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Exposure to adversity early in life is associated with the

development of a range of psychiatric disorders in adulthood.

Accumulating evidence suggests that pre-puberty is a time of

enhanced vulnerability to environmental insults, and that pre-

pubertal stress may alter normal brain maturation. In this review, I

consider the long-term consequences of pre-pubertal stress on

brain and behaviour in rodent models. Recent studies support

the notion that pre-puberty is a time of enhanced vulnerability to

stress, with particular consequences for the limbic system.

Alterations in epigenetic mechanisms are likely to be responsible

for the maintenance of enduring modifications in brain and

behaviour after experience of pre-pubertal stress.
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Introduction
Early life adversity

Exposure to adverse events early in life is associated with an

increased risk of developing neuropsychiatric disorders in

adulthood [1–3]. Several reviews address the consequences

of stress experienced in perinatal [4–6] and adolescent [7–9]

phases, however, until recently, comparatively less was

known about the effects of stress experienced in the

childhood or pre-pubertal phase [10]. The pre-pubertal

brain displays several functional and structural differences

to the perinatal, adolescent and adult brain and is predicted

to be extremely sensitive to environmental perturbations as

it undergoes significant developmental changes [11–13].

The clinical importance of pre-pubertal stress (PPS) is

borne out in epidemiological studies: childhood adversity

is associated with the development of disorders including

anxiety, post-traumatic stress disorder, psychosis and de-

pression in adulthood [1–3,14].

Underlying mechanisms linking PPS with increased risk

for psychiatric disorders are not well understood. It has
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been hypothesised that stress during early life alters brain

development, enhancing vulnerability for disorders later

in life [7]. Here I review recent studies in rodent models

on the enduring effects of PPS on brain and behaviour,

which provide support for this hypothesis. I discuss the

mechanisms through which PPS may programme behav-

iour, before exploring associations between PPS and

alterations in the limbic system and prefrontal cortex.

Pre-puberty — a vulnerable phase?

Rodents are often utilised to model the effects of early life

stress on brain and behaviour. These basic models allow

us to investigate underlying mechanisms with appropriate

experimental control, in a manner that is not ethically

possible with human participants. Numerous attempts

have been made to equate developmental time-points

between humans and rodents [15], and based on several

considerations (including neuroanatomy, gross morphol-

ogy, developmental milestones and behavioural pheno-

types) the comparison seen in Figure 1 is commonly used.

As the brain develops throughout early life, plasticity and

maturation rates differ across brain regions [1]. Therefore

different regions and processes may be more or less

sensitive to environmental insults at any given time.

During the pre-pubertal phase and continuing into ado-

lescence, the limbic system (notably the hippocampus

and amygdala) and cortical regions undergo structural and

functional maturation [13,15]. These structures also play a

central role in stress reactivity: they contain high densities

of corticosteroid receptors, which detect glucocorticoid

stress hormones and regulate the hypothalamic–pitui-

tary–adrenal (HPA) axis [16] (Figure 2). As the HPA axis

displays heightened reactivity to physical and psycholog-

ical stressors in the pre-pubertal phase [17], it may be

predicted that developing limbic and cortical regions are

especially vulnerable to stress during this time.

Pre-pubertal stress — mechanisms of action
Stress system

Over the last decade, PPS has been modelled in rodents

using a variety of acute and chronic stress protocols.

Stressors are either physical or social in nature. Social

stressors are often applied over pre-pubertal and adoles-

cent phases and have been considered in a recent review

[18]. This review will focus on physical stressors specifi-

cally in the pre-pubertal phase. Typically, physical stress-

ors including forced swim, restraint, footshock and

elevated platform exposure are administered to animals

between PND21 and 35 in a variable manner over a

number of days [10,19]. Circulating levels of stress hor-

mones have been measured in adults exposed to PPS,
www.sciencedirect.com
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Figure 1
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Developmental milestones in humans and rodents [72].

Figure 2
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Stress and the limbic system. Physical and psychological events (or

‘stressors’) can disturb homeostasis, resulting in adaptive

physiological and behavioural responses. Stressors may be negative

or positive in nature. A major effector of the stress response is the

hypothalamic–pituitary adrenal (HPA) axis. Perception of stress causes

release of corticotrophin-releasing hormone (CRH) and arginine

vasopressin (AVP) from the paraventricular nucleus (PVN) of the

hypothalamus. This results in release of adrenocorticotrophic hormone

(ACTH) from the anterior pituitary into the blood system, which

promotes synthesis and secretion of glucocorticoid stress hormones

(mainly cortisol in humans, corticosterone in rats) from the adrenal

cortex. These circulating hormones cross the blood brain barrier and

are detected throughout the limbic system by mineralocorticoid and

glucocoritcoid corticosteroid receptors. The corticosteroid receptors in

the limbic system contribute to a number of cognitive and affective

behaviours. In a healthy system, responses are effectively terminated

once the stressor is removed. Excessive or prolonged activation of

stress responses early in life may interfere with normal limbic system

development, leaving individuals vulnerable to psychiatric disorders

[2,16,23,73].
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with equivocal results [20]. Animals exposed to forced

swim, elevated platform and restraint stress between

PND27 and 29 displayed increased basal corticosterone

levels as adults [21��], whereas those exposed to foot-

shock, cat odour and forced swim over PND23–28 did not

[20]. However, these animals did show a flattening of

circadian rhythm of adrenocorticotrophic hormone

(ACTH) [20]. In humans, results are equally unclear,

with some studies finding increased/decreased cortisol

levels following childhood maltreatment, others finding

no difference [22,23]. However, comorbidity with psychi-

atric disorders such as depression or anxiety or exposure to

stress challenges result in altered ACTH and cortisol

levels in these populations [24]. This is particularly

apparent after administration of the dexamethasone/cor-

ticotrophin-releasing hormone (CRH) challenge test

(Figure 3) [22–24]. This test is widely accepted as the

most sensitive measure of HPA axis dysregulation in

humans, and can be applied to animals [25,26], but has

yet to be utilised in rodent models of PPS.

One study using mice found that PPS re-programmes

corticosteroid receptor expression in the hippocampus,

further suggesting dysregulation of stress responses [27�].
Animals exposed to PPS over PND25–27 showed de-

creased expression of mineralocorticoid receptors (MR),

and altered balance of glucocorticoid receptor (GR) to

MR ratios. In agreement with these findings, male suicide

victims with a history of childhood abuse display altered

glucocorticoid receptor expression [28,29��]. Here, de-

creased levels of the glucocorticoid receptor (GR) NR3C1

and corresponding increases in cytosine methylation of an

NR3C1 promoter were observed in the hippocampus

[28,29��]. This suggests that sustained epigenetic mod-

ifications controlling gene expression may be responsible

for maintaining alterations in the HPA axis induced by

early life stress. It will be important to more fully charac-

terise the stress system after PPS in rodent models, in

particular, responses to the dexamethasone suppression/

CRH challenge should be investigated.
Current Opinion in Behavioral Sciences 2016, 7:8–14
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Figure 3

(a) Humans

Normal response Normal responseDysregulated  response Dysregulated  response

Administer 1.5mg
oral dexamethasone

23.00 hours

Intravenous
corticotrophin-

releasing hormone
15.00 hours

Blood/saliva
samples for

cortisol/ACTH
analysis

Suppression of cortisol/ACTH Suppression of 
corticosterone/ACTH

Abnormally
increased/decreased secretion

of cortisol/ACTH

Abnormally
increased/decreased secretion

of corticosterone/ACTH

Administer 30ug/kg
intravenous dexamethasone

12.00 hours

Intravenous
corticotrophin-

releasing hormone
20.00 hours

 Blood samples for
corticosterone/ACTH

analysis

(b) Rats

Current Opinion in Behavioral Sciences 

The dexamethasone/corticotrophin-releasing hormone (CRH) challenge in (a) humans, (b) rats. Dexamethasone (a synthetic glucocorticoid) is

administered, and provides a negative feedback signal to the pituitary in healthy individuals, suppressing normal diurnal adrenocorticotrophic

hormone (ACTH) and cortisol/corticosterone release (the dexamethasone suppression test). To obtain a more sensitive measure of hypothalamic-

pituitary adrenal (HPA) axis function, CRH can be administered the following day, and in healthy individuals pre-treatment with dexamethasone

prevents substantial release of cortisol/corticosterone and ACTH [25,26].
Epigenetics

Stressful experiences are likely to programme lasting

changes in brain and behaviour through epigenetic

mechanisms [30]. Epigenetic modifications are mitoti-

cally heritable alterations in gene expression which

occur without changes in the underlying DNA se-

quence, and result in increased or decreased gene ex-

pression [31]. Variation in maternal care early in life

results in persistent alterations in hippocampal GR

expression, and these alterations are mediated through

epigenetic mechanisms [32,33]. In particular, modifica-

tions in DNA methylation in promoter regions and

histone acetylation accompany alterations in gene ex-

pression in these models [32,33]. Epigenetic alterations

are also found in humans exposed to childhood adversi-

ty, including repeated demonstrations of methylation

changes in the GR promoter and corresponding altera-

tions of GR expression [28,29��,34]. Delineating epige-

netic alterations after stress is desirable as they may

provide novel targets for therapeutic intervention. To

date, the epigenetic consequences of physical PPS have

not been explored in animal models, and should be a

target of future research.
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Pre-pubertal stress — vulnerable brain regions
Hippocampus

The hippocampus plays a crucial role in learning and

memory processes and emotional behaviour [35]. In

adulthood, acute stress (seconds to minutes) facilitates

hippocampal dependent processes (improving learning

and memory mechanisms), whereas more chronic expo-

sure negatively impacts hippocampal structure and func-

tion [36]. Childhood maltreatment associates with

decreased hippocampal volume in adulthood [37] (but

see [23]), and there is some evidence of impaired hippo-

campal function [38]. Exposing rats to a 4-week variable

physical and social stress protocol over the pre-pubertal

and pubertal phase inhibited growth in CA1, CA3 and

dentate gyrus areas of the hippocampal formation [39].

However, the consequences of physical stressors applied

solely in the pre-pubertal period on hippocampal volume

are currently unknown. Regarding hippocampal function,

PPS impaired performance on one type of hippocampal-

dependent task (contextual fear conditioning), but had no

impact on another (spatial reference memory in a stan-

dard Morris Water Maze task) in male rats [40]. Converse-

ly, in stressed females, contextual fear responses
www.sciencedirect.com
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remained intact, but these animals showed superior ref-

erence memory in the Morris Water Maze task [40]. The

hippocampal formation is structurally complex and func-

tionally dissociable, with dorsal regions showing en-

hanced connectivity to cortical areas, and ventral

regions to subcortical structures like the amygdala. Con-

sequently, dorsal lesions impair performance in a range of

more cognitively demanding spatial tasks (including the

Morris Water Maze), whereas ventral lesions alter perfor-

mance on tasks with a higher affective or emotional

component, including contextual fear and elevated plus

maze [35]. Dorsal and ventral regions of the hippocampus

display divergent developmental trajectories and devel-

opment is not identical for males and females [41]. This

suggests that PPS may have specific consequences for the

development of dorsal and ventral hippocampal regions,

and this may differ between the sexes. A series of elegant

experiments by Grigoryan et al. [21��] provide support for

this hypothesis. Here, in males, PPS impaired and facili-

tated long-term potentiation (LTP) in the dorsal and

ventral hippocampus respectively, through regionally al-

tered noradrenergic mechanisms [21��]. PPS also alters

GABAergic modulation of granule cells in the ventral

dentate gyrus specifically through serotonergic mecha-

nisms [42�]. Due to the intimate associations between

stress, noradrenaline and GABAergic mechanisms

[43,44], long-term modifications in these systems may

partly underlie the altered responses to emotional chal-

lenges in adult animals exposed to PPS.

PPS also has consequences for the expression of genes

implicated in risk for psychiatric disorder. Brydges et al.
[45] found increased mRNA expression of disrupted-in-

schizophrenia-1 (DISC1) and decreased expression of

glycogen synthase kinase beta (GSK3b) and neuregulin

1 (NRG1) (specific to the type III isoform) in the hippo-

campus of stressed males and females in adulthood [45].

These genes have independently been implicated in risk

for mental disorder [46,47]. Interestingly, changes in

DISC1 and NRG1 were observed in adolescence, 7 days

after the administration of stress, whereas alterations in

GSK3b were not apparent until adulthood [45]. This

suggests that PPS alters expression of some genes in

an acute yet sustained manner, whereas others develop

over time.

Amygdala

The amygdala facilitates the encoding of emotional mem-

ories by working in concert with other brain areas, par-

ticularly hippocampal and cortical regions [48]. In

connection with hypothalamic regions, the amygdala is

especially important for fearful and threat-related beha-

viours [49,50]. Enhanced amygdala and hypothalamic

activity is observed in PPS male rats during retrieval of

a cued fear memory [51�], suggesting that PPS intensifies

cued fear responses. PPS also results in mild increases in

aggression, although this effect is greatly enhanced in
www.sciencedirect.com 
animals exposed to a stress protocol extending through the

pre-pubertal and pubertal periods (PND28–42) [52–54].

Increased aggression was associated with alterations in

expression of molecular markers of excitatory and inhibi-

tory neurotransmission (including the NR1 subunit of the

N-methyl D-aspartate receptor and vesicular glutamate

transporter 1, glutamic acid decarboxylase 67 and vesicular

GABA transporter) in the central nucleus of the amygdala

in extendedly stressed animals only, with no changes

observed in PPS animals [52]. PPS also affects other

domains of social behaviour: stressed adult males display

decreased social exploration of unfamiliar adults [55] and

juveniles [56] (but see [52]).

The amygdala plays a central role in anxiety-like behav-

iour on the elevated plus maze, with inactivation produc-

ing anxiolytic effects [57]. PPS animals exhibit increased

anxiety-like behaviour on the elevated plus maze

[27�,45,55,58,59�,60�]. These results mirror responses in

human populations, where childhood adversity is strongly

associated with the development of anxiety disorders in

adulthood [61]. In humans, the effects of childhood

adversity on amygdala structure are currently unclear

[62]. However, altered function is observed, with in-

creased amygdala responses to threatening stimuli [63].

These populations also demonstrate increased anxiety

and aggression, further suggesting abnormal amygdala

function [64,65].

Prefrontal cortex

Through connections with other cortical and subcortical

regions, the prefrontal cortex subserves executive control,

decision-making and emotion regulation [66]. Childhood

adversity is associated with alterations in the PFC, in-

cluding cortical thinning and increased grey matter

[14,64,67]. Deficits in PFC activation and executive

functioning are also observed in these populations

[67,68]. Attentional set shifting tasks (ASST) can be used

to investigate cortical function in rodents. Animals are

trained to discriminate between stimuli in one domain

(e.g. two distinct odours), before learning a new discrimi-

nation between either (i) stimuli in the same domain

(intra-dimensional shift) or (ii) stimuli in another sensory

domain (e.g. tactile, extra-dimensional shift). Using an

ASST, Luo et al. [59�] found no evidence that PPS

impaired ability on either intra-dimensional or extra-

dimensional set shifting, and correspondingly, found no

alterations in the PFC monoaminergic system (specifical-

ly, noradrenaline and 5-HT, which are involved in set

shifting behaviour). However, PPS increased dopamine

in the prefrontal cortex, which correlated with increased

anxiety behaviour in an open field task [59�]. Limited

data thus far suggests that PPS alters prefrontal function

but this is restricted to emotional regulation. Indeed, PPS

involving early weaning and 12 days of variable stress

produced anxiety-like behaviours, decreased neuronal

activity in the medial PFC, increased activity in the
Current Opinion in Behavioral Sciences 2016, 7:8–14
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amygdala, and produced longer excitatory latencies in

mPFC neurons after amygdala stimulation [60�]. As the

prefrontal cortex exerts an inhibitory influence on the

amygdala, dysfunction in this circuitry after PPS is con-

sistent with the enhanced anxiety phenotype observed in

PPS models. Further studies are needed to confirm this.

Sex differences
Although previous research in animal models of PPS has

included females as well as males [10,19], the majority of

studies reviewed here have focussed on male animals.

When explored, sex differences are often found in re-

sponse to PPS, including divergent responses in hippo-

campal-dependent behaviour and perseveration

[10,19,40,71]. Sex differences exist in the age of onset,

prevalence and symptomatology of many neuropsychiat-

ric disorders [69,70]. This is perhaps not surprising when

we consider that several brain regions display sex differ-

ences in development [70]. Future studies should address

this issue, and strive to include females whenever possi-

ble.

Conclusion
Hippocampal, amygdaloidal and cortical regions work

together to integrate information and produce appropriate

behavioural responses. Due to their central role in stress

reactivity and developmental progression throughout

childhood, they are predicted to be extremely vulnerable

PPS. This is especially true when coupled with the fact

that pre-puberty is a time of enhanced reactivity to stress.

Building on a body of research over the last decade [10],

recent work in animal models of PPS provides further

support for this hypothesis, and demonstrates that PPS

induces alterations throughout the limbic system. Wheth-

er these alterations constitute adaptation, with early-life

stressors programming resilience to adversity later in life,

or simply dysfunction and increased risk for neuropsychi-

atric disorder, remains to be unravelled. Future studies

should focus on elucidating the precise neurobiological

mechanisms responsible for behavioural and molecular

alterations after PPS, and special attention should be

given to potential epigenetic mechanisms. Increasing

our understanding of the biological mechanisms linking

early-life stress with increased risk for psychiatric disor-

ders will enable the development of targeted interven-

tions in clinical populations with a history of childhood

adversity.
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