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A B S T R A C T

Purpose: This work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and
more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies
assessing image features and segmentation techniques.
Methods: PETSTEP was implemented within Matlab as open source software. It allows generating three-
dimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and
user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA
body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Dis-
covery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive
Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the
scanner-acquired and PETSTEP-simulated NEMA images.
Results: PETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single
core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the
scanner-acquired image for both background and largest insert, and 16% larger background Full Width
at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data.
The S and PPV obtained with simulated phantom images were statistically significantly lower than for
the original images, but led to the same conclusions with respect to the evaluated segmentation methods.
Conclusions: PETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data
and shows great promise for the evaluation of PET segmentation methods.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In Positron Emission Tomography (PET) images, the segmenta-
tion of tumor from background has a number of important
applications in both prognosis [1,2] and therapy [3,4]. However, im-
plementation of automated segmentation into the clinical
environment has been slow primarily due to the lack of standard-
ized means with which to evaluate the various methods [5]. This
includes the availability of data with a known ground truth. At
present, such data are available on a limited scale and for a very
large range of image types, making standardization problematic. The

American Association of Physicists in Medicine (AAPM) Task
Group-2111 (TG-211), Classification and evaluation strategies of auto-
segmentation approaches for PET, is seeking to establish a
methodology and a framework for evaluating auto-segmentation
methods. In a forthcoming report, the TG-211 will be highlighting
the need for standard evaluation data available to all and contain-
ing a large number of varied images for the evaluation of PET auto-
segmentation tools. In particular, the use of simulated PET images
can be beneficial for the evaluation of segmentation methods, as
it theoretically allows generating realistic PET images simulated from
different lesion uptakes with known ground truth [6]. However, the
large variation of observed lesion geometries and uptake distribu-
tions requires a large number of test images to provide clinically
relevant and robust results. For such applications, there is a need
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for a fast, flexible, and accessible simulation tool dedicated to the
generation of large datasets.

Simulated PET images are useful for a number of applications,
ranging from equipment calibration and optimization to testing of
novel image processing approaches [7]. The advantages of simula-
tion over both physical phantom and patient data include a greater
knowledge, control, and flexibility in defining the tracer uptake dis-
tribution. Furthermore, it provides the ability to perform these studies
without requiring access to a scanner, which can be limited. When
simulating PET images with synthetic lesions, Monte Carlo (MC) sim-
ulation of the data followed by reconstruction of the image is most
commonly used [6,8–12]. However work presented by Manjeshwar
et al. has shown that realistic synthetic lesions can be placed in ex-
isting PET images by using arbitrary combinations of ellipsoidal
primitives [13] that are added, with noise, to the existing projec-
tion data. This work extends Manjeshwar et al. by obviating the need
for access to the actual patient projection data and the subse-
quent required knowledge of and use of the associated imaging
system’s system matrix. Furthermore, this approach sidesteps the
vast computation expense that generally accompanies MC methods
[8–11], which can often require hundreds of hours of simulation
time to recreate a single bed position from a patient’s scan, espe-
cially when Graphics Processing Units (GPUs) are not available. This
study introduces this forward-projection simulation method to the
segmentation community in the form of a fast simulation tool for
generating simulated PET lesions and images for use in develop-
ing and evaluating segmentation methods.

In this work, we present PETSTEP (PET Simulator of Tracers via
Emission Projection), a tool that allows the simulation of synthet-
ic PET lesions with a high degree of flexibility, minimal computational
time, and intrinsic data/projector matching, and we describe its im-
plementation. We also compare the images provided by our software
to both phantom and clinical data obtained from our scanner as well
as to MC simulated phantom data. Finally, we evaluate the impact
of using images simulated with our software compared to scanner-
acquired images for the evaluation of segmentation methods.

Methods

Description of PETSTEP

Generation of synthetic lesions
PETSTEP allows the generation of synthetic PET images based

on inserting a lesion-like sub-image into an image representing the
background. The background image may be a reconstructed PET scan
of a patient or phantom, or it can be an idealized image2 repre-
senting the background object prior to its being acted on by the PET
system and the subsequent reconstruction. These two cases are de-
scribed in the following paragraphs.

Inserting synthetic lesions into images of the idealized background. The
most straightforward case is to insert an idealized synthetic lesion
directly into an idealized background that represents the underly-
ing distribution of tracer uptake. In this case, it is assumed that
neither the background image nor the lesion has been operated on
by the system’s Point Response Function (PRF), and the image is noise
free. The simulation process includes the following steps, illus-
trated on Fig. 1a):

1. The lesion is added to or used to replace the background at its
location, as specified by the user.

2. The resulting combined-object, representing the idealized back-
ground and lesion is blurred to mimic the effect of a real PET system’s
PRF. In this study we represent this with a spatially shift invariant
PRF, commonly referred to as a Point Spread Function (PSF).

3. The blurred image is then forward-projected via a radon trans-
form to produce noise free projection data.

4. The resulting projection data are attenuated by a forward-
projection of the attenuation map derived from the computed
tomography (CT) image. The attenuated data are then scaled, so
that the sum of the intensities corresponds to the number of true
counts being simulated, which are calculated from the user-
defined maximum uptake, uptake distribution, scan time and
system sensitivity.

5. Random events and scatter are added to the image. The random
distribution is generated from a uniform background, whereas
the scatter distribution is generated from the forward projec-
tion of the blurred image. The random and scatter distributions
are scaled to the number of counts corresponding to the user
defined scatter ( SF ) and random ( RF ) fractions,
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where T is the number of true counts, S is the number of scatter
counts, and R is the number of random counts.

6. Noise is added to the data as a Poisson distribution of values with
mean value corresponding to the forward projected data with
added random and scatter counts.

7. The noisy realizations of the projection data can then be
reconstructed using filtered back-projection (FBP) or a maximum-
likelihood scheme such as ordered-subset expectation-
maximization (OSEM). In this study we use an OSEM scheme that
allows for PSF correction (this can be generalized to a spatially
variant PRF) [14] given by,
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where f k is the kth iteration of the image, g j is the jth subset
of the data, μ is the attenuation on each projection, RS are the
scatter and randoms, H is the forward-projection, HT is the back-
projection, and ∗ is the convolution operator between the images
and the system’s PSF. Note that f 0 0, is the initial image for the
iterative reconstruction: an image of the unit cylinder. For re-
construction without system response the PSF is the delta
function.

8. The resulting images can be post-filtered. In this study we use
a Gaussian kernel for the transverse plane and 3-point smooth-
ing in the axial direction.

Inserting synthetic lesion(s) into preexisting patient or phantom
images. When inserting a lesion into a preexisting PET image, the
lesion and background PET image must be treated separately, since
the preexisting PET image has already been acted on by an imaging
system’s PRF, while the lesion has not. This is shown on Fig. 1b).

The background and tumor images are blurred independently.
Next, both images are forward-projected and attenuated indepen-
dently. The number of true counts specified by the user is reflected
as the sum of both background and lesion images. However, the
scatter and random distributions and counts are determined
using the number of counts from the lesion only to avoid adding
noise from the background image that is already present in the

2 In this case, the use of idealized image is meant to convey that the activity dis-
tribution that is represented by the background image is the discretized expectation
value drawn from an underlying probability density function, which can be defined
as realistically as desired.
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preexisting image. The noise realizations are also generated for the
lesion sub-image data only. In addition, when reconstructing the
data the initializing image f 0 0, is now the original PET back-
ground image. In this way, as each iteration is performed, the only
portions of the image that are updated are the lesion and its asso-
ciated scatter and random noise.

For post-filtering the image, only the inserted lesion and its as-
sociated noise are smoothed. This is accomplished by subtracting
the preexisting image from the reconstructed one, performing the
filtering as described above, and then adding the preexisting image
back to the filtered image.

Implementation
The simulation code is written in Matlab using the radon trans-

form and its adjoint for the forward- and back-projectors,
respectively. The PETSTEP package was implemented as a plug-in
to the open source software CERR [15].

A user interface was written to allow selecting the parameters
for the segmentation. The package relies on the availability of some
functions in CERR, in particular the contouring tool for drawing lesion
outlines on the scans displayed. PETSTEP requires the presence of
one CT scan and one PET scan stored in CERR format, with lesion

outlines drawn on the PET image. If several outlines are present,
the software adds the corresponding binary masks and multiplies
the result by the maximum lesion Standardized Uptake Value (SUV)
set by the user. This allows modeling several intensity uptake levels
and complex geometric distributions.

The following parameters can be set by the user via a graphical
user interface:

• The maximum lesion SUV.
• The blurring filter size in millimeters, corresponding to the scan-

ner’s intrinsic resolution.
• The scan time in seconds.
• The background activity concentration in kBq/mL.
• The count sensitivity in cps/kBq.
• The scatter and random fractions to be simulated.
• The initial projection data as angular bins and gantry diameter,

according to the number of crystals in the scanner and the ef-
fective detector diameter.

• The filter size used for PSF correction (the default matches the
blurring filter above and is recommended).

• The image size, representing the number of voxels in the trans-
verse plane of the reconstructed image.

Figure 1. Workflows illustrating the simulation process for inserting tumor lesions in both idealized PET objects (above, a) and preexisting PET objects (below, b). The left
hand side of the data formation pseudo-equations shows the sinograms used in the image reconstruction. The image reconstruction pseudo-equations show the data with
Poisson noise and initializing images for the iterative reconstruction.
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• The number of iterations and subsets for the OSEM reconstruc-
tion (the subset number should be a divisor of the angular bins,
which is verified by the program).

• The size of the blurring filter applied post reconstruction.
• The type of axial filtering required (3-point smoothing: light,

heavy, standard filtering or no axial filtering).
• The number of simulation instances required, corresponding to

independent noise realizations.

Additionally, options are provided for the user to:

• Use the lesion uptake data either additively or as a replace-
ment for the original uptake values.

• Use an original PET scan as a 18F-fluorodeoxyglucose (FDG) uptake
map as described in the next section.

• Select the type of reconstructions to use.
• Save the PET scans corresponding to the different noise realiza-

tions and reconstruction iterations in the current study.

The output of PETSTEP consists of new 3D PET images which are
appended to the CERR file from which the simulation was started.
These can include:

• The original CT image with inserted lesion density map.
• The original FDG uptake map with inserted lesion, before

simulation.
• The simulated PET image for each of the reconstructions se-

lected, and for the number of noise realizations specified.
• The PET scans corresponding to the different noise reconstruc-

tion iterations for each reconstruction and noise realization, if
specified.

All parameters entered by the user are saved together with each
new image generated in CERR. The list of parameters entered can
also be saved in a text file in the current folder and retrieved from
an existing file.

Evaluation of PETSTEP

The aim of this investigation was to evaluate the ability of
PETSTEP to reproduce realistic FDG PET images for segmentation.
For this purpose, we calibrated PETSTEP by determining the set of
parameters allowing the closest reproduction of the scanner ac-
quisition and reconstruction process. Work was based on the GE
Discovery 690 (D690) PET/CT scanner available at both of our centers
(Cardiff and New York) and MC simulations performed with the GATE
software using a well validated model of the GE Discovery LS (DLS)
PET/CT [16].

Comparison to phantom data
First, we aimed at reproducing images of the NEMA IEC body

phantom acquired previously with a GE D690 PET/CT scanner at our
center. The phantom contains six spherical plastic inserts, which
were filled with a FDG activity five times higher than the filled-in
background activity, and scanned with one bed position. Tem-
plate images were derived by extracting the phantom geometry from
the CT image, and assigning to background and spheres voxel values
corresponding to the filled-in activities of the scanned plastic
phantom, to model the desired spheres-to-background activity ratio.
The scanner specific parameters, such as gantry diameter were set
to values obtained from the manufacturer. The number of radial bins
and projection angles was derived from the number and size of de-
tector crystals found in the scanner specifications and the
reconstructed Field of View (FOV). The system sensitivity was ex-
tracted from NEMA NU2 test results published by Bettinardi et al.
[17], where the value of 7.5 true cps/kBq was obtained for a source

length of 700 mm and was adapted to the modeled detector FOV
length of 157 mm, leading to a value of 33.4 true cps/kBq. The scan
time and activity concentration (calculated as an average for the
whole phantom) were matched to the experimental values. The bed
position overlap was set to 50%, to account for axial sensitivity fluc-
tuations across slices, of the D690 scanner, which has 24 detector
rings (47 slices per bed position) and an axial coincidence accep-
tance of ±23 slices. The blurring filter size was set to 4.9 mm, which
is the average of the PSF Full Width at Half Maximum (FWHM) values
of the D690 PET/CT scanner obtained at 1 cm and 10 cm of the FOV
center using the NEMA NU2 tests obtained at the Cardiff center. The
matching PSF correction filter size was set to the same value of
4.9 mm. Scatter and random fractions were also obtained from the
NEMA NU2 tests. The OSEM + PSF reconstruction was chosen as the
closest to the scanner reconstruction method Vue Point HD algo-
rithm with SharpIR available for the D690 scanner (not including
Time-Of-Flight (TOF) correction). The image was reconstructed to
a matrix size of 256 × 256 to match the matrix size of images from
the scanner, with a 3-point axial smoothing filter of [1 3 1]/5, and
post reconstruction filter size of 6.4 mm, matching the filter used
for the scanner-acquired image.

The values used for the simulation are summarized in Table 1.
The simulated images (without TOF correction) were com-

pared to the corresponding original scanned PET qualitatively and
quantitatively in terms of their intensity spectrum and intensity
variations in the background and sphere regions. The total activity
in the scan was measured as the sum of all voxel intensities in the
three-dimensional (3D) image, multiplied by the voxel volume in
mL, as well as the mean intensity value.

The following parameters were estimated for slice No. 14, cor-
responding to the phantom background only, and for the largest
sphere, S6:

• Mean intensity,
• Intensity distribution histogram maximum value,
• Relative (to mean intensity) intensity distribution histogram

FWHM.

The background was masked according to its known contour. The
values for S6 were calculated within contours generated from the
known sphere dimensions and positioned via the high-resolution
CT. Histograms were created following the Freedman–Diaconis [18]
rule for choosing the bin width and fitted with a Gaussian

Table 1
Parameters used for the simulation of the NEMA IEC body phantom PET scan, for
both D690 and DLS scanners, using PETSTEP.

Parameter name D690 DLS

CT maximum contrast (% above background) 12.5 12.5
Maximum SUV N/A N/A
Blurring filter size (mm) 4.9 5.1
Activity concentration (kBq/mL) 5.9 4.5
Sensitivity (true cps/kBq) 33.4 42.0
Bed position overlap (%) 50 31.4
Scan time (s) 180 300
Random fraction 0.07 0.0003
Scatter fraction 0.37 0.40
Radial bins at FOV 381 (700 mm) 283 (550 mm)
Projection angles 288 336
Gantry diameter (mm) 810 927
Image matrix size 256 295
Reconstruction type OSEM + PSF OSEM
Number of iterations 2 8/4a

Number of subsets 24 12
Post-reconstruction filter size (mm) 6.4 6.0

a 8 iterations for the GATE simulation, 4 iterations for the PETSTEP simulation.
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distribution to estimate the mean value and variation (FWHM) of
the image intensity in the background and S6.

Comparison to a GATE Monte Carlo reference simulation
To further validate PETSTEP, the MC software GATE [19] was used

together with the previously validated DLS PET camera model [16]
to simulate a voxelized representation of the NEMA IEC body
phantom, which was simulated with a 5:1 ratio of activity concen-
tration in the hot spheres to background. This was compared to a
simulation of the phantom using PETSTEP, with the scanner and re-
construction parameters listed in Table 1, to match the DLS model.
The DLS PET camera consists of 18 detector rings of 672 BGO crys-
tals each. Each coincidence from the list-mode data was binned [20]
into 1) a sinogram matrix of total prompts and 2) a sinogram matrix
corresponding to the coincidence type: true, scattered or random.
The size of the sinogram matrices was 283 radial and 336 angular
bins.

The system sensitivity parameter and phantom activity concen-
trations used in PETSTEP were adjusted to reproduce the count
statistics obtained with the MC simulation given in Table 2. The
prompt coincidences were reconstructed using the software STIR
[21] with OSEM (12 subsets, 72 sub-iterations) with normaliza-
tion, attenuation, scatter and random corrections applied (see
Appendices A and B for more details). To account for difference in
the reconstruction processes, the simulated PETSTEP image was re-
constructed for 1 to 10 iterations (for 12 subsets), and the number
of iterations best matching the DLS GATE image, which was recon-
structed with 8 iterations, was selected. The images were post-
filtered with a 6.0 mm FWHM Gaussian transverse filter and the
3-point smoothing filter [1 2 1]/4 in the axial direction. The result-
ing image was of size 295 × 295 × 35 with a voxel size of
1.97 × 1.97 × 4.25 mm.

The variations in the background and largest hot sphere S6 were
analyzed in the same manner as with the clinical phantom scan
(background slice No. 10), and compared across simulations.

Simulation of realistic clinical data

PETSTEP, calibrated for the DLS scanner, was used to model re-
alistic head and neck (H&N) data. A PET uptake map was generated
using an available clinical PET/CT scan. This image was manually
segmented with CT-based thresholding to separate different ana-
tomical structures. All structures delineated with thresholding were
visually checked and manually edited when necessary. A 3D gray
level image was generated by assigning a gray level value to each
anatomical structure segmented corresponding to its mean inten-
sity on the PET image. The choice of the PET scan and the design
of the final template were both validated by a radiologist. The tem-
plate is shown on Fig. 3b. Normal PET images were simulated from
the original CT and uptake template without an added lesion.

In addition, a PET image was simulated from an original H&N
scan, with the insertion of a synthetic lesion using the methodol-
ogy described above. The simulation parameters used were the same
as presented in Table 1, except for the maximum lesion uptake, which
was set to 10 times the background uptake.

Finally, a highly heterogeneous lesion was generated by drawing
three different overlapping contours in CERR on the H&N PET uptake
map described above, and the simulation was carried out using these
contours.

Evaluation of segmentation with PETSTEP

Finally, we investigated the use of images generated with
PETSTEP for the evaluation of PET automatic segmentation (PET-
AS) methods. Three different PET-AS algorithms described in previous
works [22,23] were chosen to represent segmentation approaches
found in the recent literature. These included: adaptive iterative
thresholding (AT), a gradient-based deformable contouring algo-
rithm (AC) and a fuzzy C-means clustering method for two clusters
(FCM2). All PET-AS methods were applied to images of the NEMA
phantom acquired with a D690 PET/CT scanner, and to five differ-
ent noise realizations of simulated images generated in PETSTEP
as calibrated to reproduce the D690 scanner (cf. previous section).
The segmentation was applied to all six spheres in both images
using an initial volume corresponding to a cube centered on the
true sphere with 1 cm margin in all directions. Segmentation
results on original and simulated data (averaged over noise real-
izations) were compared in terms of their spatial conformity by
calculating the Sensitivity (S) and Positive Predictive Value (PPV),
defined as:

S
TP

TP FN
=

+
(3)

PPV
TP

TP FP
=

+
(4)

with TP as the true positives (voxels accurately classified), FN as the
false negatives (voxels in true contour not included in segmented
contour) and FP as the false positives (voxels in segmentation results
not included in true contour).

Statistically significant differences between S and PPV values ob-
tained by the different PET-AS were compared between the two
different types of images, and were determined for each PET-AS using
the Wilcoxon signed rank test available in SPSS 20 (IBM, Chicago,
USA).

Results

Evaluation of PETSTEP

Comparison to phantom data
Figure 2a and b provides a comparison of the total activity,

background and largest sphere mean intensity and intensity dis-
tribution histograms for both D690 original and simulated PET
image respectively. The simulated PET image was generated with
PESTEP in 1 min 23 s, corresponding to 1.8 s per slice on average
on a 2.7 GHz Intel core computer. The number of bins used for
background and S6 regions was 135 (bin width 0.06 kBq/mL) and
26 (bin width 1.41 kBq/mL) respectively, using the average from
the Freedman–Diaconis rule. The intensity distribution within S6
was not close enough to be fitted to a Gaussian distribution, and
FWHM values are therefore not reported. The total activity mea-
sured in the simulated image was within 2% of the activity in the
original non TOF D690 PET scan. The mean intensity in the
simulated image was also within 2% of the original values for both
sphere S6 and mean background intensities. The intensity distri-
butions obtained for the background were close, with slightly
higher number of counts for the original PET compared to the
simulated image (41,045 compared to 32,723 and 187 compared

Table 2
Count statistics obtained for the DLS simulation with
GATE and PETSTEP.

Property Value

Number of trues 4.13 × 107

Number of randoms 1.95 × 104

Number of scatters 2.72 × 107

Total counts 6.85 × 107
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to 164 counts for background and S6 respectively) and larger
background FWHM value obtained on the PETSTEP image
(20% compared to 17% of the mean intensity for the original
PET).

Comparison to a GATE Monte Carlo reference simulation
The number of iterations used in PETSTEP to best match data

from the GATE MC simulation (reconstructed with 8 iterations)
was 4. The total simulation time was 2750 h divided over 960
AMD Opteron 6238 (Interlagos) 12-core 2.6 GHz processors. The
PETSTEP simulated image was generated in 3 min and 8 s on a
2.7 GHz Intel core computer, corresponding to approximately 5.4 s
per slice. The same comparison as for the D690 is shown on
Fig. 2c and d for the NEMA phantom image acquired with the DLS
scanner simulated with MC GATE and with PETSTEP respectively,
for the same number of bins as for the GE D690. The total
measured activity was 2.5% higher on the simulated PETSTEP
image compared to the GATE simulated image. The mean intensi-
ty in the simulated image was within 1% and 3% of the original
values for the background and sphere S6 respectively. The back-
ground FWHMs of the PETSTEP image was slightly larger than for
the GATE MC image (23% of the mean value compared to 20%),
which corresponds to a slightly noisier image shown on the
bottom row of Fig. 3.

Preliminary work (see Appendix C) showed that the scatter dis-
tribution as modeled in PETSTEP was closest to the corresponding
MC simulated scatter distribution for a 20 cm Gaussian kernel, as

determined with a minimum Root Mean Squared Error (RMSE) (see
Figs. C1 and C2 in Appendix C).

Simulation of realistic clinical data

Figure 3 shows a comparison between sagittal slices of the orig-
inal patient H&N PET image (panel a), the FDG uptake map extracted
from the PET/CT dataset (panel b), and the corresponding simu-
lated PET image (panel c). Observable differences between the
original and simulated PET images are located in the nose, tongue
and larynx area, for which the image intensity obtained is lower
than for the original image. The simulated image was visibly closer
to the FDG uptake map. The simulation was completed on a 2.7 GHz
Intel core computer in 5 min and 47 s, for a 117-slice image, cor-
responding to the superior–inferior length of the initial uptake map.

Figure 4a and b shows a PET image simulated from an existing
PET scan, to which a homogeneous synthetic lesion was added, at
a target-to-background ratio of 10. The new lesion on Fig. 4b is visible
at the location of the contour drawn on the original PET (Fig. 4a).
The lesion measured mean and peak intensities were 8.7 and 10.6
times higher than the background mean intensity measured in a
Region of Interest of the same geometry positioned in the soft tissue
background. Figure 4c shows the FDG uptake map derived auto-
matically by PETSTEP using the initial background uptake map and
the three different overlapping contours. The resulting image is
shown on Fig. 4d, with the contour corresponding to the outline of
the heterogeneous lesion modeled.

Figure 2. Comparison of total activity and intensity distribution histograms of the background (slice No. 14 for D690 and No. 10 for DLS) and sphere S6 for (a) the original
non-TOF D690 PET image, (b) the simulated D690 PET, (c) the MC GATE simulated DLS PET image with 8 iterations and (d) the DLS simulated in PETSTEP with 4 iterations.
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Evaluation of segmentation with PETSTEP

Figure 5 shows S values and PPVs obtained for the segmenta-
tion of spheres S1 to S6 on PETSTEP and original images by the three
PET-AS methods used. Lower S values and PPVs were obtained for
PETSTEP simulated images in 16 and 12 out of 18 cases respectively.

Differences in S and PPV were below 24% and 29% of the value cor-
responding to the original PET in all cases. The largest differences
(and cases with higher S for PETSTEP images) were observed for the
smallest spheres, for which the standard deviation of values across
noise realizations was also the highest (up to 9% of the value for
the original image). FCM2 showed lower S values compared to the

a) b) c) 

Figure 3. Sagittal slice No. 187 of (a) the original PET image, (b) the FDG uptake map used in the simulation and (c) the simulated PET image.

a) b) 

c) d) 

Figure 4. Example of PETSTEP images obtained with showing (a) original PET scan with lesion contour (b) PET image obtained using preexisting PET image and contour,
(c) PET uptake map with highly heterogeneous lesion and (d) PET image obtained with lesion contour.
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other methods for both types of images, and PPVs of 1 for all spheres
were obtained for both image types. Slightly higher S values were
also obtained for AT compared to AC for both image types. Both
results obtained with PETSTEP and scanner-acquired images showed
higher S value for S1 than S2 and S3 when delineated by FCM2.

The comparison of S values and PPVs obtained by segmenting
the simulated (average across simulated instances) and original
images showed a significant difference with the Wilcoxon signed
rank test (p < 0.05, Z = −4.386 and p < 0.05, Z = −2.844 respectively).

Discussion

We have developed and implemented PETSTEP, a fast and ac-
cessible simulation tool for the generation of synthetic PET images
from existing PET as well as from user-defined uptake maps. PETSTEP
as implemented as open source uses functionalities already present
in CERR and a custom user interface to allow fast simulation of full
PET images from complex tracer uptake distributions (FDG in this
study), while remaining accessible to users with little or no expe-
rience in PET simulation. The addition of synthetic lesions to existing
PET images in PETSTEP is similar to work by Manjeshwar et al. (the
overlay of freeform shapes versus ellipsoidal primitives) [13].
However, whereas in Manjeshwar et al.’s method tumors are
forward-projected and added to the real projection data, PETSTEP
forward-projects the existing image to create a synthetic sinogram.
To our knowledge, no similar process for PET simulation has been
documented in the literature.

PETSTEP involves forward projection with matched projectors,3

using the Matlab two-dimensional (2D) radon and unfiltered inverse
(adjoint) radon transforms. Modeling of the scanner system is done
with filtering and addition of noise distributions. This approach
allows matching the simulated data to scanner-acquired images using
known measures such as counts, sampling, iterations, etc. This is
more clearly seen in the case of maximum-likelihood PET images
where the resolution and noise properties are well known to be
locally dependent of the imaged objects [8,9]. As a consequence of
using this approach, the MC simulation required 2750 h to gener-
ate as many prompts as PETSTEP did in 3 minutes, computing to a
factor of ~55,000 less simulation time. Although recent develop-
ments using GPUs can lead to acceleration factors of 400–800 for
MC simulations [24], the Radon transform and its adjoint can also

utilize GPUs for improved performance. This feature will be added
to PETSTEP in the near future so that its rapidity compared to MC
remains a key advantage. PETSTEP can therefore be extremely useful
in the generation of large datasets for quantitative studies and the
development of learning methods.

The “inverse crime” model, i.e. the same model is used to gen-
erate the data and to reconstruct the images, leads to ignoring normal
data inconsistencies due to mismatched acquisition and projec-
tors. However, evidence from Kim et al. [25] shows little effect on
image improvement when better system models are used (except
for the periphery of the object), which validates the choice of this
approach in our work where lesions were at least 3 cm from the
object boundaries. Further limitations of PETSTEP include the absence
of correlations between slices that exists in real 3D data. This is ac-
counted for by adjusting the number of counts obtained from the
2D projection data to obtain similar Noise Equivalent Counts (NEC)
as measured in 3D. This preserves the effective local NEC in the pro-
jection space, so that the appropriate ratios of true, scatter, and
random counts are seen by each line of response. In addition, the
radon and adjoint radon transforms available in Matlab are defined
on a uniformly spaced grid in projection space, and therefore do
not match the real detector system spacing. As discussed in the para-
graph above the affects of this are small and outweighed by the
improvement in image generation speed. The scatter distribution
in PETSTEP is modeled using a large Gaussian-blurring kernel of
20 cm forward-projected into projection space. Since scatter is known
[26] to be a slowly varying count distribution dependent on the real
source distribution and the attenuation map, realistic local NEC can
be achieved by using this underlying distribution in the reconstruc-
tion. This approach is justified by the good agreement observed
between our scatter model and the MC simulation (cf. Appendix C).
However, because of this, PETSTEP is not appropriate for studies spe-
cifically investigating or depending on the image scatter distribution.
Finally, the attenuation correction is currently performed under the
assumption that the whole object or patient scanned has a density
equivalent to water. Although the use of the CT image in both sim-
ulation and reconstruction should limit the bias added to the image,
work is in process to improve this approximation/correction by using
a bilinear approach to calculate the attenuation map from the CT
image. It should be noted that PETSTEP avoids extensive system mod-
eling, and is therefore designed for evaluating image processing
performance rather than true system response. Nevertheless, more
advanced image reconstruction schemes and data models can be
added easily and work is in progress to do so.

Comparison with phantom images obtained with the D690 PET/
CT scanner have shown that PETSTEP can reproduce the intensity
distributions of scanner-acquired non-TOF corrected PET images, with

3 Matlab’s Radon and inverse Radon transforms are matched in the same sense
that pixel driven and ray driven projectors are matched. The back projector is not
the true adjoint of the forward projector. The use of the inverse Radon transform
uses interpolation that makes the match approximate, but close (O(ε) = 1E-12).
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Figure 5. (a) Sensitivity values and (b) Positive Predictive Values of the contours obtained by segmentation on original and PETSTEP simulated images. Values for the simu-
lated case are given as an average on 5 noise realizations, with error bars of one standard deviation of the range of values obtained.
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intensity distribution means within 3% (cf. Fig. 2a and b). The slightly
higher heterogeneity observed on the simulated images (cf. Fig. 2b)
in the background region correlates with a larger FWHM of the in-
tensity distribution histograms. Although the focus of this study was
not to reproduce PET images acquired with a specific scanner, such
a calibration could be done by applying an additional post-
reconstruction filter, such as a de-blurring filter to simulate motion
correction.

PETSTEP was further used and calibrated to reproduce an image
of the NEMA phantom simulated with a MC GATE model of the DLS
PET/CT scanner. For otherwise matched parameters the number of
iterations necessary to reproduce the FWHM of the background ob-
tained for the MC simulation was smaller for PETSTEP reconstruction.
It is consistent with the fact that idealized PETSTEP model uses data
matched to the projectors and is therefore expected to converge with
a smaller number of iterations than MC data reconstructed with STIR.
This is a known effect when using “inverse crime” models. However,
we additionally note that PETSTEP’s convergence was similar to the
Discovery 690 PET/CT system, which uses a model that is better
matched to the data than STIR. This indicates that our “inverse crime”
model for the purposes outlined in this paper is acceptably accu-
rate. Furthermore, even though the MC simulation features a
reconstruction algorithm implemented in different software (STIR),
the results are still close enough for validation of the scatter model
implemented in PETSTEP and to compare image properties.

The flexibility of PETSTEP was demonstrated by reproducing a
clinical H&N scan acquired on the GE D690 and by simulating PET
images with both homogeneous and heterogeneous lesions. The H&N
image simulated (cf. Fig. 3c) shows a high degree of similarity with
the original PET. Differences in PET intensities in the nose, tongue
and vocal cords were due to the fact that the FDG uptake map was
designed to represent typical uptake in the resting state. In addi-
tion the FDG uptake map was limited to modeling a finite number
of tissue structures and of uptake levels in this work. This issue is
not observed on Fig. 4b, for which the initial image was an origi-
nal PET scan. The peak target-to-background ratio measured on the
simulated image was within 6% of the targeted ratio, whereas the
mean ratio was 14% lower, which was expected because of blur-
ring and partial volume effects at the edges of the lesion caused by
the simulation process representing the system response and re-
construction. Furthermore, Fig. 4c and d show the ability of PETSTEP
to produce images with highly heterogeneous lesion uptake.

The absolute evaluation of the three PET-AS methods for the seg-
mentation of the six NEMA spheres using S and PPV measures
provided statistically significantly different results (with the Wilcoxon
signed rank test) for images obtained with PETSTEP and original
D690 PET images (cf. Fig. 5a and b). Smaller S and PPV were ob-
tained for the PETSTEP images in 16 and 12 out of 18 cases
respectively, which could be due to higher noise (background FWHM)
observed on the PETSTEP image (cf. Fig. 2). The largest differences
in S values obtained across images, especially for AT and AC, were
observed for some of the smallest spheres with higher standard de-
viation across noise realizations, indicating that these differences
may be due to noise fluctuations. AT and AC are indeed based on
thresholding and on the image gradient respectively. Both pro-
cesses are particularly sensitive to noise and intensity fluctuations
for small objects. The lower performance (low S and PPV of 1) of
FCM2 compared to other methods, observed for the scanner-
acquired image, was also clearly visible and quantifiable when using
PETSTEP data. The superiority of AT to AC seen on scanner-acquired
images was confirmed with PETSTEP images. Other small differ-
ences in S and PPV observed were too weak to draw any strong
conclusions on the relative accuracy of the methods as they were
evaluated on a single image. These results show that images simu-
lated with PETSTEP have the potential to provide similar conclusions
to scanner-acquired images when used to assess and compare a range

of PET-AS approaches. Although PETSTEP may not be capable, at this
stage, of providing absolute segmentation results, it could be a very
useful tool for the comparison within a same framework of PET-
AS methods on a variety of complex and realistic data, which would
help in addressing the lack of reliable inter-comparisons of PET-
AS methods on relevant data [27]. This result is important in the
light of a growing interest for PET-AS for applications such as RT
planning. PETSTEP is currently implemented within the PET-AS set
[28] software of the AAPM TG-211 for standardized evaluation of
PET auto-segmentation methods.

PETSTEP simulated images also have the potential to be used
beyond segmentation evaluation in a number of applications re-
quiring accurate modeling of clinical systems, such as investigations
into lesion detection [29,30] or assessment of response to therapy
[31,32]. Such studies often focus on image processing perfor-
mance and accurate tracer uptake modeling, thus requiring a large
number of images. In addition, PETSTEP can potentially be applied
to any given radiotracer, although in the case of cascade photon
emitting isotopes the tool will need to be modified. Further, we
think that PETSTEP can be a useful starting point for a number of
image-based tasks, such as resident education, tumor segmenta-
tion and detection, and other machine learning-based processes
(radiomics).

Conclusion

We have developed a fast and flexible PET simulator tool, PETSTEP,
for the generation of synthetic PET images representing any user-
defined FDG uptake distribution. This tool is open source and
designed to be extensible to other isotope and image studies in-
cluding kinetic modeling. The open source nature of PETSTEP allows
user defined uptake distributions that can, in principle, be as complex
as desired. We have shown that PETSTEP allows the fast genera-
tion of images reproducing scanner-acquired data and can be
calibrated to accurately reproduce high quality MC simulated images.
We have also shown that PETSTEP provides PET images that can be
used for the evaluation of PET segmentation algorithms, provid-
ing similar evaluation conclusions to common fillable phantoms.
The high flexibility of PETSTEP could further be used for modeling
any complex and heterogeneous tracer uptake and for applica-
tions such as resident education.
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Appendix

A. Scatter correction of Monte Carlo data

The scatter and random corrections were done by including an
additive sinogram in the OSEM loop in STIR. The additive sinogram
was created by taking the real scattered and random sinograms and
applying filtered back-projection and post-filtering with the same
filter as described for the comparison to GATE MC simulation. The
images were then forward projected back into projection data and
scaled according to the real scatter + random count.
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B. Normalization in simulated PET image reconstruction

In PET image reconstruction, a normalization correction is used
to ensure that the data in each line of response are properly weighted
to remove the influence of detector response and geometric view
factors. Because detector response is generally uniform in most
Monte Carlo simulations (it should be noted that GATE does offer
non-uniform detector response, however, it is not used here), only
the geometric view factors remain. For these simulations, a large
cylindrical source without attenuation was used to generate a nor-
malization projection file. This file was used with STIR to perform

normalization correction on all image reconstructions. Figure B1 is
provided to show the effect of normalization on the image recon-
struction of a 50 cm diameter uniform water cylinder.

The procedure for normalization outlined here was originally
implemented in a study by Schmidtlein et al. [16] examining the
performance of the GE Discovery ST PET camera, but was here imple-
mented for the GE DLS PET camera. To perform the normalization,
a 100 kBq uniform cylindrical source, 59 cm in diameter by 16 cm
in height, was simulated in a vacuum using a back-to-back photon
source for 100,000 s with decay turned off which resulted in ap-
proximately 380 million counts. Several symmetries of the camera

Figure B1. Before and after normalization correction (left to right) for image reconstrucitons of the central slice of a 50 cm diameter phantom and a plot of the slice’s profile.

Figure B2. The symmetries in the DLS’s detector geometry are depicted by color where similar elements are represented by the same color. Note that the radial symmetry
is flipped when crossing the central segment.
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were then exploited to amplify the number of effective counts used
to create the normalization correction file. These involved the pro-
jection angles, the ring differences, and the radial positions. The block
structure of the camera repeats itself every 12-projection angles
forming a basic symmetry element that was repeated 56 times
within each ring difference. If the spacing between the detector
blocks in the z-direction is ignored then the geometric response
between detectors within each ring difference segment can be
assumed to be identical. Furthermore, mirror symmetry in the radial
direction between odd and even segments was exploited. Utiliz-
ing these symmetries, the number of effective counts increases
almost by a factor of 2000, in this case producing 660 billion ef-
fective counts.

In addition to exploiting the symmetries, the geometry of the
source must also be taken into account. The volume of activity seen
by each line of response is a volume given by,

V r ring C r ring W WLOR r z, ,Δ Δ( ) = ( ) +2 2

where C r( ) is the cord length at a particular radial position, Δring
is the ring difference spacing, Wr is the distance subtended by the
detector in the r-direction , and Wz is the distance subtended by
the detector in the z-direction . Each bin of the projection file must
be normalized with respect to the activity within its FOV. In this
case, the activity is proportional to V r ringLOR , Δ( ). Figure B2 illus-
trates these symmetries.

C. Validation of synthetic PET scatter

In order to validate the scatter model as implemented in PETSTEP,
the same methodology as used for the GE D690 scanner was applied
to the GATE simulated data. The voxelized NEMA IEC phantom
(noiseless) used as input to GATE was blurred with six Gaussian
kernels of different FWHMs: 50, 100, 200, 300, 400, and 500 mm.
The resulting images were then forward-projected in STIR and the
resulting sinograms were scaled according to the MC prompt count
of the scan and the MC simulated scatter fraction. The RMSE was
calculated for the difference between the GATE simulated sinogram
and the blurred scatter models to evaluate the optimal model.

The comparison of the real scattered coincidences obtained by the
GATE MC scan to the true object, blurred by different Gaussians, is seen

in Fig. C1. Visual inspection as well as an optimal (minimal) relative
RMSE confirmed that the synthetic scatter based on a 20 cm Gauss-
ian blurring produced the closest fit to the MC data (Figs. C1 and C2).
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