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a b s t r a c t

Emergency Medical Services (EMS) are facing increasing pressures in many nations given that demands

on the service are rising. This article focuses in particular on the operations of the Welsh Ambulance

Service Trust (WAST), which is the only organisation that provides urgent paramedical care services on

a day-to-day basis across the whole of Wales. In response to WAST’s aspiration to improve the quality

of care it provides, this research investigates several interrelated advanced statistical and operational

research (OR) methods, culminating in a suite of decision support tools to aid WAST with capacity

planning issues. The developed techniques are integrated in a master workforce capacity planning tool

that may be independently operated by WAST planners. By means of incorporating methods that seek to

simultaneously better predict future demands, recommendminimum staffing requirements and generate

low-cost rosters, the tool ultimately provides planners with an analytical base to effectively deploy

resources. Whilst the tool is primarily developed forWAST, the generic nature of the methods considered

means they could equally be applied to any service subject to demand that is of an urgent nature, cannot

be backlogged, is heavily time-dependent and highly variable.

© 2015 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Welsh Ambulance Service Trust (WAST) is the only

organisation that provides urgent paramedical care services on

a day-to-day basis across the whole of Wales, and as such aims

to deliver high quality care wherever and whenever it is needed.

Operated from 86 ambulance stations, 3 control centres and 3

regional offices, the Trust’s current goal is to move away from

being perceived as simply a transport service to a provider of high

quality health care and scheduled transport services [1]. Facing

ever increasing pressures to provide rapid responses that satisfy

the targets set by the government (defined in Section 2) in the

midst of a challenging two decades over which the ambulance

service has seen demand levels rise threefold, WAST has been

scrutinised in respect of performance issues [2,3]. Since a review of

the service in 2006 however, WAST has become a much improved

organisation, but still has some way to go in terms of achieving

consistency across Wales and over time [4].

As WAST furthers its ambitions to provide high quality health

care, it has become keen to work with partner organisations

∗ Corresponding author.
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to address the issues it faces across the health service and
develop new initiatives to improve its performance, resulting in
a successful working relationship being established between the
operational research (OR) department at Cardiff University and
WAST. Upon commencement of this project, a comprehensive
database was provided by the Trust comprising around 2,500,000
data records from April 2005 to December 2009, corresponding to
either a submission of request forWAST assistance, the dispatch of
a response vehicle, or both.

The main challenges envisioned by the Trust for the future may
be classified into two distinct fields: (i) capacity planning; and
(ii) location analysis. This paper addresses the primary capacity
planning issue through the development of a workforce planning
tool which integrates forecasting, priority queueing theory and
scheduling methods into a decision support system (DSS) to
optimise resource allocation in terms of capacity. The results of
related investigations performed at Cardiff University to reveal
improvements that could be gained from positioning resources in
different locations and to model distinct identifiable parts of the
ambulance cycle time are further presented in [5,6].

Personnel scheduling problems have attracted the attention
of Operational Researchers for decades, who have proposed
various approaches to meet potentially conflicting objectives
of low operating costs and high service quality (see [7–9]).
In particular, health care scheduling decisions are often highly
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constrained problems since most services need to be assured on a

continuous basis, twenty-four hours a day, seven days a week [10].

Ensuring that the right number of staff is scheduled to meet

an uncertain, time-varying demand for service involves decisions

about forecasting demand, acquiring capacity and deploying

resources [11]. Although the integration of these four processes

facilitates the creation of an optimised roster, they are often

addressed separately in the literature since the methodology

described allowing the decomposition of the task into several

distinct parts makes the problem more tractable. For example,

whilst intensive research has been conducted in the field of

demand forecasting; relatively little work has been initiated in

incorporating these forecasts in vehicle deployment and staffing

models [12], as these models often assume that demand is known

as a precursor (sometimes based on coarse ad hoc estimates [13]).

Yet for these deployment schemes to be effective, it is essential

that the values in the demand forecasts are accurate [14]. In

order to allow the generation of a roster in a computationally

efficientmanner, our research addresses each task in a step by step

procedure, but importantly ultimately amalgamates the processes

together in a self-contained DSS for WAST.

Whilst the methods developed in this paper primarily pro-

mote efficient allocation of WAST resources, they importantly also

contribute to the several fields of OR literature with novel applica-

tions and extensions of traditional forecasting methods and time-

dependent priority queueing techniques. From an OR perspective,

the unique linking together of the techniques in a planning tool

which further captures time-dependency and two priority classes

enables this research to outperform previous approaches, which

have generally only considered a single class of customer [15–17]

or generated staffing recommendations using approximation

methods that are reliable under limited conditions [18]. The ma-

jor contributions of this work are as follows:

• We incorporate forecasts of future demand generated by

Singular Spectrum Analysis, SSA (a powerful nonparametric

technique that appropriately deals with the stochastic nature

of demand), as input to scheduling models.

• We develop efficient approximate methodologies for convert-

ing demand profiles tominimum staffing requirements in dual-

class time-dependent systems, so that the proportion of urgent

and routine customers subjected to excessive waits is capped.

• For situations where the approximate methodologies are

inadequate, we propose a hybrid method that enables accurate

numerical staffing requirements to be produced at a quicker

rate.

• We develop integer linear programmes (ILPs) to produce

low-cost rosters that satisfy the minimum hourly coverage

requirements, which can be solved with practical heuristic

algorithms in the workforce planning DSS.

• In the consideration of all the above functions, this research

devotes particular attention to the development, solution and

validation of sufficiently detailed stochastic models for time-

dependent multi-server systems with two customer classes,

which can be ultimately employed to optimise resource

allocation. Through integrating the steps involved in the

rostering process into a single problem, the workforce capacity

planning tool developed in conjunction with this research

essentially provides a macro view of multiple techniques

required to optimise staffing profiles in complex systems with

heterogeneous customers and non-stationary demand.

This article is structured as follows: after a brief introduction of

WAST and the data provided for analysis is given in Section 2, Sec-

tion 3 indicates how the forecasting, queueing theory and schedul-

ing/rostering methods developed in the paper are amalgamated

in a comprehensive workforce capacity planning tool. Subsections

of this section are then used to provide further details of each of

the distinct techniques in turn. Specifically, Section 3.1 outlines

howaccurate demand forecasts, generated using a novelmodelling

technique known as SSA, are directly fed into the queueing theory

models described in Section 3.2. In this section, we also describe

how WAST can be approximately modelled as a dual-class time-

dependent system and outline how approximate methodologies

can be used to generate low-cost staffing profiles by estimating the

minimum staffing level needed to exceed specified service levels at

various periods throughout the day. Before proposing a hybrid ap-

proachwhich allows exact requirements to be efficiently produced

using a combination of approximate and numerical methodolo-

gies, we investigate analytical remedies to improve the accuracy

of the approximated staffing requirements. Finally, the potential of

scheduling and rostering techniques tomatch personnel resources

to fluctuating demand requirements is considered in Section 3.3,

before the key contributions of the work are discussed in the con-

clusion.

2. The research problem

Response times (the interval between arrival of the call and

attendance of a paramedic) are one of WAST’s Key Performance

Indicators (KPIs) since they are believed to provide a good

indication of the quality and timeliness of care offered by the

service. Maximal acceptable time frames for these are set by

Welsh Government and WAST’s performance against the targets

is reported on a monthly basis.

Distinct targets are specified for different urgencies of emer-

gency requests, which are classified into one of three categories by

call takers using a triage system known as the Advanced Medical

Priority Dispatch System (AMPDS) (see [2]) as follows:

• Category A—immediately life-threatening condition/injury.

• Category B—serious but not life-threatening condition/injury.

• Category C—neither life-threatening nor serious condition/

injury.

The targets, reported by the [19], applied at the time and

considered in this research may further be summarised as:

• Target 1: To attain and maintain a month on month perfor-

mance of at least 60% of first responses to Category A calls ar-

riving within 8min in each Health Board; and to follow upwith

a fully equipped emergency ambulance to a level of 95% within

14, 18 or 21 min respectively in urban, rural or sparsely popu-

lated areas.

• Target 2: To send a fully equipped emergency ambulance to all

other emergency calls (Category B and Category C) to a level

of 95% within 14, 18 or 21 min respectively in urban, rural or

sparsely populated areas.

A large fleet of different vehicle types may be called upon by

WAST to respond to an emergency request for assistance, but the

main vehicles used are Rapid Response Vehicles (RRVs) and fully

equipped Emergency Ambulances (EAs). RRVs cannot be used to

transport patients as they are typically small vehicles operated

by a single health worker; however they offer the advantage

that they can rapidly reach the scene of the incident. EAs can

be used to transport patients and are typically manned by two

crew members (at least one of whom must be a fully trained

paramedic). This research assumes that a single EA is sent to

all emergency calls, and an additional RRV is sent as the first

response vehicle to every Category A incident, as should indeed

transpire in practice. Accordingly, this paper describes how we

develop OR methods to generate recommendations of minimum

EA requirements for WAST. The question of the number of RRVs

to deploy can be addressed separately, by simplifying some of
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Fig. 1. Mean number of incidents reported per hour, by weekday, Apr 2005–Dec 2009.

the methods described in this paper that deal with two customer

classes, to systems that serve a single customer class.

A key consideration that must be taken into account when

designing schedules for ambulance crews is that demand forWAST

assistance is far from stationary, but heavily dependent upon the

time of day and day of week as shown in Fig. 1. Over the 56 month

period of data provided byWAST, the number of incidents reported

to the service rose from an average of 978 each day in 2005/06 to

1024 in 2008/09, with monthly periodicities, special-day effects,

autocorrelations and random fluctuations, as described in [20].

Moreover, since requests for WAST assistance are prioritised

according to urgency, all of the techniques that are described to

optimiseWAST resources in the following sections are accordingly

designed to aptly deal with both non-stationary and prioritised

demand.

3. Workforce planning

The process of optimising resources by means of rostering of

employees using low-cost shifts thatmatch stochastic demand lev-

els requires the investigation of several inter-related procedures.

The process traditionally beginswith the consideration ofmethods

to generate accurate forecasts of demand, followed by techniques

to convert the demand profiles to coverage requirements and gen-

erate optimised shift schedules. The resulting shift schedule can

be ultimately used as input to a rostering system, detailing the

work to be performed over a specified time period by eachmember

of the workforce in a way to minimise labour costs. Most current

practice to optimise personnel scheduling follows the general ap-

proach originally presented in [21], which recommends that the

following steps be taken to roster employees: (i) forecast demand;

(ii) convert demand forecasts into staffing requirements; (iii)

schedule shifts optimally; and (iv) assign employees to shifts.

The research considered in this article however integrates

the processes into a self-contained DSS for WAST, designed to

find minimum staffing requirements that allow the government

response time targets to be met, as illustrated in Fig. 2. Despite

the fact that the tool amalgamates several sophisticated and

complex interrelated analytical techniques, it is designed with a

user friendly interface in Microsoft Excel. Since Excel software is

familiar to planners, WAST employees are able to use the tool to

obtain any one, or a combination, of the outputs specified in boxes

1, 3, 4(a) or 4(b) in Fig. 2 (note that box 2 is simply a procedural step

that converts the demand forecasts into the staffing requirements

Fig. 2. Integration of techniques in workforce capacity planning tool.

output in box 3). If all options are executed, the end product is a

low-cost staff roster that adheres to working time directives and

the waiting time targets.

The following sections address each of the procedures pre-

sented in Fig. 2 in turn, with a brief description of themethodology

developed to deal with the complex pattern of demand for WAST

assistance.

3.1. Demand forecasts

Despite the potential of advanced statistical models to offer ac-

curate demand forecasts,WAST currently uses a fairly rudimentary

demand pattern analysis technique to predict call volumes, known

as average peak demand analysis. The method is intended to pro-

vide sufficient capacity to respond to requests for assistance dur-

ing periods with peak demand levels and operates as follows: for

each hourly period of the week (i.e. 168 periods), the number of

requests made for an ambulance for the corresponding hour in the

50 weeks preceding it is calculated, before the maximum number

in each 10-week period selected to provide 5 ‘peak’ demand val-

ues. The average of these 5 values is selected as the average peak

demand value, and the number of ambulances deployed for that

hour in future weeks is based on the concept that there must be a

sufficient number to cope with such demand.

Although the demand pattern analysis technique takes into

account some stochastic variation of the inputs, it does not

necessarily take into account seasonal variations and other

stochastic effects that might arise; and a great deal of information

is lost through using summary measures to inform the forecasts in

place of the data itself [22]. Thuswhendeveloping planningmodels

for EMS systems, researchers have used both regression models

to explain the spatial variation of demand and time series models
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to account for variations over time. The earliest models, based on

multiple regression, were often performed on incomplete data sets

with outdated socioeconomic and population data; nevertheless

they generated models capable of predicting total yearly demand

to a high degree of accuracy (see [23–26]). Since the late 1980s,

classical time series models such as Autoregressive Integrated

Moving Average (ARIMA) and Holt–Winters (HW) methods, have

been used extensively to forecast call volumes (see [27–29]) and

specifically applied to ambulance demand in [30].

ARIMA models, originally described in [31], provide a class

of models to approximate a time series using a large class of

autocorrelation functions after allowing the time series to be

stationarised through transformations such as differencing and

logging. These models account for temporal dependencies using

autoregressive (AR) terms, which are lagged observations of the

dependent variable and moving average (MA) terms, which are

lagged error terms, as explanatory variables. HW models offer

an alternative methodology for generating future predictions of

demand that incorporate both trend and seasonal variations, using

a set of simple recursions that rely on a weighted average of

historical data values, with the more recent values carrying more

weight.

Whilst HW and ARIMA methods are successful in overcom-

ing some of the shortfalls of regression techniques such as

multicollinearity, autocorrelation and the difficulty of selecting

covariates; both are however parametric in nature and require re-

strictive distributional and structural assumptions, such as station-

arity of the data. Empirical studies performed in [32] additionally

claim that there is no clearwinner amongst the univariatemethods

to forecast call volumes because they perform differently under

various lead times and different workloads. Whilst these tradi-

tional methods prove useful for upper-level capacity planning and

budgeting, recent advances in location analysis, allowing ambu-

lance deployment strategies to becomemore flexible and dynamic

in nature, call for more responsive predictions of demand and

model-free methods to predict call volumes [33,34].

In conjunction with evaluating the potential of conventional

time series methods to predict future demand levels, our research

responds to the request to produce accurate forecasts whilst

adequately accounting for nonstationarities, by analysing the

capability of a non-parametric technique known as SSA to account

for both trend and seasonality patterns exhibited in the data.

SSA generates forecasts using a Singular Value Decomposition

(observed to generate high quality forecasts in [35]) and the

problems inherent with the traditional methods are not present

in SSA as it is able to expose important characteristics of the time-

serieswithout requiring either a parametricmodel, or assumptions

concerning the signal or noise [36]. Table 1 illustrates that SSA

is capable of producing superior long-term forecasts (especially

helpful for EMS planning) and at least comparable short-term

forecasts to well-established methods. The table evaluates the

quality of rolling forecasts generated for July 2009 by SSA, ARIMA

and HW using the Root Mean Square Error (RMSE) and standard

deviation (SD; reported in brackets). By decomposing a time series

into various elements, and separating the trend and periodic

components from structureless noise (i.e. random fluctuations),

SSA is able to adequately account for the seasonal and stochastic

variations in the data when reconstructing the time series and

produce forecasts that simultaneously account for several factors

affecting demand. Further details regarding the underpinnings of

the SSA technique and its ability to produce forecasts of WAST

demand are contained in [20].

In further investigations, SSA has been consistently found to

generate accurate forecasts for various months and forecasting

horizons; especially for longer-term forecasts which are desired by

WAST to set staffing schedules and rosters. For practical purposes,

Table 1

Comparison of model forecasts for daily demand by using RMSE (SD) (July 2009).

Average RMSE SSA ARIMA HW

7-day forecast 44.77 (11.03) 44.69 (13.20) 60.12 (15.87)

14-day forecast 44.25 (4.80) 48.96 (7.84) 63.52 (13.83)

21-day forecast 45.04 (3.31) 50.75 (4.63) 60.87 (12.20)

28-day forecast 45.76 (3.02) 50.74 (3.86) 62.50 (10.73)

forecasts could additionally be updated as new demand levels are

obtained, to allow rostering and scheduling plans to be fine-tuned

as their implementation date is approached. Nevertheless, since

Table 1 illustrates that SSA is capable of generating particularly

high quality long-term predictions, its forecasts are less likely to

be subjected to significant revisions or implicate such costly last-

minute changes to staffing schedules as other methods.

In addition to producing high quality forecasts, SSA further

benefits from its ability to be easily embedded into a spreadsheet

tool. Thus having providedmotivation for its use as an accurate tool

to predict Welsh ambulance demand; we embed the methodology

in the DSS tool (step 1 of Fig. 2). The tool contains options that

allow themethodology to be flexibly adjusted to produce forecasts

at various levels of granularity, as requested by the user.

3.2. Time-dependent priority queues

With the demand forecasts estimated, the next part of the

resource allocation optimisation process involves converting these

into minimum staffing requirements, which we address using

queueing theory. A considerable body of research has shown that

queueing theory can be useful in health care (see [37–39]), but

the authors in [10] indicate that there is still a need to develop

time-inhomogeneous models that capture the time-dependent

arrival patterns of patients. Our work directly responds to this

call through modelling WAST as a time-dependent priority queue,

where Category A incidents are treated with precedence. Using

the demand forecasts output from SSA, we consider approximate

and numerical queueing theory techniques to generate minimum

coverage requirements that satisfy the response targets.

In our approach, we representWAST as a time-dependent dual-

class priority service system with s servers and an unrestricted

waiting line. Category A incidents requesting WAST assistance are

treated as High Priority (HP) whilst Category B and C incidents

are classed as Low Priority (LP), and processed according to a

non-preemptive priority (NPRP) queueing discipline, meaning that

ambulance crews may only attend a LP incident if there are no HP

emergencies logged in the system awaiting a response. However

once a crew has been assigned to attend a LP incident, it cannot be

re-routed to attend one of a more serious nature until it completes

its service with the current patient. HP customers arrive according

to a Poisson process with rate λH(t) and LP customers arrive with

rate λL(t); so the rate of customers arriving for service at each

time t is λ(t) = λH(t) + λL(t), which are all updated at hourly

intervals with the average arrival rate for that interval. Service

times are independently and exponentially distributed (not class-

dependent) with mean time 1

µ
. It is assumed that all ambulance

crews have identical capabilities, operate under the exhaustive

service discipline (meaning that if they are attending to a patient

when their shift is scheduled to end, theymust first complete their

service with that particular patient before leaving), and if multiple

crews are available to process a job, each available crew has an

equal probability of taking on the job. Our goal is to find a desirable

staffing function s(t), which defines the minimum number of EAs

(or equivalently, EA crews) that need to be deployed in each hourly

interval, to limit the proportion of HP and LP patients waiting

longer than targeted 14 min response target time to a maximum



46 J.L. Vile et al. / Operations Research for Health Care 8 (2016) 42–52

of 5% at all times. This may be expressed via two equations, which

must be satisfied at all time points:

P(WqH(t) > xH) ≤ 0.05 (1)

and

P(WqL(t) > xL) ≤ 0.05 (2)

where WqH(t) and WqL(t) represent the virtual waiting times
of a HP and LP patient arriving at time t respectively and 0.05
denotes the maximum allowed excess wait probability. xH and xL
are the maximum acceptable waiting times that may pass before
an ambulance is mobilised to attend HP and LP incidents (adjusted
from 14 min to take into account travel times). Essentially,
Eqs. (1)–(2) restrict the likelihood of a HP or LP patient requesting
EA assistance at time t having to wait longer than the targeted
response times for service, to be no greater than 5%. Our queueing
model is based on the assumption that exactly one EA is required
to attend each incident reported to WAST which is staffed by two
ambulance officers, treated as paired for the purpose of coverage
requirements, and referred to as ‘crew’.

However, the non-stationary nature of demand forWAST assis-
tance discussed in Section 2 renders the queueing model analyti-
cally intractable, i.e. there are no closed-formexpressions bywhich
one can evaluate various performance metrics over time. Instead,
researchers have developed and compared numerical and approx-
imate approaches to generate staffing profiles for organisations
subjected to time-dependent demand. When comparing approx-
imate and numerical methods for time-dependent systems, [40]
comments thatwhen the approximate approach is justified, then it
should be used because it is simpler and faster; but there are many
time-dependent queues, especially in health care, where the ap-
proximation approaches will not work well, so other methods are
required to provide accurate insights of system behaviour.

In order to overcome the shortfalls of approximation tech-
niques, a tractable numerical approach which allows one to accu-
rately track the probability of an excessive wait for both HP and
LP customers in M(t)/M/s(t)/NPRP systems with two customer
classes has been recently presented in [41]. Much of the queueing
theory proposed within this paper in fact builds upon the prelim-
inary work presented in [41], where Vile et al. describe how the
behaviour of time-dependent dual class systems can be evaluated
usingmixed discrete-continuous timeMarkov chains, with instan-
taneous transitions to account for both full staff turnovers and mi-
nor adjustments made to the workforce across the course of the
day. The authors provide insights into the potential of two meth-
ods to match demand and staffing levels: firstly, Euler Pri is an ex-
act numerical method that extends the Euler method derived for
a single customer class (see [17,42]) to a priority queue with two
customer classes. Secondly, SIPP Pri is an approximation that ex-
tends the Stationary Independent Period by Period (SIPP) method
discussed in [43] to a priority queue with two customer classes.
A comparison of the exact outputs generated against approximate
requirements generated by each of the techniques reveals that the
staffing levels generated by SIPP Pri are often close to the numerical
recommendations, but not identical.

Although SIPP Pri clearly generates estimates of staffing
requirements in a far more efficient manner; it is only suitable if
results are desired within a reasonable accuracy. Thus for cases
where it is essential to obtain accurate staffing requirements,
we propose a hybrid approach which allows generation of the
exact numerical solution in a shorter computation time. Prior to
embedding SIPP Pri in the hybrid methodology, Section 3.2.1 first
investigates the potential of three modifications that can be made
to the arrival rate function prior to its insertion within SIPP, to
improve the accuracy of its predictions.

3.2.1. Variants of SIPP Pri

The SIPP Pri approach outlined in [41] estimates time-
dependent behaviour by segmenting the period of operation into

distinct shifts, calculating the mean arrival rate in each one, and

matching staffing to demand requirements for each shift using a

series of stationary closed-form steady-state formulae (assuming

that the system operates at a consistent mean level within

each shift and is independent of the behaviour in neighbouring

periods). In this way, minimum hourly staffing requirements can

be obtained by incrementing the number of servers, s, employed

for each hourly period until a desired service level is achieved.

Since the technique assumes that the staffing levels for each period

can be determined independently and steady-state conditions are

achievedwithin each hour, its outputs can bemisleading in periods

for which these assumptions are violated, as the queue length at

the start of each period is in reality heavily reliant upon the number

of customers remaining in the system at the end of the previous

period.

Previous research works concerning systems with a singular

customer class have shown that the accuracy of the standard SIPP

approach can be improved by adjusting the arrival rate function

prior to its implementation within SIPP. For a comprehensive

summary of the effects arising from the application of a wide

range of such transforms upon model performance, the reader is

referred to [43]. A popular revision to the arrival rate is known as

Lag Avg (or Lag SIPP) [44] which uses a modified arrival rate to

account for customers who arrived in an earlier period, but receive

service in a subsequent period. SIPP Mix has also been proposed

to overcome the problem of understaffing when the arrival rate

is decreasing, by using the average arrival rates for phases where

it is strictly increasing, and the maximum arrival rate otherwise.

For the purpose of using SIPP Pri to recommend minimum staffing

requirements for WAST and other M(t)/M/s(t)/NPRP systems,

we propose three revisions that can be made to the arrival rate

prior to its insertion into the SIPP Pri algorithm: the first two are

direct extensions of those proposed in [43]; and the third is a

more responsive modification we offer to overcome some of the

shortfalls of the aforementioned techniques:

• Lag Avg Pri: This directly extends the standard Lag Avg

approaches to enable its applicationwithinM(t)/M/s(t)/NPRP
systems. It estimates the required staffing level based on the

average arrival rates predicted for the relevant period shifted

back by L units (estimated as the average service time) in an

attempt to incorporate the lag that commonly exists between

the peak arrivals and peak congestion.

• SIPP Mix Pri: This technique uses the average planning period

arrival rates in all periods where the overall arrival rate is

strictly increasing, and the maximum arrival rates otherwise

(calculated as 1.2 × average rate, based on preliminary

investigations), to avoid the problem of understaffing.

• Adaptive SIPP Pri: In recognition that SIPP Pri often recom-

mends staffing levels that are above the exact requirements for

WAST (see [41]), we propose that a more appropriate arrival

rate function could be achieved by taking an average of the rate

in the current and preceding period, for periods in which the

expected rates differ by more than 20%. This revision aims to

incorporate the effect of previous arrivals in each period, whilst

avoiding the problem of over/understaffing where the approxi-

mationmethods fail to recognise that it takes time for the queue

to increase/decrease significantly.

Thus the SIPP Pri methodology remains consistent in all the

above cases and the only adjustments are thosemade to the arrival

rate function prior to the application of the technique. Table 2

displays the average RMSE associated with the minimum number

of EAs recommended to be deployed in South East Wales by each

of the approximate methodologies to meet the response time

targets outlined in Section 2, when compared to the exact Euler Pri

requirements, for each hour of the first four weeks (i.e. 672 hourly
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Table 2

Average RMSE of SIPP Pri, Lag Avg Pri, SIPP Mix Pri and Adaptive SIPP Pri staffing recommendations, compared against Euler Pri results (July and Dec 2009).

Hour λH + λL (Avg Rate of Arrival) SIPP Pri Jul/Dec RMSE Lag Avg Pri Jul/Dec RMSE SIPP Mix Pri Jul/Dec RMSE Adaptive SIPP Pri Jul/Dec RMSE

0 4.8/5.1 0.37/0.62 0.83/0.72 1.29/1.35 0.53/0.62

1 4.5/4.8 0.42/0.38 0.68/0.80 0.82/0.65 0.63/0.38

2 3.8/4.0 0.33/0.33 0.78/1.00 0.89/1.00 0.42/0.33

3 3.1/3.3 0.46/0.65 0.96/1.41 0.85/1.25 0.46/0.76

4 2.2/2.3 0.53/1.05 1.21/0.73 0.63/0.87 0.53/0.50

5 1.9/2.0 0.53/0.60 0.76/0.57 0.76/0.73 0.65/0.50

6 3.2/3.5 0.76/0.94 1.13/1.13 0.76/0.94 0.68/0.38

7 3.8/4.2 0.85/0.73 0.38/0.68 0.93/0.82 0.53/0.38

8 5.4/5.9 1.00/1.10 1.25/1.16 1.00/1.10 0.53/0.19

9 6.9/7.4 0.98/1.05 0.85/0.78 0.98/1.05 0.38/0.19

10 7.7/8.3 0.93/0.82 0.38/0.71 0.93/0.82 0.76/0.63

11 7.5/8.1 0.63/0.65 0.73/1.27 1.68/1.74 0.63/0.65

12 2.9/3.2 2.43/2.34 3.07/3.16 1.77/1.52 1.20/1.07

13 3.1/3.5 0.65/0.38 0.38/0.27 0.65/0.38 0.65/0.38

14 3.1/3.5 0.00/0.50 0.53/0.19 0.76/0.89 0.00/0.50

15 3.0/3.4 0.38/0.42 0.76/0.46 1.00/0.78 0.38/0.42

16 3.1/3.4 0.46/0.42 0.57/0.42 0.96/0.85 0.27/0.19

17 3.0/3.3 0.60/0.19 0.73/0.46 1.04/0.80 0.60/0.19

18 3.2/3.5 0.00/0.00 0.65/0.38 0.53/0.53 0.00/0.00

19 4.9/5.3 1.00/0.87 1.13/1.20 1.00/0.87 0.00/0.38

20 4.9/5.3 0.53/0.65 0.53/0.93 0.76/1.00 0.53/0.65

21 5.3/5.7 0.57/0.42 0.80/0.42 1.25/0.82 0.65/0.19

22 5.1/5.4 0.50/0.38 0.76/0.91 0.98/1.30 0.42/0.19

23 5.0/5.3 0.19/0.33 0.57/0.73 0.68/0.73 0.19/0.33

Mean 4.2/4.6 0.78/0.80 1.00/1.03 1.00/1.00 0.55/0.48

periods) of July and December 2009. The expressions embedded

in the approximate methodologies to evaluate the probability

that HP and LP patients wait longer than the acceptable response

times are taken from [41]. Whilst closed-form expressions are not

readily available to calculate the probability of an excessive wait

for two customer classes, all of the approximate techniques still

possess the benefit that they are able to estimate the minimum

requirements at a rapid rate. For example, whilst Euler Pri requires

around 120min to generate hourly EA requirements for a 3-month

forecasting horizon on a 3 GHzmachine with 2.96 GB of RAM; SIPP

Pri can offer an approximate solution in around 10 min, and the

additional time required by the variants of the SIPP Pri technique

is only that required to obtain adjusted arrival rate functions.

When each of the variants of the SIPP Pri approach is

implemented to generate minimum staffing requirements that

comply with the waiting time targets defined in Section 2, for two

28-day test periods (the same as in [41]), Table 2 reveals that our

Adaptive SIPP Pri approach generates staffing requirements that

are closer to the Euler Pri recommendations than the standard SIPP

Pri results (see column 5); but that the Lag Avg Pri and SIPPMix Pri

results (in columns 3–4) are generally inferior. The results indicate

that the periods inwhich SIPP Pri, LagAvg Pri and SIPPMix Pri fail to

produce reliable requirements for are predominantly 08:00–09:00

and 12:00–13:00. Interpreting these findings in context of the

changing arrival rates across the course of the day, as visualised

in Fig. 1, it is clear that the main problem in using SIPP Pri to

construct requirements for the 08:00–09:00 period is that it fails

to recognise the link with previous periods or account for the fact

that it takes time for the queue to build up to a level great enough

to deploy an additional EA. Contrastingly, the error associatedwith

the 12:00–13:00 period ismainly attributable to underpredictions,

since the demand exhibited in this period is considerably lower

than the previous period.

In [43], Green et al. have previously found that the non-

priority counterpart of Lag Avg Pri performs poorly when the

relative amplitude is high; and that standard SIPP Mix commonly

understaffs when the arrival rate is decreasing. Since the RA is high

for a large portion of the data in our case study, it is unsurprising

that our empirical results for Lag Avg Pri results are inferior to the

standard SIPP Pri results. Furthermore, Table 2 demonstrates that

SIPP Mix Pri only offers marginally improved recommendations

since the method is primarily designed to overcome problems

associated with overstaffing, whilst understaffing is the most

predominant shortfall of SIPP Pri in this investigation. It appears

logical that in order to generate accurate results, each of the SIPP

Pri extensions requires the same conditions to hold as their non-

priority equivalent, i.e. they are reliable if the relative amplitude

is low (around 0.1–0.5) and planning periods are short (around

0.25–0.5 h). Since neither of these conditions are strictlymet in this

case study, it is not surprising that they fail to improve the results

of the standard Priority SIPP approach.

Contrastingly, our proposedAdaptive SIPP Pri approach appears

highly successful in improving the accuracy of the SIPP Pri

predictions. This supports the use of our novel method as

a practical technique to improve the approximate approach,

and directly demonstrates how improved requirements can be

generated in systems where SIPP Pri performs poorly. Due

to the methodology followed by the technique, it is equally

capable of improving SIPP Pri staffing requirements in systems

where overstaffing or understaffing are shortfalls of the standard

approach, if the error is attributable to the failure of the technique

to recognise the impact of staffing levels and arrival rates in

previous periods. In addition to empirically demonstrating that

the technique is capable of producing more reliable staffing for

WAST in Table 2; we more generally expect the technique to be

more robust to higher relative amplitudes than the standard SIPP

Pri technique (due to its capacity to adjust the arrival rate in

consecutive periods with widely differing arrival rates) and more

robust in systems with longer service rates (as it considers the

effect of the time-lag that exists between arrival and service times).

Further, by accounting for the effect of arrivals in earlier periods

in its calculations, we have shown it is able to offer improved

predictions if staffing requirements are desired for moderately

longer planning periods than 0.25 or 0.5 h, as required by SIPP/SIPP

Pri. However the technique should not be used in systems with

planning periods spanning several hours, or which exhibit low

presented loads, since such systems aremore likely to reach steady

state within each planning period, so themodifications considered

by the technique would be unsuitable to improve the accuracy of

predictions.
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Fig. 3. Line of enquiry followed by hybrid approach to generate staffing

requirements.

Table 3

Pool of allowable shifts.

Shift number Shift time Shift duration (h)

1 06:00–12:00 6

2 06:00–18:00 12

3 07:00–16:00 9

4 08:00–17:00 9

5 09:00–20:00 11

6 15:00–00:00 9

7 16:00–01:00 9

8 16:00–04:00 12

9 17:00–02:00 9

10 21:00–06:00 9

11 02:00–07:00 5

3.2.2. Hybrid approach

Balancing the ability of the approximation methods to provide

rough solutions rapidly and the advantage of the Euler Pri method

outlined in [41] to produce accurate predictions at the expense of

computation speed, the ultimate methodology we embed in step

2 of DSS for WAST (see Fig. 2) is a hybrid approach which employs

both methods to efficiently produce the accurate hourly staffing

requirements desired in step 3. If numerical analysis finds that the

Adaptive SIPP Pri predictions are sufficient, the Euler Pri method

can be used to test if the desired performance level could in fact

be achieved with fewer staff, by decrementing the Adaptive SIPP

Pri suggested staffing levels for each period in integer steps, until

a staffing level is reached that violates the waiting time targets. If

the converse is true and the initial quantities are found to be insuf-

ficient, the minimum required staffing levels can be obtained by

incrementing the initial quantity in integer steps until a sufficient

number is found. These steps are summarised in Fig. 3.
Applying this methodology to generate accurate staffing

requirements for a free-standing week in July reduces the

computation time from 10 to 8 min on a 3 GHz machine with

2.96 GB of RAM. Whilst this is a small saving for this dataset, a 20%

reduction in time could become quite considerable if requirements

are requested for longer periods.

3.3. Scheduling and rostering

Finally, with the minimum hourly coverage requirements

produced,we investigate shift scheduling and rostering techniques

that can be used to construct a desirable roster for WAST crews

that satisfy theminimum hourly requirements, since, in reality, EA

crews cannot be employed for single hourly periods, but only for a

combination of a limited number of pre-defined shifts that satisfy

Working Time Directives (WTDs). Practically all EMS agencies

plan their crew shifts in advance, although shift lengths vary by

agency [45]. All teams based in South East Wales currently use 11

predefined shifts that vary between5 and12h in length, as detailed
in Table 3.

Section 3.3.1 outlines how we formulate an ILP to select a
desirable combination of shifts to ensure that theminimumhourly
staffing requirements are covered with the lowest number of
labour hours, and Section 3.3.2 details our ILP to assign crews to
shifts so as to minimise staff costs. The ILPs are formulated in such
a way that enables them to be incorporated as part of the Excel-
based capacity planning tool, and solved using heuristic search
techniques.

3.3.1. The shift scheduling ILP

Using the minimum number of EAs required for each hourly
period generated from the hybrid methodology presented in
Section 3.2.2 as input, our shift scheduling ILP seeks to determine
a set of appropriate shifts that minimise the total number of
labour hours required, under the assumption that each EA is staffed
by two ambulance officers, treated as paired and referred to as
‘crew’ for the purpose of this investigation. The approach can
fundamentally be considered as an adaptation of Dantzig’s Labour
Scheduling Model (DLSM) investigated in [46], which attempts
to minimise the total labour cost by allocating shifts subject to
the constraint that sufficient EA crews are present in all periods.
Defining the sets and variables as:

• D: the set of days in the scheduling horizon
• P: the set of hourly periods in a day
• S: the set of allowable shifts
• xsd: the number of crews working shift s on day d
• rsd: the desired crew requirement in shift s on day d
• rpd: the desired crew requirement in period p on day d
• cs: the cost of assigning a crew to work shift s

• asp =



1, if period p is included in shift s

0, otherwise

• ls: the length (hours) of each shift (
24

p=1 asp) and

• ps =



0.95, if shift s operates for less than 9 h

1, if shift s operates for exactly 9 h

1.05, if shift s operates for more than 9 h;

our scheduling model can then be written as:

Minimise,

Z =


s∈S



d∈D

xsdcs. (3)

Subject to constraints:


s∈S

xsdasp ≥ rpd, ∀ p = 1, 2, . . . , 24, d = 1, . . . , 28 (4)

xsd ≥ 0 and integer, ∀ s = 1, 2, . . . , 12, d = 1, 2, . . . , 28, (5)

x11,d = x12,d+1, ∀ d = 1, 2, . . . , 27 (6)

x12,1 = 0. (7)

The objective function presented in Eq. (3) attempts to
minimise the number of crews assigned to each shift by allocating
shifts subject to the constraints (4)–(5) so that sufficient employees
are present in all periods. Note that since the 10 pm–7 am shift
overlaps the day boundary at 6 am, this must be formulated in
our model as two separate shifts (namely 10 pm–6 am (the 11th
shift input) and 6 am–7 am (the 12th shift input)). Subsequently,
the model must specify s = 1, . . . , 12 in place of s = 1, . . . , 11
with the additional constraints (6) and (7) to ensure that any crew
assigned to work the last shift on day d (10 pm–6 am) also work
the first hour on day d + 1 (6 am–7 am).

The weights assigned to the shifts in the objective function can

be flexibly adjusted by the planner in the DSS, but the default

weights are selected to reflect both the duration and preference

of each shift, such that:

cs = ls × ps. (8)
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Whilst the shift schedule may be optimised prior to the

application of a rostering model, our research acknowledges the

benefit in simultaneously constructing the shift schedule and

roster (i.e. combining step 4(a) with step 4(b) in Fig. 2), due to

complex working time directives that can prevent crews from

working certain shift patterns of the optimised shift schedule. In

Section 3.3.2, we present the formulation of the ILPs we embed in

the DSS to construct an optimised roster for a weekly period for

the South East region of Wales, and further explain how they can

be solved heuristically in Section 3.3.3. In line with the structure

of WAST’s scheduling procedure, ‘days’ are considered as running

from 6 am to 6 am.

3.3.2. The crew allocation ILP

Rostering ambulance officers is a highly constrained optimisa-

tion problem, since workforce planners must take into account a

number of legal, managerial and practical requirements when as-

signing health care workers to shifts [7,47,48]. The imposed re-

quirements can usually be described by two sets of constraints:

hard constraints (that must always be satisfied) and soft con-

straints (which are desirable to be met, but may be violated with a

penalisation cost in certain circumstances). The set of constraints

differs from Trust to Trust, and those relevant to WAST are dis-

cussed in the WTD which are outlined in the ‘Agenda for Change’

handbook [49].

Our crew allocation ILP model aims to simultaneously reduce

the total size of the workforce and total labour hours by consider-

ing the assignment of overtime hours (i.e. more than 38 hours per

week) as a violation of a soft constraint which is penalised with

an additional cost in the objective function. 50 staff are potentially

offered to the model for selection, as preliminary investigations

show that the quantity needed to satisfy the demand requirements

should be far lower than this quantity. In addition to the notation

defined above, we define additional sets and variables as:

• J: the set of available ambulance crews (j = 1, 2, . . . , 50)

• overtimej: the number of overtime hours assigned to each

crew j

• wjsd =



1, if crew jworks shift s on day d

0, otherwise

• crewj =



1, if crew j is assigned at least one shift in the scheduling horizon

0, otherwise.

Adhering to the shift coverage requirements, our ILP model

aims to minimise staff costs by weighting the total number of staff

employed for the scheduling horizon and the number of overtime

hours assigned in the objective function, as follows:

Minimise,

Y = 25

50


j=1

crewj +

50


j=1

overtimej. (9)

Subject to constraints:

50


j=1

wjsd = rsd, ∀ s ∈ 1, 2, . . . , 12, d ∈ 1, 2, . . . , 7 (10)

12


s=1



7


d=1

wjsd

24


p=1

asp



≤ 42, ∀ j ∈ 1, 2, . . . , 50 (11)

12


s=1



7


d=1

wjsd

24


p=19

asp



≤ 8, ∀ j ∈ 1, 2, . . . , 50 (12)

10


s=1

wj,s,d ≤ 1, ∀ j ∈ 1, 2, . . . , 50, d ∈ 1, 2, . . . , 7 (13)

11


s=2

wj,s,d ≤ 1, ∀ j ∈ 1, 2, . . . , 50, d ∈ 1, 2, . . . , 7 (14)

11


s=5

wj,s,d +

2


s=1

wj,s,d+1 ≤ 1,

∀ j ∈ 1, 2, . . . , 50, d ∈ 1, 2, . . . , 7 (15)

11


s=6

wj,s,d +

5


s=1

wj,s,d+1 ≤ 1,

∀ j ∈ 1, 2, . . . , 50, d ∈ 1, 2, . . . , 7 (16)

11


s=10

wj,s,d +

8


s=1

wj,1,d+1 ≤ 1,

∀ j ∈ 1, 2, . . . , 50, d ∈ 1, 2, . . . , 7 (17)

wj,11,d +

9


s=1

wj,s,d+1 ≤ 1,

∀ j ∈ 1, 2, . . . , 50, d ∈ 1, 2, . . . , 7 (18)

wj,11,d = wj,12,d+1, ∀ j ∈ 1, 2, . . . , 50, d ∈ 1, 2, . . . , 7 (19)

crewj ≥ wjsd ∀ j ∈ 1, 2, . . . , 50,

s ∈ 1, 2, . . . , 12, d ∈ 1, 2, . . . , 7 (20)

wjsd ∈ 0, 1 ∀ j ∈ 1, 2, . . . , 50,

s ∈ 1, 2, . . . , 12, d ∈ 1, 2, . . . , 7; (21)

crewj ∈ 0, 1 ∀ j ∈ 1, 2, . . . , 50. (22)

The coefficient of crewj in the objective function (9) may of

course be flexibly adjusted to appropriately preference the goal of

reducing the size of the workforce over the number of overtime

hours assigned, but the default coefficient assigned is built upon

the assumption that overtime hours are paid at a rate 1.5 times

higher than the standard wage; so as the standard working week

consists of 38 h, the weekly pay for 1 full member of staff equates

to 25 overtime hours.

Constraint (10) ensures that sufficient crews are assigned to

each shift to satisfy the coverage requirements and constraints

(11)–(19) ensure that strict WTDs are adhered to. In particular,

constraint (11) ensures that the maximum number of hours

worked in the 7-day period does not exceed 42 h and constraint

(12) prevents crews from working more than 8 night hours per

week (classed as frommidnight to 5 am inclusive i.e. periods 19–24

for a day considered to operate from 6 am to 6 am). Constraints

(13)–(18) ensure that all crews receive at least 11 h rest break

between shifts, by preventing them fromworkingmore than 1 shift

per ‘day’ or being allocated specific tours that violate this WTD.

Constraint (19) ensures that the same crew is assigned to the 11th

shift on day d and 12th shift on day d + 1 (essentially the same

shift). Finally Eq. (20) defines the dummy variable constructed to

count the number of staff employed for at least one shift over the

7-day period and Eqs. (21)–(22) specify wjsd and crewj as binary

variables.

3.3.3. Solving the ILP heuristically

The computational difficulty intrinsic to highly constrained

health care scheduling problems has encouraged the development

of heuristic approaches [50,51,9]. Although small instances of

our scheduling and rostering ILPs can be solved optimally, we

correspondingly also propose a heuristic that can be embedded

within the Excel-based DSS to offer good quality, though not

necessarily optimal, solutions. The specific heuristic we propose is

a Simulated Annealing algorithmwhich aims to find a good quality

solution in reasonable computation time by allowing multiple

swaps within iterations—whether this be between the shifts
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Fig. 4. Rate at which SA heuristic converges (averaged over 50 trials).

themselves or the assignment of shifts to employees to minimise

the cost in the weighted objective function defined in Eq. (9).

Fig. 4 shows the average cost output by the SA algorithm

(over 50 trials) as it converges to reach a minimum cost for the

objective function, given constraints (10)–(22) and hourly staffing

requirements for a 1-week period.

The chart shows that the optimal cost selected by the model

after 2000 iterations is 1061, although average best solution found

for each run is actually lower than this (equal to 1054); since the

best solution is not necessarily the cost selected at the termination

point of the SA algorithm. This average optimal cost value of 1054

is within 5% of the true optimal solution found using XPress-MP

software. However, the real benefit of the heuristic lies in its ability

to produce good quality rosters for large problem instances with

complex objective functions and multiple constraints, which ILP

solvers may lack sufficient power to solve.

3.4. The workforce capacity planning tool

Each of the methodologies that have been described in

Sections 3.1–3.3 are ultimately amalgamated together in an

Excel-based workforce capacity planning and scheduling tool,

with options to execute the demand forecasting, shift scheduling

or rostering algorithms individually or sequentially. The tool

is purposefully designed with a user-friendly interface with

parameters that may be flexibly adjusted by the user to provide

staffing recommendations for various scenarios that satisfy the

response time targets e.g. the user is able to change/add shifts

to the potential pool and adjust parameter values for constraints

such as maximumweekly working hours, which are automatically

read into the algorithmswhen executed.While taking into account

the importance of accurately estimating future demand, the need

to develop OR methodology to evaluate service quality in time-

dependent priority multi-server systems, and generate efficient

shift schedules, the tool:

A. Incorporates time-series methods that adequately account for

the stochastic nature of demand to produce accurate forecasts

of future demand;

B. Provides both accurate and approximate evaluations of system

performance over time;

C. Permits a certain service quality to be met as inexpensively

as possible by generating an efficient staffing function that

accurately matches resources to fluctuating demand levels;

D. Assigns staff to shifts in an efficient manner, whilst adhering to

governmental regulations and working time directives;

E. Is user-friendly and practical; so it could be used to inform

WAST staffing decisions and readily adopted by planners to

optimise resources independently.

4. Illustrative example

Table 4 presents an example of a roster generated by the

workforce capacity tool for crews in South East Wales for a free-

standing week in July, based on reducing the cost in objective

function (9), subject to constraints (10)–(22) and the set of

allowable shifts detailed in Table 3. In this example, a feasible

schedule requiring 39 crews, who are each required to work an

average of 38.56 h, is found to be sufficient to adequately cover the

forecasted demand. Since the rostering ILP is solved heuristically,

marginally different timetables are inevitably output each time

the SA algorithm is executed, but the average cost achieved in

50 trials for this problem instance was only 0.5% higher than the

true optimal found using XPress-MP software.Whereas ILP solvers

may however lack sufficient power to find optimal solutions for

large problem instances with complex constraints and objective

functions, our proposed SA heuristic may be flexibly adjusted to

generate low-cost rosters for any problem instance.

Furthermore, the workforce capacity scheduling tool is pro-

grammed in a way that allows optimised staffing profiles to be

generated for up to 8000 hourly periods (around 4 months of

data, depending on the calculation interval chosen for the Euler

Pri methodology). The only restrictions are that the working day

is considered as running from 6 am to 6 am, and due to the na-

ture of the staffing constraints, days must be considered in their

entirety (i.e. all 24 periods must be accounted for on every day en-

tered into the model). It is however worth noting that forecasting

horizons spanning several months considerably increase the time

required for its execution. As an indication of the rough timings

required to execute each of the staffing programmes using the de-

fault parameter values programmed in the model for the 1-week

scheduling horizon above, in addition to those required for a 3-

month scheduling horizon, Table 5 contains a summary of the ap-

proximate times required for the various functions when run on

3 GHz machine with 2.96 GB of RAM:

Thus as the scheduling horizon is increased, the run times re-

quired to execute each of the programmes considerably lengthen.

Whilst the accuracy of the period requirements output for longer
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Table 4

An example weekly schedule for Cardiff EA staff, July 2009.

Crew Shifts assigned to each crew for each day of July

1st 2nd 3rd 4th 5th 6th 7th

1 9 – 3 4 11 – 9

2 1, 11 – 11 – 4 5 –

3 4 1 11 – 4 – 8

4 – 1 5 4 1, 11 11 –

5 – 3 8 – 6 8 –

6 2 – 1, 11 11 – – 3

7 – 1 1, 11 11 – 1 4

8 1 – 4 10 9 – 4

9 11 11 – 4 3 – 4

10 9 – 1 11 – 4 9

11 1 – 9 10 – 4 6

12 – 8 – 4 9 9 –

13 1 4 – 1 – 10 9

14 11 – 4 9 – – 9

15 6 – 10 9 – 1 6

16 – 11 – 3 1 3 1, 11

17 – 4 – 4 4 1, 11 11

18 – 9 9 – 9 – 3

19 – 8 9 – 4 9 –

20 4 11 – 8 – 3 1

21 – 9 – 1 9 9 9

22 3 9 – 9 8 – –

23 11 – 1 1, 11 – 3 4

24 4 – 9 – 1 – 11

25 8 11 – – 1 6 –

26 1, 11 – 1, 11 – 1 6 –

27 1 – 4 – 10 9 –

28 9 11 – 1 3 9 –

29 – 1 4 1, 11 – 1 1, 11

30 9 9 9 9 – – 1

31 – 1 10 – 1 4 9

32 8 6 – 8 – – 1

33 9 – 8 – 9 – 3

34 4 3 1 9 – – 10

35 9 9 – 1 11 – –

36 4 – 8 8 – 1 –

37 – 9 9 9 9 – 1

38 – 4 4 9 9 11 –

39 4 3 – 4 11 11 –

Table 5

Run times required to execute programmes for various forecasting horizons.

Programme Forecasting horizon

1 week 3 months

Generate SSA demand forecast 3 min 5 min

Compute period requirements (SIPP Pri) 0.3 min 10 min

Compute period requirements (Euler Pri) 10 min 120 min

Compute period requirements (Hybrid) 8 min 100 min

Produce optimised shift schedule 0.5 min 7 min

Produce optimised roster 50 min 180 min

scheduling horizons should not be compromised, the quality of the

shift schedule and roster is potentially poorer unless the default pa-

rameter values programmed in the tool for the shift scheduling and

rostering algorithms are adjusted accordingly. For example, the av-

erage cost achieved in 50 executions of the SA algorithm using the

default parameter values for the 1-week period described above

was only 0.5% higher than the true optimal, whereas the average

cost achieved for schedules developed for 3-month periods was

around 3% higher.

5. Conclusions

This paper illustrates the ways in which OR can assist with

EMS planning. Using a range of modelling tools, we have described

our interactions withWAST and outlined several methodologies to

aid planners with decisions surrounding the optimal deployment

of resources. Being keen to develop new initiatives to improve

performance, senior managers at WAST have offered directions

for research throughout the project and have commended the

ultimate set of highly user friendly tools developed to support

future capacity planning decisions. The Clinical R&D Manager

at WAST recently reinforced the usefulness of the complex

mathematical modelling investigations, commenting ‘‘The work is

an extremely relevant contribution to implementing policy and

procedural changes at WAST’’, and the Welsh Government have

further stated their wish to oversee the implementation of the

developed tools to support WAST going forward. If successful,

the generic nature of the modelling techniques considered

means the tool could further be adopted by ambulance services

internationally and used to improve the quality of care provided

to patients.
Moreover, because the workforce planning tool has been

programmed in a generic fashion with a user friendly interface,

there are opportunities to apply the tool to services beyond the

EMS. The methodology could in fact be applied to any service

concerned with determining minimum staffing requirements that

limit the proportion of customers waiting longer than targeted

response times to predefined thresholds, such as call centres or

A&E departments to name but a few, and it would be interesting

to additionally investigate the potential of the tool to improve

resource allocation within these organisations in future work.
FromanORperspective, the unique linking together of the tech-

niques in a planning tool which further captures time-dependency

and two priority classes enables this research to outperform pre-

vious approaches, which have generally only considered a single

class of customer, or generated staffing recommendations using

approximation methods that are only reliable under limited con-

ditions. In particular, the research has proposed a hybrid approach

which enables accurate minimum staffing recommendations to be

efficiently generated for M(t)/M/s(t)/NPRP systems, which are

widespread throughout industry and commonly expected to at-

tain minimum performance standards. In future work, the practi-

cal contribution offered by master capacity planning tool could be

further extended by including real-time online analysis of data to

allow for short term adjustments to staffing recommendations in

response to unforeseen external factors which may influence the

demand and staffing profiles.
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