakened to resolve any inconsistencies, e.g. by taking
into account that regions may have a gradual boundary and
by discarding unreliable pieces of information. While this
approach has not yet been evaluated for semantic space rep-
resentations, a similar strategy was shown in [37] to be useful
for learning which spatial relations hold between vague geo-
graphic regions.

Semantic space representations and relation extraction
methods both have intrinsic limitations, which can be alle-
viated by combining both approaches. On the one hand, rela-
tions extracted from natural language can help us refine a se-
mantic space model, e.g. by identifying whether the regions
representing two given words should overlap or be adjacent,
or by providing information about rare words for which (re-
liable) semantic space representations may not be available.
On the other hand, relation extraction methods tend to make
systematic mistakes. A semantic space model can be used to
highlight extracted relations which are implausible, e.g. if a
relation extraction method finds that two words are overlap-
ping, while their semantic space representations are far apart;
see [37] for an application of this strategy for geographic re-
gions. Note that in addition to semantic space models and
relation extraction methods, subsumption/containment and
disjointness relations can also be obtained from existing re-
sources such as WordNet, ConceptNet and CYC. The use of
qualitative spatial representations means that all these sources
of information can be seamlessly integrated.

In addition to subsumption and disjointness relations, it is
also possible to extract fine-grained semantic relations from
natural language statements. As an example, consider the fol-
lowing sentences:

Economy class is cheaper than Business Class but at what
cost to the employee?’

Business class is cheaper than first class, but they are def-
initely worth the fare. ®

From sentences like these, we can find out that ‘cheaper than’
is a salient property of travel modes, and accordingly that
there should be a direction in a semantic space of travel modes
that corresponds to this property. From the given sentences,
we can furthermore derive that the representations of the
terms ‘economy class’, ‘business class’ and ‘first class” would

"https://companytravel .wordpress.com/
category/business—travel/, accessed 20 May 2015.

$http://ezinearticles.com/
?What-You-Need-To-Know-Flying-Business-Class
&1d=8963765, accessed 20 May 2015.

occur in that order along this direction. Suitable phrases de-
scribing the salient properties of the domain can be found us-
ing systems for open-domain relation extraction [14]. As we
will see in the next section, however, the resulting spatial rea-
soning problem is less straightforward than for containment
and overlap relations.

Finally, it is also possible to obtain betweenness relations
from text. Such relations can be obtained implicitly, based
on the orderings that were found for the salient properties of
the domain. For example, if we find that ‘economy class’,
‘business class’ and ‘“first class’ occur in this or the reversed
order for all known salient properties, we may conclude that
‘business class’ is likely to be conceptually between ‘econ-
omy class’ and ‘first class’. Betweenness relations can also be
obtained explicitly, e.g. using lexico-syntactic patterns, simi-
larly to how containment and overlap relations are found:

Mediterraneo bar is something between a bar and a club.’

A raga is something between a scale and a composition,
it is richer then a scale, but not as fixed as a composi-
tion.'?

Brunch is a combination of breakfast and lunch eaten
usually during the late morning ..."!

A phablet is a cross between a smart phone and a tablet,
it’s bigger than a phone but smaller than a tablet. '

Each of these sentences expresses a betweenness relation
which could be extracted using patterns such as “[NP] is
something between [NP] and [NP]”.

4 Spatial reasoning about lexical relations

As explained in the previous section, extracting lexical rela-
tions from text leads to a spatial reasoning problem. While
qualitative spatial reasoning is a well-studied research area,
there are key differences between our setting and the prob-
lems which are usually considered in this area. First, while
normally 2- or 3-dimensional spaces are considered, in our
context we need to reason about high-dimensional spaces.
Second, in the context of semantic spaces it is often assumed
that all regions are convex, whereas most existing methods
for reasoning about spatial constraints only require that re-
gions are regularly closed (i.e. that they are equal to the clo-
sure of their interior). However, in [35] it has been shown
that imposing convexity does not affect the consistency of
RCCS8 constraints [6], provided that the number of dimen-
sions is sufficiently high (relative to the number of regions).
Third, the direction and betweenness relations that we need
for lexical reasoning have not yet received much attention.
Figure 2 illustrates how betweenness relations can be for-
malised in the case of region based representations. We say

‘http://www.sitges—tourist-guide.com/en/
bars/sitges-bars.html, accessed 22 May 2015.
Yhttp://www.jazzguitar.be/exotic_guitar_
scales.html, accessed 22 May 2015.
Uhttp://en.wikipedia.org/wiki/Brunch, accessed
22 May 2015.
Phttps://www.tigermobiles.com/2014/07/
bad-eyesight-smartphones/, accessed 22 May 2015.



Figure 3: Modelling directions for regions.

that C' is fully between A and B, in this example, because C'
is included in the convex hull of A and B, which we denote
by A<B. Similarly we say that D is partially between A and
B because D partially overlaps with A<B, and that F is not
at all between A and B because E is disjoint from A<B.
In other words, we can express betweenness constraints by
using the standard topological relations from the region con-
nection calculus in combination with the binary convex hull
operator <. It was show in [34] that checking the consistency
of such betweenness constraints is tractable when only basic
(i.e. non-disjunctive) RCCS5 relations are used. Formalising
betweenness relations for points is straightforward: a point b

is between points ¢ and c iff ab = A - @ for some €]o, 1[.
Checking the consistency of a set of such betweenness con-
straints was shown in [8] to be IR-complete'.

Figure 3 shows how direction relations between regions
can be formalised. Given an oriented line d;, we can compare
regions based on their orthogonal projection on d;. Since
these orthogonal projections correspond to intervals (for self-
connected regions), direction relations can be expressed us-
ing Allen’s interval relations [2]. If all directions are assumed
to be orthogonal, then Allen’s interval calculus can be used
to check consistency (in polynomial time for non-disjunctive
relations). However, if directions are not necessarily orthog-
onal, and in particular if the number of directions is higher
than the number of dimensions, this would not be sufficient.
Note that in our context both the representation of the direc-
tions and the regions are unknown, in contrast to existing cal-

3Recall that IR is the class of decision problems which are as
hard as checking the consistency of set of algebraic equations over
the reals [31].

culi such as the rectangle algebra [3], where the directions
are given. Currently, no methods are available for checking
consistency in this general case. Checking the consistency
of direction relations for point representations was studied in
[33], where this problem was shown to be IR-complete.

A final challenge for lexical reasoning is that it requires
us to jointly reason about topological relations (e.g. contain-
ment, overlap and adjacency), betweenness and direction. For
example, we want to derive that the following statements do
not correspond to a consistent set of spatial constraints:

‘art print’ is between ‘original art’ and ‘art poster’
‘art poster’ is a kind of ‘poster’

‘art print’ is cheaper than ‘poster’

‘poster’ is cheaper than ‘original art’

The approach from [34] can be used to reason about between-
ness, containment and overlap, but it cannot handle direction
relations or adjacency. One important area for future work is
thus to extend this approach to include directions and RCC8
relations. In the case of point representations, even reasoning
about betweenness or direction relations alone is already IR
hard, which means that there is little hope for exact, symbolic
inference methods. However, efficient heuristic methods can
be designed which generate geometric configurations that as
much as possible satisfy a given set of constraint; we refer to
[33] for a preliminary evaluation of this approach.

5 Conclusions

In applications that rely on information from the web, plausi-
ble reasoning is often necessary to fill in gaps in the knowl-
edge or to make sense of inconsistencies. This typically re-
quires access to fine-grained lexical relations, most of which
are not available from existing linguistic resources. This pa-
per has advocated the idea that such lexical relations corre-
spond to qualitative spatial relations in an underlying seman-
tic space. In this way, we are able to combine lexical infor-
mation derived from learned semantic spaces with relations
extracted from natural language, and with whatever lexical
information is available from other sources. We highlighted
that this leads to a number of challenges for the field of quali-
tative spatial reasoning, as the consistency problems that arise
in this context differ in several ways from those that are en-
countered in other areas of artificial intelligence.
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