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Abstract 

 

Striatal medium spiny neurons (MSNs) are the main output from the striatum, a 

subcortical part of the forebrain, which is the main input of the basal ganglia (BG) 

system. 96% of the striatum is composed of MSNs. Huntington’s disease (HD) is 

caused by a progressive loss of MSNs in the striatum. It is caused by polyglutamine 

expansion in the Huntingtin protein (HTT). This impairs cerebral cortex function and 

deregulates several genes that play a role in subpallium development. 

The identification and use of transcription factors (TFs) to direct the 

differentiation of stem cells to MSNs is described. Microarray data analysis of MSNs, 

from data in NCBIs Gene Expression Omnibus (GEO), was performed to detect gene 

expression profiles involved in telencephalon development and striatum maturation. 

The genes Dlx2, Gsx2, Mash1, Pax6, Sox4 and Foxp1 were found to play roles in 

neurogenesis, forebrain neuron fate commitment, cell proliferation, anatomical 

structure morphology, maturation of MSNs and transcriptional activation and 

repression. 

A differentiation protocol was developed in which three TFs, DLX2, GSX2 and 

MASH1, were selected and cloned into expression vectors, in different combinations, 

to direct the differentiation of stem cells into naïve rosette neural progenitor cells 

(nrNPCs). These were then terminally differentiated into striatal MSNs. 

Expression of DLX2, GSX2 and MASH1 in human embryonic stem cell (hESC) 

and induced pluripotent stem cell (iPSC) lines successfully directed their differentiation 

into nrNPCs. iPSC-derived nrNPCs were successfully terminally differentiated into 

DARPP-32+ve MSNs. However, only overexpression of DLX2 and MASH1 in iPSC-

derived nrNPCs yielded functionally active MSNs that expressed DARPP-32, CTIP2, 

FOXP1, EBF1, DRD1, DRD2, GAD2 and CALBIN-1. It was successful and, therefore, 

could provide a new cell source for disease modeling in vitro, transplantation studies 

and drug discovery approaches. 
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Disclaimer 
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In Huntington’s disease (HD), medium spiny neurons (MSNs) in the striatum are 

the population of neurons most affected by the disease, and they are subsequently 

lost. The development of a direct differentiation protocol, to derive MSNs from human 

pluripotent stem cells (hPSCs) would result in the production of unlimited numbers of 

MSNs that can be used for disease modeling and cell transplantation in HD studies in 

order to achieve neural network repair. Therefore, the development of a differentiation 

protocol to derive MSNs from hPSCs is of significant importance. Currently, no efficient 

protocol for directing differentiation of hPSCs into MSNs in vitro or in vivo is available. 

Here, hPSCs (human embryonic stem cells (hESCs) and induced pluripotent stem cells 

(iPSCs)) were used to develop a model for direct differentiation into striatal MSNs. This 

thesis describes the identification and cloning of the transcription factors (TFs) required 

for ventral telencephalon commitment and specification towards lateral ganglionic 

eminence (LGE), the striatum primordium. These were then used to transform hPSCs 

in order to produce mature striatal MSNs.  

 

1.1 Human pluripotent stem cells (hPSCs)  
 

The first hESCs line was derived in 1998, 17 years after the derivation of mouse 

embryonic stem cells (mESCs) (Evans and Kaufman 1981; Martin 1981; Thomson et 

al. 1998). hPSCs, which include hESCs derived from the inner-cell mass (ICM) of a 

blastocyst, and iPSCs, which are reprogrammed from somatic cells, have the ability to 

differentiate into thousands of cell types of the three germ lines (ectoderm, mesoderm 

and endoderm) and preserve their capability of self-renewal (Martin 1981; Evans and 

Kaufman 1981; Thomson et al. 1998; Takahashi and Yamanaka 2006; Takahashi et al. 

2007). Both of these cell types are discussed in the following sections. 
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1.1.1 hESCs 
 

hESCs are derived from pre-implantation embryos and propagated in vitro. The 

important use of hESCs lies in their three fundamental properties, namely their 

unlimited proliferation capacity, the ability to be genetically manipulated and 

differentiated into functional specialised cell types. These characteristics of hESCs 

make them an attractive tool for tissue engineering and repair, or disease modeling, 

which would allow a detailed understanding of underlying disease mechanisms (Chang 

and Cotsarelis 2007).  

 

1.1.2 iPSCs 
 

Human fibroblast cells and a number of other somatic cells can be genetically 

induced into a stem cell-like state. This was first done by the ectopic expression of four 

defined transcription factors (TFs), namely OCT3/4, SOX2, C-MYC and KLF4. These 

reprogrammed cells were termed induced pluripotent stem cells (iPSCs) and can be 

generated by several methods, as shown in Figure 1.1 (Takahashi and Yamanaka 

2006; Takahashi et al. 2007). This successful technology opened new possibilities in 

pluripotent stem cell research, such as establishment of disease-specific iPSCs lines 

for disease modeling, cell-based therapies and tissue engineering.  

While iPSCs and hESCs share key properties, such as morphological 

appearance, unlimited proliferation potential and differentiation capacity (Gao et al. 

2012; Chang and Cotsarelis 2007), iPSCs are ethically more acceptable as the 

procedure for generating iPSCs does not involve the destruction of a human embryo 

(Gao et al. 2012). There is some evidence that iPSCs retain the memory of their parent 

cells (i.e. the somatic cells from which they were generated) and display some of the 

non-CG methylation characteristic of somatic cells in the regions of the centromeres 

and telomeres, resulting in changes in gene expression (Gao et al. 2012; Lister et al. 
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2011). As one example, human iPSCs carrying the mutant Huntington (mHTT) gene 

have been derived and used for cell modelling (Section 1.2.1.1). 

 

Figure 1.1: The established models for generating iPSCs through expression of TFs 
Oct3/4, Sox2, C-Mys and Klf4. 

There are several ways to generate iPSCs from human somatic cells, such as (1) retroviral 
transduction, (2) plasmid transfection, (3) direct programming, (4) mRNA transfection, (5) 
piggyback vectors, (6) the Cre/Loxp system and (7) Minicircle vectors. 

 

1.2 Huntington’s disease (HD): symptoms and pathology 
 

HD is an autosomal dominant inherited neurodegenerative disorder. The 

prevalence of HD is approximately 10 per 100 thousand in the UK (Ross and Tabrizi 

2011). It is characterised by expansion of a tri-nucleotide repeat sequence (cytosine 

adenine guanine-CAGn that encodes polyglutamine) in the Huntington (HTT) gene. 

Mutation occurs in the first exon of the Huntington gene (IT15), which encodes a 350 

kDA HTT protein (Kelly et al. 2009; Connor 2011; Tauber et al. 2011; Benraiss and 

Goldman 2011). Clinically, this disorder is characterised by unconscious movement, 

C-MYC 
KLF4 

OCT3/4 
SOX2 

Somatic cells 

Dermal Fibroblast 
Cell culture 

 h-iPSCs 

Via several technologies 

(1)  Retroviral transduction 

    (Okita et al. 2008) 

(2) Plasmid transfection 

    (Si-Tayeb et al. 2010) 

(3) Direct programming 

(Kim et al. 2009) 
(4) mRNA transfection 

(Warren et al. 2010) 

(5) PiggyBAC vectors 

     (Woltjen et al. 2009) 

(6) The Cre/Loxp system 

     (Sommer et al. 2009) 

(7) Minicircle vectors  

       (Jia, 2010) 

SOX2 

OCT3/4 

KLF4 

C-M
YC 

C
-M

Y
C

 
K
LF4 

SOX2 

O
C

T
3/

4 

TFs 

SOX2 

OCT3/4 KLF4 

C-MYC 

Somatic 
cells 

Somatic 
cells Viral 

RNA 

R-T 

DNA 
integration 

DNA 
transcription 

Nucleus 

Somatic 
cells 

Cell 
penetrating 

peptide 

Synthesized 
mRNA 

Somatic 
cells 

Nucleus Nucleus Nucleus 

Other technologies: 



                                                                                                      Chapter 1: General introduction 

 5 

cognitive impairment and psychological abnormalities (Walker 2007). Pathologically, it 

is characterised by loss of cortical neurons and striatal MSNs of the caudate nucleus 

and putamen, and abnormal growth of the ventricles and shrinkage of the overlying 

cortex (Figure 1.2) (Walker 2007; Kelly et al. 2009; Tauber et al. 2011; Benraiss and 

Goldman 2011). In the general population, the number of CAG tri-nucleotide repeats in 

the HTT gene is between 6 and 35. However, patients with HD have more than 35 

CAG repeats (Tauber et al. 2011). The number of CAG repeats is linked to the age of 

disease onset. For example, in HD patients with 36 to 60 CAG repeats, the symptoms 

of HD manifest after the age of 35 years, whereas when the number of CAG repeats is 

more than 60, the symptoms of HD become apparent at a much younger age (Benraiss 

and Goldman 2011). In addition, when unaffected mothers and fathers have high 

numbers of CAG repeats, their offspring could be affected, as the CAG repeat is 

unstable on transmission (Ranen et al. 1995). Presently, there is no cure for HD. 

Current treatments are restricted to medications that decrease the symptoms of HD, 

such as, muscle relaxants, antidepressants and anticonvulsants (Ross and Tabrizi 

2011). 

 

Figure 1.2: Comparison between a normal brain and HD brain. 

Frontal section across a human brain, showing the normal adult brain (A), and the HD brain with 
deteriorate in the striatum (caudate nucleus and putamen) and the cerebral cortex (B) Figure 
taken from Benraiss and Goldman 2011. 

 

The HTT protein is essential for normal brain function (Zheng and Diamond 

2012). It undergoes post-translational modifications, such as acetylation and 

A) B) 

Caudate nucleus 
        Putamen Striatum 

Cerebral cortex 
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phosphorylation (Ross and Tabrizi 2011; Zheng and Diamond 2012). Although the 

exact function of HTT protein is still not fully known (Zheng and Diamond 2012), there 

is an increasing body of evidence describing its neuroprotective properties (Rigamonti 

et al. 2000; Cattaneo et al. 2005). The HTT protein can regulate RNA trafficking, gene 

transcription, intracellular trafficking, including membrane recycling, clathrin-mediated 

endocytosis, neuronal transport and postsynaptic signalling (Gutekunst et al. 1995; 

Ross and Tabrizi 2011; Sari 2011). However, the loss of function seen with wild-type 

HTT and the toxic gain of function with mHTT (which has neurotoxic properties) both 

contribute to HD pathogenesis (Cattaneo et al. 2001; Cattaneo et al. 2005). A large 

amount of evidence from both human HD (post-mortem) and animal HD models has 

revealed the different dysfunctional aspects of mHTT, including mitochondrial 

dysfunction (Cui et al. 2006; Kim et al. 2011), impaired axonal transport (Trushina et al. 

2004), altered synaptic transmission, altered protein-protein interaction, glutamate- and 

dopamine-mediated excitotoxicity (Zeron et al. 2002), and most importantly, altered 

expression of transcription factors (Thomas et al. 2011). Such dysfunctional processes 

eventually lead to neuronal death or degeneration in HD (Johri and Beal 2012). Having 

said that a comprehensive understanding of the pathogenic mechanisms, with the aim 

of developing an effective therapy, is still emerging. In this respect, the development of 

cell and gene therapy is being considered as a new therapeutic approach to curing 

diseases such as HD (Zuccato et al. 2010). Therefore, it is of importance to advance 

our knowledge of the cellular and molecular pathophysiology of HD, which becomes 

feasible through the establishment of human HD modelling using HD patient cells. This 

could consequently enhance future development of a cure. 

 

1.2.1 Disease modeling of HD 
 

Disease modeling can shed light on our understanding of the cellular and 

molecular pathogenesis resulting in clinical manifestation of HD. Importantly, better 
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understanding of the disease mechanisms can facilitate the development of a potential 

cell-based therapy and also aid therapeutic drug screening. 

Animal models of HD have been established by expressing whole mHTT or the 

N-terminal fragment that contains expanded polyglutamine (Sipione and Cattaneo 

2001). Several animal models exist including, Caenorhabditis elegans, Drosophila 

melanogaster, mice, rats, sheep, pigs and monkeys (Sipione and Cattaneo 2001). In 

the past few decades, research on animal models of HD has added valuable 

information about HD pathogenesis. Nevertheless, animal models of HD have failed to 

provide a full understanding of HD pathogenesis, and hence it may not be possible to 

use those models to develop therapeutic approaches, which would prevent or slow 

down the HD progression in human subjects; therefore, cell-based models of HD could 

be preferable. 

Several cellular models have been used previously as disease models to mimic 

the aspects of HD in vitro. The first approaches involved using transient expression of 

mHTT in Human Embryonic Kidney 293 (HEK293) or monkey kidney cells (Martindale 

et al. 1998). Later, models were developed that relied on neural–like cells rather than 

non-neuronal cells for long-term analysis. These include pheochromocytoma 12 

(PC12), neuroblatoma-glioma hybrid cell (NG108-15) and embryoid striatum with 

variation of temperature sensitive large antigen named T (ST14A cell) (Li et al. 1999; 

Lunkes and Mandel 1998; Ehrlich et al. 2001). PC12 cells can be induced to 

differentiate into neuronal like cells by the presence of neuron growth factor. NG108-15 

cells have the ability to differentiate into neuronal like cells, and ST14A cells are 

derived from E14 rat striatum and can display some characteristics of MSN subtype 

(Sipione and Cattaneo 2001; Ehrlich et al. 2001). From these HD cellular models, it 

was found that expansion of CAG repeats caused the HTT exon 1 protein to 

accumulate in the nucleus. This affected gene expression and resulted in abnormal cell 

morphology, a high rate of apoptosis and a deficiency in the development of neurites 
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(Li et al. 1999). In addition, the localisation of the mHTT in the nucleus occurs in a 

time- and CAG repeat unit number-dependent manner (Lunkes and Mandel 1998). 

Although these neurons were shown to mimic mechanisms of human cells in HD in 

vitro, more sophisticated models were required to recapitulate some characteristics of 

HD. Therefore, in vitro models of HD using disease-specific hPSCs were developed to 

fully recapitulate the pathogenesis of HD. 

In 2009, two novel HD-hESCs were generated that carried mutant genes with 37 

and 51 glutamate repeats, cell lines SI-186 and SI-187, respectively (Niclis et al. 2009). 

The cell lines with mutant alleles were derived from affected in vitro fertilization (IVF) 

embryos that were identified by pre-implantation genetic diagnosis (PGD) (Niclis et al. 

2009). It was shown that the mutant HTT was expressed at the transcriptional and 

protein levels (Niclis et al. 2009). Therefore, both HD-hESC lines carrying the genetic 

mutation have the potential to exhibit HD pathology in vitro. In addition, it was 

demonstrated that HD-hESCs could be differentiated into the primary neurons and 

astrocytes that are associated with the pathology of HD, and were immunopositive to 

β-III Tubulin and GFAP, respectively (Niclis et al. 2009). The HD-hESC-derived primary 

neurons and astrocytes were frequently similar to those to HD-negative control hESC 

lines (HES2/HES3) (Niclis et al. 2009). The two HD lines were able to successfully 

differentiate into primary neurons and astrocytes (Niclis et al. 2009). 

Although disease-specific hESCs provide a valuable knowledge of HD pathology, 

ethical and technical considerations make this a time-consuming and challenging 

disease model. The recent establishment of iPSCs in 2006 opened a new avenue for 

the generation and development of more sophisticated cell models to investigate and 

establish human therapies for complex diseases, such as HD, Parkinson’s disease 

(PD) and Alzheimer diseases (AD). 
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1.2.1.1 Human-cell modeling in vitro using iPSCs 

 

Reprogramming of a patient’s somatic cells, such as fibroblasts into iPSCs and 

their subsequent differentiation into target cells (neuronal cells in case of 

neurodegenerative disorders), would provide a wealth of information on disease 

pathology and potentially provide an unlimited source for autologous cell replacement 

therapy. The major advantage of iPSCs is their plasticity, the ability to acquire the 

morphological and functional properties of a wide range of cell types.  

To date, modeling pathogenesis using disease-specific iPSCs has been 

established in diseases characterised by a single gene defect such as familial 

dysautonomia and autism spectrum disorders (ASD) (Lee et al. 2009; Marchetto et al. 

2010), and rapid disease development in infants such as spinal muscular atrophy 

(Ebert et al. 2009; Gao et al. 2012). 

Recently, direct reprogramming of monkey skin cells from HD monkey into 

iPSCs was successfully achieved by ectopic expression of the transcription factors 

Oct4, Kif4 and Sox2 (Chan et al. 2010). In addition, the first iPSCs derived from human 

HD patients were successfully produced by Park and colleagues in 2008. The HD-

iPSCs were capable of differentiating into cells of the three germ layers, including 

neural cell types that demonstrated features of HD (Park et al. 2008). 

In 2010 a human HD cell model was established. HD-iPSCs were successfully 

generated and induced to differentiate into neural stem cells (HD-NSCs) followed by 

differentiation into striatal neuronal precursors. The HD-NSCs were cultured with sonic 

hedgehog (SHH), dickkopf WNT signaling inhibitor-1 (DKK1) and brain-derived 

neurotrophic factor (BDNF) for 8-10 days, followed by treatment with BDNF, cAMP, 

valproic acid and Rho-associated kinase (ROCK) inhibitor (Y-27632), to prevent 

apoptosis. Further differentiation resulted in 10% of the cell population being positive 

for the most important MSN marker DARPP-32 (the dopamine and adenosine 3’, 5’-

cyclic monophosphate cAMP-regulated phosphoprotein of 32 kDa). In addition, the 
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CAG repeat was stable and there was an increase in caspase 3/7 activity, which is one 

characteristic of HD pathology; hence this human HD-cell model has the potential to 

use for drug screening (Zhang et al. 2010). 

Camnasio and colleagues established HD-specific iPSCs using lentiviral 

technology to create an in vitro model of HD. A number of cell lines were derived from 

three patients, and three of these cell lines (two with a homozygous and one with a 

heterozygous genotype) were compared with wild type-iPSCs (WT-iPSCs) (Camnasio 

et al. 2012). The neural differentiation protocol used in this study is shown in 

Figure1.3. It was reported that the CAG repeats were stable in both HD and WT-

iPSCs, and the caspase activity was the same in both HD and WT-iPSCs (Camnasio et 

al. 2012). Whereas, in the study of HD mouse models and HD patient brains, the CAG 

repeats were unstable (Gao et al. 2012). Hence, HD-iPSCs and HD-iPSC-derived 

neurons can reach maturation state and could be used as cell replacement therapy 

(Gao et al. 2012). Interestingly, the authors stated that the lysosomal activity in HD-

iPSCs was four times greater than those in WT-iPSCs. They also suggest that the HD-

iPSCs were capable of clearing out the mutant proteins using autophagosome-like 

structures (Camnasio et al. 2012).  

 

Figure 1.3: The neural differentiation protocol used by Camnasio and collaborators 
in 2012. 

  

Neural differntiation used in Camnasio, S., et al, 2012 

  

  

     D0                      D3                                             D15      

     hESCs                       hESCs medium                     replate on Laminin (3µg/ml) 
     hES medium              with Noggin (500ng/ml)         N2 medium with BDNF (30ng/ml)  
     with10ng/ml bfgf2       and SB435425 (5µM)           and 50x B27  
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From Day (D)0 to D3, the hESCs were cultured with 10 ng/ml bfgf2, and between D3 and 
D15, the cells were neurally  differentiated in culture media with 500 ng/ml Noggin and 5 
µM SB435425. After D15, the cells were further differentiated with N2 media with 30 ng/ml 
BDNF and 50x B27.  

 

Joen et al. induced HD-iPSCs from an HD juvenile patient with 75 CAG repeats 

(HD75-h-iPSCs) and differentiated them into neurons by co-culture with PA6 stromal 

cells (Jeon et al. 2012; Jeon et al. 2014). The properties of HD75-iPSCs derived neural 

progenitors were examined and then transplanted into QA-Lesioned rat (Jeon et al. 

2012) or YAC128 transgenic mice with 128 CAG repeats (Jeon et al. 2014) in order to 

investigate the role of HD75-h-iPSCs in vivo and analyse the motor behavior. Results 

showed that, a large proportion (75%) of the differentiated neurons derived from the 

HD75-h-iPSCs were immunopositive for striatal MSNs markers and exhibited the 

properties of functional GABAergic neurons (Jeon et al. 2012; Jeon et al. 2014). The 

HD75-h-iPSCs neural differentiation were transplanted into different models and 

showed similar outcomes. It was shown that the motor performance initiated to improve 

from 3 weeks following transplantation. At 12 weeks, the grafted cells were 

immunopositive for NESTIN and MAP2. It was also observed that the human cells 

differentiated into GABAergic MSNs that were DARPP-32+ve, GABA+ve, GAD6+ve and 

SVP38+ve (synaptic vesicle protein synaptophysin). The expression of SVP38 

evidenced the ability of synapse formation in the human cells (grafted cells). In 

addition, the expression of aggregated mHTT protein (EM48) was not detected in the 

grafted cells, whereas it was expressed in the host cells. According to the double 

staining analysis at 12 weeks, the DARPP-32+ve MSNs were affected by the 

immunopositive EM48, and hence it was suggested that the HD pathology was not 

developed in human cells or transmitted from host cells to the human cells (Jeon et al. 

2014). However, at later cellular stages, the aggregates formation was detected (Jeon 

et al. 2012), as it would be expected to form in the transplanted YAC128 mice with 

HD75-h-iPSCs at later cellular stages (Jeon et al. 2014). 
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These data illustrate that HD cell models have the ability to differentiate into striatal 

MSNs and to have their HD phenotype corrected by genetic manipulation. However, 

the current protocols also generate non-specified neurons and the differentiated cells 

are not affected by HD to the same extent as the diseased cells (MSNs). Therefore, 

more reproducible and efficient protocols for MSN differentiation in vitro are required in 

order to investigate HD dysfunction at the cellular level.  

 

1.3 Basal ganglia 
 

The basal ganglion consists of the lateral ganglionic eminence (LGE), which 

gives rise to the striatum, the dorsal region, and the medial ganglionic eminence 

(MGE), which gives rise to the ventral region, the globus pallidus (GP) (Figure 1.4 A, B 

& C) (Pauly et al. 2013). Neocortical neurons migrate from the MGE through the LGE 

to their final targets (Sussel et al. 1999). For example, GABAergic (γ-aminobutyric acid) 

neurons, which are produced in the ventricular (VZ) and subventricular (SVZ) zones of 

the LGE and MGE, migrate throughout the SVZ to the cerebral cortex, olfactory bulb 

and hippocampus (Tamamaki et al. 1999; Wichterle et al. 1999). 

Nkx2.1 and Gsx2 are two of the transcription factors that play a role in 

controlling and patterning the basal telencephalon, while Dlx1, Dlx2 and Mash1 have a 

role in differentiation. The interplay of these transcription factors regulates cortical 

GABAergic neuron output (Anderson 1997; Anderson et al. 1997; Szucsik et al. 1997; 

Casarosa et al. 1999; Horton et al. 1999; Sussel et al. 1999; Fode et al. 2000; 

Anderson et al. 2001; Pauly et al. 2013).  
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Figure 1.4: Structure of basal ganglion. 

Human brain showing the structure of the basal ganglia. The basal ganglia consist of 
the LGE (striatum) and MGE (globus pallidus) (A). Coronal sections of human brain 
showing the basal ganglion components: striatum (caudate nucleus and putamen), 
globus pallidus (GPe and GPi) (B), SN and STN (C). Figure taken from Joseph 2011. 

Abbreviations: LGE: Lateral ganglionic eminence, MGE: Medial ganglionic 
eminence, GPe: External segment of globus pallidus, GPi: Internal segment of globus 
pallidus. SN: Substantia nigra; STN: subthalamic nucleus. 

 

  

A) 

B) C) 
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1.3.1 Striatum  
 

The striatum, known as the caudoputamen, is a complex of caudate nucleus 

and the putamen (Figure 1.4 A & B). The striatum forms a major part of the basal 

ganglia along with the substantia nigra (SN), subthalamic nucleus (STN) and GP. It is 

organised into the striosome (patch) and matrix domains. The patch and matrix 

neurons receive input from deep and superficial parts of the neocortical layer, 

respectively. The patch cells pass their output to the SN pars compacta (SNc), 

whereas the matrix cells pass their output to the SN pars reticulata (SNr) (Gerfen 1992; 

Anderson et al. 1997; Feyder et al. 2011). 

The functions of the striatum are to process information from the cerebral 

cortex, thalamus and SNc, and to send GABAergic outputs to the internal part of the 

GP (GPi) and SNr relating to voluntary movement, learning and cognition (Figure 1.5) 

(Gerfen 1992; Feyder et al. 2011).  
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Figure 1.5: Medium spiny projection neurons in the basal ganglia. 

This diagram shows the projection neurons of striatal MSN. Striatal MSN with DRD1 project 
neurons to GPi then to thalamus and go back to motor cortex (A) This pathway activates the 
motor activity (B). Striatal MSN with DRD2 project to GPe and STN then to GPi and thalamus 
then project back to the motor cortex (A). This pathway is indirect and decreases the motor 
activity (B). The red arrows indicate the dopaminergic pathway that acts as a positive feedback 
loop for the direct pathway and negative feedback loop for the indirect pathway to thalamus and 
then back to the cerebral cortex. 

Abbreviations: GPe: external segment of globus pallidus, GPi: internal segment of globus 
pallidus, STN: the subthalamic nucleus, SNc: the pars compacta of substantia nigra, SNr: the 
pars reticulata substantia nigra, DRD1: dopamine D1-like receptors; DRD2: dopamine D2-like 
receptors.  
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1.3.2 Medium Spiny Neurons (MSNs) 
 

The striatum's primary neurons are GABAergic medium-sized spiny neurons 

(Figure 1.6) that constitute around 90-95% of the striatal neurons in rats and over 85% 

in humans (Chang et al. 1982; Chang and Kitai 1985; Wictorin 1992; Kelly et al. 2009). 

These neurons originate from the LGE, while the small percentage of interstriatal 

neurons originate from the MGE (Olsson et al. 1998; Marin et al. 2000; Toresson and 

Campbell 2001; Arlotta et al. 2008). MSNs are characterised by complex dendritic 

arborisation and large dendritic spines receiving excitatory glutamatergic and 

modulatory dopaminergic inputs (Feyder et al. 2011; Penrod et al. 2011). 

 

 

 

Figure 1.6: Morphology of medium-
sized spiny neurons. 

A Medium-sized spiny neuron with spiny 
dendrites. Figure taken from Churchill et 

al. 2004. 

 

The MSNs in the striatum receive excitatory glutamatergic inputs from the 

cerebral cortex and dopaminergic input from the SNc. MSNs activity is regulated by 

dopamine, glutamate and acetylcholine (Ach). MSNs express two dopamine receptors, 

dopamine D1-like receptors (DRD1) and dopamine D2-like receptors (DRD2). These 

two groups of receptors have different expression patterns in the two projection 

pathways that connect the striatum toward the output of basal ganglion nuclei. For 
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example, the MSNs with DRD1 project directly to the GPi and to the SNr, which then 

projects to the thalamus and sends signals back to the cortex (Figure 1.5 A). Whereas 

the MSNs with DRD2 project indirectly to the GPi via a path along the external part of 

the globus pallidus (GPe) and the STN. The STN also receives input from the cortex 

and projects to the GPi which then sends signals to the thalamus and back to the 

cortex (Figure 1.5 A) (Nicola et al. 2000; Gong et al. 2003; Valjent et al. 2009).  

The direct projection neuron pathway (striatonigral), with DRD1 MSNs, 

activates motor activity through disinhibition of thalamocortical neurons. Whereas 

activation of the indirect pathway (striatopallidal), with DRD2 from MSNs, decreases 

motor activity by increasing inhibition of thalamocortical neurons (Figure 1.5 B) 

(Feyder et al. 2011). 

The MSNs can be distinguished by their expression of DARPP-32. DARPP-32 

is enriched in the striatum and is the most commonly used marker of MSNs in the adult 

striatum, as it has been reported that more than 90% of MSNs express DARPP-32 

(Anderson and Reiner 1991; Ouimet et al. 1984). Currently, DARPP-32 is the only 

available marker to distinguish MSNs from the other striatal neurons. The transcription 

factor COUP TF1-interacting protein 2 (CTIP2) was shown to be expressed in MSNs 

(Arlotta et al. 2008). It was observed that all the DARPP-32+ve neurons expressed 

CTIP2 in the mouse striatum (Arlotta et al. 2008). Furthermore, it was confirmed that 

the CTIP2+ve neurons co-expressed the TF forkhead box protein P1 (FOXP1). FOXP1 

was detected in the developing mouse striatum from E13.5 by in situ hybridization and 

immunocytochemistry (IHC) and was expressed in the striatal projection neurons but 

not in the interneurons of the striatum (Tamura et al. 2004). It was also found that 

FOXP1 mRNA was expressed in the developing basal ganglia but not in the GP 

(Ferland et al. 2003; Tamura et al. 2004). 

The DARPP-32 protein was first detected at E14 in the caudate nucleus of 

embryonic rat in a small percentage of cells by IHC (Foster et al. 1987). Over the next 
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few days, the number of DARPP-32+ve cells increased rapidly. By postnatal day 0 (P0), 

the developmental pattern of immunoreactivity of DARPP-32 was seen to be similar to 

that obtained in the adult striatum (Foster et al. 1987).  

According to Ehrlich et al. (1990), Darpp-32 mRNA of was not detectable at E14 

in the mouse brain. However, at P0, both Darpp-32 mRNA and protein were expressed 

in small amounts, and at postnatal weeks 3-4, Darpp-32 expression increased rapidly 

at both the transcriptional and protein levels. However, compared to mRNA, protein 

levels of DARPP-32 were decreased in the adult (Ehrlich et al. 1990). Moreover, it was 

suggested that the expression of Darpp-32 at transcriptional level occurs mostly during 

the last week of gestation, and subsequently Darpp-32 is present at P0. The induction 

of MSNs reaches its peak at E15 and is nearly complete by P1-2 in the rat and mouse 

(Marchand and Lajoie 1986; Ehrlich et al. 1990; Sturrock 1980). The MSNs originate 

from LGE (subpallium) and then migrate to the neocortex (NCX) (pallium) via the 

preventricular proliferation zone for motor activity. 

 

1.3.3 Cerebral cortex 
 

The cerebral cortex develops from the dorsal telencephalon. The projection 

neurones originate from the ventral telencephalon of the LGE and MGE in the cerebral 

cortex. Recently, it has been found that cerebral projection neurons originate from 

different proliferation zones. While some are derived from the cortical ventricular zone 

and then migrate into the cortical mantle, most of the interneurons and projection 

neurons of the cerebral cortex derive from the basal telencephalon and then transfer 

into the developing cortex (Anderson et al. 2001). In the early period of neurogenesis, 

at E11.5 to E14.5, cortical neurons cells migrate from the MGE through the piriform 

cortex (paleocortex–PCX) into the cerebral cortex. In the later stages of neurogenesis, 

at E.14.5 to E16.5, cells transfer from both the LGE and MGE via the preventricular 

proliferation zone (PZ) into the neocortex (NCX) (Figure 1.7) (Anderson et al. 2001). 



                                                                                                      Chapter 1: General introduction 

 19 

 

Figure 1.7: Cortical neuron migration 
from the MGE and LGE in the earlier 
and later stages of neurogenesis. 

The red arrows show cortical neuron cell 
migration from the MGE into the 
neocortex (NCX) via the piriform cortex 
(PCX), in the early period of 
neurogenesis (E11.5 to E14.5). In the 
later period of neurogenesis (at E14.5 to 
E16.5), cortical cells migrate from the 
MGE and LGE into the NCX via the 
preventricular proliferation zone (blue 
arrows). Figure taken from Anderson et 

al. 2001. 
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1.4 Neural (brain) development 
 

An efficient and reproducible protocol for directing the differentiation of hPSCs 

into MSNs in vitro is an important approach for disease modeling and drug screening. 

In order to establish an efficient method for direct differentiation of MSNs from hPSCs, 

an understanding of the TFs and signaling pathways that are essential in MSN 

development in vivo is fundamental. In this section, neural development, with a focus 

on forebrain (telencephalon) development, is reviewed. 

In the first week of human embryonic development after fertilization, cleavage of 

the zygote, as it passes along the uterine tube, results in formation of the morula 

(Moore et al. 2011). The morula (12 to 16 cell stage) reaches the uterus 3-4 days after 

fertilization, and hence the formation of blastocyst occurs in the uterus (Figure 1.8). 

The size of the developing embryo does not increase, although the number of 

blastomeres increases during the process of zygote cleavage, they are smaller than 

the parent cells. The zona pellucida is no longer present at the late stage of the 

blastocyst development (Figure 1.8); hence the blastocyst starts to enlarge 

substantially. At day 6 after fertilization, the blastocyst attaches to the uterine 

endometrium, endometrial epithelium. At this stage the outer layer of the blastocyst, 

the trophoblast, starts to proliferate and differentiates into two layers, regulated by 

transforming growth factor-β (TGF-β). At day 7 after fertilization, the blastocyst is 

completely implanted in the endometrial epithelium. After implantation, the morphology 

of the ICM, known as the embryoblast, is changed and forms the bilaminar embryonic 

disc (BED), which consists of the epiblast and hypoblast. Extraembryonic structures, 

such as the yolk sac (umbilical vesicle), chorionic sac, amniotic cavity and amnion, 

start to form at the second week of human embryogenesis. The BED is located 

between the amniotic cavity and yolk sac and produces the germ layers, which form all 

the embryo cells, tissues and organs. Both the yolk sac and amniotic cavity produce 

morphogens for cell movements of the BED.  
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Figure 1.8: Formation of late blastocyst.  

When the sperm (A) contacts the plasma membrane of secondary oocyte (B), the 
zygote (fertilized egg) is produced where the first mitotic division occurs containing 
the maternal and paternal chromosomes (C). This is followed by the cleavage 
stage of the zygote (D to E) as it travels along the uterine tube, and the formation 
of early blastocyst (F). When this reaches the uterus, the zona pellucida (zp) 
disappears and this is now known as the late blastocyst (G). The blastocyst 
enlarges considerably after the degeneration of zp. 

 

The primitive streak (PS), notochord development and gastrulation take place 

during the third week of human embryogenesis (Moore et al. 2011). Gastrulation is the 

formation of the three germ layers, namely ectoderm, mesoderm and endoderm, and 

establishment of axial orientation. Each of the layers is responsible for production of 

particular cell types (Figure 1.9). At the gastrulation stage, the BED is transformed into 

a trilaminal embryonic disc (TED). Morphogenesis starts in the third week of human 

embryonic development, driven by morphogens such as bone morphogenetic protein 

(BMP), fibroblast growth factors (FGFs), SHH and WNTs. The first step of 

morphogenesis results in the appearance of the PS located on the epiblast surface of 

the TED. The PS is established through proliferation and migration of the cells of the 

epiblast caudally to the middle level of the dorsal TED. Once it is formed, the 

craniocaudal (CrCd) and dorsoventral (DV) surface axes of the embryo are defined. 
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The mesenchymal cells are produced by PS and are located between the epiblast and 

hypoblast. The epiblast produces the embryonic ectoderm, the hypoblast produces the 

embryonic endoderm and the mesenchyme produces the embryonic mesoderm.  

 

 

 

Figure 1.9: the three germ layers and their derivatives.  

The inner cell mass (ICM), or embryoblast, gives rise to the embryo and forms 
the bilaminar embryonic disc (BED) which is transformed to the trilaminar 
embryonic disc (TED) at gastrulation stage. TED consists of endoderm, 
mesoderm and ectoderm. This diagram shows the derivatives of each layer in 
TED. Figure taken from Moore et al. 2011. 

 

Following gastrulation, mesenchymal cells form between the ectoderm and 

endoderm form the notochord (Moore et al. 2011). The notochord promotes the 
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thickening of the embryonic ectoderm by endogenous signals to form the neural plate. 

The neural plate folds and forms a central neural groove flanked by neural folds 

(Figure 1.10). The neural folds fuse to form the neural tube in a process called 

neurulation (Figure 1.10). The neural tube develops into the central nervous system 

(CNS).  
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Figure 1.10: Neurulation stage.  

This diagram shows the dorsal section of an embryo at 21 days of gestation (A), and the 
formation of the neural fold, neural groove, neural tube, neural crest and developing epidermis 
(B to F). Figure adapted from Moore et al. 2011. 

 

The CNS in vertebrates comprises a large assortment of neurons and glial cells 

that are produced at specific times and in specific positions in the embryonic neural 

tube. The CNS is composed of three main cell types: neurons, astroglia and 

oligodendroglia. It consists of the brain (cranial end of neural tube) and spinal cord 

(caudal end of neural tube). During neural tube development, the tube differentiates 

into three parts: prosencephalon (forebrain), mesencephalon (midbrain) and 

rhombencephalon (hindbrain) (Figure 1.11). Each of prosencephalon and 

rhombencephalon subdivides into two regions. The prosencephalon subdivides into the 

telencephalon and diencephalon, while the rhombencephalon divides into the 

metencephalon and myelencephalon, (Lumsden and Keynes 1989; Qiu et al. 1995; 

Rubenstein et al. 1998; Lumsden et al. 1991). The forebrain is the most rostral part of 

the neural tube; the telencephalon is the anterior part of the forebrain and is known as 

the most subdivided region of the CNS (Figure 1.11). In the forebrain, there are 

several TFs that are expressed in limited patterns. These TFs are homeobox genes, 25 

of which are found to be expressed in the forebrain (Rubenstein and Puelles 1994). 

These TFs include members of the Dlx, Emx, Otx and other families (Qiu et al. 1995). 
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Figure 1.11: The neural tube differentiates 
into three parts. 

Once the neural tube is formed, it 
differentiates into three domains. These are 
the prosencephalon (forebrain) consisting of 
the telencephalon and the diencephalon, the 
mesencephalon (midbrain) and the 
rhombencephalon (hindbrain). Figure taken 
from Evans et al. 2012. 

 

During development, the brain is patterned by morphogens FGFs and retinoic 

acid (RA) along the anterior-posterior axis to form the forebrain (FB), midbrain (MB), 

hindbrain (HB), and spinal cord (SC). Each of these is further subdivided into several 

domains along the dorsal-ventral axis by specific morphogens such as WNTs, SHHs 

and BMPs (Figure 1.12 A).  
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Figure 1.12: Patterning of brain according to the morphogenesis.  

In the development of brain, NT, which differentiates into CNS, is patterned 
by morphogenesis of FGFs and retinoic acid (RA) along anterior to posterior 
axis to form forebrain (FB), midbrain (MB), hindbrain (HB), and spinal cord 
(SC), and each part of those are subdivided into several domains by dorsal 
to ventral axis by specific morphogenesis such as WNTs, BMPs (dorsal 
patterning) and SHHs (ventral patterning) (A). The structure of telencephalon 
that consists of pallium “Cortex” expressing the dorsal marker Pax6 and 
subpallium “basal ganglion: LGE and MGE” expressing the ventral markers 
Nkx2.1, Dlx2 and Gsx2 (B). The morphogenesis WNT and SHH have a role 
in the telencephalon patterning (B).   

Abbreviations: NT: Neural tube, RP: Roof plate, FP: Floor plate, Epi: 
Epidermal development, NC: Notochord, SHH: Sonic hedgehog signaling, 
WNT/BMP: WNT and bone morphogenetic protein signaling, RA: Retinoic 
acid, FGF: Fibroblast growth factor, D: Dorsal, V: Ventral. LGE: Lateral 
ganglion eminence, MGE: Medial ganglion eminence; Cx: Cortex. 

 

The telencephalon is subdivided into dorsoventral domains. The dorsal 

telencephalon, called “the pallium”, develops into the cerebral cortex, and the ventral 

telencephalon, known as “the subpallium”, develops into the basal ganglia. The 

homeobox genes, such as Pax6 and Emx2, play a significant role in the regulation of 

patterning and the proliferation of progenitor cells in the dorsal telencephalon (Warren 

et al. 1999; Bishop et al. 2003; Quinn et al. 2007; Pauly et al. 2013), whereas NKX2.1, 

Dlx2 and GSX2 have a role in the ventral telencephalon (Pauly et al. 2013; Carri et al. 

2013) (Figure 1.12 B). 
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In the following section, several factors that play an essential role in 

telencephalon development are discussed. 

 

1.4.1 Factors involved in the development of telencephalon  
 

Concerning the patterning of embryonic telencephalon, there are at least three 

patterning centres that are located in the developing telencephalon and provide definite 

signals, which have a role in the regulation of telencephalic morphogenesis and 

regional specification (Ohkubo et al. 2002; Storm et al. 2006; Crossley et al. 2001). The 

first patterning centre is the rostral patterning centre, which expresses certain genes of 

FGF family including FGF8, FGF18, FGF17 and FGF15 (Figure 1.13) (Storm et al. 

2006). The second is the dorsal patterning centre, which expresses genes from WNT 

and BMP families (Figure 1.13) (Storm et al. 2006). Finally, the ventral patterning 

centre which expresses SHH (Figure 1.13) (Storm et al. 2006). During gastrulation, 

neurulation and rostral forebrain morphogenesis, FGF, SHH and BMP are located in 

the midline of the neural plate (Crossley et al. 2001; Storm et al. 2006). In addition, 

there is cross-regulation between them which regulates the patterning in the early 

development of embryonic telencephalon (Storm et al. 2006).   
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Figure 1.13: Schematic of patterning centers in the mouse telencephalon 
(frontolateral view).  

This diagram shows the location of the three patterning centers in the telencephalon. It 
expresses the genes Bmp4/Wnt3a (green area), Fgf family (blue area) and SHH (red 
area). The cross regulation between the genes is also shown. Fgf family and SHH 
have a positive interaction, whereas Fgf family and Bmp4/Wnt3a have a negative 
interaction. Figure adapted from Storm et al. 2006. 

Abbreviations: Cx: Cortex, LGE: Lateral ganglionic eminence, MGE: Medial 
ganglionic eminence, S: Septum, CP: Commissural plate, LT: Lamina terminalis, OC: 
Optic chiasm, HT: Hypothalamus; MB: Midbrain.  

 

Numerous growth factors participate in the patterning of forebrain. One of them 

is FGF8 which has been shown to be expressed in the anterior neural ridge (ANR) and 

next to the tissues that express SHH and Bmp4 (Crossley et al. 2001; Storm et al. 

2006). FGF8 has a function in cell proliferation, patterning of anterior-posterior (A-P) 

neural tube and regulating Foxg1 (forebrain marker) expression, which in turn 

promotes regionalisation and cell proliferation of telencephalic and optic vesicles 

(Shimamura and Rubenstein 1997; Storm et al. 2006). In a study of loss-of-function of 

FGF8, it was shown that the structure of LGE and MGE was lost and the expression of 

ventral genes Dlx2 and Nkx2.1 were reduced with an increase of dorsal gene 

expression Pax6 (Storm et al. 2006). It was therefore suggested that FGF8 has a role 

in fate commitment of telencephalon ventralisation (Storm et al. 2006).  
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The expression of FGF8 is maintained by the morphogen SHH (Ohkubo et al. 

2002). SHH is produced from the notochord, located under the posterior area of the 

brain and prechordal plate, which in turn is located under the telencephalon domain in 

along a ventral to dorsal gradient (Rubenstein et al. 1998). SHH has a role in the 

patterning of the ventral neural tube, in embryonic development and in telencephalon 

development (Jessell 2000). It has been demonstrated that the concentration and 

duration of SHH signalling are essential for the fate commitment of ventral neural tube 

(Stamataki et al. 2005). According to Jessell (2000), SHH evokes its effect in a 

concentration-dependent manner. It was shown that in spinal cord patterning, SHH 

gradients generated five different classes of ventral neurons from ventral progenitor 

cells (four classes of ventral interneurons and one class of motor neurons) (Jessell 

2000). 

In the developing brain, it has been observed that SHH is expressed in the 

ventral area of telencephalon from E11.5 (Kohtz et al. 1998). It has a fundamental 

function in forebrain patterning, in particular the specification of ventral neuronal cell 

fate. It can also induce the expression of ventral markers in the telencephalon, such as 

Nkx2.1, Dlx and Islet-1/2 (Chiang et al. 1996; Ericson et al. 1995; Kohtz et al. 1998; 

Rallu et al. 2002). In a study of SHH knock out mice, it was observed that the structure 

of the ventral forebrain was lost with dorsalisation of the ventral telencephalon (Chiang 

et al. 1996). Conversely, another study showed that with overexpression of SHH, the 

expression domains of ventral definite genes, such as Nkx2.1, were expanded dorsally 

of the neural tube (Goodrich 1997). In addition, it was observed that when the 

telencephalon explant cultures were exposed to SHH, the ventral forebrain marker 

Nkx2.1 was expressed (Ericson et al. 1995). Furthermore, in a study of SHH 

misexpression in the cortex, it was found that ventral markers such as Nkx2.1 and Dlx2 

were expressed ectopically (Kohtz et al. 1998). 
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The primary receptors for SHH are patched and smoothened. In the absence of 

SHH, patched inhibits downstream signalling from smoothened, whereas in the 

presence of SHH, it binds patched and blocks patched inhibition, and hence signalling 

from smoothened is activated. This activates glioma-associated oncogene homologs 

(Gli) 1, 2 and 3 (Gli1, Gli2 and Gli3), which translocate to the nucleus and induce 

transcriptional activation of target genes (Figure 1.14).  

 

Figure 1.14 The SHH pathway of gene expression. 

In the absence of SHH (A) patched inhibits downstream signaling from smoothened. However, 
in the presence of SHH (B) patched inhibition is blocked, and smoothened is free to activate Gli. 
Activated Gli is free to translocate to the nucleus and activates the transcriptional target gene 
expression. 

 

It was shown that the SHH–dependent gene expression is regulated by the 

three members of Gli family of transcription factors, Gli1, Gli2 and Gli3 (Gulacsi and 

Anderson 2006). According to Stamataki and collaborators (2005), different 

concentration levels of SHH generate a gradient of Gli activity. It was generally 

accepted that Gli1 and Gli2 proteins stimulate the patterning of ventral telencephalon in 

response to SHH signalling. At a low concentration of SHH, the Gli3 protein is 

transformed from an activator form into a repressor form (Gli3R), which stimulates the 
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patterning of dorsal telencephalon. Subsequently, in the patterning of telencephalon, 

the main function of SHH is to inhibit the formation of Gli3R and indirectly up-regulate 

expression of the ventral gene Nkx2.1, and the lateral ventral genes Dlx2 and Gsx2 

(Figure 1.15 A & B). In the study of double mutants of Gli1/Gli2, a normal patterning of 

telencephalon was observed (Figure 1.15 C). Furthermore, in the study of double 

homozygous mutants SHH/Gli3 and Gli3-/-, the patterning of ventral telencephalon was 

largely preserved with Nkx2.1 gene expression (Figure 1.15 C) (Gulacsi and Anderson 

2006; Rallu et al. 2002).  

 

Figure 1.15: Role of SHH and Gli3R in patterning of mouse telencephalon.  

A diagram of a coronal section of mouse telencephalon (A) highlighting the three deferent 
domains via the dorso-ventral axis, which are cortex (ctx) (blue), LGE (green) and MGE 
(red). The homoedomain genes are shown on the left side of the diagram and colour-coded 
to indicate their expression in these domains and their fundamental role in the telencephalic 
patterning. The gradient of SHH and Gli3R are shown on the right of this figure. The SHH 
has a role in the telencephalic patterning by inhibition of Gli3R activity and promotes the 
expression of Nkx2.1, Dlx2 and Gsx2 indirectly (B). The gene regulation of Nkx2.1 is shown 
to be different from Dlx2 and Gsx2 gene expressions as it was expressed normally in the 
Gli3

-
/
-
 mouse model (C) Gli3R promotes the dorsal telencephalon patterning (A, B) and 

expression of dorsal markers such as Pax6. The boundary of Pax6 and Gsx2 expression 
repress each other, where the Pax6 expression represses the expression of Gsx2 which is 
regulated by Gli3 as it was shown that, in the mouse model of Gli3

-
/
-
, the expression of Pax6 

was down-regulated whereas the expression of Gsx2 was expanded dorsally (C).   
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BMPs are a member of the secreted growth factor superfamily of TGFβ. BMPs 

are expressed from the roof plate (RP) of the neural tube and spread ventrally to 

promote the fate commitment of dorsal neurons in a concentration-dependant gradient 

(Dale and Wardle 1999). In neural induction of the neural tube, FGF signalling is 

required to repress the expression of BMP (Wilson and Houart 2004). It was observed 

that in the gain of function of BMP4, the expression of SHH and FGF8 were reduced in 

the telencephalon (Ohkubo et al. 2002). Moreover, in a culture of a telencephalon 

explant in the presence of BMPs, it was shown that the specification of forebrain was 

inhibited because the expression of Foxg1 was repressed as well as the expression of 

ventral expression markers, such as Nkx2.1 and Dlx2 (Furuta et al. 1997; Ohkubo et al. 

2002). 

In the BMP pathway, BMP ligands bind to their heterotetrameric receptors. 

These receptors consist of BMP receptor type I (BMPRI) and BMP receptor type II 

(BMPRII). BMPRI is an inactive domain whereas BMPRII is a phosphorylated and 

constitutively active receptor. Binding of the ligand to the transmembrane receptors 

triggers intracellular signalling. The BMPRI is transphosphorylated and becomes active 

hence phosphorylating the receptor-associated Smad proteins (R-Smads), consisting 

of Smad 1,2,3,5 and 8, which bind to common-partner Smad, Smad4 (Smad4). The 

phosphorylated R-Smad/Smad4 complex translocates to the nucleus and activates the 

transcriptional process with cofactors (Figure 1.16).  
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Figure 1.16: TGT-β/Samd signalling pathway 

When TGT-β ligands, such as BMPs, bind to the BMP receptors, which include BMPRI and 
BMPRII, BMPRI is recruited and transphosphorylated. BMPRI becomes active and 
phosphorylates R-Smad, which includes Smad 1-2/5/8. The phosphorylated R-Smad binds to 
the Co-Smad and then translocates to the nucleus and activates transcription of target genes. 

Abbreviations: TGT-β: Transforming growth factor-β, BMPs: Bone morphogenetic protein, 
TGF-βRI: Type I TGF-β receptor, TGF-βRII: Type II TGF-β receptor, BMPRI= Type I BMP 
receptor, BMPRII: Type II BMP receptor, P: Phosphorylated, R-Smad: Receptor associated 
Smad protein; Co-Smad: Common partner Smad protein.  
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Retinoic acid (RA) is the biologically active (bioactive) form of vitamin A. During 

forebrain development, RA has roles in cell survival, proliferation, differentiation and 

specification during development of the forebrain (Haskell and LaMantia 2005). RA is 

produced in the retina by the retinal aldehyde dehydrogenase enzyme (Figure 1.17) 

(Liao et al. 2005). It carries out its function via two receptors: RA receptors (RARs) and 

retinoid X receptors (RXRs). Each of these have α, β and γ subtypes, which can be 

recognised in the developing striatum (Liao et al. 2005). Both of RARβ and RXRγ are 

expressed selectively and mainly in the LGE domain. RXRγ is expressed at low levels 

in the MGE domain but it is not present in the CTX domain (Liao et al. 2005). In a study 

of a RXRγ homozygous mutant, expression of the choline acetyltransferase (ChAT) 

gene was reduced in the striatum region; however, GABA gene expression was not 

affected (Saga et al. 1999). Furthermore, in a study of RARβ-/- mice, striatal enriched 

tyrosine phosphatase mRNA, which is regulated by RA, was found to be reduced, (Liao 

et al. 2005). The number of Darpp-32+ve neuron cells in the dorsal part of the striatum 

was also reduced (Liao et al. 2008). 

 

Figure 1.17: The RA synthetic pathway 

Retinal is produced from retinol by the enzyme Retinol 
dehydrogenase. RA is then generated through further processing 
by retinal dehydrogenase. Two enzymes: CRBP and CRABP, 
block the formation of retinal and RA respectively.   
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It has been reported that RA is essential for development of the forebrain 

(Schneider et al. 2001). In the adult, RA expression is conserved in the domain of 

forebrain (Haskell and LaMantia 2005). In addition, it was found that retinoid signalling 

maintains expression of FGF8 and SHH in the forebrain (Haskell and LaMantia 2005; 

Schneider et al. 2001). When retinoid signalling is not present, loss of FGF8 and SHH 

expression was observed (Schneider et al. 2001). 

In a study of Gsx2-/- mice, it was observed that forebrain development was 

disturbed and Darpp-32 expression was reduced when the RA synthesis enzyme 

levels in LGE were reduced. However, it was reported that when the exogenous RA 

was added to the mutant mice, the expression of Darpp-32 increased. Consequently, it 

has been suggested that RA plays a role in regulation of DARPP-32 gene expression 

in the developing forebrain (Waclaw et al. 2004).  

The wingless (WNT) protein ligand family is a large group of secreted 

glycoproteins that play a role in embryogenesis. WNT regulates the activity of β-

catenin, thereby regulating the target gene expression (Huelsken and Behrens 2002). 

There are three WNT intracellular signalling pathways: (i) the canonical pathway that 

regulates the activity of β-catenin, (ii) the non-canonical planner cell polarity pathway 

that regulates the c-jun N-terminal kinase (JNK), and (iii) the non-canonical 

WNT/calcium pathway that regulates calcineurin (Huelsken and Behrens 2002). The 

canonical pathway is that which is involved in the development of telencephalon. 

In the WNT canonical signalling pathway (Figure 1.18), the WNT- protein ligand 

binds to the seven-transmembrane receptor Frizzled that activates intracellular 

signalling, leading to phosphorylation of Dishevelled (Dsh) (Huelsken and Behrens 

2002; Moore et al. 2011). The phosphorylated Dsh blocks formation of a multiprotein 

complex of axin, glycogen synthase kinase 3β (GSK-3β) and adenomatous polyposis 

coli (APC) as well as phosphorylation of GSK-3β. The phosphorylated GSK-3β 

becomes inactive and subsequently cannot phosphorylate the cytoplasmic β-catenin, 
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therefore preventing degradation of β-catenin. Hence, β-catenin accumulates in the 

cytoplasm and is subsequently translocated into the nucleus where it activates WNT 

target gene expression with T-cell factor (TCF). In the absence of WNT, the formation 

of multiprotein complex is initiated so that GSK-3β can phosphorylate the cytoplasmic 

β-catenin leading to its degradation. Consequently, the accumulation of β-catenin in the 

cytoplasm and its translocation to the nucleus is prevented and the TCF represses the 

target gene of WNT.  

 

Figure 1.18: WNT/β-Catenin signaling pathway 

When WNT is absent, the multiprotein complex is formed and GSK-3 phosphorylates the 
cytoplasmic β-Catenin, which is then degraded in the cytoplasm. TCF in the nucleus represses 
transcription of the target gene (A). When WNT is present, it binds to the seven-transmembrane 
frizzled receptor and co-receptor LRP5/6 is recruited and activates the intracellular signaling. 
Dsh is phosphorylated and blocks the formation of the complex such that GSK-3 cannot 
phosphorylate β-Catenin. Subsequently, β-Catenin accumulates in the cytoplasm and freely 
translocates to the nucleus where it activates the transcription of the target gene with the 
transcription factor TCF. 

Abbreviations: LRP5/6: Low density lipoprotein receptors-related protein 5/6 co-receptors, 
APC: Adenomatous polyposis coli, GSK-3: Glycogen synthase kinase-3, Dsh: Dishevelled; TCF: 
T-Cell factor.   
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During murine development, canonical WNT signalling was observed in the 

dorsal telencephalon but not in the ventral domain at E11.5 and E16.5. This was 

demonstrated using a reporter line with the expression of lacZ gene under the control 

of responsive elements of β-catenin and TCF (Maretto et al. 2003; Backman et al. 

2005). It was reported that inhibition of the WNT pathway is essential for generation of 

the telencephalon (Houart et al. 2002). Using a Cre-loxP system, Backman and 

colleagues examined the influence of canonical WNT signals before and after the 

onset of neurogenesis (Backman et al. 2005). Before neurogenesis, it was observed 

that the inactivation of β-catenin in the dorsal mouse telencephalon down-regulates the 

expression of dorsal markers such as Emx1/2 and Nng2, with expansion of ventral 

markers such as Dlx2, Mash1 and Gsx2. Conversely, when β-catenin was activated in 

the ventral mouse telencephalon, the ventral expression markers were down-regulated 

and the dorsal markers were expressed in the ventral telencephalon. However, after 

neurogenesis, it was observed that the canonical WNT signalling has no role in the 

dorsoventral fate commitment shift (Backman et al. 2005). Consequently, it was 

suggested that the role of canonical WNT is to specify the telencephalic cells by 

repressing expression of the ventral markers (Backman et al. 2005). 

It is, therefore, clear that the exact levels of the certain factors in specific 

sections are essential in neural development. The specification of cells according to 

their position determines the appropriate phenotype through differentiation.  

There are numerous classes of TFs that play a role in different stages of 

neuronal differentiation and the determination of different neuronal subtypes (Helms et 

al. 2005; Guillemot 2007). These include patterning proteins, progenitor proteins, 

proneural proteins, neuronal differentiation basic helix-loop-helix (bHLH) proteins, 

neuronal homeodomain proteins and inhibitory HLH proteins, which repress the 

expression of proneural genes (Guillemot 2007). 
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1.4.2 The TF expression of FOXG1 in the telencephalon development  
 

Foxg1 was formally known as brain factor 1 (BF1) and was the first 

telencephalon marker to be identified (Tao and Lai 1992). Foxg1 is an evolutionarily 

conserved TF of the forkhead–box (Fox) (also known as winged–helix) family, and is 

expressed in the forebrain (Hanashima et al. 2002). In mammals, Foxg1 was first 

detected in the developing rat brain, and its expression was restricted to the 

telencephalon domain of the forebrain during embryogenesis (Tao and Lai 1992). In a 

study of rat forebrain development, it was observed that the expression of Foxg1 was 

at high level in the telencephalon domains from E10, and absent in the adjacent 

diencephalon domains as shown by in situ hybridization (Tao and Lai 1992). It was 

therefore concluded that Foxg1 has a role in development of the telencephalon and 

formation of the boundaries between the telencephalon and diencephalon. 

A mouse model with a null mutation of Foxg1 was produced by replacing the 

majority of the coding sequence of Foxg1 with a LacZ gene and neomycin antibiotic 

resistance cassette (Xuan et al. 1995). The expression of the enzyme β-galactosidase 

(β-Gal) was controlled by the Foxg1 promoter (Xuan et al. 1995). The expression of 

Foxg1 was detected by X-Gal histochemistry in the neural tube from E8.5 and E9, and 

there was no difference between the wild type and the homozygous mutant mice 

(Foxg1-/-). However, the differences between them emerged from E10.5, the size of the 

telencephalon was tremendously reduced and even further impaired in E12.5 Foxg1 

null embryos (Xuan et al. 1995; Martynoga et al. 2005).  

A study of Foxg1-/- mice revealed that the subpallium of telencephalon was 

more affected than the pallium of telencephalon compared to the wild type mice (Xuan 

et al. 1995). At E12.5, the Foxg1-/- mice expressed the pallium markers, Pax6, Emx1 

and Emx2; however, the subpallium markers Dlx1 and Dlx2, were not detected (Xuan 

et al. 1995). Moreover, morphological changes were observed; the structure of 

ganglionic eminences failed to form at E12.5 in the Foxg1-/- mice (Martynoga et al. 
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2005). A similar outcome was observed in the study of mouse telencephalon, when the 

ventral telencephalon markers, such as Nkx2.1 and Mash1, were absent in the Foxg1-/- 

mutant mice compared with the wild type mice at E9.5, as was the TF Gsx2 at E10.5 

(Martynoga et al. 2005). Furthermore, the dorsal marker Pax3 was overexpressed in 

the Foxg1-/- mutant compared with the wild type. The dorsal marker Pax6, which is 

normally expressed in the pallium telencephalon, was also overexpressed throughout 

the telencephalon (Martynoga et al. 2005).  

In another study, cell proliferation in the Foxg1-/- mouse model was analysed by 

bromodeoxyuridine (BrdU) labeling. It was found that while the precursor cells in the 

dorsal telencephalon were actively proliferating, the ventral telencephalic precursors 

cells were not (Xuan et al. 1995). Therefore, the ventral telencephalon failed to develop 

in the Foxg1-/- mutant because the precursor cells were not proliferating (Xuan et al. 

1995). In a more recent study, cells were double labelled with BrdU and 

iododeoxyuridine (IddU) in order to estimate the duration of the S phase in the cell 

cycle and the entire cell cycle. It was observed that the duration of cell cycle increased 

in the Foxg1-/- telencephalon but remained unchanged in the ventral telencephalon 

domain (Martynoga et al. 2005). In addition, the rate of proliferation was reduced in the 

Foxg1-/- mutant, consistent with results from the earlier study (Xuan et al. 1995). 

Recently, it was shown that the TF Foxg1 coordinates the signaling pathway of 

SHH, which is independently essential for the development of subpallium 

telencephalon, and WNT/β-catenin, which is independently essential for the 

development of pallium telencephalon (Danesin et al. 2009). It has been established 

that Foxg1 represses the identity of the dorsal telencephalon by inhibition of the activity 

of WNT/β-catenin, confirming Foxg1 requirement for the induction of ventral 

telencephalon. However, SHH and Foxg1 independently play a role in the induction of 

the ventral telencephalon (Danesin et al. 2009). 
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1.4.3 The organisation of Dorsoventral (DV) pattern in the developing 
telencephalon  

 

As mentioned earlier, the telencephalon is subdivided into two domains: the 

dorsal telencephalon that develops into cortex and the ventral telencephalon that 

develops into LGE and MGE. In terms of gene expression, there are well-defined 

boundaries between the DV domains and between the two subdivisions of the ventral 

telencephalon (Figure 1.19). The TFs Pax6, Emx1/2 and Ngn1/2 are expressed in the 

dorsal telencephalon, while the TFs Mash1, Gsx2, Dlx1/2 and Nkx2.1 are expressed in 

the ventral telencephalon. The TF Nkx2.1 is specific to the MGE region while Mash1, 

Gsx2 and Dlx1/2 are expressed mainly (but not exclusively) in the LGE. 

Figure 1.19: Schematic coronal section of the developing telencephalon at 
E12.5. 

The pallium and subpallium telencephalon are shown and defined by specific gene 
expression patterns. The pallium telencephalon expresses the TFs Pax6, Emx1/2 and 
Ngn1/2, while the subpallium telencephalon expresses the TFs Mash1, Dlx1/2 and 
Gsx2 mainly in LGE domain and the TF Nkx2.1 specifically in the MGE region. Figure 
adapted from Schuurmans and Guillemot 2002.  

Abbreviations: DP: Dorsal pallium, VP: Ventral pallium, MP: Medial pallium, LP: 
Lateral pallium, dLGE: Dorsal LGE; vLGE: Ventral LGE.  
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The TF expression profile for the pallium telencephalon includes Pax6, Emx1/2 

and Ngn1/2. Pax6, a paired homeodomain gene, is essential for the proliferation of 

precursor cells in the developing cerebral cortex and for the development of cortical 

progenitors (Toresson et al. 2000). Another marker of the pallium telencephalon is 

Emx1. Its expression is restricted to the dorsal part of cortex and, therefore, it is absent 

in the ventral area of the cortex (Figure 1.19). Neurogenin1/2 (Ngn1/2) is known as 

neurogenic basic-helix-loop-helix (bHLH) TF and is expressed throughout the pallium 

alongside Pax6. It is essential for determining the phenotype of pallium telencephalon. 

The expression of Pax6 was observed at E8 in the developing forebrain (Stoykova 

and Gruss 1994). In Pax6-/- mutant mice, known as the small eye phenotype 

(Sey/Sey), it was observed that the patterning of forebrain and the development of 

cortex were defective. The pallial-subpallial boundary (PSB) was also shifted 

(Toresson et al. 2000). Moreover, it was observed that the expression of dorsal 

markers such as Ngn1/2 and Emx1/2 were down-regulated, whereas the LGE ventral 

markers such as Gsx2, Mash1 and Dlx1/2 were ectopically expressed throughout the 

pallium region of the mutant telencephalon. Nkx2.1 expression, which is normally 

restricted to the MGE domain, was expanded into the LGE domain, thereby shifting the 

boundary between LGE and MGE regions (Toresson et al. 2000; Stoykova et al. 2000). 

The TFs Pax6 and Gsx2 play a role in the dorsoventral patterning of telencephalon 

and the formation of the PSB (Yun et al. 2001; Toresson et al. 2000). The PSB is 

defined as the border of the ventral pallium and the dorsal LGE (dLGE) (Yun et al. 

2001). In the region of the dLGE, expression of both Pax6 and Gxs2 were overlapping 

at E10.5 of murine development (Yun et al. 2001). A previous study showed that the 

PSB is comprised of a subgroup of progenitor pools of olfactory bulb interneurons and 

cortical neurons. In addition to this, expression of both Pax6 and Gsx2 was required for 

specification of PSB progenitors (Carney et al. 2009).  
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In a study of Gsx2-/-, Sey/Sey and double mutant Gsx2/Sey mice models, it was 

shown that Gsx2 repressed the expression of Pax6 in the subpallium telencephalon 

and maintained expression of the ventral markers Mash1 and Dlx1/2. Meanwhile, Pax6 

inhibited the expression of Gsx2 in the pallium telencephalon and maintained the 

expression of the dorsal markers Emx1/2 and Ngn1/2 (Toresson et al. 2000). In 

addition, Gsx2 repressed the dorsal markers Emx1/2 and Ngn1/2, whereas Pax6 

inhibited the ventral markers Mash1 and Dlx1/2. According to Fode and colleagues, 

Ngn1/2 repressed the expression of Mash1 and Dlx1/2 in the developing pallium (Fode 

et al. 2000). It has, therefore, been suggested that Pax6 inhibits the expression of 

ventral markers Mash1 and Dlx1/2 via the expression of Ngn1/2 (Toresson et al. 2000). 

However, in mice model when Gsx2 was present, the expression of Mash1 and Dlx1/2 

was not required for the inhibition of Ngn1/2 (Toresson et al. 2000). Consequently, it 

was concluded that the function of Gsx2 in the development of telencephalon was 

essential to repress Pax6 and to maintain the identity of subpallium domain (Toresson 

et al. 2000). Pax6 and Gsx2 have complementary roles in generating the pallium-

subpallium boundary in the developing telencephalon and in specification of precursor 

cells in the cortex and striatum (Toresson et al. 2000).   

 

1.4.3.1 GSX2 (GS homeobox 2) 
 

The GSX2 gene is located on chromosome 4 at 4q12. It was formerly known as 

homeobox protein GSH-2 (GSH2) (Hsieh-Li et al. 1995). Gsx2 belongs to the 

homeobox TF family and is expressed beginning at E9 and E10 in the developing 

forebrain (Corbin et al. 2000). GSX2 and GSX1, another homeobox gene located on 

chromosome13q.2, are the earliest TFs expressed in the LGE progenitor cells (Pei et 

al. 2011).  

The homeobox Gsx genes are involved in the initial specification of the neural 

progenitors of the LGE (Pei et al. 2011). Gsx2 and Gsx1 have a similar function in LGE 
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patterning. However, they play different roles in the balance between proliferation and 

differentiation in LGE progenitor cells (Pei et al. 2011). Gsx2 expression controls 

maintenance of the undifferentiated phase of the neural progenitors of the LGE, while 

Gsx1 expression supports the maturation of the progenitor cells via down-regulation of 

Gsx2 (Pei et al. 2011). At embryonic day E12.5, Gsx2 is more highly expressed in the 

neuronal progenitors of dorsal LGE at the boundary of VZ, than in the ventral LGE and 

MGE, while Gsx1 is mainly expressed in the ventral LGE and MGE progenitor cells at 

the boundary of VZ and SVZ (Toresson et al. 2000; Yun et al. 2003; Pei et al. 2011). 

Recently, it has been found that Gsx1 is expressed in areas where the expression of 

Gsx2 is low, such as in ventricular LGE and MGE. In the Gsx1 mutant mice, during the 

late phases of neurogenesis, the expression of Gsx2 is increased in the ventral LGE. 

Also, when Gsx1 is overexpressed, the expression of Gsx2 ceases. Therefore, it was 

suggested that Gsx1 could be a repressor of Gsx2 expression (Pei et al. 2011). 

Consequently, the Gsx2 gene expression gradient along the dorsal to ventral axis of 

telencephalic LGE goes from high (dorsal) to low (ventral), and is thought to be 

controlled by Gsx1 expression (Pei et al. 2011). 

Furthermore, the homeobox Gsx genes have a role in the development of 

striatal pyramidal neurons and interneurons of the olfactory bulb (Toresson et al. 2000; 

Yun et al. 2003). In the early stages of neurogenesis, Gsx2 is highly expressed in the 

progenitor cells of the ventral LGE, whereas in later stages it is highly expressed in 

progenitor cells of the dorsal LGE (Waclaw et al. 2009). During LGE neurogenesis, 

Gsx2 plays a fundamental role in cell fate commitment of striatal projection neurons 

and olfactory bulb interneurons at distinct time points. In the early stages of 

telencephalic development, Gsx2 is highly expressed and specifies ventral LGE and its 

main derivatives, namely the striatum, and the dorsal LGE and its derivatives, such as 

the olfactory bulb (Waclaw et al. 2009).  
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Following the loss of Gsx2, both ventral and dorsal LGE and their derivatives 

are acutely reduced (Yun et al. 2001; Yun et al. 2003; Waclaw et al. 2004; Waclaw et 

al. 2006). When Gsx2 is mutated in the early stages of telencephalon development, the 

number of striatal projection neurons is reduced. Whereas, when the mutation of Gsx2 

is delayed, the olfactory interneurons are defective (Waclaw et al. 2009). Therefore, 

development of the striatum depends on the early expression of Gsx2, and vice versa 

for the olfactory bulb. 

Interestingly, knocking out Gsx2 in mice leads to misspecification of the 

neuronal progenitors of the LGE and its derivatives, but only in early precursor cells. 

However, when Gsx2 is knocked out at a later stage, it is compensated for as the 

expression of Gsx1 is increased in Gsx2 mutant LGE (Toresson and Campbell 2001). 

However, the resulting striatum is less than half of the size of the striatum in wild type 

LGE (Pei et al. 2011). The double homozygous mutants Gsx2/Gsx1 have a more acute 

misspecification of LGE than the Gsx2 single mutant. Overexpression of Gsx2 causes 

a reduction in telencephalon progenitor cell maturation (neurogenesis) both in vivo and 

in vitro (Pei et al. 2011). However, overexpression of both Gsx2 and Gsx1 has different 

effects on the maturation of neuronal progenitors (Pei et al. 2011). 

 

1.4.3.2 DLX2 (Distal-less homeobox) 

 

The Dlx gene family contains homeobox genes homologous to Drosophila 

Distal-less, which are expressed in the developing head and limbs. Dlx genes are 

present in the genome in three clusters with each pair sharing common enhancers 

(Stock et al. 1996; Eisenstat et al. 1999). Pairs Dlx1/2 and Dlx5/6 are expressed in the 

developing brain in the telencephalon and diencephalon (Poitras et al. 2007). In 

addition to having a definite role in ventral forebrain patterning and neuronal subtype 

specification, they have functions in craniofacial development (Panganiban and 

Rubenstein 2002).  
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Dlx gene expression in the telencephalon is confined to the differentiating γ-

aminobutyric acid (GABA)-expressing neurons (Stühmer et al. 2002b). Dlx expression 

in the MGE is associated with GABA interneuron development, whereas Dlx 

expression in LGE progenitors is associated with striatal and olfactory bulb GABA 

neurogenesis (Poitras et al. 2007). The expression of Dlx1 is localised to the VZ and 

the SVZ of the LGE and MGE; it is also expressed in the mantle zone (MZ) (Poitras et 

al. 2007). The expression of the Dlx2 is found in two zones of the telencephalon: the 

VZ and SVZ of mouse ventral telencephalon of embryos at E12.5 where early 

differentiation arises (Panganiban and Rubenstein 2002). Dlx5 and Dlx6 expression is 

restricted to migrating neurons that are further differentiated, and these are located in 

the SVZ and MZ (Poitras et al. 2007). 

Mice lacking Dlx1 and Dlx2 do not exhibit migration of the GABAergic 

interneurons from the telencephalon of the SVZ and the VZ of the LGE and MGE to the 

cerebral cortex. This leads to a fourfold reduction in the number of GABAergic 

expressing cells in the cerebral cortex, striatum and olfactory bulb, the final 

destinations of the GABAergic interneurons (Anderson 1997). In addition, the 

development of striatal SVZ and differentiation of late born striatal neurons is disrupted 

(Anderson et al. 1997; Anderson 1997; Marin et al. 2000). When both Dlx1 and Dlx2 

are knocked out in mice, there is a reduced expression of the bigene cluster Dlx5/Dlx6. 

In 2004, chromatin immunoprecipitation (CHIP) studies showed that the Dlx2 protein 

binds the Dlx5/Dlx6 intergenic enhancer known as the I56i (Zerucha et al. 2000). 

 

1.4.3.2.1 Cis-acting regulatory elements separate the two Dlx genes 

 

Transgenic and phylogenetic footprinting analyses have shown that there are a 

minimum of two cis-acting regulatory elements that separate the two Dlx genes in the 

intergenic region. For Dlx1 and Dlx2, these cis-acting regulatory elements are I12a and 

I12b (Ghanem et al. 2003; Park et al. 2004; Poitras et al. 2007). The I12b cis-acting 
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regulatory element was analysed to understand the genetic pathways that control Dlx 

gene family expression in the prosencephalon (forebrain). DNase I footprint analysis of 

the I12b enhancer followed by transgenic enhancer assays revealed that the Dlx 

proteins auto-regulate and cross-regulate the expression of DLX1/2 in the 

telencephalon and diencephalon. Furthermore, it was discovered that the expression of 

the DLX1/2 is regulated by the bHLH transcription factor ASCL1, also known as 

MASH1 (Poitras et al. 2007).  

In transgenic mice the I12b enhancer directs expression of reporter genes to 

the forebrain (Ghanem et al. 2003). I12b-lacZ reporter transgene expression is 

detectable in the diencephalon and basal telencephalon from E10, and in the VZ, SVZ 

and MZ of the LGE, the MGE, the anterior entopedunuclar area (AEP) of the 

telencephalon and the frontonasal prominence at E11.5 in a mouse embryo. The 

expression of I12b-lacZ reporter transgene was detectable in cells migrating to the 

dorsal telencephalon, or pallium which develops into the cerebral cortex. Moreover, 

after birth, expression of the I12b-lacZ reporter transgene was found in the neocortex, 

and at P25 was detected in the olfactory bulb that contains GABAergic neurons 

(Poitras et al. 2007). Therefore, it was concluded that the enhancer in the region of the 

Dlx1/2 has a role in differentiation of GABAergic interneurons and projection neurons 

(Poitras et al. 2007). 

 

1.4.3.3 ASCL1 (achaete-scute complex homologue 1 (Drosophila)) 

 

The ASCL1 gene, also known as MASH1, ASH1, HASH1 or bHLHA46, is a 

member of the TFs of the basic helix-loop-helix (bHLH) family. It activates transcription 

by binding to the E-box sequence, 5'-CANNTG-3'. For DNA binding, Mash1 is 

dimerized with other bHLH proteins (Ross et al. 2003; Poitras et al. 2007; Henke et al. 

2009). Moreover, Mash1 is one of the proneural transcription factors that regulates 

neurogenesis in the embryonic brain (Castro et al. 2011). It is expressed in the ventral 
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regions of the telencephalon, more specifically, the proliferation zones of the MGE and 

LGE, which determine GABAergic neural differentiation (Parras et al. 2004). It is highly 

expressed in the SVZ, VZ and MZ of the ventral telencephalon of the LGE and MGE at 

E12.5 (Castro et al. 2011). 

 

1.4.3.3.1 MASH1 activates Notch signaling 

 

The timing of cell fate specification and differentiation in the nervous system of 

vertebrates is regulated by a lateral inhibition process that is mediated by Notch 

signalling (Chitnis and Kintner 1996; Lewis 1996; Henrique et al. 1997). Mash1 

indirectly influences the activation of Notch signalling by controlling the expression of 

the Notch ligands Delta and Jagged (Dll1, Dll3, Dll4, Jag1 and Jag2) (Lindsell et al. 

1996; Castro et al. 2006; Henke et al. 2009). Notch-ligand binding results in cleavage 

of the intracellular domain of Notch (Notch-IC) and translocation of Notch-IC to the 

nucleus where it regulates the expression of neurogenic TFs. Notch signalling 

represses differentiation of neurons and inhibits proneural bHLH expression, including 

Mash1 (Artavanis-Tsakonas et al. 1995; de la Pompa et al. 1997; Robey 1997).  

It has been shown that while Mash1 gene expression is required in the early 

stages of neurogenesis, Dlx2 is required in the late stages of neurogenesis to down-

regulate Notch signalling during the specification and differentiation steps. Cell fate 

commitment is therefore regulated by the coordinated function of Mash1 and Dlx1/2, 

via their distinct influence of the Notch signalling pathway (Yun et al. 2002). 

 

1.4.3.3.2 MASH1 directly regulates DLX1/2 expression 

 

Several groups have demonstrated that Mash1 is an upstream regulator of Dlx2 

(Porteus et al. 1994; Casarosa et al. 1999; Fode et al. 2000; Letinic et al. 2002; Yun et 

al. 2002). CHIP and electromobility shift assay (EMSA) analysis have shown that 



                                                                                                      Chapter 1: General introduction 

 49 

Mash1 binds to the E-box sequence at FP5, which is a functional bHLH binding site 

present in the I12b enhancer. This enhancer is located upstream of the bigene cluster 

Dlx1/2. Binding of Mash1 to the E-box site of the I12b enhancer, activates transcription, 

thereby regulating the Dlx1/2 bigene directly (Poitras et al. 2007). 

Both Dlx1/2 and Mash1 have common expression patterns in the ventral 

telencephalon region of the proliferation zone of the LGE and MGE (Porteus et al. 

1994). Further evidence comes from Mash1 knockout mice, which show a reduction in 

Dlx gene expression in the SVZ of the MGE and the LGE at E12.5 (Horton et al. 1999). 

Moreover, when Mash1 is ectopically expressed in neocortical neurons, Dlx1/2 

expression is up-regulated (Fode et al. 2000). 

 

1.4.3.3.3 MASH1 regulates a large number of other target genes which 

promote neurogenesis 

 

Mash1 plays a significant role in controlling neurogenesis by regulating neural 

progenitor processes including cell cycle progression, proliferation and differentiation. It 

also directly regulates the early and late phases of neurogenesis (Castro et al. 2011). 

Castro and colleagues performed a genome-wide study with CHIP on chip with an 

antibody against Mash1 to the microarrays promoter (chip) from the embryonic ventral 

telencephalon at E12.5, in order to understand the genetic programme that is activated 

by Mash1 in telencephalon development. Mash1 directly regulates a considerable 

number of genes that are associated with all the main phases of neurogenesis, 

including distinct biological processes, molecular functions and cellular processes. 

Biological processes of target genes activated by Mash1 include the early steps of 

inhibition processes (Notch signalling), cell fate specification, regulation of cell 

proliferation and neuronal differentiation (Castro et al. 2011). Several molecular 

processes are regulated by Mash1; for example, 48% of the target genes are involved 

in the regulation of transcription, 36% in signal transduction, 64% in nucleic acid 
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binding, and small percentages in kinase activity (19%), enzyme activity (13%), 

transporter activity (14%) and cytoskeletal activity (11%) (Castro et al. 2011). In 

addition to this, Mash1 directly regulates a number of positive cell cycle regulators that 

promote cell cycle exits (Castro et al. 2011).  

In Mash1 knock out mice, differentiation of the earlier stages of LGE and MGE 

is obstructed. Furthermore, there is evidence of a reduction in the number of cortical 

GABAergic neurons (Casarosa et al. 1999; Horton et al. 1999). As Mash1 regulates the 

expression of Dlx1/2, it can be concluded that Mash1 and Dlx1/2 direct the 

differentiation of GABAergic neurons (Petryniak et al. 2007; Long, Cobos, et al. 2009). 

Inhibition of Mash1 results in a reduction in the number of cell divisions, and a 

division failure in intermediate progenitor cells in the ventral telencephalon (Castro et 

al. 2011). In the adult telencephalon, deletion of Mash1 results in acute failure of 

dividing neural progenitors and stem cells in the proliferation zone of the SVZ in the 

telencephalon (Castro et al. 2011). 

When Mash1 is overexpressed in neural stem cells, it causes rapid differentiation 

of neuronal cells into operative neurons and it has an outstanding capability to control 

the entire sequence of phases of neurogenesis (Berninger, Guillemot, et al. 2007; 

Geoffroy et al. 2009; Vierbuchen et al. 2010). This is because, as a proneural TF, it 

promotes cell cycle exit and differentiates neurons into a distinct progenitor population 

(Bertrand et al. 2002; Ross et al. 2003). Moreover, most of the positive cell cycle 

regulators are up-regulated when Mash1 is overexpressed (Castro et al. 2011). On the 

other hand, loss of Mash1 results in acute failure of basal ganglia neurons in the 

telencephalon, as well as loss of cortical projection neurons (Casarosa et al. 1999; 

Horton et al. 1999; Marin et al. 2000; Yun et al. 2002; Castro et al. 2011). 
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1.5 Stages of striatal GABAergic neurons differentiation 
 

1.5.1 Direct differentiation of hPSCs into neural lineage 
 

In vitro mouse ESCs (mESCs) are maintained in their state of pluripotency and 

self-renewal by the presence of the cytokine leukaemia inhibitory factor (LIF), without 

LIF the mESCs start to differentiate and lose their pluripotent state. In vitro mESCs can 

be induced to differentiate into different lineages by changing the culture conditions 

(Bain et al. 1995). Differentiation of mESCs is promoted by culturing them in 

bacteriological non-adhesive substrate petri dishes where they proliferate, in 

suspension, as multicellular aggregates called embryoid bodies (EB) (Bain et al. 1995). 

Following 8-10 days of suspension culture, EBs are plated onto an adhesive substrate 

(Bain et al. 1995). 

There are some differences between the maintenance of mESCs and hESCs. 

To sustain the pluripotent state in vitro, mESCs require the presence of LIF and serum 

replacement. hESCs are unresponsive to LIF, and instead require a feeder layer, such 

as a mouse embryonic fibroblast (MEF) feeder layer, to maintain their multilineage 

differentiation capacities (Thomson et al. 1998). In spite of this, hESCs and mESCs 

share many similarities including high telomerase activity, expression of pluripotency 

marker Oct3/4 and the ability to form teratomas composed of the derivatives of the 

three germ layers (Thomson et al. 1998). The growth rate of hESCs is slower than that 

of mESCs, and they are more susceptible to apoptosis upon dissociation. This issue 

can be resolved by the application of ROCK inhibitor, which functions as an apoptosis 

inhibitor (Y-27632). Using this inhibitor, it was observed that the rate of apoptosis 

during dissociation of hESCs was significantly decreased compared to untreated 

hESCs (Watanabe et al. 2007).  

For neural induction of hESCs, a novel method was established that uses dual 

inhibitors of SMAD signaling, which is activated in the signaling pathway of BMP 

(Figure 1.16). This is achieved through treatment with SB431542 (10 µM) and noggin 
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(300 ng/ml) in adherent culture or SB431542 (10 µM) and Dorsomorphin (DM) under 

stromal cell co-culture and EB culture (Smith et al. 2008; Chambers et al. 2009; 

Morizane et al. 2011). Dual SMAD inhibition using SB431542 and noggin, was shown 

to achieve an increase in expression of neuroectoderm marker Pax6 (80%) and other 

neural markers, such as Foxg1, epiblast marker Otx2 and Sox1, by day seven, with a 

decline in expression of ES cell marker Oct-4 by day five (Chambers et al. 2009). The 

recombinant protein noggin was replaced with small molecule DM at different 

concentrations (the most optimal concentration was 2 µM); cell survival was 

determined by measuring the number of colonies formed (Morizane et al. 2011). Cells 

cultured with DM had increased cell survival, whereas cells cultured with noggin failed 

to proliferate and form colonies. Furthermore, it is important to consider the advantages 

of using small molecules; they are more stable and cost effective than recombinant 

proteins, and also pose a lower risk of infection (Morizane et al. 2011). However, a 

study by Surmacz and colleagues showed that DM above 5 µM was toxic to cells in 

culture. They also showed that replacement with small molecule LDN193189 (1 µM), 

with SB431542 (10 µM), was more efficient at inducing the expression of 

neuroectoderm marker Pax6 (Surmacz et al. 2012). Nevertheless, the neural induction 

protocol often generates heterogeneous culture (multiple cell lineages) that is not 

exclusively differentiated into neural cells. This is a matter of huge importance in the 

field of transplantation as the undifferentiated cells in culture have ability to form 

teratomas, and therefore, could be a risk to patients. However, this risk can be reduced 

by using techniques such as fluorescence activated cell sorting (FACS), magnetic 

activated cell sorting (MACS) and DNA plasmid integration linked to a specific gene 

carrying antibiotic resistance, which can be used for cell selection or increased 

differentiation of hESCs before transplantation to reduce or eliminate the 

undifferentiated cells. 

In neural patterning, regional commitment of anteroposterior (AP) identity and 

expansion specification of DV identity are dependent on the morphogenic factors WNT 
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and SHH, respectively. It was shown that in vitro WNT signaling inhibits neural 

induction of EBs (Aubert et al. 2002). However, for regional commitment, WNT 

signaling is both essential and sufficient for determining AP patterning of the neuraxis 

in a dose-dependent manner (Kiecker and Niehrs 2001; Houart et al. 2002; ten Berge 

et al. 2008; Paek et al. 2012). It was shown that exogenous WNT signaling initiated 

development of the characteristics of the posterior structure with the differentiation of 

mesendoderm. On the other hand, inhibition of WNT signals was required for 

establishment of anterior structure with the differentiation of neuroectoderm (ten Berge 

et al. 2008). 

In the patterning of DV, addition of SHH to serum-free suspension culture 

(SFSC) resulted in an increased expression of the ventral marker Nkx2.1 with 

decreased expression of the dorsal markers Pax6 and Emx1. Foxg1 expression was 

not affected (Watanabe et al. 2005). Consequently, SHH has an effect on the 

patterning of DV but not in AP identities in forebrain population. Meanwhile, inhibition of 

SHH, using SHH antagonist in chemically defined serum-free media, resulted in an 

increase in expression of Emx1 and Pax6 with reduced expression of the ventral 

telencephalon markers Dlx2, Gsx2 and Nkx2.1 (Gaspard et al. 2008). 

 

1.5.2 Differentiation into striatal medium spiny neurons  
 

Over the last 4 years, several studies have differentiated hPSCs into MSN-like 

cells and have used them for cell replacement therapy in the rodent brain (some of 

these studies are summarized in Table 1.1). The studies’ approach was to employ 

developmental cues (also called morphogens), such as SHH, to control and stimulate 

the transcriptional networks that regulate sequential neuron progenitor fate (Carri et al. 

2013; Nicoleau et al. 2013; Ma et al. 2012) This strategy generates a mixture of cell 

types, including LGE and MGE progenitor cells (reviewed in Soldner and Jaenisch 

2012), and so far, no-one has succeeded in generating a pure population of striatal 



                                                                                                      Chapter 1: General introduction 

 54 

MSNs. The development of a protocol for inducing disease-specific cell types in vitro is 

a pressing need in order to produce iPSC-disease-specific cell types with high 

efficiency to be employed in potential cell replacement therapy. 
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1.5.3 Direct differentiation into a specific differentiated cell type by 
ectopic expression of transcription factors  

 

In 1988, the first direct differentiation strategy using TFs was used by Tapscott et 

al. (1988) using the protein of MyoD1 to direct reprogramed fibroblasts into myogenic 

cells. Recently, the forced expression of TFs was used to direct differentiate human 

and mouse fibroblasts into induced neural (iN) cells and neuron precursor cells (NPCs) 

that was summarized in Table1.2 as Group 1 and 2 respectively. Also, direct 

reprogramming into different cell types such as cardiomyocytes (Table1.2 Group 3), 

haematopoietic fate precursor cells (Table1.2 Group 4) and induced hepatocyte-like 

cells (Table1.2 Group 5).  

 

Table 1.2: Summary of some published papers used the direct reprogramming strategy 
to differentiate somatic cells into a specific cell type. 

 

 Cell line 
Direct differentiation 

into cell type 
Ectopic expression of 

TFs 
References 

Group 1: direct 
differentiation 
into iN 

Astroglia Functional iN cells Ngn2 & Mash1 Berninger et 

al. 2007 

Postnatal 
cerebral 

cortical 
astroglia 

Functional glutamatergic 
neurons or GABAergic 
neurons 

Ngn2 or Dlx2 Heinrich et al. 
2010 

mPSCs and 
postnatal 
fibroblast 

Functional iN cells Brn2, Mash1 & Myt1l Vierbuchen et 

al. 2010 

Human 
fibroblasts 

Functional iN cells or 
dopaminergic neurons 

BRN2, MASH1 & MYT1L 
or  

BRN2, MASH1, MYT1L, 
LMX1A & FOXA2 

Pfisterer et al. 
2011 

Adult human 
primary 
dermal 
fibroblasts 

Functional human iN 
cells 

miRNA-124, MYT1L & 
BRN2 

Ambasudhan 
et al. 2011 

Human and 
mouse 
fibroblasts 

Functional iDA cells Mash1, Nurr1 & Lmx1a Caiazzo et al. 
2011 

Human 
fibroblasts 

including 
neonatal 

Functional neuronal cells miRNA-9/9-124, 
NEUROD1, MASH1 & 
MYT1L 

Yoo et al. 
2011 
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adult dermal 
cells. 

Human and 
mouse 
fibroblasts 

Functional iMNs Brn2, Mash1, Myt1l, Lhx3, 
Isl1, Hb9 & Ngn2 

Son et al. 
2011 

Mouse 
hepatocytes 

Functional iN Brn2, Mash1 & Myt1l Marro et al. 
2011 

hPSCs Functional iN cells BRN2, MASH1 & MYT1L Pang et al. 
2012 

Mouse 
fibroblasts  

Functional iNSC Brn2, Sox2, Klf4, c-Myc & 
E47  

Han et al. 
2012 

Mouse 
fibroblasts  

Functional iNSC Sox2, Klf4 & c-Myc Thier et al. 
2012 

Human and 
mouse 
fibroblasts 

Functional multipotent 
iNSCs 

Sox2 Ring et al. 
2012 

Adipocyte 
precursor cells 

Functional iN cells Brn2, Mash1 & Myt1l Yang et al. 
2013 

hPSCs Functional iN cells NGN2 OR NEUROD1 Zhang et al. 
2013 

Human 
fibroblast 

Functional iN cells with 
high efficiency 

MASH1, BRN2 & MYT1L 
vector then GFP vector 
with 4x miRNA-124 target 
sequences 

Lau et al. 
2014 

Group 2: direct 

differentiation 
into iNPCs 

Mouse 
fibroblasts 

Functional midbrain iDA 
progenitors cells 

Pitx3, Nurr1, Lmx1a, 

Lmx1b, En1, Mash1, Myt1l, 
Brn2, Ngn2, Sox1 & Pax6 

Kim et al. 
2011 

Mouse 
fibroblasts  

1- Functional iNPCs with 
glia and neural 
morphologies 

2- Bi-potent iNPCs 
(differentiated into 
astrocyte and 
functional neurons), 

3-  tri-potent iNPCs (into 
astrocytes, neurons 

and 
oligodendrocytes) 
and 

4- tri-potent iNPCs (into 
astrocytes, 
oligodendrocytes and 
less mature neurons) 

1-11 TFs; Foxg1, Sox2, 
Brn2, Mash1, Lhx2, Dlx1, 
Zic1, Olig2, Pax6, ID4 & 
Rfx4, 

2-Foxg1 & Sox2, 

3-Foxg1, Sox2 & Brn2 and 

4-Foxg1 & Brn2 

Lujan et al. 
2012 

Group 3: direct 

differentiation 

into cardiac 
muscle cells 

Mouse 
fibroblasts 

Cardiomyocytes Oct4, Sox2, C-Myc & Klf4 Efe et al. 
2011 

Group 4: direct 

differentiation 
into blood cells 

Human 
fibroblasts 

Mature haematopoietic 
precursors cells  

Oct4 Szabo et al. 
2010 

Group 5: direct 

differentiation 
into liver cells 

Mouse 
fibroblasts  

Functional induced 
hepatocyte-like cells 

Gata4, Hnf1α, Foxa3 & 
p19

Arf
 inactivation 

Huang et al. 
2011 
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Abbreviations: iN cells: induced neuronal cells, iMNs: induced motor neurons, iDA cells: induced 
dopaminergic (iDA) cells, miRNA: MicroRNA, iNSC: induced neural stem cells; iNPCs: Induced neural 
precursor cells. 
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1.6 Working hypothesis and aims 
 

Direct differentiation of mouse and human somatic cells into induced neuronal 

cells has been successfully achieved through the forced expression of TFs, that have a 

role in neurogenesis, such as MASH1, Sox2, NGN2 and DLX2 (see details in Table 

1.2 Group 1&2). Nonetheless, this strategy has not been performed yet, to direct 

differentiate hPSCs into the functional MSNs through forced expression of major TFs, 

with a specific role in ventral telencephalon development, such as MASH1, DLX2 and 

GSX2 (Pauly et al. 2013). However, indirect ectopic expression of morphogens, such 

as SHH, has been evaluated; this approach has resulted in low percentage of DARPP-

32+ve MSNs (Kallur et al. 2006; Aubry et al. 2008; Jeon et al. 2012;Carri et al. 2013; 

Nicoleau et al. 2013; Jeon et al. 2014; Arber et al. 2015). In fact, these studies have 

failed to generate a pure population of striatal MSNs. Only one study has observed in 

high yield of (up to 80%) DARPP-32+ve MSNs (Ma et al. 2012). Another disadvantage of 

some of these studies was the lack of comprehensive function analysis of striatal 

neurons using electrophysiology (Kallur et al. 2006;Aubry et al. 2008;Nicoleau et al. 

2013) Therefore, based on the above hypothesis, the aim of this study was to express 

the TFs ectopically, that have role in ventral telencephalon development into hPSCs to 

direct reprogram into specific neuron cell type, i.e. striatal GABAergic MSNs. In 

addition, a comprehensive approach was also employed to assess the phenotype and 

functionality of GABAergic MSNs in this project. 

 

1.7 Objectives of the project 
 

The main objectives of the project were to predict and confirm the desired TFs 

that have a role in the MSN development using existing microarray public database 

with the help of bioinformatics tool. Then, the identified TFs were used to express 

ectopically in the hPSCs-derived forebrain-like neural progenitors in order to directly 

differentiate them into MSNs-like cells. In addition, the reprogrammed cells were 



                                               Chapter 1: Working hypothesis, aims, and objectives of the project 

 62 

characterized for the ectopic expression of nucleofected TFs, and further validated for 

differentiation into ventral forebrain commitment towards LGE neuronal progenitors, 

eventually towards functional GABAergic MSNs using ventral markers and 

electrophysiology, in vitro.  
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2.1 Introduction 

 

The striatum forms a major part of the basal ganglia that is located in the 

subpallium domain of telencephalon (Pauly et al. 2013). The striatum’s primary and 

major neurons are GABAergic medium-sized spiny neurons (MSNs), originating from 

the lateral ganglionic eminence (LGE) (Feyder et al. 2011). In Huntington’s disease 

(HD) patients, the most affected tissue is the striatum, where the degeneration of 

GABAergic MSNs takes place (Vonsattel et al. 1985). Several mechanisms have been 

identified to promote neurodegeneration in HD, including mitochondrial dysfunction 

(Cui et al. 2006), impaired axonal transport (Trushina et al. 2004), altered synaptic 

transmission, altered protein-protein interactions, glutamate- and dopamine-mediated 

excitotoxicity (Zeron et al. 2002) and, most importantly, altered transcription factor (TF) 

expression (Thomas et al. 2011). In HD, dysregulation of gene expression is based on 

a loss of function in Huntington protein (HTT)-mediated regulation of transcription 

(Gardian et al. 2005; Bithell et al. 2009; Soldati et al. 2013). A growing number of 

studies from both HD patients (post-mortem) and animal models have indicated a 

widespread changes in gene expression, which possibly trigger a cascade of several 

intracellular pathways and subsequently cause loss of neuronal identity and 

neurodegeneration (Augood et al. 1997; Gardian et al. 2005; Bithell et al. 2009; Soldati 

et al. 2013). More specifically, previous investigations using the HD model in mice have 

shown that mutant Huntington protein (mHTT) interacts with TFs and reduces histone 

acetylation such that TFs cannot access specific regions of DNA to initiate 

transcription, producing a TF impairment and contributing to HD pathogenesis (Gardian 

et al. 2005). Transcriptional changes in HD also involve transcriptional repressor 

dysregulation (Landles and Bates 2004; Hodges et al. 2006; Bithell et al. 2009). By 

way of example, disrupted interactions between mHTT and RE1 (repressor element 1)-

silencing transcription factor (REST) and neuron-restrictive silencing factor (NRSF), a 

TF repressor, in HD promotes migration of REST into the nucleus, resulting in aberrant 

repression of coding target genes and non-coding RNAs (Zuccato et al. 2001; Zuccato 
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et al. 2003). This reduced expression of coding genes, such as the brain-derived 

neurotrophic factor (BDNF) genes, leads to loss of neuronal trophic support and leaves 

striatal neurons vulnerable to degenerative changes in HD (Altar et al. 1997; Zuccato et 

al. 2001; Zuccato et al. 2003; Zuccato et al. 2007). On the other hand, the increase in 

nuclear REST consequences in repression of miRNA, e.g. mir-124, and in a 

concomitant increase of its target genes, driving the loss of neuronal identity (Wu and 

Sun 2006; Johnson et al. 2008).  

It is becoming increasingly essential to understand the molecular dysregulation of 

HD and its underlying pathogenic mechanism, the knowledge of which is still in its 

infancy. To achieve this goal, a human disease model derived from HD patients’ actual 

cells is required instead of using animal models. With this, the first step in establishing 

a human disease model is to successfully differentiate HD patient-derived stem cells to 

MSNs using the right combination of TFs to drive neurogenesis and MSN 

differentiation. To gain further insight into the TF network involved in normal forebrain 

neurogenesis and striatal differentiation, bioinformatics tools can be used to import 

genomic datasets from Gene Expression Omnibus (GEO) and analyze the statistical 

significance of candidate genes using GeneSpring software (Genetics 2003). 

Importantly, GeneSpring allows microarray data to be more easily understood relative 

to its biological function (Genetics 2003). Such an approach has been employed 

previously to explore the genetic circuits of Parkinson’s Disease (PD) (Hu 2011), where 

significant gene expression profiles were retrieved using two datasets, GSE6613 and 

GSE7621, from the GEO website (Genetics 2003).  

The aim of this study was to validate and identify TFs and their target genes that 

have fundamental roles in ventral telencephalic fate commitment, regulation of 

neurogenesis, and MSN differentiation and maturation. The only available microarray 

data from the NCBI that elucidates TF networks in brain development and 

neurogenesis are derived from B-cell lymphoma/leukemia 11B (BCL11B, also named 
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Ctip2) null mutant mice and Ctip2-/+ mutant mice (Arlotta et al. 2008). In the present 

work, the MSN microarray repository dataset analysed here were derived from the 

striatum of Ctip2-/- and Ctip2-/+ mutant mice at postnatal day 0 (P0), (series reference 

GSE9330) (Arlotta et al. 2008), obtained from the GEO datasets of the NCBI. Then, 

differentially expressed TFs and their target genes associated with neurogenesis 

identified using GeneSpring software could be manipulated to generate a gene pool of 

MSNs in vitro, which may then be used for the disease model of HD.  
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2.2 Experimental Strategy 
 

Global transcriptome comparison was conducted between two different mouse 

models and the wild type. GeneSpring software was used to import experiment data 

sets from GEO and to generate expression datasets to assess statistically significant 

genes from a total of eight samples. The control datasets included three independent 

replicates. The test samples included datasets representing four independent 

replicates of the Ctip2-/- homozygous mouse and one dataset from the Ctip2-/+ 

heterozygous mouse with no replicates (Arlotta et al. 2008).  

Analysis of the microarray data sets using GeneSpring software involved four 

steps: importing the microarray datasets to the software; creating the experiment; 

quality control of the microarray data sets; and statistical analysis of the data. 

 

2.2.1 Importing the microarray data set to GeneSpring software  
 

Eight Affymetrix files were downloaded from the tools menu by selecting an 

option “imported NCBI GEO experiment”, as the datasets were originally from the GEO 

database. The experimental data were generated using an Affymetrix mouse 430-2 

chip. 

 

2.2.2 Creating the experiment 
 

The experiment was created using three steps as follows: (i) normalization of 

the datasets; (ii) definition of parameters; and (iii) interpretation. Firstly, the CEL 

scanned image files were converted into values, which represented intensity values 

associated with probes, and the values were grouped into probe sets. The MAS.5 

algorithm was then used to transform these probe sets into expression values. The 

advantage of the MAS.5 algorithm is that it defines the mismatch positions and counts 
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the number of nonspecific bindings for a given object. All samples were baseline 

normalised to a median. An example of mismatch (MM) and perfect match (PM) probes 

used in the Affymetrix platform is shown in Figure 2.1. The Affymetrix approach 

assembly probes into probe set pairs comprising a MM and a PM. The PM probe is a 

25 base oligonucleotide that is complementary to a transcript, and the MM probe has 

the same sequence as the PM; however, at the 13th base position is hybridized to the 

PM probe set (Figure 2.1) (Rouchka et al. 2008). The data generated from MM probes 

enables recognition of cross-hybridization. Whether or not to include a probe set is 

based on the ratio of the intensity values of the corresponding PM and MM. For 

example, in Figure 2.2, which shows the probe set 206055-at, the intensity values for 

the PM probes are higher than the corresponding MM probes, and hence this probe set 

is included (Rouchka et al. 2008). However, in Figure 2.2 for the probe set 219820-at, 

the MM probes have higher intensity values than the PM probes, which may be due to 

cross hybridization, and hence this probe set may be excluded (Rouchka et al. 2008). 

 

Figure 2.1:! An example of complementary of PM versus MM to the transcript in the 
Affymetrix platform. 

The diagram shows an example of hybridization of PM and MM to the transcript. At the 13
th
 

position, MM is cross-hybridize with the position in PM probe. 

 

 

Transcript 
 
 

PM 

 
 

MM 

Cross-

hybridization 

at 13th 

position 

A T C G A T C G A T C G A 
---- To 25 

Base 

T A C G T A G C T A G C T 
---- To 25 

Base 

T A C G T A G C T A G C A 
---- To 25 

Base 
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Figure 2.2:! An example of intensity levels for three Affymetrix probe set PM and MM 
pairs. 

Three different probe set pairs of PM/MM that show the intensity levels of PM and the 
corresponding MM that located directly below the PM probe. Each probe set represents eleven 
probe set pairs and a greyscale is used to depict intensity levels. Figure adapted from (Rouchka 
et al. 2008). 

Abbreviations: PM: Perfect match; MM: Mismatch. 

 

In the following step, a new parameter, such as tissue type (the control wild 

type mouse, Ctip2-/- homozygous mouse and Ctip2-/+ heterozygous mouse), was 

added. Importantly, the tissue type parameter was chosen as a predictor in this 

experiment. Following construction of the experiment, a list of probe set IDs were 

generated with additional information, such as the Gene Symbol, Entrez Gene and 

Gene Ontology, specifically the biological process, cellular components and molecular 

functions.  

PM 
 

MM 
 

PM 
 

MM 
 

PM 
 

MM 
 

Affymetrix ID: 206055-s-at 

Affymetrix ID: 208913_at 

Affymetrix ID: 219820_at 
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2.2.3 Quality control and statistical analysis of the data sets 
 

The MAS.5 algorithm was used to detect the hybridized genes and establish if 

they were present, marginal or absent. The data was then filtered using flags to 

determine if they were present, marginal or absent and below a condition of one out of 

eight, this being shown as 12.5%. Each gene had a signal value with a detection p-

value to indicate if the transcript was detected as present, marginal or absent. In 

addition, where the data flagged as present marginal or absent flags, additional filtering 

was performed via a differential expression using statistics (unpaired t-test) with a p-

value of less than or equal to 0.05, with correction for multiple comparisons using the 

Benjamini-Hochberg false discovery rate (FDR). An unpaired T-test was used for the 

three cultures, the control and the two mutant cultures with different replicates. The 

profiles of differentially expressed genes were then filtered again with a cut-off fold 

change (FC) of less than 1.3 in order to retrieve the differentially expressed genes with 

a large magnitude of FC. This meant that there were changes in expression between 

the mutant and control tissues which revealed the genes that passed the t-test with a 

p-value of less than 0.05 and also showed changes in expression of more than 1.3. 

Clustering of the data for the hierarchal gene tree was performed with entities of 

clusters; these had particular conditions (Ctip2-/- homozygous mouse, Ctip2-/+ 

heterozygous mouse and control). For this analysis, the metric distance of the 

differentiation and the linkage role were centroid.  

Finally, analysed data and figures were exported. Further data analysis utilized 

bioinformatics databases, including the David Bioinformatics Resources 6.7 (National 

Institute of Allergies and Infectious Diseases (NIAID), NIH), the GeneCards Human 

Gene Database v.3 (Weizmann Institute of Science), and the UniProtKG (Protein 

Knowledgebase, UniProt Consortium). The probe set IDs were pasted into the David 

Bioinformatics database under functional annotation clustering in order to retrieve more 

information about the biological role of the differentially expressed significant genes. 
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2.3 Results 
 

2.3.1 Differentially expressed genes identified in Ctip2-/-heterozygous, 
Ctip2-/+ heterozygous and wild-type mice  

 

A total of 45,101 genes were analysed for the Ctip2-/- homozygous, Ctip2-/+ 

heterozygous and control mice. In order to obtain a nearly complete knowledge about 

TFs association with forebrain development and specific striatal medium spiny neurons 

(MSNs) differentiation, all present, marginal, and absent genes detected were included 

in the analyses. The results showed 2,791 differentially expressed genes with a p-

value less than 0.05 and a fold change more than 1.3. The top 20 up-regulated and 

down-regulated genes with a wide range of functions are listed in Table 2.1. Next, 

Gene ontology (GO) analyses were performed to define only dysregulated genes 

involved in forebrain development. 
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Table 2.1: Dysregulated genes between Ctip2
-/-

 homozygous, Ctip2
-/+ 

heterozygous and 
wild-type. 

Probe Set ID p-value Regulation Fold change Gene symbol 

1449470_at 4.44E-06 up 4.25 Dlx1 

1416302_at 2.07E-05 up 2.33 Ebf1 

1448789_at 4.98E-05 up 6.02 Aldh1a3 

1416561_at 1.32E-04 up 2.26 Gad1 

1457072_at 2.62E-04 up 2.53 Ctip1 

1426637_a_at 3.73E-04 up 10.24 Six3 

1438194_at 5.57E-04 up 1.48 Slc1a2 

1434023_at 8.78E-04 up 3.07 Cep120 

1428939_s_at 0.002 up 2.04 Gnaq 

1427523_at 0.003 up 2.65 Six3 

1419271_at 0.004 up 4.18 Pax6 

1448877_at 0.004 up 3.49 Dlx2 

1416855_at 0.007 up 2.80 Gas1 

1422165_at 0.007 up 2.05 Pou3f4 

1427703_at 0.007 up 2.07 Pafah1b1 

1425094_a_at 0.008 up 2.23 Lhx6 

1438232_at 0.010 up 1.5 Foxp2 

1421978_at 0.012 up 2.17 Gad2 

1449863_a_at 0.020 up 1.36 Dlx5 

1448893_at 0.026 up 1.43 Ncor2 

1422206_at 1.58E-07 down 1.73 B3galt1 

1438784_at 8.27E-06 down -3.59 Ctip2 

1436868_at 3.17E-05 down 2.07 Rtn4rl1 

1431091_at 7.23E-05 down 1.62 Pygo1 

1417399_at 9.26E-05 down 2.41 Gas6 

1435227_at 1.51E-04 down 2.68 Ctip2 

1416221_at 1.58E-04 down 2.15 Fstl1 

1435649_at 1.99E-04 down 7.04 Nexn 

1450339_a_at 2.17E-04 down -3.58 Ctip2 

1448978_at 4.02E-04 down 3.50 Ngef 

1429485_a_at 4.30E-04 down 1.77 Utp11l 

1449465_at 0.002 down -3.9 Reln 

1446633_at 0.003 down -4.83 Atg7 

1456051_at 0.007 down -2.74 Drd1a 

1421140_a_at 0.010 down 1.42 Foxp1 

1437086_at 0.011 down -2.44 Mash1 

1433602_at 0.021 down 1.62 Gabra5 

1427044_a_at 0.021 down 1.40 Amph 

1424601_at 0.026 down -1.36 Xrcc4 

1422285_at 0.031 down -4.19 Otp 
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2.3.2 Identification of dysregulated genes related to brain 
development and neurogenesis using GO tree 

 

To focus on differentially expressed genes relevant to brain development and 

neurogenesis in Ctip2-/- homozygous, Ctip2-/+ heterozygous compared to control mice, 

GO tree analyses were performed. As the initial results revealed in Figure 2.3, over 

100 transcription factors, transcription repressors, target genes or effector genes 

associated with neuronal differentiation and development were dysregulated. Further, 

GO analysis to determine the individual genes involved was demonstrated and listed in 

Tables 2.2 to 2.4. Among the significant genes, both Dlx2 and Mash1 (also known as 

Ascl1) transcription factors are significantly dysregulated in Ctip2-/- homozygous and 

Ctip2-/+ heterozygous mice in comparison to controls, and they have an important role 

in ventral forebrain fate commitment and development (Tables 2.2 and 2.3). The GO 

analysis shows significant upregulation of Dlx2 (fold change of 3.49), but 

downregulation of Mash1 (fold change of -2.44). The key roles of these genes are 

consistent with previous findings (Yun et al. 2002; Petryniak et al. 2007; Long et al. 

2009b; Wang et al. 2013). Therefore, these two transcription factors are considered a 

complementary combination to differentiate stem cells into MSNs in this study. 

Interestingly, Gsx2, which also promotes early ventral telencephalon development 

through induction of Mash1, Olig2, and Dlx2 expression (Szucsik et al. 1997; Corbin et 

al. 2000; Toresson et al. 2000; Wang et al. 2013), is not expressed any different within 

this dataset (data not shown). Therefore, these two transcription factors, along with 

Gsx2, are considered a suitable combination to differentiate stem cells into MSNs.  
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Figure 2.3: Initial GO analysis of differentially expressed genes with a significant role 
in forebrain development.  
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Table 2.2: Gene Ontology (GO) analysis for the genes identified in the development of 
telencephalon. 

 

 

Table 2.3: Gene Ontology (GO) analysis for genes identified in the forebrain generation of 
neurons.

Fold Gene 
change symbol

1416967_at 0.04 up 1.29 Sox2

n

4.18 Pax6

Probe Set ID p-value Regulation GO terms

1419271_at 0.01 up

1420995_at 0.04 up 2.34 Plxna3

1422165_at 0.01 up 2.05 Pou3f4

1425094_a_at 0.01 up 2.23 Lhx6

1422262_a_at 0.04 up 1.84 Lhx6

1422285_at 0.03 down -4.19 Otp

1448877_at 0.01 up 3.49 Dlx2

1449470_at 4.44E-06 up 4.25 Dlx1

1428938_at 0.02 up 1.79 Gnaq

1428939_s_at 0.002 up 2.04 Gnaq

1428940_at 0.01 up 1.91 Gnaq

1429559_at 0.02 up 1.72 Gnaq

1455729_at 2.00E-03 up 1.83 Gnaq

1446633_at 0.002 down -4.83 Atg7

Commitment of neuronal cell to 

specific neuron type in forebrain

1448877_at 0.01 up 3.49 Dlx2 Commitment of multipotent stem Forebrain neuron 

1449470_at 4.44E-06 up 4.25 Dlx1 cells to neuronal lineage in forebrain fate commitment

1425094_a_at 0.01 up 2.23 Lhx6

1422262_a_at 0.04 up 1.84 Lhx6

1420995_at 0.04 up 2.34 Plxna3

1446633_at 0.002 down -4.83 Atg7

1420995_at 0.04 up 2.34 Plxna3

1425094_a_at 0.01 up 2.23 Lhx6

1422262_a_at 0.04 up 1.84 Lhx6

1428938_at 0.02 up 1.79 Gnaq

1428939_s_at 0.002 up 2.04 Gnaq

1428940_at 0.01 up 1.91 Gnaq

1429559_at 0.02 up 1.72 Gnaq

1455729_at 2.00E-03 up 1.83 Gnaq

1446633_at 0.002 down -4.83 Atg7

1458560_at 0.04 down -2.23 Aspm

Pyramidal neuron development
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Forebrain neuroblast division

1419271_at 0.01 up 4.18 Pax6

Fold Gene 
 change symbol

1438231_at 0.014 up 1.56 Foxp2

1421140_a_at 0.01 down 1.42 Foxp1

1438232_at 0.01 up 1.5 Foxp2 Striatum Subpallium

1421140_a_at 0.01 down 1.42 Foxp1 development development

1448789_at 4.98E-05 up 6.02 Aldh1a3 Nucleus accumbens development

1456051_at 0.01 down -2.74 Drd1a

1437086_at 0.01 down -2.44 Mash1

1417086_at 0.02 up 1.61 Pafah1b1

1427703_at 0.01 up 2.07 Pafah1b1

1425094_a_at 0.01 up 2.23 Lhx6

1422262_a_at 0.04 up 1.84 Lhx6

1435577_at 0.04 up 1.71 Dab1

1449465_at 0.001 down -3.9 Reln

1451086_s_at 0.04 up 1.31 Rac1

1456051_at 0.01 down -2.74 Drd1a

1416561_at 1.32E-04 up 2.255 Gad1

1421978_at 0.01245 up 2.172 Gad2

1448789_at 4.98E-05 up 6.02 Aldh1a3

1438231_at 0.014 up 1.56 Foxp2

1438232_at 0.01 up 1.5 Foxp2

1456051_at 0.01 down -2.74 Drd1a

Probe Set ID p-value Regulation
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Table 2.4: Gene Ontology (GO) analysis for genes identified in the development of the 

 forebrain. 

 

2.3.3 Identification of DLX2 and MASH1 target gene interactions 
involved in forebrain neuron generation using pathway analysis 

 

We subjected differentially expressed genes with potential roles in forebrain 

development to cellular and molecular pathway analyses in order to identify target 

genes associated with DXL2 and MASH1 TFs and other potential effector genes.  

Fifty-three target genes were found to play critical roles in neurogenesis and 

anatomical structure morphologies (Figure 2.4). As shown in Figure 2.4, Mash1 

regulates Dlx1 and Dlx2 expression while Dlx1/2 regulates Arx, Dlx5, Uba2, and Spg7 

expression. Furthermore, the results allude to important candidate effector genes, such 

as Ctip2, Ebf1, Foxp1/2, DRD1/2, and GAD1/2, normally promoting striatal 

development and differentiation. Moreover, these genes including Foxp1, Ebf1, Drd1/2, 

Gad1/2 are also dysregulated as indicated by GO tree in previous Tables 2.2 and 2.3. 

Clearly, what is shown is that these target and effector genes are potential candidates 

for assessing the success of the differentiation program for stem cells into MSNs after 

transfecting stem cells with major TFs, i.e. Mash1, Dlx2 and Gsx2.  

Fold Gene 
 change symbol

1448893_at 0.03 up 1.43 Ncor2 Cell proliferation

1434023_at 8.78E-04 up 3.07 Cep120 Interkinetic nuclear migration in forebrain

1419271_at 1.00E-02 up 4.18 Pax6

1426637_a_at 3.73E-04 up 10.24 Six3 Anterior/posterior pattern Forebrain

1427523_at 0.003 up 2.65 Six3 formation regionalisation

1419271_at 0.004 up 4.18 Pax6 Dorsal/ventral pattern formation

1416967_at 0.04 up 1.29 Sox2

GO terms

Forebrain morphogenesis

Probe Set ID p-value Regulation
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2.4 Discussion 
 

While the aetiology of HD is the “mHTT toxic gain of function” and “HTT loss of 

function”, the comprehensive understanding of pathogenic mechanisms with respect to 

altered gene expression is still developing. It is of importance to have a human HD 

model using a patient’s own stem cells that will differentiate into MSNs to understand 

the molecular and biological aspects of HD pathogenesis and to develop a future for 

gene therapy. To this end, we identified statistically dysregulated TFs and their target 

genes in the only NCBI available dataset (Ctip2-/- mutant mouse microarray) using 

bioinformatics tools such as “GeneSpring”. These dysregulated TFs and their target 

genes play a major part in ventral telencephalon (forebrain) development, 

differentiation and fate commitment. Here, we have demonstrated that significantly 

dysregulated TFs, Dlx2 and Mash1, are appropriate and complementary to use in 

combination to differentiate stem cells into GABAergic neurons. In addition, their 

dysregulated target genes Dlx1/2 by TF Mash1 and target genes Dlx5 and Arx by TF 

Dlx1/2 as well as other effector genes, like Foxp1/2, Drd1/2, Ebf1, and Gad1/2, can be 

used as striatal or GABAergic neuron markers to validate the success of stem cell 

differentiation into GABAergic neurons and maturation. 

From the gene expression profile using GeneSpring, Mash1 and Dlx2 were 

among the significantly dysregulated genes (Table 2.1). Mash1 and Dlx1/2 have a 

fundamental role in ventral telencephalon (forebrain) development, activation of 

transcription factors, regulation of neurogenesis, LGE differentiation, and neuronal fate 

commitment in the forebrain. Furthermore, Mash1 induces neuroblast proliferation, 

particularly in the ventricular zone (VZ). These functions are in line with the previously 

reported studies conducted in Mash1-/- and Dlx1/2-/- mutant mice and Mash1-/-;Dlx1/2-/- 

triple mutant mice models (Long, Swan, et al. 2009; Pauly et al. 2013; Yun et al. 2001; 

Yun et al. 2002; Yun et al. 2003; Toresson and Campbell 2001). 

 



                                                                                                                     Chapter 2: Discussion 

 80 

 Many studies have revealed that alternative GABAergic cell fate is controlled by 

the coordinated functions of Mash1 and Dlx1/2. During early neurogenesis, the 

increased expression of Mash1 in the ventral telencephalon (Lo et al. 1991, Guillemot 

et al. 1993, Horton et al. 1999) activates Notch signaling and enhances the expression 

of Dll1, Dll3, and Notch signalling’s target gene i.e. Hes5. Consequently, this gene 

profile triggers adjacent progenitor proliferation and inhibits differentiation (Horton et al. 

1999, Yun et al. 2002, Poitras 2007). Expression failure of these candidate effectors 

was observed in Mash1-/- mutant mice, causing loss of proliferative progenitor in the 

subventricular zone (SVZ) of the medial ganglionic eminence (MGE). In addition, the 

ventricular zone (VZ) progentiors precociously acquired prematurely the SVZ 

progenitors’ property of lateral ganglionic eminence (LGE), exhibited by an increased 

ectopic expression of GAD1 and Dlx5 in VZ (Casarosa et al. 1999). However, during 

late neurogenesis, domination by Dlx1/2 expression represses the expression of 

Mash1 and the Notch signaling pathway, subsequently promoting differentiation, 

specification and maturation of striatal neurons (GABAergic neurons), evidenced by 

increased expression of Drd2, Gad1/2 in SVZ and mantle zone (MZ) (Anderson et al. 

1997a, Yun et al. 2002, Cobos et al. 2007). Therefore, corroborating with the above 

results, the inhibitory negative feedback of Dlx1/2 on Mash1 expression explains the 

current observation of Dlx1/2 over-expression and Mash1 diminished expression in 

Ctip2-/- mutant mice, when compared to wild-type mice in this chapter. Migration of 

GABAergic neurons to the cerebral cortex is also mediated by Dlx1/2 through the 

induction of Arx expression and inhibition of p21-activated serine/theronine kinase 

(PAK3), as demonstrated by Arx-/- and/or Dlx1/2-/- mutant mice (Anderson et al. 1997a, 

Stühmer et al. 2002b, Cobos et al. 2005a, Yoshihara et al. 2005, Cobos et al. 2007, 

Colombo et al. 2007). Thus, it has been proposed that Mash1 is necessary for the early 

development of the subpallium (ventral) telencephalon, while Dlx1/2 is critical for late 

neurogenesis (Yun et al. 2002; Long et al. 2009a; Long et al. 2009b). 
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On the other hand, Mash1 and Dlx1/2 also have a parallel yet redundant manner 

of directing the neurogenesis program. This is supported by the partial blockage of 

striatal development in Dlx1/2-/- mutant mice, represented by preserved expression of 

DRD1/2 and GAD1/2 (Long et al. 2009a). These mutant mice presented with a clear 

defect of striatal neuron differentiation in dLGE, but vLGE neuronal identity is partially 

maintained, suggesting the presence of a parallel pathway to Dlx1/2 function. Such a 

preservation of vLGE development could be maintained by the expression of Mash1, 

Gsh1/2 (also named Gsx1/2), and Tlx (Long et al. 2009a). Another line of evidence 

giving credence to the parallel function of Mash1 is the sustained expression of the 

Dlx1/2 target gene, i.e. Gad1/2 in Dlx1/2-/- mutant mice (Stühmer et al. 2002a; Poitras 

et al. 2007). This sustained expression is accomplished by MASH1-induced Dlx1/2 

expression through binding to the enhancer, I12b (Fode et al. 2000). Such 

substantiation highlights the critical role of Mash1 and Dlx1/2 in early and late 

neurogenesis in the dLGE, and Mash1 alone in the septum and vLGE as well as MGE 

neurogenesis (Casarosa et al. 1999, Long et al. 2009a). These characteristic 

anatomical functions correspond with the expression pattern of Dlx1/2 and Mash1, both 

highly co-expressed in most dLGE VZ and SVZ progenitors, whereas there is much 

less expression of Dlx1/2 in vLGE and MGE (Porteus et al. 1994, Casarosa et al. 1999, 

Yun et al. 2002, Long et al. 2009a). These studies reveal the profound role of Dlx2 and 

Mash1 to induce efficient and successive progress of neurogenesis in striatum. Based 

on the parallel and overlapping function of Dlx1/2 and Mash1 in regulating 

neurogenesis of GABAergic neurons (MSNs), this combination of TFs will be used in 

the subsequent chapters for cloning and differentiating human pluripotent stem cell 

(hPSC)-derived naïve rosette neural progenitor cells (nrNPCs) into MSNs.   

Gsx2 is a further important TF in promoting the early identity of the ventral 

domain of the forebrain, with great emphasis on VZ in dLGE and dCGE (Hsieh et al. 

1995, Corbin et al. 2000, Toresson et al. 2000, Wang et al. 2013). The loss-of-function 

mouse model (Gsx2-/- mutant mice) has presented with a profound defect of LGE, 
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particularly dLGE, and reduction of Mash1, Dlx1/2, Ebf1, and GAD1 expression, while 

the ectopic expression of Gsx2 retained expression of all these genes (Szucsik et al. 

1997, Corbin et al. 2000, Toresson et al. 2000, Wang et al. 2013). Despite Gsx2 

expression not being dysregulated in the current bioinformatics analysis, the parallel 

function of Gsx2 with Mash1 and Dlx1/2 TFs in programming striatal progenitor 

development cannot be denied (Long et al. 2009a). Hence, in this project, Gsx2 was 

combined with Mash1 and Dlx1/2 TFs to differentiate hPSC-derived nrNPCs into 

GABAergic neurons.  

The other aim of this study was to validate previously described neuronal 

differentiation and maturation markers (Drd1/2, Gad2, Ebf1 and Foxp1) as well as to 

detect neuronal phenotypes in the SVZ and MZ, some of which are target genes for 

Dlx1/2. In this chapter, target genes of Dlx1/2 such as Drd1/2 and Gad2 were 

dysregulated in Ctip2-/- striatum (Stühmer et al. 2002a; Cobos 2005a; Yoshihara et al. 

2005; Cobos et al. 2007; Colombo et al. 2007; Long et al. 2009a). The striatum is a 

major part of the brain that controls inputs and outputs for motor and cognitive 

functions (Albin et al. 1989; Moyer et al. 2007). This is largely accomplished by the 

dopaminergic actions of Drd1 and Drd2. It has been shown that Drd1 provides 

projections to control direct pathways, whereas Drd2 provides projections to control 

indirect pathways. The expression of Drd1/2 is higher in the striatum than the frontal 

cortex in mice (Araki et al. 2007). In fact, expression of Drd1/2 is localized to the SVZ 

and MZ in the striatum, along with Gad1/2 expression (Long et al. 2009b). The 

dominant expression of Drd1/2 in the SVZ and MZ of the striatum is indicative of the 

correspondence between its expression pattern and striatal MSNs’ maturation and 

phenotype. In addition, Gad1/2 genes encode the glutamic acid decarboxylase 1/2 

enzyme, which converts glutamate into GABA (Pinal and Tobin 1998). This allows 

neurons to gain the GABAergic phenotype, which is the dominant neuron type in the 

striatum (Feyder et al. 2011). Gad1 and Gad2 are localized in the neuronal cytoplasm 

and the nerve terminal, respectively (Pinal and Tobin 1998). A growing number of 
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studies have been used Drd1/2 and Gad2 to closely examine LGE striatal 

differentiation and maturation status in SVZ and MZ in loss-of-function mouse models, 

such as Mash1-/- and Dlx1/2-/- (Anderson et al. 1997b; Casarosa et al. 1999; Garel et al. 

1999; Horton et al. 1999; Zerucha et al. 2000; Stühmer et al. 2002a; Yun et al. 2002; 

Long et al. 2007; Poitras et al. 2007;Colasante et al. 2008). Taken together, Drd1/2 

and Gad1/2 are major biomarkers for the differentiation and maturation stages that 

take place in the SVZ and MZ as described in previous mice models. The 

dysregulation of Drd1/2 and Gad1/2 observed in the current bioinformatics analysis 

and hence these biomarkers were utilized for further in in vitro analysis in the LGE 

striatal differentiation and maturation. 

The current microarray analysis of the Ctip2-/- striatum has also predicted 

dysregulation of effector TFs with a role in MSN differentiation. Some examples of 

dysregulated effectors are Ebf1, Foxp1/2, Drd1/2, Gad2 and Ctip2, which are normally 

expressed in the SVZ and MZ of the LGE (Long, Swan, et al. 2009; Pauly et al. 2013). 

Ctip2 TF is uniquely expressed in striatal MSNs during early post-mitotic maturation, 

and controls patch-matrix compartmentalisation of MSNs (Arlotta et al. 2008). Lack of 

Ctip2 in a mutant mouse exhibited defective organization of MSNs into striatal patches 

(Arlotta et al. 20008). In addition, Ctip2 is likely to be a downstream gene of Dlx1/2, 

Mash1, Gsx2, and Islet1 (Anderson et al. 1997a; Casarosa et al. 1999; Yun et al. 2002; 

Stenman et al. 2003). Foxp1 is a preferential marker for striatal projection neurons in 

the matrix compartment of the striatum, cortex, and hippocampus, while Foxp2 is a 

marker for striosomal compartment (Tamura et al. 2004; Ibanez et al. 2012). Ebf1, 

which is a target gene for GSX2 (Wang et al. 2013), is preferentially expressed in 

striatonigral neurons, and also involved in regulating striatal projection neuronal 

development and differentiation (Garel et al. 1999; Garcia-Dominguez et al. 2003; Lobo 

et al. 2006; Ibanez et al. 2012). The importance of Ebf1 is documented in mutant mice 

presented with defective projections of neurons to the substantia nigra (Lobo et al. 

2006). These various forms of evidence support the use of the target markers (Ebf1, 
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Foxp1/2, and Ctip2) in this study not only to assess phenotype of neurons, but also to 

examine the progress of the direct differentiation of hPSC-nrNPCs through the 

expression of critical TFs and effector genes. 

Overall, the TFs Dlx2, Mash1, and Gsx2 have a dramatic role in neurogenesis in 

striatum as evident by growing number of literature. Hence, Dlx2, Mash1, and Gsx2 

were selected for ectopic expression in the hPSC-nrNPCs to test the hypothesis that 

ectopic expression of TFs involved in MSN specification and differentiation could 

trigger differentiation of hPSC-nrNPCs into mature striatal GABAergic MSNs. In 

addition, candidate target and effector genes identified here as interacting genes 

involved in forebrain neuron generation were used to validate the success of combining 

TFs to re-program stem cell differentiation and maturation into GABAergic MSNs and 

to assess the phenotype of generated neurons. In addition, these target and effector 

biomarkers (Foxp1/2, Ebf1, Gad1/2, Drd1/2 and Ctip2) were used to determine the 

phenotype of neuronal differentiation. 
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3.1 PCR gene amplification and cloning 
 

3.1.1 GoTaq Flexi DNA Polymerase PCR Amplification 
 

DNA was amplified using different commercial polymerase chain reaction kits, 

including GoTaq Flexi DNA Polymerase (PCR) (Cat No. M8295, Promega, Southampton, 

UK) and Platinum Taq DNA high-fidelity polymerase (Cat No. 11304-029, Invitrogen, 

Paisley, Scotland, UK).  

PCR amplification conditions were optimized by varying the MgCl2 concentration 

and the annealing temperature. The set-up used in this project was as follows: 

 

Reagent 
MgCl2 concentration Negative (-ve) 

control 1.5 mM 2 mM 2.5 mM 3 mM 

5× GoTaq green buffer 5 µl 5 µl 5 µl 5 µl 5 µl 

25 mM MgCl2  --------- 0.5 µl 1 µl 1.5 µl 0.5-1.5 µl 

10 mM Nucleotide mix 
(dNTP)  

0.5 µl 0.5 µl 0.5 µl 0.5 µl 0.5 µl 

Primers* 1 µl 1 µl 1 µl 1 µl 1 µl 

GoTaq DNA polymerase 0.13 µl 0.13 µl 0.13 µl 0.13 µl 0.13 µl 

Template DNA < 250 ng/25 µl -------------- 

dH2O (distilled water) Up to 25 µl 

Total 25 µl 25 µl 25 µl 25 µl 25 µl 

* The primers (forward and reverse) were diluted with dH2O from 100 pmol/µl to 10 pmol/µl (20 
µl of the forward primer + 20 µl of the reverse primer in 160 µl of dH2O = a total of 200 µl). 
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The thermal cycling conditions for GoTaq DNA polymerase are as follows: 

 

Steps Temperature Time 
Number of 

cycles 

Initial Denaturation 95°C 5 min 1 cycle 

Denaturation 95°C 1 min 

35 cycles Annealing 62–65°C* 1 min 

Extension 72°C 1 min/kb 

Final Extension 72°C 5 min 1 cycle 

* Each gene required for cloning has a different annealing temperature. DLX2, 
MASH1 and GSX2 have annealing temperatures of 63°C, 65°C and 62°C, 
respectively. 

 

The primers of each specific gene were designed to amplify and clone the four 

selected transcription factors. These are shown below: 

 

Primer name Sequence (5’-3’) 

Melting 

temperature 

(Tm) (°C) 

BglII-GSX2-F 
AACAGATCTATGTCGCGCTCC

TTCTATGTCGA (32 bp) 
68.2 

BglII-GSX2-R 
AACAGATCTTAAGGGGGAAAT

CTCCTTGTCATCG (34 bp) 
68.3 

NheI-DLX2-F 
AACGCTAGCATGACTGGAGTC

TTTGACAGTC (31 bp) 
68.2 

NheI-DLX2-R 
AACGCTAGCGAAAATCGTCCC

CGCGCTCAC (30 bp) 
72.2 

XbaI-FOXGI-F 
AACTCTAGAATGCTGGACATG

GGAGATAGGAAAG (34 bp) 
68.3 

XbaI-FOXGI-R 
AACTCTAGAATGTATTAAAGG

GTTGGAAGAAGACCC (36 bp) 
67.2 

BamHI-MASH1-F 
AACGGATCCATGGAAAGCTCT

GCCAAGATGG (31 bp) 
69.5 

BamHI-MASH1-R 
CTGGATCCGAACCAGTTGGTG

AAGGCGA (28 bp) 
68.0 
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3.1.2 Platinum Taq DNA Polymerase High Fidelity PCR (HF PCR) 
 

The Platinum Taq DNA high-fidelity polymerase used in this project was supplied by 

Invitrogen. This enzyme is a mixture of a recombinant enzyme (Taq DNA polymerase), an 

anti-Taq polymerase antibody and Pyrococcus species GB-D polymerase, which has DNA 

proofreading activity. This mixture helps to increase fidelity by about a factor of six, 

compared with Taq DNA polymerase alone. Platinum Taq DNA high-fidelity polymerase 

contains a 10× high-fidelity PCR buffer, magnesium sulphate (MgSO4), as well as high-

fidelity Platinum Taq DNA polymerase.  

 

The following reagents were added to DNase/RNase-free microcentrifuge PCR 

tubes: 

 

Reagent Volumes Negative (-ve) control Final concentration 

10× high-fidelity PCR 

buffer  
2.5 µl 2.5 µl 1×  

50 mM MgSO4  1 µl 1 µl 2 mM 

10 mM nucleotide mix 

(dNTP)  
0.5 µl 0.5 µl 0.2 mM 

Primer  1 µl 1 µl 0.4 mM 

Platinum Taq DNA high-

fidelity polymerase  
0.1 µl 0.1 µl 1 unit 

Template DNA 1 µl ------------------- < 250 ng 

dH2O (distilled water) Up to 25 µl ------------------- 

Total 25 µl 25 µl ------------------- 
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The thermal cycle condition for Platinum Tag DNA polymerase is as follows: 

 

Step Temperature Time Number of cycles 

Initial 

Denaturation 
95°C 5 min 1 cycle 

Denaturation 95°C 30 s 

30 – 32 cycles* Annealing 62–65°C* 30 s 

Extension 68°C 1 min/kb 

*The three genes, MASH1, DLX2 and GSX2, required different annealing 
temperatures as well as different numbers of cycles, these being 65°C – 32 cycles, 
63°C – 32 cycles and 62°C – 30 cycles, respectively. 

 

3.1.3 Agarose Gel Electrophoresis 
 

Using electrophoresis, DNA fragments can easily be separated on the basis of size. 

In an electric field, DNA migration is relative to its mass. Here, an agarose medium was 

used to retain the DNA sample and a loading dye (10×) was added to the DNA sample 

prior to loading. The reagents for DNA gel electrophoresis were as follows: 

 

0.8–2% agarose (in Tris-acetate-EDTA (TAE) buffer) 

10 mg/ml ethidium bromide 

0.1 M of guanosine (only for digestion and ligation steps) 

 

Ethidium bromide-stained DNA bands were visualized via UV tranilluminator at a 

wavelength of 254 nm. The required amount of guanosine solution (Cat No. G6752, 

Sigma-Aldrich, Gillingham, Dorset, UK) was added to the TAE buffer to protect the 

digested DNA from UV damage prior to gel extraction purification (Grundemann and 
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Schomig 1996). Gels were electrophoresed in 1 × TAE buffer at 80–100 V for 1 h and 30 

min. DNA fragments were sized using a 1-kb or 100-bp ladder. 

 

3.1.4 DNA Gel Extraction  

 

Following gel electrophoresis, DNA fragments were extracted either using the 

GeneClean II Kit (Cat No. 1001-400, MP Biomedicals, Cambridge, UK), or the Qiaquick 

Gel Extraction Kit (Cat. No. 28704, Qiagen, West Sussex, UK) following the 

manufacturer’s instructions. DNA fragments separated in agarose gels were excised with a 

razor blade and visualized under UV light (365 nm).  

For the GeneClean kit, gel slices were dissolved in three times the volume of sliced 

gel of 6 M sodium Iodide (NaI) by incubation for 5 min at 55°C with periodic agitation. DNA 

was then bound to GlassMilk, an aqueous suspension of silica, using 1 µl of GlassMilk per 

1–2 µg of DNA. The DNA/GlassMilk suspension was incubated at room temperature (RT) 

for 5 min. DNA bound silica was pelleted by centrifugation at 14,000×g for 5 s and the 

supernatant was removed. The pellet was washed three times with 500 µl of prepared 

New Wash solution (solution of NaCl, Tris, EDTA, ethanol and H2O), and after the final 

centrifugation, the pellet was air dried to remove any residual ethanol. DNA was eluted 

from the silica by re-suspension in 10 mM Tris (pH 7.6) and 1 mM EDTA (pH 8.0) (TE) 

buffer. Eluted DNA was separated from the silica matrix by centrifugation at 14,000×g for 

30 s.  

For Qiaquick gel extractions, gel slices were dissolved in three times the gel volumes 

of QG buffer and 10 µl of 3M sodium acetate by incubation for approximately 10 min at 

50°C. DNA was then bound to a Qiaquick column by adding QG buffer, followed by 

centrifugation at 13,000×g for 1 min. The flow-through was removed, and 500 µl of QG 



                                                                                                        Chapter 3: Materials and methods 

 91 

buffer was added to the Qiaquick column and centrifuged for 1 min to eliminate any 

residual gel. The Qiaquick column was washed twice with 750 µl of PE buffer and allowed 

to stand for 2–5 minutes at RT to eliminate residual ethanol, followed by centrifugation at 

13,000×g for 1 min. The Qiaquick column was then placed into a new 1.5 ml tube. DNA 

was eluted from the membrane of the Qiaquick column by incubating for 1 min with 30 µl 

of EB buffer at RT. Eluted DNA was separated from the membrane of the Qiaquick column 

by centrifugation at 13,000×g for 1 min.  

 

3.1.5 DNA Cloning 
 

3.1.5.1 Gene amplification by PCR and insertion into the TOPO vector pENTR5’ 

TOPO 

 

PCR products for each gene were cloned into the TOPO vector pENTR5’ TOPO 

(Cat No. K591-10, K591-20 and K5910-00, Invitrogen) using the pENTR5’ TOPO TA 

cloning kit. This kit contained the linearized pENTR5’ TOPO vector, which had 3’ thymidine 

(T) overhangs, and topoisomerase I. Because the PCR products contained polyA 

overhangs and the linearized vector had 3’ T residues, this enabled the efficient ligation of 

the PCR products with the linearized vector. At the same time, the topoisomerase I bound 

at specific sites to the TOPO vector (CCCTT) and cleaved the phosphodiester bond 

between two nucleotides in one strand where the vector was subsequently linearized. 

Here, the covalent bond between the 3’ phosphate and the tyrosyl residue of the enzyme 

was formed because of the energy released when the phosphodiester bond was broken. 

The bond between DNA and enzyme (phospho-tyrosyl) was identified by the presence of a 

5’ hydroxyl from the original, cleaved strand. At this point, the covalent bond between 

phospho-tyrosyl was broken and the topoisomerase 1 enzyme was released (Invitrogen, 

2007).  
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3.1.5.2 One-Shot TOP10 Chemically Competent Escherichia coli 

 

A PCR product (DNA of interest) was inserted into an entry vector called pENTR5’-

TOPO, which was supplied in the pENTR5’-TOPO TA cloning kit. Here, the recombinant 

vector can be transformed into chemically competent cells of E. coli. The following 

paragraphs describe the procedure for the TOPO cloning reaction and the transformation 

used in this project. 

 

TOPO cloning reaction 

Reagent Volume 

DNA (PCR product) 2 µl 

Salt solution 0.5 µl 

pENTR5’ - TOPO 0.5 µl 

Total 3 µl 

 

The reaction was mixed gently and incubated at RT for 5 min. Afterwards, it was 

placed on ice while preparing for the next step, namely, the transformation of One-shot 

competent E. coli. 

 

Transformation of One-shot TOP10 chemically competent E. coli 

One vial (50 µl) of competent cells for each transformation was placed on thawing 

ice. Then, 1–5 µl of the TOPO cloning reaction was gently added to the vial of competent 

cells and mixed. Then, the vial was incubated on ice for 30 min. A heat shock was then 

applied for 30 s in a 42°C water bath, after which the cells were returned to the ice for 2 

min. Next, 250 µl of pre-warmed S.O.C. medium (20 mM glucose, 10 mM NaCl, MgCl2 and 

MgSO4, 2.5 mM KCl, 2% tryptone and 0.5% yeast extract) (Cat. No. 15544-034, 
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Invitrogen) was added to the vial, which was incubated in a shaking (225 rpm) incubator at 

37°C for 1 h. Each of the transformation mixtures (20µl) was spread on a pre-warmed LB 

agar plate containing an appropriate antibiotic. Finally, the plate was incubated overnight 

at 37°C in an inverted position.  

Subsequently, colonies from the selective plate were selected and analysed to 

determine whether they were positive transformants. This was done by isolating the 

plasmid DNA and analysing it via restriction digest analysis; this was then followed by DNA 

sequencing. The correct sequences of the DNAs of interest were confirmed prior to 

subcloning.  

 

3.1.5.3 Transformation of DH5α Competent Cells 

 

DH5α competent cells (Cat. No. 18265-017, Invitrogen) were put on thawing ice, 

gently mixed with the tip of a pipette, and a 50 µl aliquot was used for each transformation 

(unused competent cells were placed in an ethanol-dry ice bath for 5 min and stored at -

80°C). Next, 1–5 µl of DNA was added. The cells were incubated on ice for 30 min and 

then heat shocked at 42°C for 20 s. Cells were returned to the ice for 2 min and 950 µl of 

pre-warmed S.O.C medium was added. Cells were then incubated in a shaking (225 rpm) 

incubator at 37°C for 1 h. Following the incubation, 20 µl of cells were spread on a pre-

warmed LB agar plate containing an appropriate antibiotic. Lastly, the plates were placed 

in an inverted position in an incubator at 37°C and left overnight. 

 

3.1.6 DNA sequencing 
 

After cloning the PCR-amplified genes into the pENTR5’ TOPO vector, plasmid DNA 

was purified, eluted with RNase free water, and sent to Eurofins MWG operon for DNA 
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sequencing. Sanger sequencing was performed using M13 forward and reverse primers. 

DNA sequences were analysed using BLAST on the NCBI website 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

3.1.7 Plasmid Extraction & Purification 
 

3.1.7.1 Plasmid Miniprep  

 

Plasmid DNA was prepared by the alkaline lysis method (Sambrook et al. 1989). 

Bacterial colonies were picked and grown in 2 ml of LB medium containing the appropriate 

antibiotic (50 mg/ml kanamycin or 100 mg/ml ampicillin) by incubation in a shaker at 37°C 

overnight. Each bacterial culture 500 µl was transferred into an Eppendorf tube with 100% 

sterile glycerol and stored at -80°C to preserve the culture for future experiments.  

Bacterial cultures were transferred to sterile 1.5 ml Eppendorf tubes and cells were 

pelleted by centrifugation at 12,500×g for 5 min. Bacterial pellets were re-suspended in 

100 µl of ice-cold Solution I, which contained 50 mM glucose (Cat No. 1011747-500 G, 

BDH Laboratory Suppliers, Poole, UK), 10 mM EDTA (Cat. No. E5139-500 G, Sigma-

Aldrich) and 25 mM Tris (pH 8.0) (Cat. No. 10708968001-500 G, Roche, Applied Science, 

West Sussex, UK), and then lysed by the addition of 200 µl of freshly made Solution II, 

which contained 0.2 M NaOH (sodium hydroxide) (Cat. No. S5881-1Kg, Sigma-Aldrich) 

and 1% SDS (Cat. No. L3771-500 G, Sigma-Aldrich), followed by incubation for 5 min at 

RT. Ice-cold neutralization Solution III (150 µl), which contained potassium acetate (Cat. 

No. P1190-500 G, Sigma-Aldrich) and glacial acetic acid (Cat. No. 64-19-7, Thermo Fisher 

Scientific, Loughborough, Leicestershine, UK), was added and mixed by inversion and 

incubated on ice for 3 to 5 min until a white, downy precipitate was seen.  
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Plasmids were isolated by centrifuging the lysates at 12,500×g for 5 min. At this 

point, a clear solution was observed (supernatant), which was then transferred into a clean 

1.5-ml microcentrifuge tube. An equal volume of phenol-chloroform was added, mixed well 

and centrifuged at 12,000×g for 2 min. The top aqueous layer containing the DNA plasmid 

was transferred into a new microcentrifuge tube. Then, two volumes of 100% ethanol were 

added, mixed thoroughly and incubated at RT for 2 min, followed by centrifugation at 

12,000×g for 5 min. The pellet was washed with 70% ethanol (200 µl) and centrifuged at 

12,000×g for 5 min. The pellet was incubated at RT for 10 min to dry the ethanol. Then, 

the DNA pellet was re-suspended in 49 µl of TE buffer containing RNase (20 mg/µl) to 

eliminate any RNA molecules.  

 

3.1.7.2 Endotoxin Free Maxiprep 

 

The Endofree plasmid maxi kit (Cat. No. 12362, Qiagen) was used for large scale 

isolation of endotoxin-free plasmid DNA according to the manufacturer’s instructions. A 

colony was either picked from a master plate or a stab from a glycerol stock and grown in 

a 3 ml starter culture of LB containing an appropriate antibiotic, and incubated overnight on 

a shaker (220 rpm) at 37°C. The starter culture was diluted with 100 or 250 ml of LB for 

high- or low-copy plasmid, respectively, containing an appropriate selective antibiotic. It 

was then incubated overnight under the same conditions for 12–16 h. Next, the resulting 

bacterial suspension was harvested via centrifugation at 4°C, 6,000×g for 15 min. Then, 

plasmids were isolated using the Endofree plasmid maxi kit according to the 

manufacturer’s instructions.  
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3.1.8 Glycerol Stocks 
 

Stocks of competent cells containing the plasmid of interest were made by adding 

glycerol to 500 µl of a bacterial suspension from an overnight culture at a ratio of 1:1, 

mixed well and stored at -80°C. 

 

3.1.9 Analysis by Restriction Digestion  
 

For the plasmid miniprep or maxiprep purifications, restriction digestion analysis was 

carried out as follows: 

 

Solution Volumes 

DNA 5 µl 

Enzyme 0.5 µl 

Buffer (×10) 2.5 µl 

BSA (×100)* 0.25 µl 

dH2O up to 25 µl 

*Some enzymes require bovine 
serum albumin (BSA). 

 

The normal protocol for restriction digestion is as follows: 

 

Solution Concentration // Volume 

DNA  0.5–1 µg 

Enzyme  5 units 

Buffer (×10) 1× 

BSA (×100) 1× 

dH2O up to 25 µl 

 

Restriction digestion analysis was used to check the ligations and for subcloning 

purposes.  
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Enzymes were purchased from New England Biolabs (NEB, Hitchin, UK). The 

incubation temperature and the time depended on the DNA concentration, as well as the 

enzyme. The completion of the digestion was then checked by gel electrophoresis.  

If a ligation reaction was being conducted, the vector was treated with 0.5 units of 

calf intestinal alkaline phosphatase (CIP) (Cat. No. M0290S, NEB) and then incubated at 

37°C for 20 min, followed by purification and ligation. 

 

The enzymes used in this project are listed below: 

 

AhdI AseI BamHI-HF 

BgIII BspMI BstXI 

EcoRI-HF KpnI-HF NdeI 

NheI-HF NotI-HF PstI 

SacII SalI-HF XbaI 

XmnI   

 

 

3.1.10 Ligation 
 

A T4 DNA ligation kit was used (Cat. No. M0202, NEB). T4 DNA ligase forms a 

phosphodiester bond between two nucleotides: between the 5’ phosphate and the 3’ 

hydroxyl group. This ligase can be used to ligate both blunt and cohesive ends. The 

incubation time and depends on the type of DNA ends. For cohesive ends, the incubation 

is typically at RT for 10 min (2 h for blunt ends). However, in this project, the ligation 
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mixture was incubated in a thermocycler for different lengths of time and at different 

temperatures. 

T4 DNA ligase buffer (pH 7.5) contains 50 mM Tris - HCl, 10 mM MgCl2, 1 mM ATP 

and 10 mM dithiothreitol (DTT). The ratio of vector-insert (v:i) used in this project varied in 

each experiment, starting from a 1:3 ratio. Here, the amount of vector was 100 ng, and the 

amount of insert was calculated from the following equation: 

 

 

 

The following table shows the setup for the ligation experiment: 

 

Reagent Volume Vector only 

10x T4 DNA ligase 

buffer 
2 µl 2 µl 

T4 DNA ligase 1 µl 1 µl 

Insert * ------------ 

Vector * * 

dH2O Up to 20 µl 

Total  20 µl 20 µl 

* The calculated amount of insert and vector depends on a ratio 
of v:i 

 

In each ligation experiment, a vector-only control was used. After incubation, 1–5 µl 

of the ligation sample was used for bacterial transformations.  
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3.1.11 Construct the expression vectors 
 

The open-reading frame (ORF) of each TF was cloned by PCR using specific primers 

that were designed with appropriate sequence and a specific restriction enzyme 

recognition sequence that is required for cloning into the expression vector (Table 3.1). In 

addition, the generation of the TF expression vectors required the subcloning of the ORF 

for each TF into the interim vector p3X-2A, without initiation and stop codons, as both of 

these sequences were already present in the p3X-2A vector between the restriction site 

SalI, where the cloned TFs would be inserted (Figure 3.1). The initiation codon (ATG) was 

located before the BamHI restriction site that was used for the first fragment insertion, and 

the stop codon was located after the fourth fragment insertion in the NheI restriction site 

(Figure 3.1). 

 

Table 3.1: The PCR primers used for PCR cloning to subclone the three desired TFs 

Restriction enzyme 

name-Primer name 
Forward Sequence (5’-3’) Reverse Sequence (5’-3’) 

Product 

size 

(bp) 

BamHI-MASH1 
AAC GGA TCC ATG GAA 

AGC TCT GCC AAG ATG G 

CTG GAT CCG AAC CAG TTG 

GTG AAG GCG A 
725 

BglII-GSX2 
AAC AGA TCT ATG TCG 

CGC TCC TTC TAT GTC GA 

AAC AGA TCT TAA GGG GGA 

AAT CTC CTT GTC ATC G 
930 

NheI-DLX2 
AAC GCT AGC ATG ACT 

GGA GTC TTT GAC AGT C 

AAC GCT AGC GAA AAT CGT 

CCC CGC GCT CAC 
1,002 

Abbreviations: BamHI-MASH1: primer for Achaete-scute complex homologue 1 with restriction 
enzyme site BamHI, BglII–GSX2: primer for GS homeobox 2 with restriction enzyme site BglII, 
NheI–DLX2: primer for Distal-less homeobox with restriction enzyme site NheI; bp: base pair. 

 

The p3X-2A vector was designed to insert cloned genes using restriction enzyme 

sites located between three 2A peptide linked sequences (Figure 3.1). In addition, a 

Kozak sequence (GCC GCC) is present upstream of the start codon (ATG) to enable 

efficient translation initiation (Kozak 1987) (Figure 3.1). Genes inserted into the p3X-2A 

vector could then be released as a SalI restriction fragment and inserted into the unique 

SalI site in pCAGG-IRES-EGFP (Figure 3.2). 
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The pCAGG-IRES-EGFP (pCAGG) vector was constructed from the vector 

“pIRES2EGFP” (from Clontech) that contains the cytomegalovirus (CMV) promoter, a 

multiple cloning site (MCS), internal ribosome entry site (IRES), coding sequences for 

enhanced green fluorescent protein (EGFP) and a gene conferring kanamycin 

resistance (Figure 3.2). Because the CMV promoter is known to be silenced in hESCs, 

this promoter was replaced by the artificial CAGG promoter, which has been shown to 

drive high levels of transgene expression in hESCs (Alexopoulou et al. 2008) (Figure 

3.2).  

 

 
Figure 3.2: Circular and linear map of optimized pIRES2EGFP to pCAGG–
IRES–EGFP. 

The linear map of the vector pCAGG in which the CMV promoter was replaced 
with CAG promoter (A). The backbone of the expression vector was CAGG-MCS-
IRES–EGFP with kanamycin resistance gene. The circular map of pCAGG (6.4 
kb) (B).  

Abbreviations: CMV: Cytomegalovirus (CMV) promoter, CAGG: CMV early 
enhancer/chicken beta actin (CAG) promoter, MCS: Multiple cloning site, IRES: 
Internal ribosome entry site, EGFP: Enhanced green fluorescent protein; 
NeoR/KanR: Neomycin resistance/Kanamycin resistance. 

CMV MCS IRES EGFP NeoR/KanR pIRES2EGFP 

pCAGG-IRES-EGFP CAGG MCS IRES EGFP NeoR/KanR 

Replaced CMV 

promoter with 

CAGG promoter 

A) 

B) 
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The specific order of cloning was essential in this study, as all the cloned TFs 

have overlapping restriction enzyme sites. Therefore, the MASH1 gene was first 

subcloned into the p3X-2A vector, and then the DLX2 gene was inserted, yielding p3X-

2A-MASH1/DLX2 (Figure 3.3 A). In addition, each gene was cloned separately into the 

vector p3X-2A to construct p3X-2A-MASH1 and p3X-2A-DLX2 (Figure 3.4 A and 

Figure 3.5 A). The GSX2 gene was not added directly to the p3X-2A vector, as this 

cloned gene has the restriction enzyme site for SalI, which was used to subclone the 

polyprotein from the p3X-2A vector into the pCAGG expression vector. Therefore, 

GSX2 was inserted into the BglII restriction site into the pCAGG vector after the 

insertion of the polyprotein coding sequence into pCAGG using the SalI restriction site.  

The sequence encoding the polyprotein, comprising the cloned genes of MASH1 

and DLX2, separately or together, from the p3X-2A vector that was flanked by Sall 

restriction sites, was digested and inserted into the expression vector pCAGG to 

construct the expression vectors pCAGG-MASH1/DLX2, pCAGG-MASH1 and pCAGG-

DLX2 (Figure 3.3 B, Figure 3.4 B and Figure 3.5 B). Then, the cloned gene GSX2 

was inserted into the expression vector pCAGG using BglII sites. There is only one 

BglII restriction site in this vector, located upstream of the T2A peptide, for the insertion 

of GSX2. GSX2 was inserted into pCAGG-MASH1/DLX2 and pCAGG-DLX2. The 

insertion of GSX2 yielded the expression vectors pCAGG-MASH1/DLX2/GSX2 and 

pCAGG-DLX2/GSX2 (Figure 3.3 B and Figure 3.5 B). The sequences are shown in 

Appendix 3.2. 

TF expression vectors were validated through the transient nucleofection of 

human embryonic kidney 293 (HEK293) cells. The cloned TF expression vectors, with 

different combinations of TFs and the empty vector (pCAGG), were validated before 

nucleofecting them into hPSCs. To do so, the TF expression vectors were nucleofected 

(transient nucleofection) into HEK293 cells for western blotting analysis to confirm that 

the appropriate combinations of TFs were co-expressed via the self-cleavage of 2A 
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peptides from the polycistronic vector. Gene expression from the HEK293 nucleofected 

cells was analysed by western blotting 48 h after nucleofection. As the percentage of 

the GFP expressing cells was high, protein lysates were harvested and western 

blotting was performed. 

HEK293 cells were used for the TF vector validation, since they are commonly 

used, and the AMAXA nucleofection efficiency is very high (93%) and the toxicity is low 

(Maurisse et al. 2010). 
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Figure 3.3: The cloning of TFs MASH1, DLX2 and GSX2 into the p3X-2A vector, and 
subsequent subcloning into the expression vector pCAGG via the SalI restriction site. 

The TF MASH1 was first inserted into the p3X-2A vector using the BamHI restriction site (A-1). 
Afterwards, the TF DLX2 was inserted using NheI to yield the construct p3X-2A-MASHI/DLX2 
(A-2 and A-3). Next, the polycistronic construct containing both DLX2 and MASH1 was 
subcloned into the pCAGG expression vector using the SalI restriction site to yield the construct 
pCAGG-MASH1/DLX2 (B-1). At this point, the TF GSX2 was inserted to yield pCAGG-
MASHI/DLX2/GSX2 (B-2 and B-3).  
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Figure 3.4: The cloning of TF MASH1 into the p3X-2A vector, and subsequent subcloning 
into the expression vector pCAGG using the SalI restriction site. 

The TF MASH1 was inserted into the p3X-2A vector using the BamHI restriction site (A-1 and 
A-2). Next, the polycistronic construct containing the TF MASH1 was subcloned into the 
pCAGG expression vector using the SalI restriction site to yield the construct pCAGG-MASH1 
(B-1 and B-2). 
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Figure 3.5: The cloning of TFs DLX2 and GSX2 into the p3X-2A vector, and subsequent 
subcloning into the expression vector pCAGG using the SalI restriction site. 

The TF DLX2 was inserted via the NheI restriction site into p3X-2A to yield the construct p3X-
2A-DLX2 (A-1 and A-2), and then subcloned into the pCAGG expression vector via the SalI 
restriction site (B-1); at this point, GSX2 was inserted using the BglII restriction site into 
pCAGG-DLX2 to construct the expression vector pCAGG-DLX2/GSX2 (B-2 and B-3). 
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3.2 Cell culture techniques 
 

3.2.1 Maintenance of cell lines in culture 
 

3.2.1.1 H9 human embryonic stem cells (hESCs)  
 

H9 cells were grown in the H9 medium. KnockOut Dulbecco's modified Eagle's 

medium (DMEM) (Cat. No. 10829018, Invitrogen), was supplemented with 15% 

knockout serum replacement (KSR) (Cat. No. 10828028, Invitrogen), 1% non-essential 

amino acids (NEAA) (100 ×) (Cat. No. 11140035, Invitrogen), 1% L-Glutamine (L–G) 

(200 mM) (Cat. No. 25030024, Invitrogen), 1% penicillin (100 U/ml) streptomycin (100 

µg/ml) (Pen/Strep) (Cat. No. 15070063, Invitrogen), and 0.68% beta-mercaptoethanol 

(55 mM) (Cat. No. 21985-023, Invitrogen). H9 cells were grown in 6- or 10-cm Nunc 

tissue culture plates (Cat. No. TKT–110-010S, TKT–110-170T, respectively, Thermo 

Fisher Scientific) in a humidified incubator at 37°C, 5% carbon dioxide (CO2).  

H9 cells were passaged 1:4. Prior to passaging, areas of differentiated cells 

were pruned from culture plates by scraping with a P20 Gilson pipette tip. Plates were 

then washed once with phosphate-buffered-saline (PBS) without calcium and 

magnesium (Cat. No. 100-10-056, Invitrogen). hESC colonies were then lifted from 

their matrix by digestion with pre–warmed, filter sterilised, collagenase type IV 

(1mg/ml) (Cat. No. 17104019, 1 g/U, Invitrogen) in DMEM containing 10 µM Y-27632 

Rho-associated protein kinase (ROCK) inhibitor (Cat. No. ab120129, Abcam 

Biochemicals, Cambridge, UK) and incubated for a maximum of 20 min in a humidified 

incubator at 37°C, 5% CO2. Lifted colonies were gently collected using P1000 Gilson 

tips with pre-warmed H9 medium (without fibroblast growth factor 2 (FGF2), Cat. No. 

10018B, 1 mg/U, PeproTech, Rocky Hill, NJ, USA) in a 15-ml polypropylene tube 

(Falcon tubes) and pelleted by centrifugation at 1,000×g for 3 min. The pellet was re-

suspended in pre-warmed H9 medium containing 5 ng/ml FGF2 and 10 µM Y-27632 

ROCK inhibitor. Cells were plated into freshly prepared, irradiated mouse embryonic 
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fibroblasts (mefi) plates. Cultures were incubated in a humidified incubator at 37°C, 5% 

CO2 and were fed with fresh medium daily. 

 

3.2.1.1.1 Preparing irradiated mouse embryonic fibroblasts (mefi) for plating  
 

E13 mouse embryos were dissected to remove extra-embryonic tissues, heads 

and viscera. The carcasses were minced in Hank’s balanced salt solution (HBSS) with 

a sterile blade and incubated with trypsin – EDTA (Cat. No. 253-00-054, 100ml/U, 

Invitrogen) for 5 min in a humidified incubator at 37°C, 5% CO2. Digested tissue was 

collected with MEF medium (DMEM, 10% foetal bovine serum (FBS), 1% Pen/Strep 

and 1% Antibiotic/Antimycotic (Anti/Anti) (Cat. No. 15240062, 100ml/U, Invitrogen). 

The cell suspension was centrifuged at 1,000×g for 3 min and the cell pellet was 

washed three times by re-suspension in MEF medium. Cells from one embryo were 

plated on a 14-cm Nunc plate (Cat. No. TKT-110-130Y, Thermo Fisher Scientific). 

Cells were fed every other day with fresh medium.  

When MEFs reached confluence, they were passaged using trypsin (P1), 80% 

of the cells were irradiated by γ-radiation (see below) and stored at –80°C, while the 

other 20% was sub-cultured at a 1:5 ratio. For the second passage (P2), all the cells 

were irradiated and stored at -80°C. Here, the mefi (irradiated mef) cells were frozen 

with the freezing medium, 10% dimethyl sulfoxide (DMSO) (Cat. No. D2650, Sigma-

Aldrich) and mef medium; this was done at a density of 1 x 106 cells/vial. 

At this point, when the mef cells were ready to be irradiated, the cells were 

dissociated by adding trypsin, and then the cells were collected in a 50-ml Falcon tube, 

after which they were centrifuged at 1,000×g for 3 min. Then, the pellet was re-

suspended in 20 ml of mef medium, and irradiated by γ-radiation for 30 min. 
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Plating mefi cells on gelatin-coated Nunc plate dishes for H9–hESCs 

maintenance 

 

Eight 6-cm Nunc plates were coated with gelatin (ultrapure water with 0.1% 

gelatin, Cat. No. ES006B, Millipore, Hertfordshire, UK) and incubated in a humidified 

incubator for 30 min. One vial of mefi cells was then thawed with 1 ml of pre-warmed 

mef media and mixed. All the cells were transferred into a 15-ml Falcon tube containing 

4 ml of mef medium and centrifuged at 1,000×g for 3 min. The pellet was re-suspended 

in pre-warmed mef medium and plated into a gelatin-coated 6-cm Nunc plate. Cultures 

were incubated in a humidified incubator. The mefi cells were prepared one day prior to 

use and used within 7 days of plating. 

 

3.2.1.2 Human-induced pluripotent stem cells (h-iPSCs)  

 

The iPSCs were the 34D6 cell line (Bilican et al. 2012); these cells were 

cultured with mTeSR1 media (Cat. No. 05850, StemCell Technologies, Manchester, 

UK). The medium was complete and serum-free. It was supplemented with 1% 

Pen/Strep and 5× supplement (Cat. No. 05852, StemCell Technologies), which 

contains recombinant human basic fibroblast growth factors (rhbFGF), as well as 

recombinant human transforming growth factor β (rhTGFβ). 34D6 cells were grown in a 

6–10 cm Nunc tissue culture plate in a humidified incubator at 37°C, 5% CO2. 

The 34D6 cells were sub-cultured when they reached a dense state; when the 

colonies were large and starting to merge, the centers of the colonies were dense with 

a bright phase in comparison to the edges. Prior to passaging, 10-cm petri dishes were 

coated with BD Matrigel (Cat. No. 7341440, VWR, Leicestershire, UK) and incubated 

at 37°C. h-iPSCs colonies were then lifted from their matrix by digestion with pre–

warmed dispase solution, which is a protease that is inhibited by EDTA, at a 

concentration of 1 mg/ml (Cat. No. 07923, StemCell Technologies) with 10 µM Y-

27632 ROCK inhibitor and incubated at 37°C for 8 to 20 min depending on when the 
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edges of the colonies started to fold back slightly. After incubation, the dispase was 

aspirated, and each plate was gently rinsed 2–3 times with pre–warmed DMEM/F12 (5 

ml/plate) to eradicate any remaining dispase. Lifted colonies were gently dislodged with 

P1000 Gilson tips or a cell scraper in pre-warmed DMEM/F12 or mTeSR1 and 

collected in 15-ml Falcon tubes. If the cells were detached with mTeSR1, then the 

volume of the mTeSR1 medium was adjusted and the cells were plated onto Matrigel-

coated plates. However, if the cells were removed using DMEM/F12 medium, they 

were pelleted by centrifugation for 3 min at 1,000×g. Next, the pellet was re-suspended 

with an accurate amount of pre-warmed mTeSR1 and plated on Matrigel-coated plates. 

Cultures were incubated in a humidified incubator at 37°C, 5% CO2 and were fed with 

fresh medium daily. 

 

3.2.1.3 Human embryonic kidney 293 (HEK293) cells  

 

HEK293 cells were grown in DMEM/F12 (1:1) medium (Cat. No. 21331020, 

Invitrogen) supplemented with 10% FBS (Cat. No. 10106-169, Invitrogen), 1% L-G and 

1% Pen/Strep. Medium was sterilized by filtration through a 0.2-µm sterile filter before 

use. HEK293 cells were cultured in T25 tissue culture flasks (TKT-130-150-L, Thermo 

Fisher Scientific) in a humidified incubator at 37°C, 5% CO2.  

When the cells became dense, they were passaged with 3 ml trypsin for 5 min 

at 37°C. The cells were lifted off by flicking the flask with HEK293 medium and 

collected in a 15-ml Falcon tube. Then, the cells were pelleted by centrifugation for 3 

minutes at 1,000×g. The pellet was re-suspended with an appropriate amount of 

HEK293 medium and re-plated into T25 flasks at a ratio of 1:8 or 1:10. Cultures were 

incubated in a humidified incubator at 37°C, 5% CO2 and fed with fresh medium every 

other day. 
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3.2.2 Preparation of frozen cells 
 

The cells were preserved at -80°C or in liquid nitrogen for long-term storage. 

Prior to freezing, H9 and 34D6 cells were detached from plates by collagenase 

(Section 3.2.1.1) or dispase (Section 3.2.1.2), respectively. Then, the cells were 

centrifuged at 1,000×g for 3 min and re-suspended in freezing media containing 10% 

DMSO in FBS for H9 cells and Cryostor CS10 (Cat. No. 7930, StemCell Technologies) 

for 34D6 cells. Then, the cells were divided into aliquots using1-ml cryopreservation 

vials (Cat. No. 4000198, 100ml/U, Thermo Fisher Scientific) and stored at 80°C in a Mr. 

Frosty freezing container (Cat. No. 5100-0036, Thermo Fisher Scientific) overnight, 

and then transferred to a liquid nitrogen tank.  

 

3.2.3 Thawing frozen cells 
 

3.2.3.1 H9 and 34D6 cells  

 

Using a P1000 pipette, a vial of H9 or 34D6 cells was quickly thawed to a semi-

solid state and returned to a pre-warmed medium, such as H9 medium, in a 15-ml 

Falcon tube. Tubes were centrifuged at 1,000×g for 3 min to remove the DMSO. After 

centrifugation, the pellets were re-suspended in 5 ml of H9 medium for H9 cells and 

DMEM/F12 medium for 34D6 cells and centrifuged again. Subsequently, the cells were 

re-plated.  

For H9 cells, the mefi cells plates were prepared by removing the mef medium 

and washed once with PBS. Then 5 ml of H9 media containing FGF2 and Y-27632 

ROCK inhibitor was added to the mefi plate. After a second centrifugation step, the cell 

pellet was re-suspended in 1 ml of H9 medium, and the cells were transferred to the 

mefi plate.  

For 34D6 cells, after the second centrifugation step, the pellet was re-

suspended in mTeSR1 medium and re-plated on Matrigel-coated plates. 
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Feeding was initiated 24 h after thawing, and the cells were fed every day. 

 

3.2.3.2 HEK293 cells 

 

One vial of HEK293 cells was quickly thawed using a 37°C water bath. Then, 1 

ml of DMEM/F12 medium was gently added to the cells (in drops) and transferred to a 

15-ml Falcon tube, which was centrifuged at 1,200×g for 4 min. The pellet was washed 

again with DMEM/F12 and re-suspended in HEK293 medium (Section 3.2.1.3), then 

re-plated in a T25 flask. 

 

3.2.4 Neural induction (Neurogenic Embryiod Bodies – NEBs) 
 

Neural differentiation was performed in either embryoid body (EB) culture or 

monolayer culture. For EB culture, hPSC colonies were washed 3× with PBS and 

whole colonies lifted by collagenase (for H9 hESCs) or dispase (for 34D6 h-iPSCs) 

treatment, as described for cell passaging above (Sections 3.2.1.1 and 3.2.1.2, 

respectively). After collection, colonies were re-suspended in Advanced DMEM/F12 

(ADF) medium supplemented with 700 µl of 10 mg/ml insulin (Cat. No. 407709, 

Millipore), 300 µl of 12.5 mg/ml transferrin (Cat. No. T8158, Sigma–Aldrich), 1% lipid 

concentrate (Cat. No. 11905031, Invitrogen), 1% L-G, 1% Pen/Strep and 0.68% beta–

mercaptoethanol, Y-27632 ROCK inhibitor (for the first day), 0.5 µM LDN193189 (Cat. 

No. 04-0074-10, StemGent, Cambridge, UK) and 10 µM SB431542 (for the first four 

days) (Cat. No. ab120163, Abcam Biochemicals) and plated in a sterile dish plate (Cat. 

No. PDS140050F, Thermo Fisher Scientific) to obtain suspension cells in ADF media. 

The SB431542 was then removed on the fourth day. The NEBs were fed every other 

day with half a quantity of fresh media (Figure 3.6). 
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Figure 3.6: The differentiation protocol, from the undifferentiated state to NEBs to 
Nr-NPCs 

The NEBs were cultured with SB431542 and LDN193189 and then they were removed 
on days 4 and 8, respectively. Subsequently, the rosettes state was performed and 
cultured with ADF medium until day 18 (D18). 

 

NEB differentiation 

Differentiation of hESCs generates naïve rosette-stage neural progenitors (Nr-

NPCs). The day before plating, a 24-well plate was prepared, coated with 2 µg/ml poly-

L-Lysine (PLL) (diluted with dH2O) (Cat. No. P5899-5 MG, Sigma-Aldrich) and 

incubated at 37°C for 30 min, washed with dH2O (Cat. No. 15230188, Invitrogen), and 

incubated overnight inside a hood. The next day, the plate was coated with 10 µg/ml 

laminin (Cat. No. 130095602, Miltenyi Biotec, Surrey, UK) and incubated at 37°C for 30 

min. The NEBs were centrifuged at low speed (500×g for 2 min) and mixed with 

Accutase for 5 min to obtain a single cell suspension (Accutase, Cat. No. L11007, PAA 

Laboratory, Farnborough, Hamsphire, UK). Subsequently, they were centrifuged at 

1,000×g for 3 min and 1 ml of ADF media was added to conduct cell counts. An 

appropriate amount of ADF was added to the cells, which were re-plated onto coated 

PLL/Laminin plates at a concentration of 50 x 103 cells/well; cells were fed every other 

day. 

 

D0                         D4                         D8                        D12                         D18 

NEBs Rosette Stage (nrNPCs) 

ADF MEDIUM 

10µM SB431542 

0.5µM LDN193189 

Where 

nucleofection 

started 



                                                                                                  Chapter 3: Materials and methods 

 115 

3.2.5 Cell counts  
 

From a 1 ml cell suspension, 10 µl of the cells were added to 10 µl of trypan blue 

(Cat. No. T8154, Sigma-Aldrich), after which they were added to a haemocytometer 

with a glass cover slip. The cells in the central square (5 × 5 grid) and the four corner 

squares were then counted, and the number of cells per ml was calculated using the 

following equation: 

Total number of cells × (dilution factor / number of squares) × 104 cell/ml = 

cells/ml 

 

3.2.6 AMAXA Nucleofection  
 

The cells were treated with ROCK inhibitor prior to nucleofection. Lonza AMAXA 

kits (AMAXA Mouse NSC (MNSC) with the Nucleofector kit, Cat. No. VPG-1004 with 

the optimized programme A-023, Lonza Biologics plc, Cambridge, UK) were used for 

hESCs, and the AMAXA cell line kit V, Cat. No. VCA-1003, with the programme 

HEK293, was used for HEK293 cells. 

The medium was aspirated and cells were washed once with PBS. Then, 

Accutase with ROCK inhibitor was added for 2–5 min. Then, the cells were collected 

into a 15-ml Falcon tube and centrifuged at 1,000×g for 3 min, and washed again with 

PBS. At this point, the pellet was re-suspended with nucleofection solution, which was 

composed of 78 µl of MNSC solution plus 22 µl of nucleofector supplement, and 

plasmid DNA (up to 20 µg/ml) was added to the nucleofection solution. The whole 

mixture of cells, plasmid DNA solution and the supplement was transferred into a new 

cuvette, and subjected to nucleofection with the appropriate programme. Immediately 

after this, 1 ml of pre–warmed media (ADF or HEK293 medium with ROCK inhibitor) 

was added to the nucleofected cells, and this process was followed by a cell count 

(see section 3.2.5) and re-plating into Matrigel-coated, 6-well Nunc plates at a 

concentration of 1 x 106 cells/well. Green fluorescent protein (GFP) expression was 
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checked after 24 and 48 h, and cells were fed every other day. The selection was 

started after 48 h. 

 

3.2.7 Neomycin selection  
 

Because they were neomycin-resistant, 48 h after nucleofection, the cells were 

selected using G418 sulphate, (Cat. No. 10131-027, 50 mg/ml, Invitrogen). Different 

concentrations of G418 with different incubation times were tested to find the most 

suitable concentration of G418 and duration time to select GFP+ve cells.  

Hence, the surviving cells were the ones that expressed the cloned transcription 

factors (TFs), and they were, therefore, selected. After selection, the surviving cells 

were washed and fed with ADF media for one day. Then, the selected cells were re-

plated into 24-well plates (Section 3.2.7.1 below) at a density of 30 × 103 cells/well for 

the differentiation experiments. Before re-plating, cover slips placed onto the 24-well 

plates were subjected to a specific treatment as described below, to ensure strong 

adherence and subsequent growth on the cover slips for further downstream 

applications.  

For the H9 differentiation experiments, cover slips were placed onto 24-well 

plates and coated with 10 mg/ml poly-L-lysine (PLL) (diluted with dH2O) and incubated 

at 37°C for 30 min. Next, the cover slips were washed three times with dH2O and 

incubated overnight inside a sterile hood to dry. The next day, the cover slips were 

coated with 10 µg/ml laminin and incubated at 37°C for 30 min. Approximately 5 ml of 

dH2O was added between the wells (inter-well space) to avoid drying of the re-plated 

cells (H9 neural progenitors).  

For the 34D6 differentiation experiments, poly-D-lysine (Cat. No. 27964-99-4, 5 

mg/ml, Sigma-Aldrich) (PDL)/Matrigel-coated cover slips were used. In addition, the 

cover slips were treated with nitric acid. One hundred cover slips were placed into a 
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50-ml Falcon tube containing 25 ml of nitric acid and rocked overnight. Then, the cover 

slips were washed 3-5 times with ddH2O. Then, they were washed once with absolute 

ethanol. Finally, the cover slips were placed on a glass petri dish and baked at 150°C 

overnight.  

Subsequently, the cover slips were placed onto 24-well plates and coated with 

100 µl of 100 µg/ml PDL in borate buffer, at pH 8.4 for 1 h at RT. The borate buffer was 

prepared with 1.24 g of boric acid, 1.90 g sodium tetraborate and 400 ml H2O at pH 

8.4. Each well was washed three times with dH2O to remove the borate buffer. The 

plates were placed inside a hood to dry off the cover slips. Then, the cover slips were 

coated with 50 µl of Matrigel, and incubated for 1 h. The Matrigel was diluted (1:25) in 

cold medium using Knockout DMEM. Approximately 5 ml of H2O was added between 

the wells (inter-well space) to avoid drying the Matrigel and the re-plated cells (34D6 

neural progenitors).  

 

3.2.7.1 Re-plating the selected nucleofected cells into 24-well plates 

containing treated cover slips 

 

The media was aspirated off the 24-well plate, which was washed once with 

PBS without calcium and magnesium. The cells were dissociated with Accutase with Y-

27632 ROCK inhibitor for 2 to 5 min, and the pellet was collected by centrifugation at 

1000×g for 3 min. The pellet was re-suspended in 1 ml of ADF to conduct cell counts 

(Section 3.2.5). After cell counting, 30 × 103 cells were re-plated as a droplet onto the 

treated cover slips and incubated at 37°C for 30 min to allow the selected nucleofected 

cells to attach to the cover slips. Then, each well of the 24-well plates was flooded with 

ADF media for 3 to 5 h. Subsequently, the ADF media was aspirated off and replaced 

with differentiation media. The cells were fed every 2 days. 
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3.3 Immunocytochemistry (ICC) 
 

The cells were washed once with PBS and fixed with fresh 4% paraformaldehyde 

(PFA) (Cat. No. P6148, Sigma-Aldrich) at pH 7.8 for 10 min at 4°C. Next, they were 

washed three times for 5 min with PBS. In the next stage, cells were permeabilized 

using PBS with 0.1% Triton X-100 (for internal antibody (Ab) only) (Cat. No. T8787, 

Sigma-Aldrich) for 20 min at RT or 100% ethanol for 20 minutes at RT. The solution 

was aspirated, and the cells were washed three times with PBS for 5 min. Next, 1 M 

glycine (Cat. No. 67419, Sigma-Aldrich) was added for 20 min at RT. Next, blocking 

was initiated using 2% normal goat serum (NGS) (Cat. No. S-1000, Vector Laboratory, 

Peterborough, UK), according to the secondary Ab, 3% BSA (Cat. No. A8531, Sigma-

Aldrich) and 0.1% Triton X-100 (for internal Ab only). Blocking was carried out at RT for 

1 h, followed by incubation with the primary Ab (1° Ab) overnight at 4°C; cells were 

then washed three times with PBS, followed by secondary Ab (2° Ab) incubation for 1 h 

in the dark at RT. At this point, cells were washed again. For nuclear staining and 

mounting, VECTASHIELD Mounting Medium with DAPI (Cat. No. H1200, Vector 

Laboratories) was used. 

 

The Abs used in this study and their dilutions are shown in the table below  

 

Table 3.2: Antibodies and dilutions used for ICC 

ABs 
Primary Antibody 
(1°Ab) Species 

1°Ab Dilution 

β – TUBULIN 
III 

Anti-mouse (Cat. No. 
T8660, Sigma-Aldrich) 
and Anti-rabbit (Cat. 
No. T2200, Sigma-
Aldrich) 

1:800 (for anti-mouse) 

1:400 (for anti-rabbit) 

CTIP2 
Anti-rat (Cat. No. 
ab18465, Abcam) 

1:500 

DARPP-32 Anti-rabbit (Cat. No. sc-
11365, Santa Cruz 

1:100 
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Biotechnology, 
Heidelberg, Germany)  

DLX2 
Anti-rabbit (Cat. No. 
ab18188, Abcam) 

1:800 

FOXG1 

Anti-rabbit (Cat. No. 
518-694-8188, 
NeuraCell, Rensselaer, 
NY, USA) 

1:1000 

GFP 
Anti-rabbit (Cat. No. 
ab290, Abcam) 

1:4,000 

GSX2 
Anti-rabbit (Cat. No. 
ABN162, Millipore). 

1:500 

2A 
Anti-rabbit (Cat. No. 
ABS31, Millipore). 

1:500 

Ki67 

Anti-mouse (Cat. No. 
VP-K451, Vector 
Laboratory). 

1:100 

MASH1 

Anti-mouse (Cat. No. 
556604, BD 
Biosciences, Oxford, 
UK) 

1:500 

MAP2 

Anti-rabbit (Cat. No. 
ab24640, Abcam). 

Anti-mouse (Cat. No. 
MAB3418, Millipore). 

1:1000 (for anti-rabbit) 

1:500 (for anti-mouse) 

Human ZO-1 

Anti-mouse (Cat. No. 
610966, BD 
Biosciences) 

1:250 
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3.4 RNA/DNA-related techniques  
 

3.4.1 RNA extraction 
 

RNA extraction was performed using the RNeasy mini kit (Cat No. 74104, 

Qiagen) according to the manufacturer’s guidelines. 

The media was removed from the cell-culture dish, which was washed once 

with PBS, and then 350 µl of RLT buffer was added to disrupt the cells. The lysate was 

collected into an Eppendorf tube and mixed by vortexing or pipetting to ensure that 

there were no clumps. The lysate was homogenized using a QIAshredder spin column 

and centrifuged for 2 min at 13,000×g. One volume of 70% ethanol was added to the 

homogenized lysate, and cells were mixed by pipetting. Then, the samples were 

transferred into an RNeasy mini column and centrifuged for 15 s at 10,000×g. 

Afterwards, the supernatant was removed and 350 µl of RW1 buffer (contains 

guanidine thiocyanate) was added to the RNeasy mini column, followed by 

centrifugation for 15 s. A mixture of RNase-Free DNase I stock and RNase-Free 

DNase buffer (RDD) was made by adding 10 µl and 70 µl of each component, 

respectively (Cat. No. 79254, Qiagen). The mixture (80 µl) was added to the RNeasy 

mini column and incubated at RT for 15 min. Then, 350 µl of RW1 was added, followed 

by centrifugation for 15 s. Then 500 µl of RPE buffer, which contained 80% of ethanol, 

was added to the RNeasy mini column, followed by centrifugation for 15 s. The last 

step was repeated by adding the RPE buffer and centrifuging for 2 min to dry the 

RNeasy silica-gel membrane. Subsequently, the collection tube was changed, followed 

by centrifugation at 13,000×g for 1 min. Afterwards, the RNeasy mini column was 

transferred to a new 1.5 ml collection tube and 30 µl of Rnase-free water was added. 

Finally, the column was centrifuged for 1 min and the eluted RNA was stored at -80°C. 

The RNA concentration was determined using a NanoDrop spectrophotometer. 

 



                                                                                                  Chapter 3: Materials and methods 

 121 

3.4.2 Complementary DNA (cDNA) synthesis by reverse transcriptase 
polymerase chain reaction (RT-PCR) 

 

After RNA extraction, 1 µg mRNA was reverse transcribed into cDNA using 

SuperScriptTM II Reverse Transcriptase (Cat. No. 18064-022, Invitrogen). The protocol 

was conducted according to the manufacturer’s guidelines. 

RNA (1 µg in a total volume of 10 µl) was added to 1.5 ml, nuclease-free 

Eppendorf tubes and kept on ice. Firstly, a master mix (mm) was prepared (1 µl of 10 

mM dNTPs (10 mM each of dCTP, dATP, dTTP and dGTP at neutral pH) and 1 µl of 

random primers (Cat. No. 48190-011, Invitrogen). Two mRNA samples were prepared 

and labelled as RT+ and RT-. In the RT- sample, H2O was added instead of 

SuperScript reverse transcriptase, followed by the addition of 2 µl of mm to the RT+ 

and RT- samples. The samples were then incubated at 65°C for 5 min and quickly 

chilled on ice. Then, a mixture of 0.1 M DTT (2 µl), 5× first standard buffer (250 mM 

Tris-HCl, pH 8.3 at RT; 375 mM KCL; 15 mM MgCL2) (4 µl) and RNaseOUTTM 

Recombinant Ribonuclease Inhibitor (1 µl) was added. Then, the samples were gently 

mixed by flicking the tubes, and centrifuged for 2 min at 25°C. Finally, 1 µl of 

Superscript II reverse transcriptase was added, but only to the RT+ tube, and samples 

were incubated at 25°C, 42°C and 70°C for 10, 50 and 15 min, respectively. The 

samples were incubated at 70°C for 15 min to inactivate the reverse transcriptase. The 

samples were stored at -20°C.  
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3.4.3 Quantitative polymerase chain reaction (Q-PCR) 
 

Real-time quantitative reverse transcription polymerase chain reactions (qRT-

PCR) were conducted using a standard protocol. The cDNA was diluted in TE or 

Rnase-free water for use in the Q-PCR reactions. mm was prepared as follows: 

 

Components Volume 

Primer (10 pmol/µl) 1 µl 

dH2O 8 µl 

mm (DyNAmo HS SYBR 
Green 5×; F410L) 

10 µl 

 

 

mm (19 µl) was pipetted into each well of a 96-well plate. Then, 1 µl of template 

DNA was added to each well. All reactions were conducted in triplicate. The Q-PCR 

reaction was performed in a CFX Connect real-time PCR system machine (Cat. No. 

185-5200, Bio-Rad Laboratory, Hertfordshire, UK) using the following conditions: 

 

Cycle repeat Purpose Temperature Time 

1x Initial denaturation 95°C 15 min 

40x Denaturation 95°C 30 s 

 Annealing 60°C 30 s 

 Extension 72°C 30 s 

Plate read 

1x Melting curve 53°C–95°C 
Read every 

0.5°C, and hold 
00:00:02 

End 

 

 



                                                                                                  Chapter 3: Materials and methods 

 123 

The primers used in this project are shown in Table 3.3. New primers were also 

tested (Appendix 3.1).  

 

Table 3.3: Lists of primers used in this project 

Gene/Primer Sequences 5’-3’ 
Annealing 

temp. 
Amplicon
size (bp) 

ARX-F 

ARX-R 

GCTGAAACGCAAACAGAGGC (20 bp) 

AGTTCCTCCCTGGTGAAGACGT (22 bp) 

59.4°C 

62.1°C 
114 

B-ACTIN-F 

B-ACTIN-R 

CCCAGCACAATGAAGATCAA (20 bp) 

ACATCTGCTGGAAGGTGGAC (20 bp) 

55.3°C 

59.4°C 
103 

CALBIN-1-F 

CALBIN-1-R 

TGT GGA TCA GTA TGG GCA AAG (21 bp) 

CGG AAG AGC AGC AGG AAA T (19 bp) 

57.9°C 

56.7°C 
96 

CTIP2-F 

CTIP2-R 

CCATCCTCGAAGAAGACGAG (20 bp) 

ATTTGACACTGGCCACAGGT (20 bp) 

57.5°C 

59.8°C 
106 

DARPP-32-F 

DARPP-32-R 

CTCCAGAGAACGGCATTGTT (20 bp) 

TCCTGCTCCTGACTTGGATT (20 bp) 

58.2°C 

58.3°C 
116 

DRD1-F 

DRD1-R 

TGC CAT AGA GAC GGT GAG TA (20 bp) 

CAG CAT GTG GGA TCA GGT AAA (21 bp) 

57.3°C 

57.9°C 
116 

DRD2-F 

DRD2-R 

CAC TCC TCT TCG GAC TCA ATA AC (23 bp) 

GAC AAT GAA GGG CAC GTA GAA (21 bp)  

60.6°C 

57.9°C 
107 

EBF1-F 

EBF1-R 

GTGGAGATCGAGAGGACAGC (20 bp) 

AAGCTGAAGCCGGTAGTGAA (20 bp) 

59.6°C 

59.3°C 
99 

EMX2-F 

EMX2-R 

ACCTTCTACCCCTGGCTCAT (20 bp) 

AAAGGAAACTCTCGGGGCTA (20 bp) 

57.8°C 

55.8°C 
85 

Endo-DLX2-F 

Endo-DLX2-R 

TCACCACCACCACCATCAC (19 bp) 

CTCTGCTCTCAGTCTCTGGC (20 bp) 

58.8°C 

61.4°C 
96 

Endo-MASH1-
F 

Endo-MASH1-
R 

CCCCCAACTACTCCAACGAC (20 bp) 

TCCAAAGTCCATTCGCACCA (20 bp) 

61.4°C 

57.3°C 
173 

Endo-GSX2-F 

Endo-GSX2-R 

CTCCGAGGATGAGGACTC (18 bp) 

AGGAGCGGGGGATGTGAG (18 bp) 

60.5°C 

58.2°C 
100 

Exo-DLX2-F ATGTTGAAGAAAACCCCGGTCCT (23 bp) 60.6°C 74 
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Exo-DLX2-R GGTCGAGTGCATATCAGCCACTA (23 bp) 62.4°C 

Exo-MASH1-F 

Exo-MASH1-R 

AACTACTCCAACGACTTGAACTCCAT (26 bp) 

AGAGCATAATTAGTACACTGGGATCC (26 bp) 

61.6°C 

61.6°C 
97 

Exo-GSX2-F 

Exo-GSX2-R 

AGTGAAGCACAAGAAGGAGGGG (22 bp) 

GACTTCCTCTGCCCTCAGATCT (22 bp) 

62.1°C 

62.1°C 
129 

FOXP1-F 

FOXP1-R 

CGATCCCTTCTCTGATTTGC (20 bp) 

CATGCATAATGCCACAGGAC (20 bp) 

56.3°C 

57.2°C 
103 

GAD2-F 

GAD2-R 

GCT CTG GCG ATG GGA TAT TT (20 bp) 

CCA TTC CTT TCT CCT TGA CTT CT (23 bp) 

57.3°C 

58.9°C 
105 

GAPDH-F 

GAPDH-R 

TGCACCACCAACTGCTTAGC (20 bp) 

GGCATGGACTGTGGTCATGAG (21 bp) 

58.3°C 

58.1°C 
87 

NKX2.1-F 

NKX2.1-R 

AGGACACCATGAGGAACAGC (20 bp) 

CCCATGAAGCGGGAGATG (18 bp) 

57.1°C 

55.8°C 
88 

PAX6-F 

PAX6-R 

AGGCCAGCAACACACCTAGT (20 bp) 

AGCCAGATGTGAAGGAGGAA (20 bp) 

61.4°C 

58.3°C 
108 
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3.5 Western blotting analysis  
 

The compositions of the stock solutions and buffers for protein analysis by SDS-

PAGE and western blotting are shown in Table 3.4 below. 

 

Table 3.4: Composition of solutions used for western blotting 

Solutions Composition 

Lysis Buffer 
10 ml RIPA Buffer (Cat. No. R0278, Sigma-Aldrich), 1 tablet of 
PhosStop (Cat. No. 04906845001, Roche) and 1 tablet of 
Complete Mini 1× solution (Cat. No. 11836153001, Roche). 

10x Running Buffer 

0.25 M Tris base (Cat. No. T1503, Sigma-Aldrich), 1.92 M 
glycine (Cat. No. G8898, Sigma-Aldrich), 0.1% sodium 
dodecyl sulphate (SDS) (Cat. No. L3771, Sigma-Aldrich), and 
pH 8.3 (diluted 10× before use). 

10% SDS 10 g SDS in 100 ml. 

1% SDS 1 g SDS in 100ml. 

Transfer Buffer 
0.25 M Tris base, 1.92 M glycine, and 20% methanol (Cat. No. 
34860, Sigma-Aldrich). 

Sample Loading Buffer 

2% SDS, 10% glycerol (Cat. No. G5516, Sigma-Aldrich), 60 
mM Tris base, pH 6.8, 0.005% bromophenol blue (Cat. No. 
B0126, Sigma-Aldrich) and 500 mM DL-dithiothreitol (DTT) 
(Cat. No. D0632, Sigma-Aldrich). 

Resolving Gel 

10% acrylamide (Cat. No. A8887, Sigma-Aldrich), 0.37 M Tris, 
0.1% SDS, 0.1% ammonium persulphate (APS) (Cat. No. 
A3678, Sigma-Aldrich) and 0.06% tetramethylethylenediamine 
(TEMED) (Cat. No. T9281, Sigma-Aldrich). 

Stacking Solution 
5% acrylamide, 0.125 M Tris, 0.1% SDS, 0.05% APS and 
0.5% TEMED. 

Ponceau S 0.1% in 5% acetic acid (Cat. No. P3504, Sigma-Aldrich). 

Wash Buffer 
1× PBS (Cat. No. 70011-044, Invitrogen), 0.1% Tween 20 
(Cat. No. P1379, Sigma-Aldrich) 

Blocking Solution 
5% skimmed milk powder (Marvel, Lincolnshire, UK) in 1×
PBS and 0.1% Tween 20. 

Antibody blocking solution 
5% milk powder in PBS/Tween + 100 µl sodium azide (Cat. 
No. S2002, Sigma-Aldrich) (1 M) / 20 ml. 

SuperSignal West Dura 
chemiluminescent 
substrate 

1:1 ratio of SuperSignal West Dura Liminol:Enhancer solution 
(Thermo scientific, Massachusetts, USA, Cat. No. 34075) 
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3.5.1 Protein extraction from monolayer cells using RIPA buffer 
 

A confluent, 10-cm dish was washed once with cold PBS then placed on ice. 

Ice-cold lysis buffer (see Table 3.4) and 1× PhosStop solution were added, and the 

cells were scraped using a rubber policeman. Next, the solution was incubated for 30 

min at 4°C with intermittent agitation and centrifuged at 13,000×g for 20 min at 4°C. 

The supernatant was then transferred to a new tube and the pellet was discarded. 

Samples were stored as aliquots at -80°C. 

 

3.5.2 Protein assay  
 

After the protein extraction from the cells, the concentration of total protein was 

measured by the Pierce Bicinchoninic Acid (BCA) Protein Assay Kit (Cat. No. 23227, 

Thermo Fisher Scientific). 

Nine standards were prepared using a dilution series of BSA (Cat. No. A9418-

100-G, Sigma-Aldrich) ranging from 20 to 2,000 µg/ml. The standards and unknown 

samples (25 µl each) were plated in triplicate in a 96-well plate. Then, the BCA working 

reagent (WR) was prepared, as recommended by the manufacturer:  

 

(Number of standards + number of unknown samples) × (number of 

triplicates) x (volume of WR per samples) = total volume of WR 

required.  

 

The BCA WR consisted of BCA reagent A and BCA reagent B. The mixing ratio 

was 1:50 (B:A). WR (200 µl) was added to each well of the standards - in addition to 

the unknown samples in the 96-well plate - and mixed thoroughly on a plate shaker for 
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30 s. Then, the plate was incubated at 37°C for 30 min, and allowed to cool to RT. The 

absorbance was measured at 590 nm using a Bio-Tek plate reader (Epson, California, 

UK).  

 

3.5.3 SDS polyacrylamide gel electrophoresis 
 

A resolving gel (Table 3.4) was prepared and left to set with a layer of 1% SDS 

on the surface. The SDS was removed; the stacking gel (Table 3.4) was added and 

then left to set with an appropriate comb size. While waiting for the gel to set, the 

protein samples were prepared by adding a 1:1 ratio of sample loading buffer and 

protein samples. These were then incubated at 95°C for 5 min to denature the protein 

samples. Once the gel was set, the samples (20-40 µg/lane) were loaded into the gel 

wells alongside a rainbow protein ladder (10 µl/lane) (The Novex® Sharp Pre-Stained 

Protein Standard, Cat. No. LC5800, Invitrogen). Running buffer (Table 3.4) was added 

to the running tank and the stacking gel was run at 80 V, and the resolving gel was run 

at 120 V for 2 h.  

 

3.5.4 Western blotting 
 

After SDS-PAGE, the gel was removed from its casing. A Hybond ECL 

membrane (0.2 µm pore size nitrocellulose) (Cat. No. RPN3032D, GE Healthcare Life 

Science, Belfast, UK) was soaked briefly in dH2O, and then placed in transfer buffer for 

10 min. The gel, sponges and filter paper were soaked in transfer buffer before being 

layered with filter paper, thus sandwiching the gel and the membrane. They were 

arranged in the sandwich cassette as follows: 

Cathode (-): sponge : filter paper : Gel : Nitrocellulose : filter paper : sponge : Anode 

(+)  
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Next, transfer buffer (Table 3.3) was added to a tank containing a magnetic 

spinner and left in a cold room overnight at 25 V or at 100 V for 1 h. The following day, 

the membrane was carefully removed and washed once with dH2O and then with wash 

buffer (Table 3.3). Finally, it was washed with a wash buffer on a shaker to remove the 

stain. 

 

3.5.5 Immuno-detection of proteins 
 

Following the blotting, the membrane was removed from the sandwich and 

washed, as previously described (section 3.5.4). The wash was then removed and 

replaced with a blocking solution (Table 3.4) for 1 h with shaking. At this point, the 

blocking solution was replaced with a specific primary antibody (a dilution of primary 

antibody in blocking solution, Table 3.5) and left for 2 h at RT, and then left overnight 

at 4°C. At this stage, the membrane was washed three times for 5 min in wash buffer. 

Afterwards, the secondary antibody in blocking solution (diluted in blocking solution, 

Table 3.5) was added for 1 h at RT. Then, the membrane was washed again under the 

same conditions.  
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Table 3.5: Antibodies and dilutions used for western blotting 

Protein 
Primary Antibody 

(1°Ab) Species 

1°Ab 

Dilution 

Secondary 

Antibody 

(2°Ab) 

Species 

2°Ab 

Dilution 

Protein 

Size 

β-ACTIN 
Mouse (Cat. No. 

A2228, Sigma) 
1:10,000 Mouse 1:10,000 42 kDa 

GSX2 

Rabbit (Cat. No. 

ARP32208-P050, 

Aviva System 

Biology, San Diego, 

USA) 

1:1000 Rabbit 1:10,000 ≈ 32 kDa 

MASH1 
Mouse (BD 

Biosciences) 
1:100 Mouse 1:10,000 ≈ 34 kDa 

DLX2 Rabbit (Abcam) 1:400 Rabbit 1:10,000 ≈ 34 kDa 

DARPP-32 Rabbit (Santa Cruz) 1:100 Rabbit 1:10,000 ≈ 32 kDa 

 

3.5.6 Detection of chemiluminescence  
 

After the nitrocellulose had been probed with the appropriate antibodies, the 

membrane was placed in the developing cassette and incubated with SuperSignal 

West Dura buffer (0.5 ml) (Table 3.4) for 5 min in dark. Then, the solution was poured 

off, and film (Cat. No. 11666657001, Roche) was placed over the membrane and 

exposed for various time intervals.  
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3.6 Electrophysiology studies 
 

3.6.1 Whole-cell patch 
 

Standard whole cell patch clamp and analysis was carried out by Dr Vsevolod 

Telezhkin (Cardiff University), following methods previously reported (Telezhkin et al. 

2010). Briefly, nucleofected hPSC-derived nrNPCs were mounted on an inverted 

microscope (Olumpus CK40) and the whole cell patch clamp configuration obtained. 

Internal solution consisted of 117 mM KCl, 10 mM NaCl, 11 mM HEPES, 11 mM 

EGTA, 2 mM MgCl2, 1 mM CaCl2 and 2 mM Na2-ATP and external consisted of 135 

mM NaCl, 5 mM KCl, 5 mM HEPES, 10 mM Glucose, 1.2 mM MgCl2 and 1.25 mM 

CaCl2.  

Upon successful cell access, zero current injection continuous recordings were 

made in current clamp mode for measurement of resting membrane potential and 

spontaneous synaptic activity. Offline data was reviewed and analysed by Axon 

Laboratory’s Clampfit and Microsoft Office Excel.   
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3.7 Statistical analysis of data 
 

GraphPad PRISM version 6.0d software was used to analyse the data. All 

datasets were tested for normality using the D'Agostino-Pearson test.  

For single comparisons of the data, a Student’s t-test (two-tailed, paired or 

unpaired) was used. For multiple comparisons, however, two-way analysis of variance 

(ANOVA) was used with Bonferroni correction, which is one of the multiple-comparison 

corrections. The results were regarded as significant if the p-value was equal or less 

than 0.05 (p-value ≤ 0.05). 
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4.1 Introduction 
 

The transcription factors (TFs) DLX2, MASH1 and GSX2 have proven roles in the 

specification of the Lateral Ganglionic Eminence (LGE) and medium spiny neuron (MSN) 

fate determination. This chapter describes the construction of plasmid expression vectors 

for the three TFs. The open reading frames of the genes were cloned, from cDNA, into 

polycistronic vectors to enable the co-expression of linked TFs from a single pro-protein 

(O’Malley et al. 2009).  

The ability to express more than one protein from a single vector that contains 2A self-

cleaving peptides could be used for gene therapy of diseases, such as HD, in which it is 

unknown whether one or more genes are essential for the efficient production of MSNs. 

Therefore, in this thesis, the co-expression of different combinations of the three desired 

TFs was examined to investigate which combination of TFs had a significant role in the 

production of MSNs. For example, in Parkinson’s disease, using a polycistronic vector 

three genes encoding catecholarminergic synthetic enzymes (tyrosine hydroxylase (TH), 

aromatic amino acid L-3,4-dihydroxyphenylalanine (DOPA) decarboxylase (AADC) and 

GTP cyclohydrolase (CH1)) were found to be essential for the efficient generation of 

dopamine (Azzouz et al. 2002; Radcliffe and Mitrophanous 2004).  

 

4.1.1 Self-cleavage 2A peptide  
 

The polycistronic vector used in this study contains three self-cleaving 2A peptide 

sequences, E2A, T2A and P2A. The 2A peptide sequences was initially reported by Ryan 

and collaborators (1991) in one genus of the picornavirus family, the foot-and-mouth 

disease virus (FMDV) (Ryan et al. 1991; J. H. Kim et al. 2011). The self-cleavage of 2A 

peptides takes place during translation, thereby releasing each protein (Donnelly et al. 
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2001). Self-cleavage occurs by a process known as ribosome skipping at the C-terminus 

of the 2A peptide, where the ribosome skips the synthesis of the glycyl-prolyl (G-P) peptide 

bond. As a result of the cleavage, two proteins will be formed: the upstream peptide (that 

contains glycine (G) at its C-terminus) and the downstream peptide (that contains proline 

(P) at its N-terminus) (Figure 4.1) (Donnelly et al. 2001; J. H. Kim et al. 2011). 

 

Figure 4.1: Construction of self-cleaving 2A peptide by ribosome skipping. 

Diagrammatic representation of self-cleavage of the 2A peptide in the FMDV during translation. The 
red area indicates where the cleavage site starts, which releases the 2A peptide that contains a G 
residue at the N-terminus and the downstream peptide that contains a P residue at its C-terminus. 

Abbreviations: G: Glycine, P: Proline; NPGP: amino acid sequence of asparagyl-prolyl-glycyl-
prolyl.  

 

4.1.2 DLX2 
 

Dlx genes expressed in the telencephalon are confined to the differentiating, γ-

aminobutyric acid (GABA)-expressing neurons (Stühmer et al. 2002b). The expression of 

Dlx1 is localised in the telencephalon of the ventricular zone (VZ) and sub-ventricular zone 

(SVZ) of the LGE and MGE; Dlx1 is also expressed in the mantle zone (MZ) (Poitras et al. 

2007). The expression of Dlx2 is found in the ventricular and sub-ventricular telencephalon 

zones of mouse embryos at E12.5, where early differentiation occurs (Panganiban and 

Upstream Downstream ……NPGP 

2A 

N-terminus C-terminus 

Upstream Downstream ……NPG                 P  
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Rubenstein 2002). Recently, it was found that the DLX2 gene was expressed in the 

developing human foetal forebrain at late embryonic stages, and was localised to the SVZ 

of the entire ventral telencephalon domain (Pauly et al. 2013). Dlx expression in the MGE 

is associated with GABA interneuron development, whereas Dlx expression in LGE 

progenitors is associated with striatal and olfactory bulb GABA neurogenesis (Poitras et al. 

2007).  

Dlx2 has a role in ventral forebrain patterning and neuronal subtype specification, and 

it also plays a significant role in striatal and olfactory bulb GABA neurogenesis (Poitras et 

al. 2007). Mice lacking Dlx1 and Dlx2 lack migrating GABAergic interneurons from the 

telencephalon of the SVZ and VZ of the LGE and MGE to the cerebral cortex, which then 

results in a four-fold reduction in the number of GABAergic expressing cells in the cerebral 

cortex, striatum and olfactory bulb, which are the final destinations of the GABAergic 

interneurons (Anderson 1997). In addition, a mutation in Dlx2 causes abnormalities in the 

differentiation of late-born striatal neurons (Anderson et al. 1997; Anderson 1997; Marin et 

al. 2000).  

 

4.1.3 MASH1 

 

The MASH1 is highly expressed in the region of the SVZ, VZ and MZ of the ventral 

telencephalon of the LGE and MGE at E12.5 (Parras et al. 2004; Castro et al. 2011). 

MASH1 has a major function in regulating neurogenesis in the brain during embryogenesis 

(Castro et al. 2011). The loss of MASH1 results in the acute failure of the basal ganglia 

neurons in the telencephalon, as well as the loss of cortical projection neurons (Casarosa 

et al. 1999; Horton et al. 1999; Marin et al. 2000; Yun et al. 2002; Castro et al. 2011). 
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MASH1 also regulates a large number of other target genes that promote 

neurogenesis and have roles in distinct biological processes, molecular functions and 

cellular processes, as determined by microarray data (Castro et al. 2011). In the biological 

processes, the target genes activated by MASH1 are involved in the early steps of 

inhibition processes (Notch signaling), cell fate specification, the regulation of cell 

proliferation and neuronal differentiation in the later steps of neurogenesis (Castro et al. 

2011). Moreover, in the molecular processes, 48% of the target genes are involved in the 

regulation of transcription, 36% in signal transduction, 64% in nucleic acid binding, and 

small percentages in kinase activity (19%), enzyme activity (13%), transporter activity 

(14%) and cytoskeletal activity (11%) (Castro et al. 2011). In addition, MASH1 directly 

regulates a number of positive cell cycle regulators that promote cell cycle exit (Castro et 

al. 2011).  

MASH1 plays a role as a direct regulator of DLX1/2 expression. The human DLX1&2 

are orientated in an inverted convergent pattern and named as bigene cluster DLX1/2 

(Figure 4.2) (Simeone et al. 1994; McGuinness et al. 1996). It has been reported that 

MASH1 is an upstream regulator of DLX2 (Porteus et al. 1994; Casarosa et al. 1999; Fode 

et al. 2000; Letinic et al. 2002; Yun et al. 2002). Chromatin immunoprecipitation (ChIP) 

and electromobility shift assay (EMSA) analyses have shown that Mash1 binds to the E-

box sequence at FP5, which is a functional basic helix–loop–helix (bHLH) binding site 

present in the I12b enhancer. This enhancer is located upstream of the bigene cluster 

Dlx1/2, in which Mash1 binds to the E-box site of the I12b enhancer and activates 

transcription, and, hence, regulates the Dlx1/2 bigene directly (Figure 4.2) (Poitras et al. 

2007). 
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Figure 4.2: Schematic representation of the orientation of the human DLX1&2 loci 

The DLX1&2 are closely linked and located in an inverted transcribed manner. The enhancer l2b 
and l12a are located upstream of the bigene cluster DLX1/2.  

 

Both DLX1/2 and MASH1 have similar expression patterns in the ventral 

telencephalon region of the proliferation zone of the LGE and MGE (Porteus et al. 1994). 

Further evidence from Mash1 knockout mice shows a reduction in Dlx gene expression in 

the SVZ of the MGE and the LGE at E12.5 (Horton et al. 1999). Moreover, when Mash1 is 

ectopically expressed in neocortical neurons, Dlx1/2 expression is up-regulated (Fode et 

al. 2000). 

The timing of cell fate specification and differentiation in the nervous system of 

vertebrates is regulated by a lateral inhibition process mediated by Notch signaling (Chitnis 

and Kintner 1996; Henrique et al. 1997; Lewis 1996). MASH1 indirectly influences the 

activation of this signaling pathway by controlling the expression of Notch ligands, such as 

Delta and Jagged (Lindsell et al. 1996; Castro et al. 2006; Henke et al. 2009). Notch 

signaling represses the differentiation of neurons and inhibits proneural bHLH expression, 

including that of MASH1 (Artavanis-Tsakonas et al. 1995; de la Pompa et al. 1997; Robey 

1997).  

It has been suggested that the MASH1 gene is required in the early stages of 

neurogenesis, and that DLX2 is needed in the late stages of neurogenesis, during the 

specification and differentiation steps, to down-regulate Notch signaling. Hence, cell fate 

commitment is regulated by the coordinated functioning of MASH1 and DLX1/2 via the 

distinct influence on the Notch signaling pathway (Yun et al. 2002).  

DLX2 DLX1 

l12b                   l12a TAA              ATG ATG             TAA 

5’                              3’   3’                             5’   
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4.1.4 GSX2 

 

GSX1 and GSX2 are the earliest TFs expressed in the LGE progenitor cells. Here, the 

homeobox GSX genes are involved in the initial specification of the neural progenitors of 

the LGE (Pei et al. 2011). They also play a role in the development of striatal pyramidal 

neurons and interneurons of the olfactory bulb (Toresson and Campbell 2001; Yun et al. 

2003). In the early stages of neurogenesis, GSX2 is highly expressed in the progenitors of 

the ventral LGE, whereas in the later stages, GSX2 is expressed in the progenitor cells of 

the dorsal LGE (Waclaw et al. 2009). During LGE neurogenesis, GSX2 plays a 

fundamental role in the cell fate commitment of striatal projection neurons, as well as 

olfactory bulb interneurons, at distinct time points. In the early stages of telencephalic 

development, GSX2 is highly expressed in the ventral LGE and its main derivatives, such 

as the striatum. Meanwhile, during the later stages, it is mainly expressed in the dorsal 

LGE and its derivatives, such as the olfactory bulb (Waclaw et al. 2009).  

With the loss of Gsx2 in mice, both the ventral and dorsal LGE, coupled with their 

derivatives, are acutely reduced (Yun et al. 2001; Yun et al. 2003; Waclaw et al. 2004; 

Waclaw et al. 2006). However, when Gsx2 is mutated in the early stages of telencephalon 

development, the number of striatal projection neurons is reduced. This notwithstanding, 

when the mutation of Gsx2 is delayed, the olfactory interneurons are defective (Waclaw et 

al. 2009). Hence, the development of the striatum depends on the early expression of 

Gsx2, and this is also true for the olfactory bulb. 
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4.2 Aims 
 

The aim of this section was to clone different combinations of the TFs of interest into 

expression vectors of and to validate vector function before utilizing these vectors in cell 

differentiation studies with the hPSCs reported in Chapter 5.  

 

4.3 Experimental design  
 

In this chapter, to address the above aim, several experimental strategies were 

undertaken. The detailed methodology has been described in the Materials and Methods 

section (Section 3.1.11) in Chapter 3.  
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4.4 Results 
 

4.4.1 DLX2, MASH1 and GSX2 expression vectors 
 

The generation of the TF expression vectors required the subcloning of the ORF for 

each TF into the interim vector p3X-2A. To achieve this, the ORFs were cloned by PCR 

using specific primers. The primers used for PCR cloning are shown in Materials and 

Methods section (Section 3.1.11, Table 3.1) in Chapter 3. 

PCR cloning was performed from cDNA, which cloned into a plasmid, stocks 

obtained from the Harvard PlasmID Repository (Table 4.1).  

 
Table 4.1: The plasmidID list from Harvard. 

Clone ID 
Clone 

Type 

Gene 

Symbol 
Gene Name 

Reference 

Sequence 
Vector Selection Markers 

HsCD00345838 cDNA GSX2 GS homeobox 2 BC075089 pCR4-TOPO 
Bacterial: ampicillin; 

bacterial: kanamycin; 

HsCD00338128 cDNA DLX2 
Distal-less 

homeobox 2 
BC032558 

pCMV-

SPORT6 
Bacterial: ampicillin 

HsCD00076006 cDNA MASH1 
Achaete-scute 

complex-like 1 
BC002341 pDONR221 Bacterial: kanamycin; 

The table above illustrates the three plasmid cDNAs from Harvard used for PCR cloning. Each 
plasmid contains the gene of interest, (GSX2, DLX2 and MASH1), and a selection marker for 
growth in E. coli. The reference sequence is the GenBank number (NCBI website) that has the 
information about the insertion of the genes of interest. 

 

4.4.1.1 PCR and pENTR5’ TOPO TA cloning 

 

DNA was amplified using a proofreading polymerase (Platinum Taq DNA high-fidelity 

polymerase). The three genes, DLX2, MASH1 and GSX2, were amplified under different 

conditions. The PCR primers used amplified 930-bp, 725-bp and 1,002-bp products which 

corresponded to the GSX2, MASH1 and DLX2 gene products, respectively (Figure 4.3), 

and the products were inserted into the TOPO vector pENTR5’ TOPO (Invitrogen, UK: 

Paisley, 2007) using the pENTR5’ TOPO TA cloning kit.  
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Figure 4.3: Full-length amplification of MASH1, DLX2, GSX2 ORFs 

PCR products of the amplified genes (A). Linear map of the PCR products for the three genes: 
MASH1, DLX2 and GSX2, with restriction sites. (B) In the diagram, it can be seen that there is 
an overlap of restriction sites between the cloned genes, which is important to take into a count 
for subcloning into the interim vector p3X-2A and the expression vector pCAGG. 

 

4.4.1.2 Subcloning into the p3X-2A vector designed to insert the cloned genes 

with three 2A peptide linkers, followed by the transfer of these genes 
into the expression vector pCAGG-IRES-EGFP  

 

After confirming the proper cloning of TFs by DNA sequencing, the genes, MASH1 and 

DLX2, were subcloned sequentially into the p3X-2A vector.  

Initially, the MASH1 gene was digested with BamHI and ligated with the p3X-2A vector 

before the DLX2 gene was introduced; this is because this particular gene has the 

restriction site for BamHI (Figure 4.3 B). Subsequently, p3X-2A-MASH1/DLX2 was 

digested with SalI and the two cloned genes, MASH1 and DLX2, were inserted into 

pCAGG-IRES–EGFP to generate the construct pCAGG–DLX2/MASH1. The GSX2 ORF 

DLX2 
100 bp 

Ladder MASH1 
1 Kb 

Ladder 

100 bp 

Ladder GSX2 

1 Kb 

1 Kb 

0.5 Kb 
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0.5 Kb 

A) 

B) 

725 bp 1002 bp 
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was then inserted into the pCAGG-DLX2/MASH1 vector at the BglII restriction site. Then, 

the MASH1 and DLX2 genes were inserted separately into the p3X-2A vector. In the next 

phase, the gene GSX2 ORF was inserted into the pCAGG-DLX2 vector, thus yielding the 

pCAGG-DLX2/GSX2 vector. Together, five combinations of the three cloned genes were 

made for this project. Restriction digestion analyses of these constructs, as well as the 

gene orientations, is shown in Figure 4.4. 
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4.5 TF expression vectors validation through transient 
nucleofection of HEK293 cells 

 

To monitor the transfection efficiency, GFP reporter expression in transfected 

HEK293 cells was observed and measured. Western blotting was then used to assess 

the appropriate expression, as well as self-cleavage, for each TF. 

Forty eight hours after nucleofection, GFP expression was observed, and the 

efficiency of the transfection calculated using ImageJ software, which ranged from 80–

90% (using number of GFP+ve cells as a percentage of total number of cells in bright 

field) (Figure 4.5). In addition, lysates were prepared from harvested cells and the 

cellular proteins were analysed by western blotting. The nitrocellulose membranes 

were probed with antibodies specific for each TF. The correct size of each protein, 

DLX2, MASH1 and GSX2, was observed, 36, 35 and 34 kDa, respectively (Figure 

4.6). β-actin was used to confirm the level of protein in each sample and to normalize 

the expression levels of the desired TFs. 
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Figure 4.5: Transiently transfected HEK293 cells with the four cloned -polycistronic 
expression vectors, pCAGG-DLX2, pCAGG-DLX2/MASH1, pCAGG-DLX2/GSX2, and 
pCAGG-DLX2/MASH1/GSX2, plus the control, which is the empty vector pCAGG. 

The five cloning expression vectors were nucleofected into HEK293 cells. After 48 h, GFP 
expression for each vector, as shown in the above graph, was calculated using ImageJ 
software. The efficiency of the nucleofection was approximately 80–90%. 

 

 

Figure 4.6: Western blotting of the cloned TFs (DLX2, MASH1 and GSX2) expressed by 
the pCAGG vector  

The transfected HEK293 cells with the five expression vectors were lysed for western blotting 
analysis. HEK293 cells transiently transfected with the expression vector pCAGG-
DLX2/MASHI/GSX2 were harvested and analysed with anti-DLX2, anti-MASHI, anti-GSX2 and 
anti-β-actin antibodies (D); HEK293 cells transfected with the expression vectors pCAGG-DLX2, 
pCAGG-DLX2/MASHI and pCAGG-DLX2/GSX2 were lysed and analysed with anti-DLX2 and β-
actin antibodies (A). GSX2 expression for the pCAGG-DLX2/GSX2 and pCAGG-
DLX2/MASH1/GSX2 vectors was obtained (B). In addition, MASH1 expression by the 
constructs pCAGG-DLX2/MASH1 and pCAGG-MASH1 was analysed (C). 

Abbreviations: MSTM: Mouse striatum; HEK293: Human embryonic kidney 293 cells. 
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4.6 Conclusion 
 

The role of the DLX2, MASH1 and GSX2 TFs in LGE specification 

 

The TFs DLX2, MASH1 and GSX2 are required for the specification of LGE 

progenitor cells. DLX2 and MASH1 are expressed in the ganglia regions of the VZ and 

SVZ of LGE and MGE, while GSX2 is strongly expressed in the dorsal LGE and is 

weakly expressed in the ventral LGE and MGE. MASH1 regulates DLX2, and together 

they regulate the differentiation of GABAergic neurons, as well as neurogenesis, by 

activating the Notch signaling pathway. MASH1 regulates neurogenesis in 

telencephalic development, as well as the patterning and specification of LGE, while 

MASH1 and GSX2 play a role in striatum development. When LGE progenitor cells are 

produced, MASH1, DLX2 and GSX2 are required for these precursors to develop to 

striatal complex (Anderson et al. 1997; Casarosa et al. 1999; Toresson and Campbell 

2001). Because of the interaction of these genes and their essential functions in LGE 

development, they were selected as candidates to drive the differentiation of hESC–

naïve rosette-stage neural progenitors (nrNPCs) towards an LGE fate via their ectopic 

expression (Chapter 5). This chapter described the successful cloning of these genes 

into a novel vector designed for high-level, transient, TF co-expression (Table 4.2). 

Table 4.2: Summary of completed constructs 

TFs combination Completed constructs in p3X-2A 
vector 

Completed constructs in pCAGG 
vector 

DLX2 p3X-2A-DLX2 pCAGG-DLX2 

MASH1 p3X-2A–MASH1 pCAGG–MASH1 

DLX2/MASH1 p3X-2A-DLX2/MASH1 pCAGG-DLX2/MASH1 

DLX2/GSX2 -------------------- pCAGG-DLX2/GSX2 

DLX2/MASH1/GSX2 -------------------- pCAGG-DLX2/MASH1/GSX2 

Both the MASH1 and DLX2 TF genes were first inserted into the polyprotein vector p3X-2A and 
then subcloned into the expression vector pCAGG. However, the TF GSX2 gene was not inserted 
into p3X-2A. Instead, it was inserted into the expression vector pCAGG, after subcloning the other 
TFs into the pCAGG vector. 
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Using alternatives to the 2A peptide strategy 

 

There are alternatives to express more than one gene in one vector, such as 

using an internal ribosome entry site (IRES) between TFs or different promoters 

located upstream of a gene ORF (Radcliffe and Mitrophanous 2004; J. H. Kim et al. 

2011). However, there are some disadvantages of using these approaches, such as 

their sizes and their expression efficiency (Radcliffe and Mitrophanous 2004; J. H. Kim 

et al. 2011). When using an IRES between genes, the expression of a gene located 

after the IRES is lower than that of a gene located before the IRES, and IRES sizes are 

more than 500 nucleotides in length (J. H. Kim et al. 2011). Additional promoters can 

result in different amounts of encoded proteins (Radcliffe and Mitrophanous 2004). 

Therefore, in this study, self-cleaving 2A peptide sequences between the TFs were 

used, as it has a high cleavage efficiency among TFs, and their sizes are small (J. H. 

Kim et al. 2011). However, it was stated that the use of the 2A peptide is not common 

in biomedical studies, as it is not yet established; 2A peptide of the four, E2A, P2A, 

T2A and F2A, has the highest cleavage productivity, and there is not any commercially 

available 2A technology for the expression of more than one gene in a single vector (J. 

H. Kim et al. 2011).  

 

TFs validation by transient transfection of HEK293  

 

The high efficiency of the HEK293 nucleofection with the expression vectors 

containing the four TFs and the control vectors was useful for validating the vector 

function prior to using the vectors in neural stem cells.  

Significantly, all of the cloned genes, together with the GFP reporter, were 

expressed. Secondly, the western blotting analysis indicated that a polyprotein of the 

predicted size, ~132 kDa (GSX2 (34 kDa), DLX2 (36 kDa) and MASH1 (36 kDa)) was 

generated. This indicates that the 2A peptides within the construct were successfully 

cleaved during translation. Therefore, the expression vectors with the TFs and the 



                                                                                                                     Chapter 4: Conclusion 

 151 

control vectors were nucleofected into hPSCs at day 18, followed by the 

characterisation of TF expression and differentiation into MSNs. These experiments 

will be described in the next chapter. 
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5.1 Introduction 

 

The TFs, DLX2, MASH1 and GSX2, showed appropriate transgene expression in 

HEK293 cells (Chapter 4). In this study, ectopic expression of TFs, i.e. DLX2, MASH1 and 

GSX2 in hESC or iPSC-derived naïve rosette stage neural progenitors cells (nrNPCs), was 

conducted to investigate whether the hESC or iPSC derived nrNPCs could differentiate 

into LGE-specific cell type, and subsequently into MSNs. To further validate their potential 

use for differentiation in hESC- or iPSC-derived nrNPCs, expression of the TFs in the 

nrNPCs of interest was examined in this chapter. Transgene expression of DLX2, MASH1, 

and GSX2, as well as 2A self-cleavage peptide were confirmed by immunocytochemistry 

(ICC). In addition, the expression of exogenous and endogenous TFs was also confirmed 

by qRT-PCR. 

34D6 and H9 nrNPCs (at platting down day (PdD) 18) used for nucleofection were 

FOXG1 positive. FOXG1 plays a role in the development of the telencephalon, as well as 

in the expansion of the forebrain, as it promotes the proliferation of progenitor cells and 

suppresses the differentiation of those cells during neurogenesis (Regad et al. 2007; 

Hanashima et al. 2002). It also plays a major role in regulating the timing of neurogenesis 

in the telencephalon (Hanashima et al. 2002). Interestingly, its function is important 

because of its restricted expression pattern. Its expression is nuclear in progenitor cells, 

but cytoplasmic in differentiating cells (Regad et al. 2007). Hence, investigating FOXG1 

expression in nrNPCs is important for this study.  

Neurons are generated from two proliferative populations, which are in the VZ and 

SVZ. In these regions, cell proliferation continues throughout life. In these two populations, 

the neuron progenitors are in the cell cycle; once they exit the cell cycle, they differentiate 

and migrate from to the periphery of the telencephalic vesicles and complete their 

differentiation (Casarosa et al. 1999). For example, striatal progenitors or GABAergic 
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interneurons that are generated in the LGE proliferative VZ and SVZ migrate tangentially 

to the cortical intermediate zone (IZ) and marginal zone (MZ) (Anderson 1997b; Tamamaki 

et al. 1997; Casarosa et al. 1999; Dehay and Kennedy 2007). A similar concept also 

applies to stem cells. For example, in early development, embryonic stem cells are 

characterised by rapid proliferation and the production of daughter cells, which either 

remain stem cells or differentiate into a specific cell-type (Takahashi and Yamanaka 2006). 

As the cells undergo differentiation, the rate of cell proliferation decreases, and when fully 

differentiated, cell proliferation ceases. Therefore, proliferation and differentiation are 

regulated by a balance of intrinsic and extrinsic cues that direct progenitors to enter the 

cell cycle and proliferate, or exit the cell cycle and begin differentiation (Dehay and 

Kennedy 2007). It is believed that such a balance is maintained by the parallel, 

overlapping and/or sequential function of TFs such as Dlx2 and Mash1 (Anderson 1997; 

Horton et al. 1999; Yun et al. 2002; Cobos et al. 2007; Colombo et al. 2007; Poitras et al. 

2007; Long et al. 2009b).  

At the proteomic level, there are many proteins that program the cell cycle upon 

expression. There are two categories of cell cycle proteins: one group drives the cell cycle, 

while the other inhibits cell cycle (Figure 5.1). In the developing cortex during 

neurogenesis, neuroepithelial cells divide in proliferative VZ and express phospho-histone 

H3, which is an M-phase marker, and cyclin E and Ki67, which are the markers for G1-, S-, 

G2- and M- phases (Herrup and Yang 2007). Brdu/3H-T is the S-phase marker. The mitotic 

activity takes place in the SVZ (Herrup and Yang 2007). When cyclin-dependent kinase 

inhibitors (CDKI), such as CDK5, P27, P21 and p57, are expressed, cells exit the cell 

cycle, start the process of early differentiation and migrate from the proliferative VZ and 

SVZ to the IZ, cortical plate and MZ. In the cortical plate, the cells are fully differentiated to 

mature neurons driven by the presence of CDKI (Herrup and Yang 2007) (Figure 5.2). 

Therefore, in this chapter, the functional consequences of transient expression of the TFs, 
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DLX2, MASH1, GSX2 and downstream effector genes, on cell proliferation was assessed 

by looking at the cell cycle protein Ki67.  

 

Figure 5.1: The phases of cell cycle and the proteins involved in cell cycle regulation. 

The cell cycle phases include: G1 phase, where the cells commit to divide or exit from the cell cycle 
due to responses to extracellular signals, S phase, where DNA synthesis and process of replication 
take place, G2 phase, where the completion of DNA replication is checked and M phase, where 
two daughter cells are generated. Following the M phase, the new daughter cells can re-enter the 
cell cycle and proliferate or exit the cell cycle and start to differentiate. The cell cycle proteins in 
orange boxes drive progression through the different stages of the cell cycle while the ones in red 
inhibit progression of the cell cycle. 

Abbreviations: G1: Gap 1 or growth 1, S: DNA synthesis, G2: Gap 2 or growth 2, M: Mitosis, 
CDK: Cyclin-dependent kinases; CDKI: Cyclin-dependent kinases inhibitor. 

  

Cyclin A: 
CDK1 

Cyclin B: 
CDK1 

Cyclin A: 
CDK2 

Cyclin E: 
CDK2 

Cyclin D: 
CDK4 & 6 

CDKI:  
p15, p16, p18 & p19 

CDKI:  
p21, p27, & p57 



                                                                                      Chapter 5: Introduction and aim of the project 

 156 

Figure 5.2: Cell cycle proteins involved in neuronal development.  

This schematic represents the developing cortex and the cell cycle proteins that are involved in the 
development of each layer (A). The neuroepithelial cells (shown in blue) divide in the VZ and their 
mitotic activity continues in the SVZ. The protein phospho-histone H3 is associated with the M 
phase, BrdU/

3
H-T uptake is associated with the S phase and Cyclin E and Ki67 are associated with 

cell cycle phases (G1, S, G2 and M). CDKI expression drives neuronal cell exit from the cell cycle 
and migration along the radial glia (shown in green) from VZ and SVZ to IZ and cortical plate, where 
they are fully differentiated (shown in yellow). Cell cycle proteins are associated in the three stages 
of neuronal development: neurogenesis, migration and maturation stages (B). Figure taken from 
Herrup and Yang 2007.  
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Previously, it has been shown that the three TFs - DLX2, MASH1 and GSX2 - play a 

role in neuronal fate in the subpallium (Table 2.3) (Pauly et al. 2013; Wang et al. 2013). 

Furthermore, the TFs together play a role in the transcriptional network that drives striatal 

and MSN development (Figure 5.3) (Stühmer et al. 2002b; Poitras et al. 2007; Colasante 

et al. 2008; Wang et al. 2013). GSX2 regulates the expression of MASH1, DLX2 and EBF1 

(Wang et al. 2013). MASH1 regulates the expression of DLX2 by binding to the I12b 

enhancer that is located downstream of DLX2 (Poitras et al. 2007). DLX2 regulates the 

expression of ARX, which triggers migration, through binding to the UAS3 enhancer 

downstream of ARX (Colasante et al. 2008). DLX2 also induces the expression of DLX5, 

and together they regulate the expression of GAD1/2 (Stühmer et al. 2002b). These 

interactions aid in proliferation, differentiation and migration in neurogenesis (Yun et al. 

2002; Long et al. 2009b; Wang et al. 2013). In this chapter, the target genes of DLX2, 

MASH1 and GSX2 are examined at transcriptional level (qRT-PCR) to validate the 

progress of the stem cell differentiation program. We address the following question: does 

ectopic expression of the TFs DLX2, MASH1 and GSX2 in 34D6 nrNPCs cause them to 

differentiate into ventral telencephalic neuronal progenitors and LGE-specific progenitor 

cells?  

  



                                                                                      Chapter 5: Introduction and aim of the project 

 158 

 

Figure 5.3: Transcriptional network of the TFs that play a role in striatal and 
MSN differentiation. 

The GSX2 regulates the expression of EBF1, MASH1 and DLX2. MASH1 regulates 
the expression of DLX2 by binding to the I12b enhancer. In addition, DLX2 
regulates the expression of ARX by binding to the UAS3 enhancer, and DLX5 by 
binding to I56i enhancer. Together, DLX2 and DLX5 regulate the expression of 
GAD1/2. 

 

5.2 Aims 
 

The main aim of this study was to determine whether the protocol of ectopic 

expression for the different combinations of TFs (DLX2, GSX2 and MASH1) drives 

differentiation of hPSC-derived nrNPCs into LGE-like specific progenitors cells. For this 

purpose, the strategy was initially optimized for the expression of TFs using GFP as a 

marker that was fused with the TFs using a small molecule inhibitor (G418) to eliminate 

those cells not expressing GFP in the 34D6 cell line model. Then, the nucleofected TFs of 

various combinations in H9 and 34D6 cell line models were assessed for their expression 

profiles at the molecular level. Finally, to test the functionality of the ectopically expressed 

TFs, nucleofected nrNPC FOXG1+ve progenitor cells were assessed for their ability to re-

GSX2 

I12b 

MASH1 

DLX2 

EBF1 

UAS3 

ARX DLX5 

GAD1/2 

I56i 

MASH1 

DLX2 

DLX5 

Proteins 

Genes 



                                                                                      Chapter 5: Introduction and aim of the project 

 159 

programme into LGE-like neuronal progenitors using PAX6, EMX2 (dorsal marker) and 

NKX2.1 (ventral-specific marker for MGE).  
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5.3 Experimental design 
 

The experimental design used, in this chapter, for cell maintenance is illustrated 

in Figure 5.4. The detailed methodology has also been described in the Materials and 

Methods section (section 3.2) in Chapter 3.  

 

Figure 5.4: Experimental design.  

The experimental protocol used in this chapter for cell maintenance from the human pluripotent 
stem cells (hPSCs) stage (D0) to naïve rosette stage neural progenitors (nrNPCs) at PD 20.  

Abbreviations: D: Day, nrNPC: Naïve rosette stage neural progenitors, EB: Embryonic body, 
PdD8: Platting down Day 8, Pen/Strep: Penicillin (100 U/ml)/Streptomycin (100 µg/ml); PLL: 
poly-L-Lysine. 
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5.4 Results 
 

5.4.1 Characterisation of TF vector expression in transiently 
nucleofected H9 and 34D6 cells  

 

5.4.1.1 Quality control prior to nucleofection: nrNPCs at day 18 were positive 
for FOXG1, human ZO.1 and NESTIN [multipotent neural stem cells 

(NSCs)], and were negative for OCT4 (pluripotency marker).  

 

Quality control prior to nucleofection of hPSC-derived nrNPCs at platting down day 

18 (PdD18) was performed for the protein and transcriptome levels using ICC and qRT-

PCR. Prior to nucleofection of hPSCs-derived nrNPCs at PdD18, nrNPC quality was 

determined by assessing the FOXG1 and human ZO.1 expression by ICC. These cells 

stained positively for forebrain marker (FOXG1+ve) and tight junctions (ZO.1+ve) (Figure 5.5 

A and B). The neural precursors of H9 and 34D6 were examined by qRT-PCR for 

expression of NESTIN, a multipotent neural stem cell (NSC) marker, and OCT4, 

pluripotency marker. The nrNPCs were NESTIN+ve and OCT4-ve at PdD12; however at D0, 

the undifferentiated 34D6 and H9 cells were NESTIN-ve and OCT4+ve (Figure 5.5 C). The 

negative control for FOXG1 staining is shown in Appendix 5.1. FOXG1 expression was 

clearly evident, suggesting that these cells were forebrain neuron precursors and hence 

could be used to differentiate into LGE-like progenitor cells through ectopic expression of 

the TFs MASH1, DLX2 and GSX2.  
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Figure 5.5: Quality control prior to the nucleofection of nrNPCS using ICC with FOXG1 and 
human ZO.1 antibodies, and qRT-PCR expression analysis of the pluripotency marker, 
OCT4, and neural marker, NESTIN.  

Before nucleofection, some of the H9 and 34D6-derived nrNPCs at PdD16 were fixed and stained 
for forebrain marker, i.e. FOXG1 (Primary dilution: 1:1000, NeuraCell) with an Alexa Fluor® 594 
labelled anti-rabbit IgG secondary antibody (red), Abcam (A). The cells were also stained for tight 
junction marker, i.e. human ZO-1 (Primary dilution: 1:250, BD Biosciences) with an Alexa Fluor® 
488 labelled anti-mouse IgG1 secondary antibody (green), Abcam (A). The confocal microscope 
images of human ZO-1 (green) and Dapi/nuclear (blue) staining (Hoechst) were obtained (B). qRT-
PCR of OCT4 and NESTIN at D0 and PDd12 for H9 and 34D6 cell culture (C).  

The blue scale bar indicates 100 µm, the red scale bar indicates 50 µm, and the green scale bar 
indicates 36 µm. 
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5.4.1.2 The efficiency of TF expression was approximately 45% higher following 

acute G418 selection at 48h post-nucleofection, as compared to non-
selected cells.  

 

The PdD18 nrNSCs were nucleofected with either the empty vector (pCAGG), or 

one of the pCAGG-DLX2, pCAGG-DLX2/MASH1, pCAGG-DLX2/GSX2 and pCAGG-

DLX2/MASH1/GSX2 vectors. The efficacy of nucleofection was determined by GFP 

expression, using ImageJ software, after 24, 48, 72 and 96 hours (h) post-nucleofection 

(Figure 5.6 A and B). GFP was highly expressed from all the vectors at 48 h post-

nucleofection; however, the percentage of GFP expressing cells had declined at 72 and 96 

h time points (Figure 5.6 B). This decline could be due to transient expression from a non-

integrated plasmid. Since DLX2, MASH1 and GSX2 were only required in a restricted 

window of time during the differentiation of cells from progenitor through to mature neuron, 

a transient G418 selection strategy was used to select against non-transfected cells from 

the mixed population. To achieve this, different concentrations of G418 (200, 400, 600 and 

800 µg/ml) with different incubation times (1 day to 1 week) were tested to find the most 

suitable concentration of G418 and duration time to select GFP+ve cells (Figure 5.7).  

At a low concentration of G418 (200 µg/ml), GFP expression was low (15%); this 

was increased (40%) at a higher concentration of G418 (400 µg/ml) at week 1. At the 800 

µg/ml concentration of G418, an increase in GFP+ve cells (45%) was only seen at day one; 

surprisingly the cells did not show similarly high GFP expression at week 1, suggesting 

that G418 causes toxicity at higher doses with prolonged incubation. 
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Figure 5.6: GFP expression in nucleofected PdD18 nrNSCs. 

GFP expression in nrNSCs 24, 48 and 72 h after nucleofection with the vectors shown (left 
column) (A). The percentage of GFP expressing cells after each nucleofection was determined by 
ImageJ (B). 

 

Figure 5.7: Percentage of GFP
+ve

 cells and cell survival post G418 selection of 
nucleofected cells, with different concentrations and incubation times 

Twenty four hours post-nucleofection of nrNPCs, the cells were incubated for 1 day to 1 week in 

different concentration of G418 (200, 400, 600 or 800 µg/ml). At low concentrations of G418, the 
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 cells was low. This percentage increased at 400 µg/ml G418 

concentration with an incubation time of 1 week. In comparison with 400 µg/ml of G418, GFP
+ve

 

cells were increased at 800 µg/ml of G418 on day one, exhibiting a cell survival of around 35% 
and a nucleofection efficiency of 45% (N = 2).  
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Figure 5.8: GFP expression in nucleofected nrNSCs after G418 selection. 

G418 sulfate selection was started 48 h after nucleofection with the vectors. 
GFP expression and bright field of each group of nucleofected cells after G418 
selection. 
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5.4.1.3 Successful expression of DLX2, MASH1, GSX2 and self-cleavage 

peptides 2A into H9 and 34D6 cells from all six expression vectors at 
nucleofection day 4 (ND4). 

 

At PdD18 of nrNPCs, nucleofection with the six expression vectors (pCAGG-DLX2, 

pCAGG-MASH1, pCAGG-DLX2/GSX2, pCAGG-DLX2/MASH1 and pCAGG-

DLX2/MASH1/GSX2) and the control (pCAGG) was performed. Following acute selection 

with G418, TF transgene expression in selected cells was assessed by ICC. At ND4, the 

nucleofected H9 cells (not shown) and 34D cells were fixed for ICC to determine the 

expression of DLX2, MASH1, GSX2 genes and the 2A self-cleavage peptide tag. Self-

cleavage of the 2A peptide allows the release of cloned TFs in nucleofected cells 

(Donnelly et al. 2001). The negative control for MASH1, DLX2, GSX2 and GFP staining is 

shown in Appendix 5.1.  

All nrNPCs nucleofected with the TFs expressing pCAGG-DLX2, pCAGG-

DLX2/GSX2, pCAGG-DLX2/MASH1 and pCAGG-DLX2/MASH1/GSX2 were 

immunopositive for the 2A peptide and for DLX2, whilst cells transfected with the empty 

vector showed no expression for 2A peptide and DLX2 (Figures 5.9 and 5.10). Similarly, 

MASH1 and GSX2 expression was only evident in cells transfected with the MASH1 

and/or GSX2 containing vectors (pCAGG-DLX2/GSX2, pCAGG-DLX2/MASH1, and 

pCAGG-DLX2/MASH1/GSX2) (Figures 5.11 and 5.12).  

H9 and 34D6 transient nucleofected nrNPCs at PdD18 had the same 

characteristics, such as, the morphology and the viability of the cells. In addition, TF 

characterisation yielded equivalent results in both H9 and 34D6 nrNPCS PdD18 cell lines, 

therefore, any one of the cell lines could be carried forward for further analysis. The 34D6 

was chosen for further experiments as the differentiation protocol can be used with HD-iPS 

cell lines for disease modeling studies. These results clearly demonstrate successful 

expression of all cloned TFs in 34D6-derived nrNPC cells at the protein level using ICC. 
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5.4.2 Both endogenous and exogenous expression of MASH1, GSX2 
and DLX2 were examined by qRT-PCR in 34D6 nrNPCs using TF 
expression vectors.  

 

To corroborate the expression of cloned TFs and to further confirm whether the 

expression of TFs is endogenous or exogenous, qRT-PCR was performed. nrNPCs 

were nucleofected with the different TF expression vectors and cultured in ADF media. 

The cells were then harvested at nucleofection day (ND) 0, ND2, ND3, ND5 and ND7. 

Their RNA was extracted and qRT-PCR was performed to measure the expression of 

the DLX2, MASH1 and GSX2 transgenes and their endogenous gene counterparts. 

The primers used to distinguish exogenous and endogenous genes for the expression 

studies are shown in the Materials and Methods section (section 3.4.3) in Chapter 3 

and the characterisation of the primers is shown in Figure 5.13. 

 

Figure 5.13: Schematic showing primers used for qRT-PCR to distinguish between 
exogenous and endogenous TF expression. 

The position of the exogenous and endogenous primers (F or R) for the TFs DLX2, MASH1 and 
GSX2 are shown. The exogenous primers contain a few base pairs of the 2A peptides and 
therefore will only detect a transcript derived from the expression vectors. The endogenous 
primers contain a few base pairs of the 3’UTR in the R primers and therefore will only detect 
endogenously derived transcripts. 

Abbreviations: CAP: RNA 7-methyl-guanosine cap, 5’UTR: 5 prime untranslated region, CDS: 
Coding sequence, 3’UTR: 3 prime untranslated region, F: forward primer and R: Reverse 
primer, ATG: Methionine - start codon; TAA: Stop codon.   

ATG                                                                          TAA 

CAP 

5’UTR 

CDS 

3’UTR 

Poly-A-tail 

F 

R 

GSX2 DLX2 MASH1 E2A T2A P2A 

pCAGG expression vector 

Exogenous primers position 

Endogenous primers position 

F 
R R 

F R 
F 

mRNA 
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5.4.2.1 The expression pattern of endogenous MASH1 was altered in a time-

dependent manner. 
 

Forty-eight hours after nucleofection, the mean relative expression of 

exogenous MASH1 peaked in all cells that contained the MASH1 transgene (Figure 

5.14 A, B and C). Its expression was considerably higher in the pCAGG-MASH1 

nucleofected cells compared to pCAGG-DLX2/MASH1 and pCAGG-

DLX2/MASH1/GSX2 nucleofected cells (Figure 5.14 A, B and C). The expression of 

endogenous MASH1 was increased even after expression of MASH1 transgene 

declined after ND2 in both pCAGG-MASH1 and pCAGG-DLX2/MASH1/GSX2 

nucleofected cells; between ND2 to ND5, it remained constant and, at ND5, it started 

to increase gradually (Figure 5.14 A and C). Meanwhile, in the pCAGG-DLX2/MASH1 

nucleofected cells, the mean relative expression of endogenous MASH1 was low in 

comparison to endogenous expression of DLX2, beginning to increase slightly after 

ND5 (Figure 5.14 B). However, in the same nucleofected cells, the expression of 

endogenous DLX2 reached its maximum level at ND7 relative to the expression of 

endogenous MASH1 (Figure 5.14 B and E). Therefore, from these results, it was 

demonstrated that the expression of endogenous MASH1 increases slightly in a time-

dependent manner, while DLX2 increases rapidly, indicating the presence of an 

alternative mode of action between these two TFs in the neuronal differentiation 

program.  

5.4.2.2 The expression of endogenous DLX2 was altered by the co-
expression of the TFs MASH1 and GSX2  

 

In the 34D6 nrNPCs nucleofected with four constructs (pCAGG-DLX2, pCAGG-

DLX2/MASH1, pCAGG-DLX2/GSX2, and pCAGG-DLX2/MASH1/GSX2), the mean 

relative expression of exogenous DLX2 transgene peaked after 48 h as compared to 

control group (pCAGG). The expression of exogenous DLX2 was maximal at 48 h in 

the pCAGG-DLX2 nucleofected cells (Figure 5.14 D). On the other hand, the mean 

relative expression of endogenous DLX2 gradually increased in pCAGG-DLX2/MASH1 
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nucleofected cells from ND3 to ND7 (Figure 5.14 E), but decreased in pCAGG-

DLX2/GSX2 (Figure 5.14 F), and pCAGG-DLX2/MASH1/GSX2 nucleofected cells 

(Figure 5.14 G). In the pCAGG-DLX2/MASH1/GSX2 nucleofected cells, the 

endogenous expression started to rise slightly at ND7 (Figure 5.14 G). In the pCAGG-

DLX2 nucleofected cells, endogenous DLX2 expression was constant from ND5 to 

ND7.  

Interestingly, when the gene DLX2 was co-expressed with MASH1, the 

expression of endogenous DLX2 increased dramatically (ND3 - ND7) (Figure 5.14 D 

and E), whereas, the endogenous expression of MASH1 was very low (Figure 5.14 B 

and E). Furthermore, when DLX2 was co-expressed with MASH1 and Gsx2, the 

endogenous DLX2 expression was initially low at ND5 and then started to increase 

slightly at ND7, whereas the expression of endogenous GSX2 was dramatically 

elevated at ND7. The expression of endogenous MASH1 was also visibly increased at 

ND7 (Figure 5.14 C, G and I). Together, these results show that expression of 

endogenous DLX2 gene was transiently affected by ectopic expression of MASH1 and 

GSX2. The expression of DLX2 was reduced when co-expressed with GSX2, but 

increased when co-expressed with MASH1. However, co-expression of GSX2 and 

MASH1 caused a decrease in DLX2 expression followed by an increase (Figure 5.14 

D, E, F and G). These results clearly show that TFs interact to drive the level of 

endogenous gene expression. 

5.4.2.3 MASH1 co-expression increases GSX2 starting at ND5 

 

The mean relative expression of exogenous GSX2 peaked two days after 

nucleofection with pCAGG-DLX2/GSX2 or pCAGG-DLX2/MASH1/GSX2 (Figure 5.14 

H and I). The mean relative expression of endogenous GSX2 differed depending on 

the constructs expressed in the 34D6 cells. In the pCAGG-DLX2/GSX2 cells, the 

expression of endogenous GSX2 reached its maximum level at ND5 then declined at 

ND7 (Figure 5.14 H). However, when the GSX2 was co-expressed with DLX2 and 
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MASH1, the endogenous expression of GSX2 started to increase at ND5 reaching its 

peak at ND7 (Figure 5.14 I), whereas the expression of endogenous DLX2 and 

MASH1 was only increased slightly at ND7 in the pCAGG-DLX2/MASH1/GSX2 

nucleofected cells (Figure 5.14 C, G and I). Section 5.4.2 demonstrates the complexity 

of TF interaction and expression, which likely influence the proliferation-differentiation 

drive in neurogenesis in this model.  

This experiment was done in order to examine whether or not the exogenous 

expression of TFs become integrated (endogenous expression of TFs) in nucleofected 

cells. The results show that the post-nucleofection expression of endogenous TFs is 

increased when the expression of exogenous TFs is decreased.  
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Figure 5.14: Endogenous and exogenous expression of the TFs, DLX2, MASH1 and 
GSX2, in the nucleofected 34D6 cells compared to the control (pCAGG empty vector) 
nucleofected cells.  

The endogenous and exogenous expression of MASH1 in pCAGG-MASH1, pCAGG-
DLX2/MASH1 and pCAGG-DLX2/MASH1/GSX2 nucleofected 34D6 cells (A, B, C). The 
endogenous and exogenous expression of DLX2, in all nucleofected cells (D, E, F, G). The 
endogenous and exogenous expression of GSX2 in pCAGG-DLX2/GSX2 and pCAGG-
DLX2/MASH1/GSX2 nucleofected cells (H, I). 
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5.4.3 Transient ectopic expression of DLX2, MASH1 and GSX2 
resulted in cell cycle exit leading to neuronal differentiation, as 
observed by downregulation of the proliferation marker Ki67 

 

The previous section described the nucleofection and validation of expression 

of DLX2, MASH1 and GSX2 TFs in nrNPCs. In this section, in order to determine when 

the cells exit the cell cycle and start to differentiate, the nucleofected cells were 

analysed for expression of GFP and Ki67, a proliferation marker. Two different 

populations of nucleofected cells were involved in this analysis: GFP+ve cells 

populations indicated the transient ectopic expression of TFs, meanwhile, GFP-ve cells 

populations indicated the non-ectopic expression of TFs. Therefore, for this analysis, 

nucleofected cells were not placed under G418 selection in order to examine the Ki67 

expression in the GFP-ve cell population.  

Between ND3 and ND4, the nucleofected cells were fixed and stained with the 

proliferation marker Ki67 and GFP (Figure 5.15 A). The percentage of GFP+ve and 

GFP-ve cells that were Ki67+ve was calculated using ImageJ software from 4 replicates. 

Statistically, there was a significant (p-value < 0.0001) decrease in the percentage of 

Ki67+ve cells in the GFP+ve populations as compared to the GFP-ve populations in all the 

TF vector nucleofected groups (Figure 5.15 B). The p–value of Ki67+ve cells between 

GFP+ve and GFP-ve cells for pCAGG-DLX2, pCAGG-MASH1, pCAGG-DLX2/MASH1, 

pCAGG-DLX2/GSX2 and pCAGG-DLX2/MASH1/GSX2 nucleofected cells, was 

<0.0001, 0.01, 0.0001, 0.001 and 0.01, respectively (N= 4 for each nucleofection). 

However, the empty vector (pCAGG) nucleofected cells did not show any significant 

difference in the percentage of Ki67 cells between GFP+ve and GFP-ve cells. 

In the GFP+ve population, the pCAGG-DLX2/MASH1 nucleofected cells showed 

the lowest Ki67 expression (p-value = 0.0001) compared with the control pCAGG, and 

pCAGG-DLX2, pCAGG-DLX2/GSX2 and pCAGG-DLX2/MASH1/GSX2 nucleofected 

cells with p-value = 0.001 (Figure 5.15 B).  
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These data suggest that the 34D6 nrNPCs ectopically expressing the different 

TFs constructs (with emphasis on pCAGG-DLX2/MASH1) experience decreased 

proliferation, as evidenced by the decline in cell cycle marker Ki67. This, therefore, 

indicates that these cells have exited the cell cycle and have committed to 

differentiation.  
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Figure 5.15: Analysis of cell proliferation, using Ki67, in 34D6 nrNPCs four days 
after nucleofection with TF vectors.  

The six expression vectors were nucleofected into 34D6 nrNPCs, and at ND4 the cells 
were fixed and immuno-stained against Ki67 (Cell cycle marker-Red), GFP (Green) and 
Dapi (Nuclear staining-Blue) (A). The scale bar shows 100µm. The percentage of Ki67

+ve
 

cells, in each nucleofection group, was calculated between GFP
+ve

 and GFP
-ve

 
populations (N = 4 for each nucleofection) (B).  

* indicates p-value = 0.01, ** indicates p-value = 0.001, *** indicates p-value = 0.0001 and 
**** indicates p-value < 0.0001 (Two-way ANOVA with Bonferroni correction). 

 

5.4.4 Ectopic expression of TFs induces an LGE-like progenitor fate 
from 34D6-derived forebrain nrNPCs, as assessed by dorsal-
specific markers (PAX6 and EMX2) and a ventral-specific marker 
for MGE (NKX2.1). 

 

In order to understand and demonstrate the functional effect of the five TFs 

expression constructs along with empty vector (control group), on the 34D6 nrNPCs, 

RNA samples were analysed by qRT-PCR for expression of the dorsal markers, EMX2 

and PAX6, and the ventral MGE specific marker, NKX2.1 (Figures 5.16, 5.17 and 

5.18). This analysis was repeated at ND0, ND2, ND3, ND5 and ND7 for EMX2 and 

NKX2.1 expressions, plus ND21 and ND42 for PAX6 expression. For this analysis, 

nucleofected cells were placed under G418 selection. 

It was observed that there was a significant difference, in the expression of the 

dorsal marker, EMX2, between the nucleofected 34D6 nrNPCs (p = 0.0126) and 

between different time points (p < 0.0001). Moreover, the interaction of nucleofected 

34D6 nrNPCs and incubation time was significant (p < 0.0001). From ND0 to ND2, only 

four groups of nucleofected cells displayed significantly decreased EMX2 expression (p 

= 0.0126). Those were pCAGG-DLX2, pCAGG-DLX2/GSX2, pCAGG-MASH1 and also 

the control (Figure 5.16). From ND1 to ND3, there was a steady expression of EMX2 

in all nucleofected cells in the control; however, there was a significant increase (p = 

0.001) (Figure 5.16). From ND3 to ND5 and ND7, there was dramatic decrease in 

EMX2 expression in all nucleofected cells with a p-value of less than 0.0001 (Figure 

5.16). Between ND5 and ND7, EMX2 expression in the pCAGG-DLX2/MASH1 

nucleofected cells decreased significantly (p = 0.001) compared to the control group 
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(pCAGG nucleofected cells) (Figure 5.16). Furthermore, EMX2 expression in pCAGG-

DLX2 nucleofected cells declined significantly (p-value = 0.0126) at ND7 compared to 

the control group (Figure 5.16).  

There were significant differences between PAX6 expression among the 

nucleofected 34D6 nrNPCs (p-value 0.0102) and also at the different time points (p-

value 0.0001). In addition, the interaction of nucleofected 34D6 nrNPCs and incubation 

time was significant (p = 0.0168). Interestingly, the expression of PAX6 in the 34D6 

nrNPCs nucleofected with pCAGG and pCAGG-DLX2/MASH1 were the same from 

ND0 to ND5 (Figure 5.17). Expression of PAX6, after ND5, in the pCAGG-

DLX2/MASH1 nucleofected cells was reduced statistically significant compared with 

ND0; however, in control (pCAGG nucleofected) cells, expression increased from ND5 

to ND7 (Figure 5.17). Moreover, there was a further decrease in PAX6 expression in 

pCAGG-DLX2/MASH1 nucleofected cells from ND7 to ND21 (p = 0.0102); no 

statistically significant reduction in PAX6 expression was observed in the other 

nucleofected cells over the same period (Figure 5.17). From ND3 to ND21 and ND42, 

the most significant reduction in PAX6 expression was the pCAGG-DLX2/MASH1 

nucleofected 34D6 nrNPCs (p-value < 0.0001) (Figure 5.17). In contrast, expression of 

PAX6 in pCAGG-MASH1 nucleofected cells was noticeably increased at ND21 and 

ND42 compared with control (p = 0.0102 and 0.001, respectively) (Figure 5.17). In 

summary, pCAGG-DLX2/MASH1 nucleofected cells showed significant downregulation 

in the PAX6 expression from ND0 to ND42 (p-value < 0.0001) (Figure 5.17). 

There was a statistical difference in the expression of NKX2.1 between the 

nucleofected 34D6 nrNPCs (p-value < 0.0001) and at different time points (p-value < 

0.001) (Figure 5.18). At ND2, only the pCAGG-MASH1 nucleofected cells showed 

dramatic reduction of NKX2.1 levels (p = 0.001) compared with the control group 

(pCAGG) (Figure 5.18). At ND3, ND5 and ND7, there was a significant decrease in the 
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expression of NKX2.1 in all nucleofected cells compared to the control group (pCAGG) 

(p-value < 0.0001) (Figure 5.18).  

NKX2.1 expression decreased considerably in pCAGG-DLX2/MASH1 (p < 

0.0001) and pCAGG-DLX2/MASH1/GSX2 (p = 0.001) nucleofected cells from ND3 to 

ND5 (Figure 5.18). From ND3 to ND7, there was a dramatic reduction of NKX2.1 

expression in pCAGG-DLX2/MASH1, pCAGG-DLX2/GSX2 and pCAGG-

DLX2/MASH1/GSX2 nucleofected cells (p = 0.001, 0.01 and 0.001, respectively) 

(Figure 5.18). From these results, we noticed that in all the cells nucleofected with 

vectors containing different combinations of DLX2, MASH1 or GSX2, there was a 

significant decrease in NKX2.1 expression from ND3 to ND7 

The above experimental data suggest that, in combination, the TFs DLX2, 

MASH1 and GSX2 are capable of inducing an LGE-like progenitor fate from 34D6-

derived forebrain nrNPCs. 

 



                                                                                                                                                                                                                                              C
h

a
p

te
r 5

: R
e

s
u

lts
 

 
1

8
8

 

 

 

 F
ig

u
re

 
5

.1
6

: 
E

M
X

2
 

e
x

p
re

s
s

io
n

 
in

 
3

4
D

6
 

n
rN

P
C

s
 

e
c

to
p

ic
a

lly
 

e
x

p
re

s
s

in
g

 
v

a
rio

u
s

 
T

F
s

.  

A
ll 

n
u

c
le

o
fe

c
te

d
 
n

rN
P

C
s
 
w

e
re

 
a

n
a

ly
s
e

d
 
b

y
 

q
R

T
-P

C
R

 fo
r e

x
p

re
s
s
io

n
 o

f th
e

 d
o

rs
a

l-v
e

n
tra

l 
m

a
rk

e
r E

M
X

2
 a

t N
D

0
, N

D
2

, N
D

3
, N

D
5

 a
n

d
 

N
D

7
. 

T
h

e
 

ta
b

le
 

b
e

lo
w

 
th

e
 

b
a

r 
g

ra
p

h
 

illu
s
tra

te
s
 

th
e

 
s
ta

tis
tic

a
l 

a
n

a
ly

s
is

 
o

f 
E

M
X

2
 

e
x
p

re
s
s
io

n
 in

 th
e

 n
u

c
le

o
fe

c
te

d
 3

4
D

6
 n

rN
P

C
s
 

(a
, b

, c
, d

, e
 a

n
d

 f) a
t d

iffe
re

n
t tim

e
 p

o
in

ts
. 

S
ta

tis
tic

a
lly

 s
ig

n
ific

a
n

t c
h

a
n

g
e

s
 c

o
m

p
a

re
d

 to
 

th
e

 
c
o

n
tro

l 
(p

C
A

G
G

 
n

u
c
le

o
fe

c
te

d
 
c
e

lls
) 

a
re

 
in

d
ic

a
te

d
 a

s
 fo

llo
w

s
:  

p
-v

a
lu

e
 

s
u

m
m

a
ry

: 
(T

w
o

-w
a

y
 

A
N

O
V

A
 

w
ith

 
B

o
n

fe
rro

n
i c

o
rre

c
tio

n
) 

* =
 0

.0
1

2
6

, ** =
 0

.0
0

1
, *** 

=
 
0

.0
0

0
1

, a
n

d
 

**** <
 0

.0
0

0
1

 

 

D
0

D
2

D
3

D
5

D
7

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

A
fte

r n
u

c
le

o
fe

c
tio

n
 (D

a
y

s
)

EMX2 relative expression to GAPDH ( 2 -delta ct )

p
C
A
G
G

p
C
A
G
G
-D
L
X
2

p
C
A
G
G
-D
L
X
2
/M
A
S
H
1

p
C
A
G
G
-D
L
X
2
/G
S
X
2

p
C
A
G
G
-D
L
X
2
/M
A
S
H
1
/G
S
X
2

p
C
A
G
G
-M
A
S
H
1

*
*
*
 

*
 

*
*
*
 

*
*
*
 

*
*
 

*
*
 

*
 

a
  

b
  

c
  

d
  

e
  

f 

N
D

2
 

N
D

3
 

N
D

5
 

N
D

7
 

a
b

c
d

e
f

a
b

c
d

e
f

a
b

c
d

e
f

a
b

c
d

e
f

N
D

0
 

*
*

*
*

*
*

**

****

****

****

****

****

****

****

****

****

****

****

****

N
D

2
 

**

****

****

****

****

****

****

****

****

****

****

****

****

N
D

3
 

****

****

****

****

****

****

****

****

****

****

****

***

N
u

c
le

o
fe

c
tio

n
 d

a
y

 (N
D

) 

           N
D

0
                             N

D
2
                             N

D
3
                             N

D
5
                            N

D
7
 



                                                                                                                                                                                                                                              C
h

a
p

te
r 5

: R
e

s
u

lts
 

 
1

8
9

 

   F
ig

u
re

 
5

.1
7

: 
P

A
X

6
 

e
x

p
re

s
s

io
n

 
in

 
3

4
D

6
 n

rN
P

C
s

 e
c

to
p

ic
a

lly
 e

x
p

re
s

s
in

g
 

v
a

rio
u

s
 T

F
s

. 

A
ll n

u
c
le

o
fe

c
te

d
 n

rN
P

C
s
 w

e
re

 a
n

a
ly

s
e

d
 

b
y
 

q
R

T
-P

C
R

 
fo

r 
e

x
p

re
s
s
io

n
 

o
f 

th
e

 
d

o
rs

a
l-v

e
n

tra
l 

m
a

rk
e

r 
P

A
X

6
 

a
t 

N
D

0
, 

N
D

2
, 

N
D

3
, 

N
D

5
, 

N
D

7
, 

N
D

2
1

 
a

n
d

 
N

D
4

2
. T

h
e

 ta
b

le
 b

e
lo

w
 th

e
 g

ra
p

h
 s

h
o

w
s
 

th
e

 
s
ta

tis
tic

a
l 

a
n

a
ly

s
is

 
o

f 
P

A
X

6
 

e
x
p

re
s
s
io

n
 

in
 

th
e

 
n

u
c
le

o
fe

c
te

d
 

3
4

D
6

 
n

rN
P

C
s
 (a

, b
, c

, d
, e

 a
n

d
 f) b

e
tw

e
e

n
 th

e
 

tim
e

 
p

o
in

ts
. 

S
ta

tis
tic

a
lly

 
s
ig

n
ific

a
n

t 
c
h

a
n

g
e

s
 

c
o

m
p

a
re

d
 

to
 

th
e

 
c
o

n
tro

l 
(p

C
A

G
G

 
n

u
c
le

o
fe

c
te

d
 

c
e

lls
) 

a
re

 
in

d
ic

a
te

d
 a

s
 fo

llo
w

s
:  

p
-v

a
lu

e
 

s
u

m
m

a
ry

: 
(T

w
o

-w
a

y
 

A
N

O
V

A
 

w
ith

 B
o

n
fe

rro
n

i c
o

rre
c
tio

n
) 

* =
 
0

.0
1

0
2

, ** =
 
0

.0
0

1
, *** =

 
0

.0
0

0
1

, 
a

n
d

 **** <
 0

.0
0

0
1
 

D
0

D
2

D
3

D
5

D
7

D
21

D
42

0
.0

0

0
.0

5

0
.1

0

0
.1

5

A
fte

r n
u

c
le

o
fe

c
tio

n
 (D

a
y

s
)

PAX6 relative expression to GAPDH ( 2 -delta ct )

p
C
A
G
G

p
C
A
G
G
-D
L
X
2

p
C
A
G
G
-D
L
X
2
/M
A
S
H
1

p
C
A
G
G
-D
L
X
2
/G
S
X
2

p
C
A
G
G
-D
L
X
2
/M
A
S
H
1
/G
S
X
2

p
C
A
G
G
-M
A
S
H
1

*
*

 
*

 

*
 

a
  

b
  

c
  

d
  

e
  

f 

N
D

5
 

N
D

7
 

N
D

2
1

 
N

D
4

2
 

a
b

c
d

e
f 

a
b

c
d

e
f 

a
b

c
d

e
f 

a
b

c
d

e
f 

N
D

0
 

***

***

***

**

***

**

***

***

**

****

**

****

****

****

****

****

****

*

****

****

****

N
D

2
 

*

***

*
*

***

**
*

*

****

****

***

**

***

****

***

N
D

3
 

*
*

*

****

*
**

**

****

*
**

N
D

7
 

*

N
u

c
le

o
fe

c
tio

n
 d

a
y

 (N
D

) 

          N
D

0
                   N

D
2
                    N

D
3
                   N

D
5
                    N

D
7
                   N

D
2
1
                 N

D
4
2
 

 



                                                                                                                                                                                                                                              C
h

a
p

te
r 5

: R
e

s
u

lts
 

 
1

9
0

 

  F
ig

u
re

 
5

.1
8

: 
N

K
X

2
.1

 
e

x
p

re
s

s
io

n
 

in
 

3
4

D
6

 
n

rN
P

C
s

 
e

c
to

p
ic

a
lly

 
e

x
p

re
s

s
in

g
 

v
a

rio
u

s
 T

F
s

.  

A
ll 

n
u

c
le

o
fe

c
te

d
 

n
rN

P
C

s
 

w
e

re
 

a
n

a
ly

s
e

d
 

b
y
 
q

R
T

-P
C

R
 
fo

r 
e

x
p

re
s
s
io

n
 
o

f 
N

K
X

2
.1

, 
w

h
ic

h
 

is
 

a
 

v
e

n
tra

l 
s
p

e
c
ific

 
m

a
rk

e
r 

fo
r 

M
G

E
. T

h
is

 w
a

s
 d

o
n

e
 a

t tim
e

 p
o

in
ts

 N
D

0
, 

N
D

2
, 

N
D

3
, 

N
D

5
 

a
n

d
 

N
D

7
. 

T
h

e
 

ta
b

le
 

b
e

lo
w

 
th

e
 

g
ra

p
h

 
s
h

o
w

s
 

th
e

 
s
ta

tis
tic

a
l 

a
n

a
ly

s
is

 
o

f 
N

K
X

2
.1

 
e

x
p

re
s
s
io

n
 

in
 

th
e

 
n

u
c
le

o
fe

c
te

d
 3

4
D

6
 n

rN
P

C
s
 (a

, b
, c

, d
, e

 
a

n
d

 
f) 

b
e

tw
e

e
n

 
th

e
 

tim
e

 
p

o
in

ts
. 

S
ta

tis
tic

a
lly

 s
ig

n
ific

a
n

t c
h

a
n

g
e

s
 c

o
m

p
a

re
d

 
to

 th
e

 c
o

n
tro

l (p
C

A
G

G
 n

u
c
le

o
fe

c
te

d
 c

e
lls

) 
a

re
 in

d
ic

a
te

d
 a

s
 fo

llo
w

s
:  

p
-v

a
lu

e
 s

u
m

m
a

ry
: (T

w
o

-w
a

y
 A

N
O

V
A

 w
ith

 
B

o
n

fe
rro

n
i c

o
rre

c
tio

n
) 

* =
 0

.0
1

, ** =
 0

.0
0

1
, a

n
d

 **** <
 0

.0
0

0
1

 

D0

D2

D3

D5

D7

0 1 2 3 4 5

A
fte

r n
u

c
le

o
fe

c
tio

n
 (D

a
y

s
)

NKX2.1 relative expression to GAPDH ( 2 -delta ct )

pC
A
G
G

pC
A
G
G
-D
LX
2

pC
A
G
G
-D
LX
2/M

A
S
H
1

pC
A
G
G
-D
LX
2/G

S
X
2

pC
A
G
G
-D
LX
2/M

A
S
H
1/G

S
X
2

pC
A
G
G
-M
A
S
H
1

*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

*
*
*
*
 

a
  

b
  

c
  

d
  

e
  

f 

pC
A
G
G

pC
A
G
G
-D
LX
2

pC
A
G
G
-D
LX
2/M

A
S
H
1

pC
A
G
G
-D
LX
2/G

S
X
2

pC
A
G
G
-D
LX
2/M

A
S
H
1/G

S
X
2

pC
A
G
G
-M
A
S
H
1

!!!!!

N
D

5
 

N
D

7
 

a
b

c
d

e
f

a
b

c
d

e
f

N
D

3
 

****

**

**
*

**

N
u

c
le

o
fe

c
tio

n
 d

a
y

 (N
D

) 

          N
D

0
                             N

D
2
                             N

D
3
                             N

D
5
                             N

D
7
    



                                                                                                                           Chapter 5: Results 

 191 

5.4.4.1 Overexpression of TFs DLX2, GSX2 and MASH1 in nrNPCs have an 
effect on endogenous target genes 

 

In this section, the target genes for the TFs DLX2, MASH1 and GSX2 were 

analysed at the transcriptional level by qRT-PCR at different time points (ND0, ND2, 

ND3, ND5 and ND7). The DLX2 target genes are ARX (Figure 5.19) (Colasante et al. 

2008) and GAD2 (Figure 5.20) (Stühmer et al. 2002b). The GSX2 target genes are 

EBF1 (Figure 5.21), DLX2 (See previous Figure 5.14 F and G) and MASH1 (See 

Figure 5.14 C for pCAGG-DLX2/MASH1/GSX2 nucleofected cells) (Wang et al. 2013). 

The MASH1 target genes are DLX2 (Poitras et al. 2007) (See Figure 5.14 E and G for 

pCAGG-DLX2/MASH1 and pCAGG-DLX2/MASH1/GSX2 nucleofected cells). 

The pallial-subpallial boundary (PSB) is determined by the related repression of 

PAX6 and GSX2, and both of these TFs play a role in the patterning of DV of 

telencephalon (Yun et al. 2001; Pauly et al. 2013). When GSX2 was ectopically 

expressed in pCAGG-DLX2/GSX2/MASH1 and pCAGG-DLX2/GSX2 nucleofected 

34D6 nrNPCs, the expression of PAX6 was affected (Table 5.1). In pCAGG-

DLX2/MASH1/GSX2 nucleofected cells, ectopic expression of endogenous GSX2 was 

increased and reached its peak at ND7, and the expression of PAX6 was reduced at 

ND7 compared to the control group (pCAGG) (Table 5.1). Moreover, in pCAGG-

DLX2/GSX2 nucleofected cells, the ectopic expression of endogenous GSX2 was 

increased from ND3 to ND5, while the expression of PAX6 was reduced (Table 5.1). 

These findings suggest that ectopic expression of GSX2 in the nucleofected 34D6 

nrNPCs repressed the expression of PAX6. 
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Table 5.1: Summary of the outcome of PAX6 and GSX2 expression, which determines the 
boundary of pallial-subpallial (PSB) of telencephalon. 

Expression 

Construct expression 

PAX6 GSX2 

pCAG-DLX2/MASH1/GSX2 

The expression was 
decreased at ND7 in the 
pCAGG-DLX2/MASH1/GSX2 
nucleofected 34D6 nrNPCs. 

The expression was 
increased and reached its 
peak at ND7 in the pCAGG-
DLX2/MASH1/GSX2 
nucleofected 34D6 nrNPCs. 

pCAG-DLX2/GSX2 

The expression was 
decreased from ND3-ND5 in 
the pCAGG-DLX2/GSX2 
nucleofected 34D6 nrNPCs. 

The expression was 
increased from ND3 to ND5 
in the pCAGG-DLX2/GSX2 
nucleofected 34D6 nrNPCs. 

 
 

There was a significant difference in the expression of ARX in all nucleofected 

nrNPCs, compared to control (pCAGG nucleofected) cells, across the time points (p < 

0.0001) (Figure 5.19). Furthermore, there were significant differences in the 

expression of ARX between the different groups of nucleofected cells (p < 0.0001). In 

the pCAGG-DLX2/MASH1 nucleofected cells, there was an 8 fold increase in the 

expression of ARX at ND7 as compared to ND0 (p < 0.0001) (Figure 5.19). 

Additionally, compared to the control at ND7, the increase in expression of ARX, in the 

pCAGG-DLX2/MASH1 nucleofected nrNPCs, was statistically significant (p < 0.0001) 

(Figure 5.19). The pCAGG-DLX2 nucleofected cells showed a significant increase in 

ARX expression from ND0 to ND7 (p-value < 0.0001) (Figure 5.19). Compared to 

pCAGG-DLX2 nucleofected cells, the expression of ARX at ND7 was significantly 

increased in pCAGG-DLX2/MASH1 nucleofected cells (p < 0.0001) (Figure 5.19). 

Consequently, it was strongly indicated that overexpression of DLX2 and MASH1 is 

associated with intracellular accumulation of ARX. 

GAD2 is one of DLX2’s target genes (Stühmer et al. 2002b) and is commonly 

used as a striatal neuron marker in SVZ and MZ (Anderson 1997b; Casarosa et al. 

1999; Horton et al. 1999; Yun et al. 2002; Long et al. 2009a). Results also reveal a 

significant difference in the expression of GAD2 in all nucleofected nrNPCs, compared 

to control (pCAGG nucleofected) cells, across the time points (p < 0.0001) (Figure 
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5.20). Moreover, there was a significant difference in the expression of GAD2 between 

the different groups of nucleofected cells (p < 0.0001). In the pCAGG-DLX2 

nucleofected cells, the expression of GAD2 at ND2 was significantly increased (p = 

0.001) compared to the control. Then, from ND2 to ND3, there was a sharp decline, 

and then start to increase from ND5 to ND7 (Figure 5.20). This can be explained by 

the outcome of exogenous and endogenous expression of DLX2. The exogenous 

expression of DLX2 was reached its peak at ND2 and then declined sharply from ND2 

to ND3. In this duration time (ND2 to ND3), the endogenous expression of DLX2 was 

initiated to increase and stayed constant from ND5 to ND7 (Figure 5.14 D). In the 

pCAGG-DLX2/MASH1 nucleofected cells, the expression of GAD2 from ND3 to ND5 

was increased significantly (p < 0.0001) compared to the control (Figure 5.20). Then, 

there was a slight decreased but was not significant from ND5 to ND7. However, 

compared to the control at ND7, the increase in expression of GAD2, in the pCAGG-

DLX2/MASH1 nucleofected cells, was statistically significant (p = 0.01) (Figure 5.20). 

In addition, in the pCAGG-DLX2/GSX2 nucleofected cells, the expression of GAD2 

was increased significantly at ND3, ND5 and ND7 compared to the control (p = 0.0001, 

p = 0.01 and p = 0.01, respectively) (Figure 5.20). Furthermore, in the pCAGG-

DLX2/GSX2/MASH1 nucleofected cells, the increase in expression of GAD2 was in 

accordance with the increase of endogenous expression of DLX2 (Figures 5.14 G and 

5.20). The expressions of DLX2 and GAD2 were increased from ND2 to ND3, then 

declined from ND3 to ND5 and started to increase from ND5 to ND7 (Figures 5.14 G 

and 5.20). 

EBF1 is a target gene for Gsx2 (Wang et al. 2013) that is also used as a marker 

for LGE-specific and striatal projection neurons (Garel et al. 1999; Lobo et al. 2006; 

Garcia-Dominguez et al. 2003). EBF1 expression in the cells nucleofected with 

different TF vectors (Figure 5.21) was subjected to ANOVA analysis. There was a 

significant difference between the various groups of nucleofected cells (p < 0.0001). 

Furthermore, both the ectopically expressed TFs and the time post-nucleofection 
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interacted together to significantly affect EBF1 expression (p = 0.0218) (Figure 5.21). 

Ectopic expression of DLX2 and GSX2 resulted in a significant increase in EBF1 

expression from ND0 to ND5 (p = 0.001.) At ND5 EBF1 expression in these cells was 

increased compared to pCAGG nucleofected nrNPCs (p < 0.0001) (Figure 5.21). 

However, when MASH1 was expressed with the other TFs in the same cells, it caused 

a sharp reduction of EBF1 expression at ND5 (p < 0.0001) (Figure 5.21). From ND5 to 

ND7, there was a reduction in the expression of EBF1 in pCAGG-DLX2/GSX2 

nucleofected nrNPCs (Figure 5.21), and this same time point at which endogenous 

GSX2 expression was decreased (Figure 5.14 H). However, expression of EBF1 in 

pCAGG-DLX2/GSX2 nucleofected cells was significantly increased compared to the 

control group (pCAGG nucleofected cells) at ND7 (p = 0.0218) (Figure 5.21). 

In conclusion, the ectopic expressions of the TFs MASH1, DLX2 and GSX2 

have an effect on their target genes, which in turn regulate striatal differentiation and 

define the striatal phenotype. Hence, the ectopic expression of TFs can trigger 

differentiation into LGE-like cells via the fundamental functions of their target genes.  
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5.5 Discussion 

 

In this chapter, H9 hESCs and 34D6 iPSCs were differentiated using the 

differentiation protocol outlined in section 3.2.4 for neural induction and neural rosette 

formation (nrNPCs). Subsequently NSC specification towards a LGE progenitor 

phenotype was promoted by ectopic expression of the TFs DLX2, MASH1 and GSX2. 

The experimental protocol was designed to elicit transient expression of nucleofected 

transcription factor vectors. This was for two reasons. First, in order to investigate if cell 

proliferation was decreased as a result of nucleofection with control and TF expression 

vectors, thus, two populations of cells (GFP-ve and GFP+ve) were analysed to determine 

the percentage of Ki67 positive cells. Second, to compare the exogenous mRNA 

expression of TFs DLX2, MASH1 and GSX2 in the TF vector nucleofected 34D6 

nrNPCs versus control (pCAGG) nucleofected cells. In this way, the time point of peak 

expression of exogenous mRNA (transient expression) could be observed. If the G418 

selection was initiated, the mRNA expression of the transgenes would be maintained; 

therefore, it would not be possible to determine the time point at which transgene 

expression reaches its peak. Determining the time point of peak expression, after 

nucleofection, was necessary in order to determine the ideal time to initiate G418 

selection.  

ICC analysis of the nucleofected nrNPCs showed that the specific TF 

expression was only apparent in cells transfected with the specific cloned TF 

containing vector. For example, DLX2 was only expressed in the nucleofected nrNPCs 

with the DLX2 containing vectors (pCAGG-DLX2, pCAGG-DLX2/MASH1, pCAGG-

DLX2/GSX2 and pCAGG-DLX2/MASH1/GSX2). Previous studies have established the 

use of polycistronic-vector-containing 2A self-cleaving peptides to express more than 

one gene from a single vector in vitro (Sommer et al. 2009) and in vivo (Szymczak et 

al. 2004). In this study, the expression of 2A peptides was evident in cells transfected 

with all five expression vectors (pCAGG-DLX2, pCAGG-MASH1, pCAGG-
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DLX2/MASH1, pCAGG-DLX2/GSX2 and pCAGG-DLX2/MASH1/GSX2) compared to 

the empty vector. These observations point out to successful self-cleavage of 2A 

peptides during translation and processing of the polycistronic vector, to release the 

cloned TFs DLX2, GSX2 and MASH1. Therefore, the cloned TFs were successfully 

expressed in the 34D6 and H9 derived nrNPCs. 

 

Cell proliferation on the nucleofected 34D6 nrNPCs at day 4 post-nucleofection 

(ND4)  

In neural tube, neurogenesis is characterised by the generation of different cell 

types at specific periods, locations and production numbers. The complexity of 

neurogenesis involves the regulation and organization of following processes, such as, 

cell proliferation, neuron differentiation, neuron specification and migration (Toresson 

et al. 2000; Yun et al. 2002; Suh et al. 2009; Jones and Connor 2012). However, TFs 

that play a role in these processes are not fully characterised.  

A growing number of studies have shown that TFs play a role in neurogenesis 

and also play a role in regulating cell proliferation (Casarosa et al. 1999; Toresson et 

al. 2000; Yun et al. 2002; Suh et al. 2009; Jones and Connor 2012). Interestingly, 

DLX2, MASH1 and GSX2, particularly DLX/Mash1 combination, seemed to have an 

effect on cell proliferation in this study. The amount of cell proliferation was significantly 

reduced in pCAGG-DLX2, pCAGG-DLX2/GSX2 and pCAGG-DLX2/MASH1/GSX2 

nucleofected 34D6 nrNPCs, and almost absent in pCAGG-DLX2/MASH1 nucleofected 

progenitors, as indicated by decreased Ki67. Indeed, this indicates that these cells are 

no longer proliferative progenitors, i.e. they are exiting the cell cycle and have the 

potential to differentiate. TFs, particularly DLX2 and MASH1, which have parallel and 

complementary roles in neurogenesis (Casarosa et al. 1999; Yun et al. 2002; Long et 

al. 2009a) regulate the interface between proliferation and cell cycle exit/differentiation 

through different mechanisms. One of these mechanisms is proneural Mash1-

stimulatory and DLX2-inhibitory effect on the Notch signalling pathway, which controls 
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proliferation (Casarosa et al. 1999; Horton et al. 1999; Yun et al. 2002; Poitras et al. 

2007; Castro et al. 2011; Jones and Connor 2012). The loss of proliferative progenitors 

is evident in the SVZ of MGE in the Mash1-/- mutant mice model (Casarosa et al. 1999). 

Epidermal growth factor receptor (EGFR)-mediated reduction of the Notch signalling 

pathway also contributes to reduced proliferation (Aguirre et al. 2010). Gil is another TF 

that controls the cell cycle through EGFR+ progenitors or MASH11+ve or DLX2+ve 

transient-amplifying precursors (TAPs) in the SVZ (Doetschman et al. 1985; Suh et al. 

2009). Furthermore, the interaction of basic helix-loop-helix factor (bHLH) with cyclin-

dependent kinase inhibitors (CDKIs), such as p27Kip1, induces cell cycle exit and 

simultaneously promotes differentiation of neurons by increasing the number of 

DLX2+ve TAPs (Doetschman et al. 1985). In this respect, MASH1 is also a bHLH gene, 

which could suggest an interaction between MASH1 and CDKI to halt neuronal 

proliferation and initiate differentiation, lineage fate commitment and neuron 

specification through DLX2 and GSX2 (Casarosa et al. 1999; Jones and Connor 2012).  

Dorsal-ventral marker expression in the nucleofected nrNPCs at PdD18 

As described earlier in this chapter, only pCAGG-DLX2/MASH1 nucleofected 

34D6 nrNPCs showed a significant and constant reduction of dorsal markers, i.e. PAX6 

and EMX2, compared to the control group (pCAGG), from ND3 to ND21. However, all 

ectopic expression of cloned TFs in pCAGG vector (DLX2, MASH1, DLX2/MASH1, 

DLX2/MASH1/GSX2, and DLX2/GSX2) showed significant reduction in the expression 

of the ventral MGE marker NKX2.1, as compared to control group, in 34D6 nrNPCs. 

This reduction of dorsal and ventral MGE markers points toward differentiation 

of progenitor cells into the LGE phenotype. The DLX2 and MASH1 play a critical role in 

maintaining subpallium telencephalon fate commitment, specification and eventually 

LGE development, i.e. GABAergic (Anderson et al. 1997; Casarosa et al. 1999; Horton 

et al. 1999; Fode et al. 2000; Yun et al. 2002; stuhmer et al. 2002b). These roles are 

demonstrated further in Dlx-/- mutant mice, which show a profound defect in LGE 

development and the differentiation of striatal matrix neurons (Anderson et al. 1997a). 
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In the same mutant mouse model, an increase in Pax6 has also been observed (Long 

et al. 2009a; Long et al. 2009b), suggesting that neuron differentiation is diverted into 

the dorsal part of the brain. Therefore, it has been concluded that the functional Dlx1&2 

are essential for supressing some LGE progenitor TFs, including Pax6, and ventral 

cortical TFs, such as Nkx2.1 (cortical interneurons), and cortical TFs, thus maintaining 

the identity of LGE (Long et al. 2009a; Long et al. 2009b).  

It was observed that, compared with the single ectopic expression of DLX2 or 

MASH1, co-expression of different combinations of DLX2, MASH1 or GSX2 in 34D6 

nrNPCs resulted in a dramatic reduction in the expression of NKX2.1. These findings 

could indicate that the combinations of TFs DLX2, MASH1 or GSX2 play a critical role 

in LGE specific neurons. Many studies have reported that MASH1, DLX2 and GSX2 

were required for LGE differentiation (Casarosa et al. 1999; Horton et al. 1999; Corbin 

et al. 2000; Toresson et al. 2000; Toresson and Campbell 2001; Yun et al. 2002; Yun 

et al. 2003). In the Dlx1&2-/- mutant LGE mouse, ectopic expression of cortical and 

MGE TFs was observed, indicating that Dlx1&2 regulate the identity of LGE by 

repression of some MGE TFs, such as Nkx2.1 and cortical TFs (Long et al. 2009a; 

Long et al. 2009b). Moreover, it was shown that the Dlx1/2-/-:Mash1-/- mutants showed 

similar results in the expression of Nkx2.1 and more severe deficiency in the 

phenotype of LGE progenitors than in the single mutants of Dlx1/2/- or Mash1-/- as 

shown previously by other group (Long et al. 2009a; Long et al. 2009b; Wang et al. 

2013). The same findings were observed in the Gsx2 and Mash1 double mutant (Wang 

et al. 2009). 

The data presented in this chapter are in line with the previous studies 

suggesting that the reduction of dorsal and ventral MGE markers confirms correct route 

of differentiation into an LGE-like progenitor fate through the combination of ectopic 

expression of TFs in 34D6-derived forebrain nrNPCs. 
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The expression of target genes is regulated by ectopic expression of DLX2  

DLX2 targets the ARX gene expression, which means that DLX2 has a role in 

regulating ARX expression (Colasante et al. 2008). In this study, it was found that the 

mRNA expression of ARX was increased in the pCAGG-DLX2 and pCAGG-

DLX2/MASH1 nucleofected cells. However, the expression of ARX in pCAGG-

DLX2/MASH1 nucleofected cells was higher than those in pCAGG-DLX2 nucleofected 

cells at ND7. The same observation has been made with endogenous DLX2 

expression in pCAGG-DLX2/MASH1 and pCAGG-DLX2 nucleofected cells at ND7. 

Therefore, the overexpression of DLX2 has an effect in the expression of ARX. These 

outcomes were in agreement with earlier findings regarding the influence of Dlx2 

activity on endogenous expression of ARX. It was previously observed that 

overexpression of Dlx2 in the forebrain of E13.5 mouse models regulated the 

endogenous expression of Arx by the activation of the cis-regulatory element UAS3 

enhancer, which is located downstream of Arx (Colasante et al. 2008). This evident in 

Dlx1/2-/- mutant knockout mice, where Arx expression was decreased (Colasante et al. 

2008). 

The TF Arx is known as aristaless related homeobox (Colasante et al. 2008). It 

is located in the developing subpallium telencephalon in the LGE and MGE in the 

proliferating cells in subventricular zone (SVZ) and mantle zone. In the cerebral cortex, 

it is expressed in the proliferating cells in the ventricular zone (VZ), as well as in other 

parts of brain (Colasante et al. 2008). It has a role in forebrain development and in late 

born striatal projection neuron migration to the pallium (Colasante et al. 2008; Colombo 

et al. 2007). Mutation of the TF ARX leads to neuropathological diseases, such as, 

motor deficiency, mental retardation and epilepsy (Colasante et al. 2008; Nawara et al. 

2006). According to Colasante et al. (2008), in a study of loss and gain of function 

models, Arx is essential for stimulation of Dlx-dependent interneuron migration but it is 

not required for GABAergic cell fate specification, which is regulated by the TF Dlx. 

Therefore, TF Arx is essential for migration of GABAergic neurons.  
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GAD2 is the enzyme synthesize the GABA neurotransmitter (Stühmer et al. 

2002b). In this study, it was found that GAD2 expression, which is a Dlx target gene, 

was in accordance with the expression of exogenous or endogenous Dlx2. The same 

outcome was found in the study of embryonic mouse forebrain, where the pattern of 

Dlx2 expression was closely identical to the pattern of GAD2 expression (Stühmer et 

al. 2002b). In addition, in the gain of function study, it was found that when Dlx2 was 

ectopic expressed into coronal slices of embryonic mouse forebrain, more than 85% of 

the Dlx2 transfected cells expressed GAD2 (Stühmer et al. 2002b). However, the 

knock out studies of Dlx2, showed a decrease in GAD2 expression (Stühmer et al. 

2002b; Petryniak et al. 2007; Long et al. 2009b). In addition, at early stages of 

embryogenesis, the ventral telencephalon expresses GAD1&2 and Dlx1/2/5&6, but not 

in the dorsal telencephalon (Stühmer et al. 2002b; Fode et al. 2000). When the 

tangential migration from subpallium to pallium take place, the expression of Dlx2 and 

Gad2 has similar expression in pallium (Stühmer et al. 2002b). Taken together, these 

data indicate that DLX2 has a fundamental role in regulating the expression of GAD2, 

hence stimulating the GABAergic neuronal phenotype. Its expression, along with ARX 

genes, indicates the successful differentiation of stem cells into striatal MSNs in this 

study.  

The expression of these target genes, as indicated through the above research, 

clearly suggests the active role of TFs in proliferation, differentiation and cell fate 

commitment. 

Endogenous DLX2 expression was affected by ectopic expression of other TFs 

cloned in the same expression vector.  

The pCAGG-DLX2 and pCAGG-DLX2/MASH1, two days post nucleofection in 

nrNPCs, showed decreased exogenous DLX2 transgenic expression at ND3 in both 

the constructs, while the endogenous DLX2 expression increased from ND0 to ND3 

and then remained constant from ND5 to ND7 in pCAGG-DLX2 construct only. 

Interestingly, when DLX2 and MASH1 were co-expressed, the endogenous DLX2 
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expression was increased sharply from ND3 to ND7. However in the same vector 

construct, exogenous MASH1 expressed until ND5, whereas endogenous expression 

of MASH1 increased slightly from ND5 to ND7, when co-expressed with DLX2. These 

findings strongly support the regulatory role of MASH1 in DLX2 expression. 

Corroborating these findings, the potential importance of Mash1 on Dlx2 expression 

has previously been reported in Dlx-/- mutant mice, where striatal histogenesis (but not 

that of the dLGE) was partially preserved due to expression of Mash1 (Long et al. 

2009a; Long et al. 2009b). It can be speculated that the expression of MASH1 might 

maintain low expression of DLX2, thus preserving vLGE. In fact, it has previously been 

shown that MASH1 regulates the expression of DLX2 by binding to the I12b enhancer 

in the E-box sequences located upstream of DLX2 (Poitras et al. 2007). 

The findings presented here also suggest that DLX2 represses MASH1, since 

the expression of endogenous MASH1 was lower in pCAGG-DLX2/MASH1 than 

pCAGG-MASH1 nucleofected cells. This is further supported by findings that DLX2-

mediated down-regulation of Mash1 suppresses Notch downstream target genes (Dll1 

and Hes5), leading to differentiation of nrNPCs (Anderson et al. 1997a, Yun et al. 

2002). It has been also shown that Dlx1/2 causes progenitors to exit the cell cycle in 

order to begin differentiating into GABAergic neurons, particularly in the late stage of 

neurogenesis, as evidenced through increased expression of DRD2, GAD1/2 in the 

SVZ and mantle zone (MZ) (Anderson et al. 1997a, Yun et al. 2002, Cobos et al. 

2007). This effect has been further supported in Dlx1/2-/- mutant mice, where 

upregulation of MASH1 and Mash1-mediated Notch signalling blocks differentiation 

(Yun et al. 2002). From this and previous studies, it has been concluded that 

coordination of Dlx2 and Mash1 plays a role in the balance between proliferation and 

differentiation, as well as in defining cell fate commitment to aid the development of the 

subpallial telencephalon (Yun et al. 2002; Castro et al. 2011). Moreover, it was shown 

that expression of Mash1 only promotes the subpallial progenitor state via Notch 

signaling, and co-expression of Mash1 with Dlx2 promotes subpallial differentiation 
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(Wang et al. 2013). It is believed that Mash1 is required in early neurogenesis, 

whereas Dlx2 is needed by late progenitors for differentiation and specification through 

repression of Notch signalling (Yun et al. 2002). Future studies of Notch ligand 

expression in cells ectopically expressing DLX2 and MASH1 together or on their own 

would facilitate a better understanding of the relationship between DLX2 and MASH1 in 

relation to the Notch signaling pathway.  

All of the above findings clearly show that DLX2 and MASH1 co-expression 

plays an important role in neurogenesis and differentiation into LGE-like progenitor fate 

from hPSC-derived forebrain nrNPCs, which were required in this study for further 

differentiation into MSN-like cells. 

The expression of EBF1 is regulated by ectopic expression of GSX2 and DLX2 

One of the GSX2 target genes is EBF1. Expression of EBF1 mRNA was 

increased in pCAGG-DLX2/GSX2 nucleofected cells and reached its maximum at ND5. 

The expression of endogenous DLX2 and GSX2 also reached its peak at ND5. When 

MASH1 was co-expressed with DLX2 and GSX2, endogenous GSX2 mRNA 

expression started to increase after ND5, and it was observed that the EBF1 

expression increased after ND5 in pCAGG-DLX2/MASH1/GSX2 nucleofected cells. 

From these findings, it was shown that GSX2 regulates the expression of EBF1, as 

previously reported by Wang and colleagues. They also reported that in the mouse 

homologous mutant Gsx2-/-, expression of EBF1 was reduced compared to the wild 

type (Wang et al. 2013).  

As described earlier in this chapter, it was found that at ND7, EBF1 expression 

was higher in pCAGG-DLX2/GSX2 nucleofected cells than in pCAGG-

DLX2/MASH1/GSX2 nucleofected cells. This could be due to the differences in the 

endogenous expression of DLX2 in both pCAGG-DLX2/GSX2 and pCAGG-

DLX2/MASH1/GSX2 nucleofected cells. The expression of endogenous DLX2 was 

higher in pCAGG-DLX2/GSX2 nucleofected cells than in pCAGG-DLX2/MASH1/GSX2 
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nucleofected cells. Therefore, it could be concluded that the expression of EBF1 was 

regulated by both DLX2 and GSX2. This finding is supported by Dlx2-/-;Gsx2-/- double 

mutant and single Dlx2-/- and Gsx2-/- homologous mutants mice models, which 

demonstrated that EBF1 expression was reduced in all mutants (Dlx2-/-;Gsx2-/-, Dlx2-/- 

and Gsx2-/-) compared to the wild type mouse (Wang et al. 2013). 

Overall, these findings suggest that the complex molecular regulation seen in in 

vitro models successfully stimulates proliferation and differentiation of nrNPCs into 

LGE-like progenitors. Furthermore, in in vitro models, DLX2/MASH1 nucleofected cells 

seem to closely regulate the neurogenesis process to promote LGE-like progenitor 

fate, which can lead to further differentiation into MSNs. 
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6.1 Introduction 

 

Many TFs are known to have a parallel or in-series role in ventral telencephalic 

development and differentiation (Porteus et al. 1994; Anderson 1997b; Horton et al. 

1999; Casarosa et al. 1999; Fode et al. 2000; Yun et al. 2002; Long et al. 2009b). One 

of these TFs is Dlx1/2, which acts in concert with Mash1 to specify GABAergic MSN 

differentiation and fate commitment in the LGE (Porteus et al. 1994; Yun et al. 2002; 

Long et al. 2009b). The distinct role of Dlx1/2 and Mash1 is further supported by the 

findings of reduced GABAergic interneurons in many mutant mice models, including 

Dlx1/2−/−, Mash1−/−, double Gsx2−/−;Mash1−/− mutant and triple Dlx1/2−/−;Mash1−/− 

mutant (Yun et al. 2002; Long, Swan, et al. 2009; Wang et al. 2009). For example, 

there is a partial preservation of vLGE identity, but a severe defect in the dLGE of 

Dlx1/2−/− mice, as evidenced by striatal markers such as Drd1/2 and Gad1/2 (Long et 

al. 2009b). This outcome indicates that Dlx1/2 has a profound role in dLGE 

development and the subsequent fate commitment of GABAergic neurons, whereas 

the development of the LGE’s remaining parts is maintained by the expression of 

Mash1 and other TFs such as Gsx1/2 and Tlx (Long et al. 2009b). The parallel action 

of Dlx2 and Mash1 is further supported by the induced expression of ventral 

biomarkers Dlx1/2/5 and Gad2 when Mash1 is ectopically expressed in the dorsal 

telencephalon of Ngn−/− mutant mice (Fode et al. 2000; Wilson and Rubenstein 2000). 

Furthermore, Dlx1/2 and Mash1 have been shown to regulate the complex 

proliferation, differentiation and maturation phases of neurogenesis (Anderson et al. 

1997a; Horton et al. 1999; Stühmer et al. 2002a; Yun et al. 2002; Yoshihara et al. 

2005; Colombo et al. 2007; Cobos et al. 2007; Poitras et al. 2007; Long et al. 2009b). 

More specifically, Mash1 drives the proliferative phase of neurogenesis, while Dlx1/2 

triggers the differentiation process (Casarosa et al. 1999; Yun et al. 2002; Castro et al. 

2011). Gsx2 is another important TF with a role in promoting the early identity of the 

telencephalic ventral domain (Hsieh-Li et al. 1995; Corbin et al. 2000; Toresson et al. 
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2000; Wang et al. 2013), as documented by a profound decrease in LGE size, 

reduction in Mash1, Dlx1/2, Ebf1 and Gad1/2 expression at E12.5, and subsequent 

reduction of DARPP-32+ve MSNs in GSX2−/− mutant mice (Corbin et al. 2000; Toresson 

et al. 2000; Wang et al. 2013). 

The critical role of TFs in neurogenesis has encouraged researchers to pursue 

the differentiation of mainly somatic cells into relatively high-yield induced neuronal 

cells (Berninger et al. 2007; Heinrich et al. 2010; Yoo et al. 2011; Son et al. 2011; 

Lujan et al. 2012; Yang et al. 2013; Lau et al. 2014). In fact, quite a few studies have 

succeeded in differentiating human or mouse stem cells into induced neurons 

(Vierbuchen et al. 2010; Pang et al. 2012; Zhang et al. 2013). Interestingly, forced 

expression of different TF constructs, including Dlx2 and Neurog2 in cortical astroglial 

cells (non-neuronal cells), has resulted in a relatively high percentage of mature 

glutamatergic neurons (excitatory neurons) with Neurog2 alone (58%) and a low 

percentage of mature GABAergic neurons (inhibitory neurons) with Dlx2 alone (6%) 

(Heinrich et al. 2010). To date, however, a protocol for differentiating hPSCs into MSNs 

via forced expression of key ventral TFs (such as Dlx2, Mash1 and Gsx2) has not been 

attempted. Instead, ectopic expression of morphogens, such as SHH and DKK1, in 

hPSCs has been used to induce the indirect expression of key ventral TFs (such as 

Gsx2), which has then triggered differentiation into a low number of pure MSNs (Carri 

et al. 2013). Hence, it is necessary to identify an effective combination of TFs that will 

trigger the cascade of intracellular pathways leading to cell proliferation and 

differentiation into mature GABAergic MSNs.  

To induce the differentiation of human stem cells into a specific neuron type, two 

stages of development are crucial. The first stage of development is the differentiation 

of human stem cells into naïve rosette-stage neural progenitors (nrNPCs), a process 

dependent on the addition of instructive factors, such as fibroblast growth factor (FGF), 

or inhibitors, such as bone morphogenetic protein-antagonists (BMPa) (Nat and 
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Hovatta 2004; Dhara and Stice 2008). The second stage is the differentiation of 

nrNPCs into a target neuron type (Martinez et al. 2012). This approach was recently 

used by Carri et al. (2013). Briefly, hPSCs were directly differentiated into ventral 

progenitors (FOXG1+ve and GSX2+ve) via dual inhibition of BMP/TGFβ, and then 

terminally differentiated upon treatment with sonic hedgehog/dickkopf WNT signaling 

pathway inhibitor 1 (SHH/DKK1) into functional MSNs. However, among these MSNs, 

few were DARPP-32+ve neurons (20%) (Carri et al. 2013).  

A similar approach is employed in this study. The major goal of this research is to 

successfully differentiate human pluripotent stem cells (hESCs- and iPSCs) into LGE-

specific progenitors, as discussed in Chapter 5. Subsequently, these progenitors (H9 

or 34D6 nrNPCs) will be differentiated further into MSNs through ectopic expression of 

DLX2, MASH1, GSX2, and DLX2/MASH1 with or without external GSX2 treatment, as 

these TFs are well known for playing a critical role in subpallial fate commitment and 

striatal development (Yun et al. 2002; Long et al. 2009a; Pauly et al. 2013) MSN fate 

commitment is examined using biomarkers that are widely utilized for detecting 

neurons, MSNs, and GABAergic neurons, as described in Table 6.1. Moreover, 

maturity is investigated using biomarkers (Table 6.1) and electrophysiological analysis. 

This approach will establish a cellular disease model using the end-point mature 

GABAergic MSNs to investigate molecular and cellular pathogenesis of HD and 

subsequently develop a new therapeutic intervention.  
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Table 6.1: Biomarkers to identify neuron cells and GABAergic striatal MSNs. 

Biomarker / 
Target gene 

Biomarker for 

β-Tubulin III Neurons 

DARPP-32 Striatal MSNs 

CTIP2 Striatal MSNs 

EBF1 Striatal neuron (LGE SVZ and MZ) 

FOXP1 Striatal neuron (LGE SVZ and MZ) 

DRD1 Striatonigral neurons type of MSN 

DRD2 Striatopallidal neurons type of MSN 

GAD2 GABAergic neurons 

CALBIN-1 GABAergic neuron 

 

6.2 Aims 
 

The objective of this chapter was to establishing a successful protocol for directly 

differentiating ventral telencephalon-like progenitor cells (described in Chapter 5) into 

the mature GABAergic MSN-like phenotype using novel differentiation media plus 

different TFs constructs. In addition, the maturity and functionality of GABAergic MSNs 

generated in in vitro was investigated using different means of assessment. 
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6.3 Experimental design 
 

 The protocol used for characterisation of TFs in the previous chapter (Chapter 5) 

was also used here. The experimental design conducted to maintain cells is illustrated in 

Figure 6.1. This method is described in greater detail in the Materials and Methods 

chapter (Chapter 3) (see section 3.11, 3.12 & 3.13).  

 

Figure 6.1: Experimental design.  

The experimental protocol used in this chapter to maintain the human pluripotent stem cells 
(hPSCs) stage (D0) to naïve rosette stage neural progenitors (nrNPCs) at PD 20.  

Abbreviations: D: Day, P/S: Pen/Strep, nrNPC: Naïve rosettes stage neural progenitors, EB: 
Embryonic body, EBD: embryonic body day, MD: Monolayer differentiation, MDD: Monolayer 
differentiation day; PdD8: Platting down Day 8. 

 

The nucleofection of H9 or 34D6 nrNPCs with different TF expression vectors 

was initiated at PdD18. The cells were checked for GFP expression 48 hours after 

nucleofection; then selection of nucleofected cells was initiated with G418 sulfate. Cells 

that survived selection were washed with PBS and cultured in ADF medium for one day 

in order to recover. These cells were then re-plated onto treated cover slips in 24-well 

     hPSCs Embryonic Bodies/ Monolayer 
Differentiation    

Naïve rosettes stage neural progenitors  (nrNPC) 

Nucleofection on PdD16-20 

H9 spheres 

34D6 spheres 

34D6 on matrigel 10cm nuc 
plate: 
 
mTeSR1+ 1%P/S+ 5% 
supplement 

H9 ESCs on Mefi 6cm nuc 
plate: 
 
H9 medium + FGF (10ng/ml) 
 

Embryonic Bodies “EB” on 10cm 
steriline plate: 
 
ADF medium + LDN193189 (0.5µM) + 
SB431542 till EBD4 (10µM)  

D0                                            D3 
EBD0                       EBD4                           EBD8/PdD8                                                                                                
MDD0                      MDD4                          MDD8/PdD8 
 

H9 and 34D6 rosettes cells: 
 
ADF medium  
At EBD8, the spheres were plating 
down into 24 well PLL/Laminin 
plate  “PdD8 rosettes cells”. 
 
ADF +1.5µM IWR-1+ 0.25µMLDN 
At MDD8, the spheres were re-
plating down into 24 well PDL/
Laminin plate  “PdD8 rosettes 
cells”. 
 

34D6 

H9  

Monolayer  differentiation “MD” on 10cm 
nuc plate: 
 
ADF medium + LDN193189 (1µM) + 
SB431542 till MDD4 (10µM)  

10µM SB431542 
 0.5-1µM LDN 

PdD20 
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plates for differentiation experiments (described in Section 3.2.7.1). Cover slips were 

subjected to specific treatment, as described in the Materials and Methods chapter 

(Section 3.2.7), to ensure strong adherence and subsequent growth on the cover slips 

for downstream applications.  

The nucleofected H9 or 34D6 nrNPCs were maintained in differentiation medium 

and allowed to differentiate for varying time periods. Three differentiation experiments 

were performed in this chapter, which are described briefly in Table 6.2. In each 

experiment, there were slight differences in the neural induction protocol, G418 

selection, coating of cover slips and differentiation medium.  
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Table 6.2: The summary of the experimental design. 

Experiment 
number 

Human cell 
lines 

Neural 
induction 
protocol 

G418 
selection 

Coating on 
cover slips in 
24-well 

plates 

Differentiation medium 

1 

H9-derived 
nrNPCs 
(Nucleofected 
with pCAGG-
DLX2/GSX2 
and the control 
pCAGG) 

Embryonic 
bodies (EB) 
(0.5µm 
LDN193189 + 
10µM 
SB431542) 

400µg/ml 
for 1 week 

PLL/Laminin 
ADF medium, 2% B27+A, 
1% P/S, 1% L-G and 1% 
FBS. 

2 

34D6-derived 
nrNPCs 
(Nucleofected 

with one of five 
expression 
vectors or the 
control 
pCAGG) 

800µg/ml 
for 1 day 

Cover slips 
treated with 
nitric acids, 

washed and 
coated with 
PDL/Matrigel 
(see section 
3.2.7). 

Week 1: ADF medium, 2% 
B27+A, 1% P/S, 1% L-G, 
10ng/ml BDNF, 200µM AA, 
0.5µM dbcAMP, 5µM DAPT 
and 0.5µM VPA. 
 
Week2: Addition of ACM to 

give an ADF:ACM ratio of 
1:1, and 1mM Ca

+
Cl2. 

Only the nucleofected cells that were mature DARPP-32
+ve

 neurons were used 
 
 
 
 

 

3 

34D6-derived 

nrNPCs 
(Nucleofected 
with pCAGG-
DLX2/MASH1 
or the control 
pCAGG) 

Monolayer 
differentiation 

(MD) with IWR-
1 (WNT 
antagonist) 
(1µm 
LDN193189 + 
10µM 
SB431542) 

800µg/ml 
for 1 day 

Cover slips 
treated with 
nitric acids, 
washed and 
coated with 
PDL/Matrigel 

(see section 
3.2.7). 

Week 1: ADF medium, 2% 
B27+A, 1% P/S, 1% L-G, 
10ng/ml BDNF, 200µM AA, 
10µM DAPT, 1.8mM Ca

+
Cl2, 

2µM PD332991, 10µM 
Forskolin, 3µM CHIR99021, 
300µM GABA. 
Week 1: (1:1) ADF medium: 

Neurobasal A, 2% B27+A, 
1% P/S, 1% L-G, 10ng/ml 
BDNF, 200µM AA, 1.8mM 
Ca

+
Cl2, 3µM CHIR99021.  

Abbreviations: B27+A: Serum-free supplement with retinoic acid, P/S: Pen/Strep, L/G: L/Glutamate, 
FBS: Fetal bovine serum, ACML: Astrocyte conditioned media, BDNF: Brain-derived neurotrophic 
factor, AA: Ascorbic acid, dbcAMP: Dibutyryl cyclic adenosine 3’, 5’-monophosphate, DAPT: as Notch 
signaling inhibitor, chemical name is N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-
dimethylethyl ester, VPA: Valproic acid, Ca

+
Cl2: Calcium chloride, PD332991: CDK4/6 inhibitor, 

Forskolin: elevates cAMP; CHIR99021: Glycogen synthase kinase 3 (GSK3) inhibitor and WNT agonist. 
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6.3.1 Strategy for the analysis of mature MSNs 
 

The nucleofected nrNPCs were analysed at the following time points: week 0 

(W0), which is equivalent to Differentiation day 0 (Dd0), W3 (Dd21) and W6 (Dd42) for 

34D6 cell line and W0, W2, W4 and W6 for H9 cell line. RNA samples harvested at 

different time points and protein samples at Dd42 were analysed by qRT-PCR and 

western blotting, respectively. This was in order to examine DARRP-32 and CTIP2 

mRNA, and DARPP-32 protein expression levels.  

For the mRNA expression of DARPP-32, two-way ANOVA was used to test the 

following hypotheses: 

H0: Nucleofection of cells with different constructs has no significant effect on the 

expression of DARPP-32. 

H0: Incubation time with differentiation media has no significant effect on the expression 

of DARPP-32. 

H0: Nucleofection of cells with different constructs and the incubation time with 

differentiation media together have no significant effect on the expression of DARPP-32. 

Cells expressing DARPP-32 and CTIP2 were then subjected to further analysis by 

qRT-PCR. The expression of some of the mature striatum markers, such as FOXPI and 

EBF1, dopamine receptors, such as DRD1 and DRD2 (Garel et al. 1999; Tamura et al. 

2004; Martín-Ibáñez et al. 2012; Lobo et al. 2006), and markers of GABAergic neurons, 

such as GAD2 and CALBIN-1 (Kiyama et al. 1990; Gerfen 1992; Pickel and Heras 1996; 

Pinal and Tobin 1998; Pan 2012; Lin et al. 2015), was examined at different time points. 
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6.4 Results 
 

6.4.1 Nucleofection of H9 nrNPCs with pCAGG-DLX2/GSX2 or the 
control pCAGG vector. 

 

6.4.1.1 Increased expression of β-Tubulin III from W0 to W2 in pCAGG-

DLX2/GSX2 nucleofected H9 nrNPCs. 

 

H9 nrNPCs at PdD18 were nucleofected with pCAGG-DLX2/GSX2 or pCAGG, 

and maintained in differentiation media. These were then analysed for expression of 

the neuron specific marker, β-Tubulin III, by ICC at W0 and W2. 

At W0, β-Tubulin III was expressed at low levels in both pCAGG and pCAGG-

DLX2/GSX2 nucleofected H9 nrNPCs (Figure 6.2). At W2, β-Tubulin III was highly 

expressed in both of pCAGG and pCAGG-DLX2/GSX2 nucleofected H9 nrNPCs 

(Figure 6.2). In addition, the development of neuron morphology in both populations of 

H9 nucleofected cells was more advanced at W2 than W0, indicating that β-Tubulin 

III+ve neuron cells are generated upon nucleofection of H9 nrNPCs (Figure 6.2). The 

negative control for β-Tubulin III and GFP is shown in Appendix 5.1. 
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6.4.1.2 Failure of pCAGG-DLX2/GSX2 nucleofected H9 nrNPCs to generate 

mature MSNs despite increased expression of DARPP-32. 
 

DARPP-32 expression in both pCAGG and pCAGG-DLX2/GSX2 nucleofected 

H9 nrNPCs increased dramatically and significantly from W2 to W6 at transcriptome 

level (Figure 6.3 A). This gene expression corresponded with the increased DARPP-

32+ve immunoreactivity in ICC (Figure 6.3 B and C) and western blotting (Figure 6.4) 

at W6 relative to negative control (HEK293) and/or pCAGG. These results confirm the 

generation of MSNs, as evidenced by DARPP-32+ve immunoreactivity at the 

transcriptome and protein levels. 

Next, the electrophysiological characterisation was carried out to assess the 

functionality of the differentiated neurons. This was undertaken by Dr. Vsevalod 

Telezhkin, as described in the Materials and Methods chapter. Unfortunately, 

electrophysiological analysis of the pCAGG-DLX2/GSX2 nucleofected H9 nrNPCs 

indicated that DARPP-32+ve MSNs were not functionally mature MSNs (data not 

shown). As a result, hPSC-derived nrNPCs were nucleofected with all the TF 

expression vectors (pCAGG-DLX2, pCAGG-DLX2/GSX2, pCAGG-DLX2/MASH1, 

pCAGG-DLX2/GSX2/MASH1, pCAGG-MASH1 plus the control pCAGG) in parallel in 

order to determine if any of them would differentiate into functionally mature DARPP-

32+ve MSNs. An iPSCs line, 34D6, was used for these experiments. This was 

performed in order to determine and obtain HD-iPSC lines, which consequently 

differentiate into mature MSNs for future experiments.  



                                                                                                                                                                                                                                              C
h

a
p

te
r 6

: R
e

s
u

lts
 

2
2

0
 

 F
ig

u
re

 6
.3

: D
A

R
P

P
-3

2
 m

R
N

A
 e

x
p

re
s

s
io

n
 a

n
d

 im
m

u
n

o
re

a
c

tiv
ity

 in
 p

C
A

G
G

 a
n

d
 p

C
A

G
G

-D
L

X
2

/G
S

X
2

 n
u

c
le

o
fe

c
te

d
 H

9
 n

rN
P

C
s

. 

E
m

p
ty

 v
e

c
to

r (p
C

A
G

G
) o

r p
C

A
G

G
-D

L
X

2
/G

S
X

2
 n

u
c
le

o
fe

c
te

d
 H

9
 n

rN
P

C
s
 a

t P
d

D
1

8
 w

e
re

 a
n

a
ly

s
e

d
 fo

r th
e

 e
x
p

re
s
s
io

n
 o

f D
A

R
P

P
-3

2
 u

s
in

g
 q

R
T

-P
C

R
 a

t s
e

v
e

ra
l tim

e
 

p
o

in
ts

 (W
0

, W
2

, W
4

 a
n

d
 W

6
) (N

 =
 2

) (A
). IC

C
 a

n
a

ly
s
is

 o
f p

C
A

G
G

 (B
) a

n
d

 p
C

A
G

G
-D

L
X

2
/G

S
X

2
 (C

) n
u

c
le

o
fe

c
te

d
 H

9
 c

e
lls

 a
t W

6
. C

e
lls

 w
e

re
 s

ta
in

e
d

 w
ith

 a
n

ti-D
A

R
P

P
-3

2
 

a
n

tib
o

d
y
. T

h
e

 m
ic

ro
g

ra
p

h
s
 a

n
d

 in
s
e

rts
 w

e
re

 c
a

p
tu

re
d

 a
t 1

0
0

µ
m

 (B
 a

n
d

 C
) a

n
d

 5
0

µ
m

 m
a

g
n

ific
a

tio
n

s
 (C

). P
u

rp
le

 s
c
a

le
 b

a
r in

d
ic

a
te

s
 1

0
0

µ
m

. Y
e

llo
w

 s
c
a

le
 b

a
r in

d
ic

a
te

s
 

5
0

µ
m

.   

D
A

R
P

P
-3

2
 

C
)       p

C
A

G
G

-D
L

X
2

/G
S

X
2

 

D
A

R
P

P
-3

2
 p
C

A
G

G
-D

L
X

2
/G

S
X

2
 

B
)      E

m
p

ty
 v

e
c

to
r: p

C
A

G
G

 

D
A

R
P

P
-3

2
 

D
A

R
P

P
-3

2
 

D
A

R
P

P
-3

2
 

D
A

R
P

P
-3

2
 

A
)            

W
0

W
2

W
4

W
6

0
.0

0
.5

1
.0

1
.5

2
.0

T
im

e
 p

o
in

ts
 (W

e
e

k
s

)

DARPP-32 relative expression to GAPDH ( 2 - delta ct )  

p
C
A
G
G

p
C
A
G
G
-D
L
X
2
/G
S
X
2

*
 

*
*

*
*

*
 

*
 

*
*

*
*

*
 

*
*

*
*

 



                                                                                                                           Chapter 6: Results 

221 
 

Figure 6.4: DARPP-32 protein expression in pCAGG and pCAGG-DLX2/GSX2 
nucleofected H9 nrNPCs at W6.  

Western blotting analysis of pCAGG and pCAGG-DLX2/GSX2 nucleofected H9 nrNPC along 
with negative control lysates (A). HEK293 cells were used as a negative control for DARPP-32 
gene expression. DARPP-32 gene expression was normalised to β-ACTIN for each 
nucleofection and quantified as determined by densitometric analysis (N = 2, p < 0.0001) (B). 
Micrographs of pCAGG-DLX2/GSX2 nucleofected H9 nrNPCs stained with anti-DARPP-32 
antibodies were captured at 50µm (C). The two panels show focusing on different areas (white 
circles) of the same image, to highlight morphology. Yellow scale bar indicates 50µm.  
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6.4.2 Nucleofection of 34D6 nrNPCs with different transcription factor 
expressing vectors. 

 

34D6 nrNPCs were nucleofected at PdD18 with one of the following five 

constructs (pCAGG-DLX2, pCAGG-DLX2/MASH1, pCAGG-DLX2/GSX2, pCAGG-

DLX2/MASH1/GSX2, pCAGG-MASH1) or a control vector (pCAGG). A large number of 

studies have used β-Tubulin III to detect neuron cells and double DARPP-32 and 

CTIP2 to confirm the presence of MSNs (Arlotta et al. 2008; Carri et al. 2013; Ding et 

al. 2014). Therefore, in this study, the nucleofected cells were maintained in the 

differentiation media (as described in Table 6.2) and examined for the expression of 

neuron specific marker, i.e. β-Tubulin III, and MSNs specific markers, i.e. DARPP-32 

and CTIP2 at molecular and gene levels.  

 

6.4.2.1 Ectopic expression of DLX2 and MASH1 promotes differentiation of 
iPSCs into DARPP-32+ve and CTIP2+ve functional MSNs. 

 

All differently nucleofected vectors, including control, are expressing β-Tubulin 

III at W3(Dd21), confirming their neuronal identity as demonstrated in Figure 6.5. 

Expression of DARPP-32 and CTIP2, at the transcriptional level, was statistically 

significant in all the nucleofected 34D6 nrNPCs from W0(Dd0) to W6(Dd42) (Figure 

6.6 A and B). Also, DARPP-32 gene expression correlated well to protein expression 

data obtained by Western blotting in all nucleofected 34D6 nrNPCs at W6(Dd42) 

(Figure 6.7 A and B).  
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Figure 6.5: β-Tubulin III and GFP expression in differently nucleofected 34D6 nrNPCs at 
W3. 

ICC images of 34D6 nrNPCs nucleofected with the indicated transcription factor expressing 
vectors (left column) and stained with antinuclear antibody (Dapi: Blue), and anti-β-Tubulin III 
(Red). GFP expression (Green) was also shown and the micrographs were superimposed to 
visualize co-localisation of the different proteins. Scale bar indicates 100µm. 
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Figure 6.6: Expression of DARPP-32 and CTIP2 mRNA in nucleofected 34D6 nrNPCs at 
different time points. 

Expression of DARPP-32 (A) and CTIP2 (B) in nucleofected 34D6 nrNPCs was assessed by 
qRT-PCR at various time points and normalised to GAPDH (2

-delta ct
). p-value was calculated 

using Two-way ANOVA with Bonferroni correction. Summary of p-value: * = 0.01, ** = 0.0029, 
*** = 0.0001 and **** < 0.0001.  
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Figure 6.7: DARPP-32 protein expression at W6 in the nucleofected 34D6 nrNPCs. 

DARPP-32 expression in the nucleofected cells was assessed at W6(D42) by Western blotting 
(A). This was quantified and normalized to β-ACTIN for each nucleofection and quantified as 
determined by densitometric analysis (N = 2; p < 0.0001) (B).  
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32 was increased in the 34D6 nrNPCs nucleofected with pCAGG-MASH1, pCAGG-

DLX2 and pCAGG-DLX2/MASH1 at W6(Dd42). The pCAGG-DLX2/MASH1 

nucleofected 34D6 nrNPCs were the only group that showed the highest dramatic 

increase in DARPP-32 expression compared with the control (pCAGG) nucleofected 

cells at W6(Dd42) (p = 0.01). It was also shown that there was a significant increase in 

DARPP-32 expression between Dd21 and Dd42 (p < 0.0001) (Figure 6.6 A). Similarly, 

CTIP2 expression was significantly increased at W6 (Dd42) in the pCAGG-MASH1, 

pCAGG-DLX2 and pCAGG-DLX2/MASH1 nucleofected cells, but only when compared 

to the other nucleofected 34D6 nrNPCs (p < 0.0001) (Figure 6.6 B). In addition, 

electrophysiological studies showed that only the pCAGG-DLX2/MASH1 nucleofected 

cells differentiated into more neuron-like cells that generated spontaneous action 

potentials from W3 (Dd21) (Experiment conducted by Dr. Vsevolod Telezhkin, a 

postdoc in the neuroscience physiology group at Cardiff University) (Figure 6.8 A and 

B). The electrophysiology showed the development of the resting membrane potential, 

which dropped from -30 to -40 over time, indicating the progression towards more 

neuron-like cells (Figure 6.8 A and B). In vivo, the resting membrane potential is -70, 

and hence the neurons were not fully mature. However, they were progressing in the 

right direction. 

Together, these results indicate that among all the vectors tested, only pCAGG-

DLX2/MASH1 nucleofected 34D6 nrNPCs are associated with increased DARPP-32 

and CTIP2 expression at the molecular and protein levels. Furthermore, the 

DLX2/MASH1 combination generated functional and mature MSNs that elicited trains 

of action potentials (Figure 6.8 A and B). Therefore, the pCAGG-DLX2/MASH1 

nucleofected cells were subjected to further analysis for studies of mature striatal 

MSNs. 
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Figure 6.8: Development of membrane potential in 34D6 nrNPCs expressing different 
combinations of TFs 

The membrane potential of TF expressing (or control) vector nucleofected 34D6 cells incubated 
for varying lengths of time in differentiation media (A). In pCAGG-DLX2/MASH1 nucleofected 
cells, the development of the resting membrane potential over time is dropping from -30 to -40. 
pCAGG-DLX2/MASH1 nucleofected cells show spontaneous activity at week 3 and week 6 (B). 

 

6.4.2.2 Increased DARPP-32 and CTIP2 immunoreactivity in pCAGG-

DLX2/MASH1 nucleofected 34D6 nrNPCs  

 

pCAGG and pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs, at W6(Dd42), 

were double stained with anti-DARPP-32 and anti-CTIP2 and analysed using ICC 

(Figure 6.9 A and B). Around 80% of the pCAGG-DLX2/MASH1 nucleofected cells 
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DARPP-32+ve (Figure 6.9 C). Meanwhile, 85% of the pCAGG-DLX2/MASH1 

nucleofected cells, and 69% of the pCAGG nucleofected cells, were CTIP2+ve (Figure 

6.9 B). Most of the pCAGG-DLX2/MASH1 nucleofected cells were both DARPP-32+ve 

and CTIP2+ve as shown in the confocal microscope images of DARPP-32 and CTIP2 

double staining (Figure 6.9 B). This result support MSNs phenotype in concordance to 

previous results in section 6.4.2.1.  

 

Figure 6.9: Expression of DARPP-32 and CTIP2 at W6 in pCAGG and pCAGG-
DLX2/MASH1 nucleofected cells.  

pCAGG and pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs were labelled with anti-DARPP-

32 antibodies (primary dilution; 1:100, Santa Cruz) and detected with an Alexa Fluor® 594 
labelled anti-rabbit IgG secondary antibody (red), and anti-CTIP2 antibody (primary dilution; 

1:500, Abcam) and detected with an Alexa Fluor® 350 anti-Rat IgG secondary antibody (blue) 
and Nuclear staining with SYTOX green fluorescent counterstain (primary dilution; 1:300, 
Invitrogen. Cat. No. S33025) (A). Confocal microscopy images of pCAGG-DLX2/MASH1 
nucleofected cells double stained against anti-DARPP-32 antibody (red) and anti-CTIP2 
antibody (blue) (B). Green scale bar indicates 36µm. The quantification of DARPP-32 and 
CTIP2 expression in pCAGG and pCAGG-DLX2/MASH1 nucleofected cells was measured by 
cell profiler program (N = 3) (C).  
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6.4.2.3 Increased gene expression of FOXP1, EBF1, DRD1 and DRD2 in 

pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs provides an 
evidence of mature striatal MSNs. 

 

In the terminal differentiation phase, FOXP1 and EBF1 are TFs that are 

expressed by MSNs (Arlotta et al. 2008). These were used as markers to identify LGE 

determinants, as they are expressed in the SVZ and MZ of the LGE (Long et al. 

2009b), and are also known as markers for striatal projection neurons (Martín-Ibáñez 

et al. 2012). Therefore, these markers were to assess the maturity of the MSNs. There 

was a gradual increase in FOXP1 and EBF1 mRNA expression from Dd0 to Dd21 and 

from Dd0 to Dd42 in pCAGG-DLX2/MASH1 nucleofected cells when compared to 

control (pCAGG) (Figures 6.10 and 6.11). This increase was statistically significant for 

FOXP1 expression (p < 0.01) and for EBF1 expression (p < 0.001). No differences 

between the expression of FOXP1 and EBF1 from Dd21 to Dd42 were observed. The 

expression of both FOXP1 and EBF1 in pCAGG-DLX2/MASH1 nucleofected cells is 

indicative of mature MSNs. 
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Figure 6.10 FOXP1 mRNA expression in pCAGG-DLX2/MASH1 
and pCAGG nucleofected 34D6 nrNPCs at different time 
points. 

Expression of FOXP1, relative to GAPDH (2
-delta ct

), in pCAGG and 
pCAGG-DLX2/MASH1 nucleofected cells, was measured by qRT-
PCR. The start at Dd21 indicates the significance differences 
between pCAGG-DLX2/MASH1 nucleofected cells and the control 
at this time point. Statistical test was performed using Two-way 
ANOVA with Bonferroni correction. p-value summary: * = 0.01. 

 

 

Figure 6.11: EBF1 mRNA expression in pCAGG-DLX2/MASH1 
and pCAGG nucleofected 34D6 nrNPCs at different time 
points. 

Expression of EBF1, relative to GAPDH (2
-delta ct

), in pCAGG and 
pCAGG-DLX2/MASH1 nucleofected cells, was measured by qRT-
PCR. Statistical test was performed using Two-way ANOVA with 
Bonferroni correction. p-value summary: ** = 0.001.  
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pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs expressed DRD1 and DRD2 

(Figure 6.12 A and B). Compared to control (pCAGG) nucleofected cells, there was a 

significant increase in the expression of both of DRD1 (p = 0.0282) and DRD2 (p < 

0.0001) in pCAGG-DLX2/MASH1 nucleofected cells. The difference in DRD1 and 

DRD2 expression at different time points was also significant (p =0.0073 and p < 

0.0001, respectively). In addition, the interaction between nucleofection of cells and 

incubation time had a significant effect on DRD1 and DRD2 expression (p = 0.0367 

and p < 0.0001, respectively). Moreover, expression of both of DRD1 and DRD2 in 

pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs, relative to GAPDH (2-delta ct), 

increased sharply from W0(Dd0) to W3(Dd21), and these increases were statistically 

significant (p = 0.001 and p < 0.001 for DRD1 and DRD2 respectively) (Figure 6.12 A 

and B). This was followed by a gradual decrease in DRD1 and DRD2 expression from 

W3(Dd21) to W6(Dd42) (Figure 6.12 A and B). However, compared to W0(Dd0), the 

expression of both DRD1 and DRD2, at W6(Dd42), was increased. This increase was 

statistically significant for DRD2 (p = 0.01) (Figure 6.12 A and B). At Dd21, the 

expression of both of DRD1 and DRD2 was significantly elevated in pCAGG-

DLX2/MASH1 nucleofected 34D6 nrNPCs compared to control (pCAGG) nucleofected 

34D6 nrNPCs (p = 0.001 and p < 0.001 for DRD1 and DRD2 respectively) (Figure 6.12 

A and B). Data also showed that the expression of DRD2, at Dd21, was higher than 

the expression of DRD1 in the pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs 

(Figure 6.12 A and B). The expression of DRD1 and DRD2 appears when neuron 

cells become mature striatum as it is known as neurochemical characteristic of 

endogenous MSNs (Lobo et al. 2006; Carri et al. 2013). This expression is mediated by 

DLX2 as evident in Dlx1/2-/- mutant mice (Long et al. 2009a). Together, these data 

indicate that the overexpression of DLX2 and MASH1 in 34D6 nrNPCs generates 

DRD1+ve and DRD2+ve mature MSNs by W3 (Dd21) via increased expression of FOXP1 

and EBF1.  
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Figure 6.12: DRD1 and DRD2 mRNA expression in pCAGG-DLX2/MASH1 and pCAGG 
nucleofected 34D6 nrNPCs, at different time points. 

Expression of DRD1 (A) and DRD2 (B) dopamine receptors, relative to GAPDH (2
-delta ct

), in 
pCAGG and pCAGG-DLX2/MASH1 nucleofected cells. Statistical test was performed using 
Two-way ANOVA with Bonferroni correction. p-value summary: * = 0.01, ** = 0.001, and **** < 
0.0001. 
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6.4.2.4 Characterisation of mature GABAergic MSNs through the CALBIN-1 

and GAD2 expression 
 

The development of GABAergic neuron, which is the major cell type in the 

striatum, is induced by glutamic acid decarboxylases enzyme (GADs). Hence, its 

expression is a specific calibrate of GABAergic neuron (Pinal and Tobin 1998; Pan 

2012). Another widely used marker for GABAergic neuron is CALBIN-1 (Kiyama et al. 

1990; Gerfen 1992; Pickel and Heras 1996; Lin et al. 2015). In this study, pCAGG-

DLX2/MASH1 nucleofected 34D6 nrNPCs exhibited GABAergic properties, such as 

expression GAD2 and CALBIN-1 (Figures 6.13 and 6.14). This effect was influenced 

by the incubation time in differentiation medium. The ANOVA analysis of variance 

tested the significance of differences between the expression level of both of GAD2 

and CALBIN-1 in pCAGG-DLX2/MASH1 and pCAGG nucleofected cells harvested 

after different incubation times in differentiation media. There was a significant 

difference in the expression level of GAD2 and CALBIN-1 between pCAGG and 

pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs (p = 0.0005 and p = 0.036 

respectively), and between the incubation times (p = 0.0002 and p = 0.0308 

respectively). Moreover, the interaction of nucleofected 34D6 nrNPCs and incubation 

time was significant only for GAD2 expression (p = 0.0013).  

Expression of both GAD2 and CALBIN-1 was elevated from Dd0 to Dd21 (p = 

0.0001). Their expression declined gradually from Dd21 to Dd42. However, compared 

to Dd0, the increase in expression of both GAD2 and CALBIN-1, at Dd42, was 

statistically significant (p = 0.001) (Figures 6.13 and 6.14). The increase in expression 

of GAD2, in pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs, compared to control 

cells, at Dd21 and at Dd42, was statistically significant (p = 0.0001 and p = 0.01 

respectively) (Figure 6.13). CALBIN-1 expression in pCAGG-DLX2/MASH1 

nucleofected 34D6 nrNPCs was significantly increased when compared to control cells, 

at Dd21 (p = 0.0001) (Figure 6.14). 
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Interestingly, dopamine receptor expression in pCAGG-DLX2/MASH1 and pCAGG 

nucleofected cells, at different incubation times, correlated with GABAergic phenotypic 

expression. Therefore, it can be concluded that co-expression of DLX2 with MASH1 in 

34D6 nrNPCs at Pd18 has the ability to differentiate progenitor neurons into functional 

and mature GABAergic MSNs that express all the relevant markers (i.e. DARPP-32, 

CTIP2, FOXP1, EBF1, DRD1, DRD2, GAD2 and CALBIN-1), from Dd21 onward. 
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Figure 6.13: GAD2 mRNA expression in pCAGG-DLX2/MASH1 
and pCAGG nucleofected 34D6 nrNPCs at different time points. 

Expression of GAD2, relative to GAPDH (2
-delta ct

), in pCAGG and 
pCAGG-DLX2/MASH1 nucleofected cells was measured by qRT-
PCR. Statistical test was performed using Two-way ANOVA with 
Bonferroni correction. p-value summary: * = 0.01, ** = 0.001, and *** = 
0.0001. 

 
 

Figure 6.14: CALBIN-1 mRNA expression in pCAGG-DLX2/MASH1 
and pCAGG nucleofected 34D6 nrNPCs at different time points. 

Expression of CALBIN-1, relative to GAPDH (2
-delta ct

), in pCAGG and 
pCAGG-DLX2/MASH1 nucleofected cells was measured by qRT-PCR. 
Statistical test was performed using Two-way ANOVA with Bonferroni 
correction. p-value summary: * = 0.01, ** = 0.001, and *** = 0.0001. 
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6.4.3 IWR-1 pre-treated 34D6 nrNPCs induced GSX2 upon 
nucleofection of pCAGG-DLX2/MASH1 leads to direct 
programming of functional striatal GABAergic MSN-like cells. 

 

It had been observed previously that treatment of iPSCs with the small 

molecule IWR-1 at PdD8 resulted in expression of GSX2 in the iPSC-derived nrNPCs 

(unpublished data from the Allen lab, Cardiff University, Cardiff, UK). Having 

demonstrated that ectopic expression of DLX2 and MASH1 in 34D6 nrNPCs leads to 

their differentiation into mature MSNs; as illustrated earlier, it is investigated further 

whether adding and external GSX2 in these cells would affect cell differentiation.  

 34D6 nrNPCs were initially treated with IWR-1, followed by combined 

DLX2/MASH1 and control (pCAGG) nucleofection. These pCAGG-DLX2/MASH1 and 

pCAGG nucleofected 34D6 nrNPCs were maintained in differentiation media 

containing PD332991, a CDK4/6 inhibitor, to inhibit cell proliferation (Table 6.1), in 

order to sustain the expression of GFP+ve in 34D6 nrNPCs. A GFP+ve population was 

clearly observed after G418 selection in both, pCAGG-DLX2/MASH1 and pCAGG 

nucleofected 34D6 nrNPCs at week two differentiation (Figure 6.15), indicating the 

ectopic expression of integrated DLX2 and MASH1 in 34D6 nrNPCs at W2(Dd14). The 

differentiated cells were then examined for functionality (electrophysiology) and the 

presence of neuronal and its maturation markers, as described previously. 
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Ectopic expression of DLX2 and MASH1 directed the differentiation of IWR-1-

treated 34D6 nrNPCs towards MSN phenotype expressing DARPP-32 and CTIP2 at 

molecular level (Figures 6.16 and 6.17). In addition, ICC analysis showed that the 

differentiated cells were both DARPP-32+ve and CTIP2+ve (Figure 6.17 A). DARPP-32 

was expressed in 20% of pCAGG-DLX2/MASH1 nucleofected cells compared to 12% 

of pCAGG nucleofected cells. CTIP2 was expressed in 48% of pCAGG-DLX2/MASH1 

nucleofected cells and in 52% of pCAGG nucleofected cells (Figure 6.17 B). 

Importantly, IWR-1-treated, pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs 

showed increased expression of LGE-derived mature striatal GABAergic MSNs 

markers at Dd21, i.e. FOXP1 and EBF1 compared to the control (pCAGG nucleofected 

cells) group as demonstrated in Figures 6.18 and 6.19. In addition, the phenotype of 

LGE-derived mature striatal GABAergic MSNs was also supported through the 

expression of other specific markers including DRD1, DRD2 (Figure 6.20 A and B), 

GAD2 (Figure 6.21) and CALBIN-1 (Figure 6.22). The functionality and maturity of 

these GABAergic MSNs was also validated through the electrophysiological analysis, 

which showed a high percentage of functional neurons (Figure 6.23). The expression 

of GSX2 was observed in IWR-1-treated 34D6 cells (data not shown). It was found that 

expression of GSX2 in pCAGG or pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs 

re-programmed their differentiation such that 100% of these differentiated cells were 

capable of generating spontaneous action potentials starting at week 4 (Figure 6.23). 

The IWR-1-containing differentiation media improved neuronal maturation dramatically 

in pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs. A higher proportion of pCAGG-

DLX2/MASH1 nucleofected 34D6 nrNPCs (68.4%), compared to control (pCAGG) 

nucleofected 34D6 nrNPCs (46.2%), had differentiated into functionally active neurons, 

capable of generating spontaneous action potentials, at week 3 (Figure 6.23). In 

pCAGG-DLX2/MASH1 nucleofected cells, nearly 70% fire action potentials, and 20% 

attempt to generate spontaneous action potential; while in pCAGG nucleofected cells, 
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46% fire action potential, and 46% are not generating spontaneous action potential, 

and hence are not being active neurons (Figure 6.23). 

These data together suggest that the GSX2-induced expression by IWR-1 pre-

treatment in pCAGG-DLX2/MASH1 nucleofected cells were direct differentiated into 

functional and mature MSN-like neurons with striatal GABAergic phenotypes 

expressing the above genes (EBF1, FOXP1, DRD1/2, GAD2, and CALBIN-1). The 

induction of GSX2 using IWR-1 pre-treatment has effectively differentiated 34D6 

nrNPCs into GABAergic neurons. 
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Figure 6.16: DARPP-32 and CTIP2 mRNA expression in IWR-1-pretreated pCAGG-
DLX2/MASH1 and pCAGG nucleofected 34D6 nrNPCs at different time points. 

DARP32 (A) and CTIP2 (B) expression, relative to GAPDH (2
-delta ct

), in pCAGG and pCAGG-
DLX2/MASH1 nucleofected cells was measured by qRT-PCR. Statistical test was performed 
using Two-way ANOVA with Bonferroni correction. p-value summary: * = 0.01, ** = 0.001, 
and *** = 0.0001. 
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Figure 6.17: Expression of DARPP-32 and CTIP2 at W6 in IWR-1-pretreated pCAGG and 
pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs.  

IWR-1-treated, pCAGG and pCAGG-DLX2/MASH1 nucleofected cells were labeled with 

antibodies against DARPP-32 (primary dilution; 1:100, Santa Cruz) with an Alexa Fluor® 594 
labelled anti-rabbit IgG secondary antibody (red), and CTIP2 (primary dilution; 1:500, Abcam) 

with an Alexa Fluor® 350 anti-Rat IgG secondary antibody (blue). Nuclear staining was done 
with SYTOX green fluorescent counterstain (primary dilution; 1:300, Invitrogen. Cat. No. 
S33025) (A). DARPP-32 and CTIP2 gene expression in pCAGG and pCAGG-DLX2/MASH1 
nucleofected cells was measured by cell profiler program (N = 3) (B). pCAGG-DLX2/MASH1 
nucleofected cells expressed the neuronal marker β-Tubulin III (C).  
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Figure 6.18: FOXP1 mRNA expression in IWR-1-treated pCAGG-
DLX2/MASH1 and pCAGG nucleofected 34D6 nrNPCs at different 
time points. 

Expression of FOXP1, relative to GAPDH (2
-delta ct

), in IWR-1-treated 
pCAGG and pCAGG-DLX2/MASH1 nucleofected cells was measured 
by qRT-PCR. The expression of FOXP1 in IWR-1-treated pCAGG-
DLX2/MASH1 nucleofected cells was increased from Dd0 to Dd21. 
Also, at Dd21 and Dd42, the expression of FOXP1 was increased in 
these cells compared to the control. 

 

Figure 6.19: EBF1 mRNA expression in IWR-1-treated pCAGG-
DLX2/MASH1 and pCAGG nucleofected 34D6 nrNPCs at different 
time points. 

Expression of EBF1, relative to GAPDH (2
-delta ct

), in IWR-1-treated 
pCAGG and pCAGG-DLX2/MASH1 nucleofected cells, was measured 
by qRT-PCR. The expression of EBF1 in IWR-1-treated pCAGG-
DLX2/MASH1 nucleofected cells was increased from Dd0 to Dd42. 
Also, at Dd21 and Dd42, the expression of EBF1 was increased in 
these cells compared to the control.  
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Figure 6.20: DRD1 and DRD2 mRNA expression in IWR-1-treated pCAGG-
DLX2/MASH1 and pCAGG nucleofected 34D6 nrNPCs at different time points. 

Expression of DRD1 (A) and DRD2 (B) dopamine receptors, relative to GAPDH (2
-delta ct

), 
in IWR-1-treated pCAGG and pCAGG-DLX2/MASH1 nucleofected cells, was measured 
by qRT-PCR. The expression of DRD1 and DRD2 in IWR-1-treated pCAGG-
DLX2/MASH1 nucleofected cells was increased significantly from Dd0 to Dd21. 
Compared to the control, the expression of DRD1 and DRD2 was increased significantly 
in treated pCAGG-DLX2/MASH1 cells at Dd21. Statistical test was performed using Two-
way ANOVA with Bonferroni correction. p-value summary: * = 0.01, ** = 0.001, and *** = 
0.0001. 
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Figure 6.21: GAD2 mRNA expression in IWR-1-treated pCAGG-
DLX2/MASH1 and pCAGG nucleofected 34D6 nrNPCs at different time 
points. 

Expression of GAD2, relative to GAPDH (2
-delta ct

), in IWR-1-treated pCAGG 
and pCAGG-DLX2/MASH1 nucleofected cells, was measured by qRT-PCR. 
The expression of GAD2 in IWR-1-treated pCAGG-DLX2/MASH1 
nucleofected cells was increased significantly from Dd0 to Dd21. Compared 
with the control, the expression of GAD2 was increased significantly in IWR-
1-treated pCAGG-DLX2/MASH1 cells. Statistical test was performed using 
Two-way ANOVA with Bonferroni correction. p-value summary: **** < 
0.0001. 

 

Figure 6.22: CALBIN-1 mRNA expression in IWR-1-treated pCAGG-
DLX2/MASH1 and pCAGG nucleofected 34D6 nrNPCs at different time 
points. 

Expression of CALBIN-1, relative to GAPDH (2
-delta ct

), in IWR-1-treated 
pCAGG and pCAGG-DLX2/MASH1 nucleofected cells, was measured by 
qRT-PCR. The expression of CALBIN-1 in IWR-1-treated pCAGG-
DLX2/MASH1 nucleofected cells was increased significantly from Dd0 to 
Dd21. Compared with the control, the expression of CALBIN-1 was increased 
in IWR-1-treated pCAGG-DLX2/MASH1 cells at Dd21 and Dd42. Statistical 
test was performed using Two-way ANOVA with Bonferroni correction. p-value 
summary: * = 0.01, and ** = 0.001.  
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Figure 6.23: Percentage of spontaneously active IWR-1-treated pCAGG-DLX2/MASH1 and 
pCAGG nucleofected 34D6 nrNPCs after several weeks of differentiation in culture 
media. 

The pie charts above show the percentage of cells generating spontaneous action potentials, 
attempting to generate spontaneous action potentials or not generating any spontaneous action 
potentials, in nucleofected IWR-1-treated cells from week 3 to week 6. Overexpression of DLX2 
and MASH1 in IWR-1-treated cells resulted in an increase in the proportion of cells generating 
spontaneous action potentials at week 3 (20%) and at week 6 (4%). 
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6.5 Discussion 

 

The present study has established a novel and highly effective in vitro protocol 

to generate a high yield of functional GABAergic MSN-like cells via forced co-

expression of DLX2 and MASH1 in 34D6 nrNPCs. These GABAergic neurons were 

FOXP1+ve / EBF1+ve / GAD2+ve / CALBIN-1+ve / DRD1+ve / DRD2+ve / DARPP-32+ve and 

CTIP2+ve. We have demonstrated that the remaining combinations of TFs (DLX2, 

MASH1, DLX2/GSX2, and DLX2/MASH1/GSX2) in H9 nrNPCs led to differentiation 

into DARPP-32+ve/CTIP+ve MSNs, but not functionally active. In addition, pre-treatment 

of 34D6 nrNPCs with IWR-1 prior to nucleofection with pCAGG-DLX2/MASH1 also 

caused differentiation into mature and functional GABAergic MSN-like cells.  

The data presented here shows that all of the differently nucleofected cells were 

undergoing neurogenesis, as evidenced by expression of neuronal biomarker, β-

Tubulin III+ve at W3. These β-Tubulin III+ve neurons gained the striatal MSN phenotype 

by expressing DARPP-32+ve and CTIP2+ve at W3. The results are consistent with 

previous studies that employed the widely used biomarkers β-Tubulin III, Darpp-32, 

Ctip2 and Darpp-32/Ctip2 co-expression to detect striatal MSNs (Ouimet and 

Greengard 1990; Ouimet et al. 1984; Arlotta et al. 2008; Carri et al. 2013; Ding et al. 

2014) The data also clearly shows that single MASH1, DLX2 and DLX2/MASH1 

nucleofection in H9 nrNPCs are associated with the highest increase in the DARPP-32 

and CTIP2 biomarkers at W6. Interestingly, of all the nucleofected constructs, only 

pCAGG-DLX2/MASH1 showed action potential firing starting at W3 in both, H9 and 

34D6 nrNPCs. In addition, DLX2/MASH1 co-expression in 34D6 nrNPCs was 

associated with a high yield of pure MSN-like cells and approximately 85% of these 

cells were CTIP2+ve and DARPP-32+ve. These findings suggest that the TF combination 

of DLX2/MASH1 is the most efficient for inducing the expression of neuron-related 

biomarkers and subsequently generating a higher yield of functional MSN-like cells.   
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At the stage of neurogenesis, increased expression of CTIP2 and DARPP-32 in 

pCAGG-DLX2/MASH1 nucleofected 34D6 nrNPCs has a functional impact in MSNs. 

Previous studies have shown increased expression of Ctip2 during embryogenesis at 

E12.5 through to adulthood, and MSN neurogenesis occurs at E13.5, revealing 

importance of Ctip2 in striatal development (Arlotta et al. 2008). In addition, expression 

of Ctip2 increases during MSN migration in the mantle zone (MZ) and in post-mitotic 

neurons (Arlotta et al. 2008). Ctip2 is exclusively expressed in the striatum and plays a 

fundamental role in MSN differentiation and striatal architecture (Arlotta et al. 2008). 

DARPP-32 acts as an integrator at dopaminoceptive neurons and is a regulator of 

neuronal excitability, electrophysiology, and transcriptional as well as behavioral 

responses to physiological plus pharmacological stimuli, as evidenced by profound 

functional deficits in mice lacking the Darpp-32 gene (Fienberg et al. 1998; Bibb et al. 

1999; Svenningsson et al. 2004). Many studies have also shown that Darpp-32 acts via 

phosphorylation and dephosphorylation of its various threonine and serine locations, 

which in turn regulate phosphatase and kinase function (Nishi et al. 1997; Hemmings 

et al. 1984; Bibb et al. 1999; Svenningsson et al. 2004; Fernandez et al. 2006). For 

example, phosphorylation of threonine 34 (thr34) on Darpp-32 by cAMP-dependent 

protein kinase (PKA), upon activation of DRD1, results in the conversion into potent 

protein phosphatase-1 inhibitor (PP1) (Hemmings et al. 1984; Nishi et al. 1997). 

Subsequently, PP1 inhibitors dephosphorylates many downstream physiological 

effectors, including NMDA glutamate receptors, voltage-gated ion channels, kinases 

and transcription factors (Greengard et al. 1999; Bibb et al. 1999; Svenningsson et al. 

2004). However, phosphorylation of thr75 by cell division protein kinase 5 (CDK5) 

modulates PP1’s inhibitory effect through inhibition of PKA (Bibb et al. 1999; Nishi et al. 

2000). These functions may have aided in both, the characterisation of GABAergic 

MSN function and the successful differentiation in the current in vitro models.  

Following successful generation of functional neurons, the striatal MSN 

phenotype was assessed by examining the FOXP1, EBF1 and DRD1/2 biomarkers. 
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Many studies have demonstrated the expression of these biomarkers in striatal MSNs 

in the supraventricular zone (SVZ) and the MZ (Garel et al. 1999; Yun et al. 2002; 

Garcia-Dominguez et al. 2003; Tamura et al. 2004; Long et al. 2009b). Hence, they 

were used to detect striatal MSNs in many mutant mouse models when studying the 

role of TFs in neurogenesis. FOXP1 has a key role in up-regulating glutamate and 

GABA receptor signaling genes, which are required in order for striatal MSNs to 

receive glutamatergic input from the cortex (Jones et al. 1977; Royce 1982; Ferino et 

al. 1987; Wilson 1987; Tang et al. 2012). In addition, FOXP1 is highly expressed in 

striatal projection neuron development (Tamura et al. 2004; Martín-Ibáñez et al. 2012). 

Similarly, EBF1 has been found to play a role in striatal projection neuron development 

and differentiation (Garel et al. 1999; Tamura et al. 2004; Martín-Ibáñez et al. 2012; 

Lobo et al. 2006). Consistent with the previous findings, this study has showed 

significantly increased expression of FOXP1 and EBF1 at W3, confirming a striatal 

MSN phenotype in neurons derived from pCAGG-DLX2/MASH1 nucleofected nrNPCs. 

The expression of these biomarkers also suggests the important role in the 

development of the striatum and MSNs. Therefore, both FOXP1 and EBF1 are 

principal biomarkers for striatal projection neurons. 

The importance of the striatum in controlling motor and cognitive functions has 

been documented extensively (Albin et al. 1989; Moyer et al. 2007). This role is 

accomplished, either direct or indirect pathways through dopaminergic action via 

Drd1/2. Drd1 provides direct neuronal projections to the substantia nigra (SNr) and 

entopeduncular nucleus. Conversely, Drd2 provides indirect projections to the external 

segment of the globus pallidus (GPe) and subthalamic nucleus (STN) (Albin et al. 

1989; Moyer et al. 2007). The counterbalance between Drd1 and Drd2 modulates the 

responsiveness of the direct and indirect pathways to cortical signals that is the key 

model of basal ganglia (Albin et al. 1989). In addition, several lines of evidence have 

demonstrated that Drd1 and Drd2 receptors have opposing effects on cAMP and PKA 

activity in neostriatal neurons, thus regulating dendritic excitability and glutamatergic 
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signaling in MSNs (Nishi et al. 1997). Activation of Drd1 receptors increases cAMP and 

PKA phosphorylation and, subsequently, increases Darpp-32 phosphorylation of thr34. 

Drd2 receptor activation, on the other hand, decreases cAMP and PKA activity and 

dephosphorylates Darpp-32 at thr34 (Stoof and Kebabian 1981). A number of studies 

have demonstrated increased expression of both Drd1 and Drd2 in the striatum, with 

Drd2 expression being higher than Drd1 in mice and rat (Schambra et al. 1994; Jung 

and Bennett 1996; Sillivan and Konradi 2011). This pattern is observed in the striatum 

during neurogenesis, in embryogenesis through adulthood (Jung and Bennett 1996; 

Araki et al. 2007; Sillivan and Konradi 2011). However, the predominance of Drd2 over 

Drd1 is reversed in the cortex (Araki et al. 2007; Sillivan and Konradi 2011). Many 

studies have shown the presence of two types of MSNs that are segregated based on 

location: Drd1-dominated (striatonigral) and Drd2-dominated (striatopallidal) (Gerfen et 

al. 1990). In line with these studies, current study demonstrates increased expression 

of both the DRD1 and DRD2 genes in pCAGG-DLX2/MASH1 nucleofected 34D6 

nrNPCs compared to control group. Interestingly, the results also reveal greater up-

regulation of DRD2 over DRD1. Therefore, these findings confirm the generation of 

striatal MSNs from iPSCs in our in vitro model.  

Moreover, the data demonstrate that functional MSNs derived from pCAGG-

DLX2/MASH1 nucleofected 34D6 nrNPCs gain the GABAergic phenotype, as seen 

through increased CALBIN-1 and GAD2 expression at W3. A growing number of 

studies are utilizing these two biomarkers to detect GABAergic MSNs (Kiyama et al. 

1990; Gerfen 1992; Pickel and Heras 1996; Pinal and Tobin 1998; Pan 2012; Lin et al. 

2015). In mice studies, Calbin-1 is known to be localised in GABA-dominant regions of 

the brain (e.g. dorsal striatum and caudate-putamen nuclei) (Kiyama et al. 1990; 

Gerfen 1992; Pickel and Heras 1996; Lin et al. 2015). The Gad2 gene encodes the 

glutamic acid decarboxylase enzyme, which decarboxylates glutamate into GABA 

(Pinal and Tobin 1998; Pan 2012). The distinct role of Gad2 is supported by its 
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restricted expression in nerve terminals and synapses, where GABA acts as a 

neurotransmitter (Pinal and Tobin 1998). 

Many mutant mice models have been established to understand the role of 

different TFs in neurogenesis in the ventral telencephalon (Casarosa et al. 1999; 

Stühmer et al. 2002b; Yun et al. 2002; Cobos et al. 2007; Poitras et al. 2007; Long et 

al. 2009b; Castro et al. 2011). Double and triple TF mutant mice, such as Mash1-/-

;Dlx1/2-/- and Gsx2-/-;Mash1-/- have been associated with severe defects in striatal 

development, unlike single TF mutant mice models such as Mash1-/- and Gsx2 -/-. The 

exception was the single Dlx2 mutant mouse model, where severe defects were 

observed in the dLGE, with the vLGE and septum preserved. These findings shed light 

on the importance of TFs interaction in regulating and driving the consecutive 

processes of neurogenesis. Therefore, the use of a combination of TFs to generate 

GABAergic MSN-like cells in this work was the fundamental objective. In fact, the 

results of the current study clearly demonstrated the successful use of TFs 

combination (i.e. DLX/MASH1) to generate functional GABAergic MSN-like cells in 

vitro.  

The expression of endogenous DLX2 and MASH1 in in vitro has initiated 

proliferation and differentiation of stem cells into functional GABAergic MSNs via 

induction of target and effector genes. Many studies have shown the significance of 

both DLX2 and MASH1 and their target genes in neuronal differentiation and 

development. DLX2 plays an essential role in promoting the differentiation of striatal 

projection neurons in the BG (Long et al. 2009b; Lobo et al. 2006). Its importance was 

revealed through the Dlx1/2-/- mutant mouse model, where the expression of striatal 

differentiation markers such as Drd1/2 and Gad1/2 was reduced in the striatum (Yun et 

al. 2002; Long et al. 2009b). These striatal differentiation genes were linked to the 

dLGE; hence it was suggested that the function of Dlx1/2 was critical for the dLGE 

regions (olfactory bulb and striatum interneurons) (Long et al. 2009b). Dlx2 partially 
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supports the GABAergic phenotype and differentiation phases during the late stage of 

neurogenesis via repression of Mash1 and Notch signaling (Casarosa et al. 1999; Yun 

et al. 2002; Poitras et al. 2007; Long et al. 2009b). In addition, Dlx2 triggers GABAergic 

neuron differentiation through up-regulation of Gad1/2 expression and vGat (Long et al. 

2009b; Stühmer et al. 2002b). Dlx2 also plays a role in neurite maturation by 

repressing the p21-activated serine/threonine kinase, PAK3, and migration of 

GABAergic neurons to the neocortex by promoting Arx expression (Colasante et al. 

2008; Cobos et al. 2007). Impaired neuronal migration was evident in Arx mutant mice 

and Dlx1/2 double homozygous mutants (Long et al. 2009b; Colombo et al. 2007; 

Colasante et al. 2008). Furthermore, Dlx2 has a role in specification of progenitors in 

the SVZ of LGE by repressing some TFs, such as MGE TFs (Gsx1, Gbx1/2), a 

diencephalon TFs (Otp) and ventral cortical TFs (such as Ebf3) (Long et al. 

2009b).These knowledge have indicated that Dlx2 was required at later steps in the 

development of LGE to regulate differentiation, migration and maturation of LGE (Yun 

et al. 2002).   

Mash1 is believed to exhibit a parallel and overlapping role with Dlx2. In other 

words, Mash1 plays several roles at both the early and late stages of neurogenesis 

including (i) promoting the expression of neural markers such as Map2 and Sox1, 

which are not expressed by TF Dlx2 (Yun et al. 2002; Long et al. 2009b; Cobos et al. 

2007), (ii) repressing differentiation of adjacent progenitors through upregulation of 

Notch signaling, (iii) cell fate specification and (vi) cell proliferation (Castro et al. 2011; 

Yun et al. 2002). Overexpression of Mash1 was observed in the Dlx1/2-/- double 

homozygous mutant, which maintained some characteristics of striatal differentiation 

(Long et al. 2009b). Moreover, in Dlx1-/-;Dlx2-/-;Mash1-/- triple mutant, it was 

demonstrated that the majority of LGE differentiation relied on their combined function 

(Long et al. 2009b; Yun et al. 2002; Poitras et al. 2007). Consequently, it was 

suggested that both Dlx1/2 and Mash1 play a parallel role in regulating LGE 

differentiation and specification (Long et al. 2009b). However, it was found that the 
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development of dLGE was more reliant on Dlx1 and Dlx2 than Mash1, while the 

opposite was true for the development of vLGE and septum (Long et al. 2009b). This 

variation is due to their different expression levels in the dLGE and vLGE. For example, 

it was found that Dlx2 and Mash1 were mostly co-expressed in the VZ and SVZ 

progenitors of dLGE. However, Dlx2 was expressed to a lesser extent in the vLGE than 

the dLGE region (Yun et al. 2002). Hence, the function of Dlx2 was more critical in the 

dLGE rather than the vLGE, while the function of Mash1 was more critical in the vLGE 

and septum (Long et al. 2009b). Therefore, the interaction between Dlx2 and Mash1 

was identified to play a major role in the transcriptional hierarchies regulating LGE and 

GABAergic neuron differentiation and specification (Long et al. 2009b). This is further 

supported by current work showing that the combination of DLX2 and MASH1 was 

sufficient to direct the differentiation of iPSCs into functionally mature MSNs, unlike the 

other TFs constructs. 

In the past, while some progress had been made in disease modeling, the 

pathogenesis of neurodegenerative diseases was not yet fully understood, and hence 

treatments for such diseases were not developed. The recent establishment of iPSCs, 

by Takahashi and Yamanaka et al., in 2006, has opened new avenues for scientists to 

generate and develop more sophisticated cell models for investigating and developing 

treatments for diseases such as, Huntington’s, Parkinson’s and Alzheimer’s diseases. 

A recent study succeeded in grafting hPSCs-derived striatal precursors into the 

striatum of quinolinic acid (QA)-lesioned rats after they were treated with SHH/DKK1 

(Carri et al. 2013). In vivo, these precursor cells differentiated further into DARPP-32+ve 

MSNs (Carri et al. 2013). Subsequently, motor neuron deficit symptoms in these rats 

were improved (Carri et al. 2013). This study highlights the possibility that hPSC-

derived nrNPCs could, in the future, be used in regenerative medicine to cure 

neurological diseases. However, this study has demonstrated that ectopic expression 

of striatum-specific TFs such as DLX2 and MASH1, rather than morphogens (e.g. 

SHH), could efficiently drive the differentiation of iPSCs into a high yield of functionally 
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mature MSN-like cells. These iPSC-derived MSNs establish a foundation for the future 

differentiation of HD-specific patient iPSCs into mature and functional neurons, for use 

in HD disease modeling and in regenerative medicine or gene therapy. 
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To date, HD pathophysiology remains poorly understood. The use of human 

induced pluripotent stem cells (h-iPSCs) for disease modeling, affords an opportunity 

to understand disease pathophysiology. HD-specific cell-based models, derived by the 

differentiation of HD-related cell types such as MSN from HD-specific patient iPSCs 

(HD-iPSCs), offer an opportunity to gain a deeper understanding of HD 

pathophysiology. The main aim of this study was to develop an efficient and 

reproducible protocol for direct programming of MSN differentiation from h-iPSCs. This 

is currently an important approach for disease modeling, drug screening and gene 

therapy. However, the best protocols available for direct programming of MSN 

differentiation from hPSCs have been unsatisfactory. Nevertheless, some innovative 

work has been achieved recently by Carri et al. (2013), Nicoleau et al. (2013) and 

Arber et al. (2014) in the generation of MSN from hPSCs using DKK1 & SHH (Carri et 

al. 2013; Nicoleau et al. 2013) or ACTIVIN A (Arber et al. 2014). Their approach was to 

use developmental signals to control and stimulate transcriptional networks that 

regulate sequential neuron progenitor fate.  

This thesis is the first to develop an alternative protocol, and it has been shown 

that this protocol can successfully, efficiently and reproducibly generate functional MSN 

by the ectopic expression of key fate defining TFs that play a role in subpallium and 

MSNs specification and differentiation. 

 

7.1 The three TFs DLX2, MASH1 and GSX2 were chosen for 

ectopic expression in hPSCs to direct differentiation into 
MSN. 

 

The TFs DLX2, MASH1 and GSX2 have been shown to be expressed in the ventral 

telencephalon and to have a role in the development of ventral telencephalon and 

striatum (Chapter 1) (Porteus et al. 1994; Horton et al. 1999; Anderson 1997b; 

Casarosa et al. 1999; Panganiban and Rubenstein 2002; Yun et al. 2002; Cobos et al. 

2007; Long et al. 2009b; Wang et al. 2013). Further, microarray analysis, detailed in 
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Chapter 2, has shown DLX2, MASH1 and GSX2 to be involved in subpallium 

development. Thus, microarray analysis is a valuable tool for validation and elucidation 

of the transcriptional network. Ventral telencephalon deficiency could be induced by 

knockout of these TFs (Anderson et al. 1997a; Toresson et al. 2000; Long et al. 2009b; 

Wang et al. 2009) and, therefore, combinations of the TFs DLX2, MASH1 and GSX2 

were chosen to be cloned and sub-cloned into the expression vector pCAGG. 

MASH1, DLX2 and GSX2 are similarly expressed in both mouse and human 

ventral telencephalon domains (Fode et al. 2000; Carri et al. 2013; Pauly et al. 2013). 

However, loss-of-function studies have demonstrated that each of DLX2, MASH1 and 

GSX2 has different functions in striatal neuron development, and they differ in their 

response to several signals (Anderson et al. 1997a; Anderson 1997b; Casarosa et al. 

1999; Toresson et al. 2000; Corbin et al. 2000; Stühmer et al. 2002a; Yun et al. 2002; 

Yun et al. 2003; Woltjen et al. 2009; Wang et al. 2013). Consequently, this raised the 

question: which gene targets of these TFs promote MSN differentiation? To address 

this question, different constructs of these TFs in the pCAGG vector (pCAGG-DLX2, 

pCAGG-MASH1, pCAGG-DLX2/MASH1, pCAGG-DLX2/GSX2 and pCAGG-

DLX2/MASH1/GSX2) were successfully produced and expressed in hPSCs. 

The successful and efficient cloning of expression vectors with the appropriate 

expression of each of the TFs and the self-cleavage of 2A peptides were achieved. 

Nucleofection of the expression constructs (pCAGG-DLX2, pCAGG-DLX2/MASH1, 

pCAGG-DLX2/GSX2, pCAGG-DLX2/GSX2/MASH1, pCAGG-MASH1 and pCAGG) 

into HEK293 have resulted in 80-90% GFP expression, and the 36, 35 and 34 kDa 

proteins (DLX2, MASH1 and GSX2 respectively) have been detected. These data 

confirm co-expression of TFs together from one vector (pCAGG polycistronic vector), 

essential for the efficient production of MSN. Thus, this vector can achieve efficient 

expression of multiple TFs and can be used for gene therapy. A similar outcome was 

reported by Szymczak et al. (2004), showing that a polycistronic vector with 2A 
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peptides produced an efficient translation of multiple CD3 genes that stimulated T-cell 

differentiation in CD3 knockout mice (Szymczak et al. 2004). 

GSX2 is enriched in the LGE (Carri et al. 2013) and is required for the up-regulation 

of ventral telencephalon genes that are essential for LGE specification and 

differentiation, such as MASH1 and DLX2 (Corbin et al. 2000; Wang and Steinbeisser 

2009; Wang et al. 2013). In Gsx2 knockout studies in mouse, it was shown that the 

expression of Mash1 and Dlx2 were reduced compared to the wild type, and the striatal 

neuronal phenotype that originates from LGE was lost while the cortical interneurons 

were unaffected (Toresson et al. 2000; Corbin et al. 2000; Yun et al. 2003; Wang et al. 

2013). It seems that Gsx2 is an upstream gene for Dlx2 and Mash1; hence Gsx2 was 

chosen as a TF to direct differentiation in vitro in this study.   

DLX2 is located in the two domains of ventral telencephalon: the LGE and to some 

extent in MGE (Pauly et al. 2013). Fate-mapping studies showed that DLX2 was 

expressed in cells co-expressing GABA (Stühmer et al. 2002a). Dlx2 contributes 

profoundly in different stages of neurogenesis: proliferation and differentiation (Lobo et 

al. 2006; Long, Swan, et al. 2009). Dlx2 is required to inhibit Mash1 and Notch 

signaling to repress proliferation and initiate differentiation (Casarosa et al. 1999; Yun 

et al. 2002; Poitras et al. 2007; Long et al. 2009b). In addition, Dlx2 up-regulates Arx 

and suppresses Pax3 to induce migration of striatal neurons (Cobos et al. 2007; 

Colasante et al. 2008). These are supported further by Dlx2-/- mice, where both cortical 

interneurons and striatal matrix GABAergic neurons were decreased (Anderson 1997a; 

Anderson et al. 1997b). Another TF of importance in ventral telencephalon is MASH1. 

Its expressing cells are also located in the LGE and MGE (Fode et al. 2000). In the 

studies of mice lacking Mash1, there was a reduction in the expression of cortical 

interneurons. There was also a reduction in the expression of Foxp1, Darpp-32, and 

Calbindin, which are expressed in striatal neuronal progenitors, MSN and striatal matrix 

neurons respectively (Casarosa et al. 1999; Wang et al. 2009). The loss-of-function 



                                                                                                        Chapter 7: General discussion 

 259 

model provides evidence of role of Mash1 in neurogenesis. A growing number of 

studies have revealed that Mash1 exhibits its function through Notch-dependent (in 

LGE) and independent (in MGE and septum) mechanisms (Horton et al. 1999; 

Casarosa et al. 1999; Yun et al. 2002).  

Together, the demonstrated roles of GSX2, DLX2 and MASH1 encourage use of 

these key TFs to direct stem cell programming in vitro. In fact, triple and double mutant 

mice model: MASH1;DLX1/2 and GSX2;MASH1, respectively, have further drawn the 

line of importance of these key TFs in striatal development (Wang and Steinbeisser 

2009; Long et al. 2009). Therefore, these Key TFs were selected to conduct the aims 

and objectives of this thesis.   

 

7.2 Ectopic expression of different combinations of MASH1, 
DLX2 and GSX2 in hPSCs induced direct programming 
of sequential LGE fate specification and eventual 
differentiation into mature MSNs. 

 

Ectopic expression of different combinations of DLX2, MASH1 and GSX2 in 

34D6 nrNPCs has been shown to induce direct LGE fate specification, the striatum 

primordium (Chapter 5). All combinations of TF nucleofected into 34D6 nrNPCs, with 

the exception of individual MASH1 or DLX2 constructs, reduced expression of PAX6 

from ND3 to ND42. In addition, different combinations of TF reduced the expression of 

MGE NKX2.1 from ND3 in all nucleofected 34D6 cells. In this study, the reduction of 

PAX6 and NKX2.1 excludes formation of MGE and dorsal neuronal phenotype, which 

is mediated by different combinations of DLX2, MASH1 and GSX2. The endogenous 

expression of these TFs were efficient to drive hPSC-derived nrNPCs into LGE 

neuronal phenotype. Determination of LGE phenotype mediated by DLX2, MASH1 and 

GSX2 has been explored in many studies. It has been reported that when the 

subpallium markers, such as Dlx2, Mash1 and Gsx2, were mutated within 

telencephalon, the pallium markers, such as Pax6, were increased and expanded into 
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LGE (Casarosa et al. 1999; Wilson and Rubenstein 2000; Yun et al. 2001; Yun et al. 

2003). In the Gsx2-/- study, a reduction in the striatal projection neurons, originating 

from LGE, and misspecification of ventral and dorsal LGE was observed (Yun et al. 

2001; Yun et al. 2003). In the Mash1-/- the differentiation of the early stages of LGE was 

obstructed (Casarosa et al. 1999). In the Dlx2-/-, the differentiation of subpallium was 

deficient (Wang et al. 2013), and the number of differentiations of late born LGE 

neurons was reduced (Anderson et al. 1997; Marin et al. 2000; Cobos et al. 2007). 

Also, in the mice lacking Dlx2, Nkx2.1 accumulated in the mutant MGE and expanded 

dorsally into the LGE region and PSB (Marin et al. 2000). These data, taken together 

with the findings of this study and the literature, confirm the importance of DLX2 and 

MASH1 co-expression or/and GSX2 in the development of LGE, and provide 

evidences of the function of these genes in the development of LGE within 

telencephalon.  

Based on the positive results reported in Chapter 5, further work was carried out 

to determine if the 34D6-derived LGE fate specific cells could differentiate further into 

mature MSN-like neurons. It was demonstrated that 34D6 nrNPCs expressing different 

combinations of TFs expressed the MSN marker DARPP-32 as well as the striatal 

MSN marker CTIP2. However, whole cell-patch clamp analysis showed that only the 

pCAGG-DLX2/MASH1 nucleofected cells were functional and mature MSNs as evident 

by electrophysiology. These outcomes indicate that ectopic expression of DLX2, 

MASH1 and GSX2 in 34D6 nrNPCs induced direct programming of differentiation into 

MSNs. However, in iPS34D6 cells, ectopic expression of DLX2 and MASH1 only was 

sufficient to direct differentiation to functional MSNs.  

DARPP-32 is the most commonly used marker for detection of terminally 

differentiated striatal GABAergic MSNs (Aubry et al. 2008). There are two destinations 

for striatal projection neurons, which are related to the embryonic stages. The early-

born neurons are destined to the patch compartment of striatum, which forms 15% of 
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striatum, while the mid-late neurons migrate to the matrix compartment of striatum, 

which forms 85% of striatum (Kooy and Fishell 1987). Consequently, the MSNs locate 

in the two striatum compartments and are combinations of early, mid and late born 

neurons. DARPP-32 is only expressed in the late born neurons. In this study a large 

percentage of pCAGG-DLX2/MASH1 nucleofected 34D6nrNPCs expressed DARPP-

32, and hence, it indicates the differentiation of late-born MSNs. In fact, DLX2 and 

MASH1 ectopic expression in 34D6-nrNPCs resulted in an increase of DARPP-32 from 

around 12% to 85% and CTIP2 from around 69% to 85%. In concordance, the 

association of DARP-32 expression and late-born neuron generation mediated by 

DLX2 and MASH1 was illustrated in many mice mutant models. In the mice lacking 

DLX2, the late-born striatal neurons accumulated in LGE, and the migration from LGE 

to the striatal MZ was obstructed and DARPP-32 was not expressed (Anderson et al. 

1997). Moreover, in mice lacking MASH1, the expression of DARPP-32 was reduced 

(Wang et al. 2009). Also, it was reported that ectopic co-expression of Dlx2 and Mash1 

differentiates a higher percentage of cortical astroglia cells into GABAergic neurons 

than sole ectopic expression of Dlx2 (Berninger, Costa, et al. 2007; Heinrich et al. 

2010). These findings indicate that DLX2 and MASH1 provide a greater regulator of 

genes related to late-born neuron production in the development of striatal MSNs. 

This project provides the first example of the use of ectopic delivery or 

expression of TFs (such as DLX2 and MASH1) in h-iPSCs to direct the reprogramming 

of terminal differentiation of functional MSNs expressing a variety of TFs markers for 

striatal GABAergic MSNs. Overexpression of MASH1 and DLX2 in 34D6 nrNPCs, 

generated GFP+ve / DARPP-32+ve / CTIP+ve / FOXP1+ve / EBF1+ve / DRD1&2+ve / GAD2+ve / 

CALBIN-1+ve MSNs. The direct differentiated MSNs, in this study, show dopaminergic 

markers (DRD1 and DRD2), GABAergic markers (GAD2 and CALBIN-1), LGE 

determinants (FOXP1, EBF1 and CTIP2) and terminal differentiation of striatal MSN 

(DARPP-32 and CTIP2) similar to those seen in developing human subpallium MSNs 

(Carri et al. 2013). In addition, co-expression of CTIP2 with the MSN marker DARPP-
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32 was observed both in this study and in vivo human studies (Carri et al. 2013). In the 

caudate nucleus, CTIP2 was co-expressed with the majority of MSN (95%) and was 

not co-expressed with other cell types (Arlotta et al. 2008; Carri et al. 2013). Co-

expression of DARPP-32 with CTIP2 in cells expressing both of MASH1 and DLX2 

suggests that ectopic co-expression of these two genes is able to drive neurons 

towards a striatal MSN type. Moreover, it was found that FOXP1 and FOXP2 were 

expressed in LGE of both an 11 week old human fetus (Carri et al. 2013) and 50-54 

days post fertilization and that FOXP1 and FOXP2 identified striatal progenitors and 

differentiated MSN (Pauly et al. 2013). FOXP2, EBF1 and CTIP2 were reported to be 

expressed in the LGE SVZ and MZ but not in the MGE (Long et al. 2009a) while 

reduced expression of Calbindin was seen in mice lacking MASH1 (Wang et al. 2009), 

and the expression of GAD67 and DRD2 were also reduced (Casarosa et al. 1999). 

These outcomes support the hypothesis underpinning this thesis and demonstrate the 

ability of DLX2 and MASH1 to promote the conversion of h-iPSCs into striatal MSN. 

Also, the role of DLX2 and MASH1 is linked to the development of striatal MSN, 

dopaminergic receptors of MSN and GABAergic MSN phenotypes, and hence DLX2 

and MASH1 together drive the LGE progenitors towards striatal GABAergic MSN 

marker.  

LGE precursor cells induced to differentiate into DARPP-32+ve MSN through both 

overexpression of GSX2 and DLX2 in H9 nrNPCs and overexpression of DLX2 alone 

or DLX2, GSX2 and MASH1 in 34D6 nrNPCs. However, the MSNs did not elicit action 

potentials, and hence they were generated immature MSNs. Also, the co-expression of 

GSX2 with DLX2 and/or MASH1 was not able to push the DARPP-32+ve MSN into 

mature neurons. The constrained action of GSX2 on maturity has no definite 

explanation. However, It has been reported that in the Gsx2-/- mutant striatum the 

expression of Darpp-32 was reduced, while the expression of Calbindin, the marker for 

mature matrix striatal MSNs, was increased (Wang et al. 2009). These data speculate 

that overexpression of GSX2 has a role in the development of MSNs but these are not 



                                                                                                        Chapter 7: General discussion 

 263 

of mature phenotype. Meanwhile, the co-expression of DLX2 and MASH1 was able to 

generate mature, yet functional DARPP-32+ve MSN. Therefore, IWR-1 (GSX2) pre-

treatment of stem cells was used to generate normal expression of GSX2 in cell culture 

and then the cells were nucleofected with MASH1 and DLX2 construct to investigate 

the effect of external GSX2-mediated expression on MSN differentiation and the 

neuronal maturation. 

34D6 cultured with or without IWR-1 differentiated into MSNs. IWR-1 cultures in 

34D6 nrNPCs induced the expression of GSX2 in cell culture (unpublished data from 

the Allen lab). The 34D6 cells cultured with IWR-1 were more mature as evident by 

fired action potential than those cultured without IWR-1. However, the generation of 

functional MSN-like cells upon IWR-1 pre-treated 34D6 nrNPCs was merely for a short 

time at W3. This was supported by a sharp decrease of biomarkers at W6. This 

phenomenon could be as a result of cell toxicity or conflict in exogenously induced 

GSX2 expression with endogenous DLX2/MASH1 expression. Therefore, an extra 

work is required to understand what causes hindered development of long lasting 

MSNs in this model.  

Neuronal maturation in the nucleofected 34D6 nrNPCs with DLX2 and MASH1 

construct was investigated through assessment of functional properties by the whole 

cell patch clamp. Via use of ectopic expression of DLX2 and MASH1 to mature 34D6-

derived MSNs generated cells is able to fire action potentials and having a depolarized 

resting membrane potential (mean -46 mV at week 6). Furthermore, it was observed 

that 68.4, 100 and 87.5% of patched neurons show spontaneous generating of action 

potentials at week 3, 4 and 6 respectively in the nucleofected 34D6 with DLX2 and 

MASH1 plus treatment of 34D6 with IWR-1. Also, the resting potential membrane was -

46.5±1.0 mV, -49.2±2.7 mV and -52.3±3.5 mV at week 3, 4 and 6. It was shown that 

the hESC-derived MSNs by using SHH and DKK1 have -43±4.9 mV of resting 

membrane potential (Carri et al. 2013). These data suggest that the DLX2 and MASH1 
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construct, with or without IWR-1 in the culture, has the ability to generate mature MSNs 

that can produce an action potential. 

The successive steps in differentiating hPSCs that generate GABAergic neurons 

are efficiently regulated by the dual action of MASH1 and DLX2 applying the current 

protocol as evident by the expression of various biomarkers and electrophysiology.   

 

7.3 An alternative protocol was performed in this study 
compared with morphogen strategy 

 

Developmental cues, such as WNT and SHH, to differentiate hPSCs directly 

towards MSN were previously performed (Carri et al. 2013; Nicoleau et al. 2013; Ma et 

al. 2012). However, this strategy generates a mixture of cell types (Review in Soldner 

and Jaenisch 2012). According to previous papers (Carri et al. 2013; Nicoleau et al. 

2013; Ma et al. 2012), their protocol could generates a mixture of LGE and MGE 

specific progenitors which was carried out for terminally differentiated into MSNs. It 

was found that 200 ng/ml of SHH promoted LGE-like neurons (Carri et al. 2013). 

Meanwhile, in a paper published by Nicoleau et al. (2013), it was shown that 50 ng/ml 

of SHH in hPSCs promoted the LGE-like neurons that expressed GSX2+ve/NKX2.1-ve, 

and that the expression level of NKX2.1 was increased when 200 ng/ml of SHH was 

used in culture (Nicoleau et al. 2013). Therefore, a more-defined and efficient route for 

neuron differentiation into MSNs is required. The requirements of a protocol for the 

induction of uniformed disease-specific cell types in vitro, that can be used for iPSCs-

disease modeling and cell replacement therapy, are to produce and highly specific 

iPSC-disease-specific cell types with high efficiency.  

In this study, the strategy of direct reprogramming by ectopic expression of TF 

was used to introduce multiple candidate genes into hPSC-derived nrNPCs and to 

allow the selection and reproducibility of a disease-specific cell type (MSN). This 

protocol also generated PAX6-ve/DLX2+ve/MASH1+ve/NKX2.1-ve LGE-specific progenitors 
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that differentiated further into mature MSNs. This is in line with Pauly et al. (2013) 

finding showing that the LGE domains, in vivo, were DLX2+ve/NKX2.1-ve/ PAX6-ve, while 

the MGE domains were DLX2+ve/NKX2.1+ve. These data indicate that the direct 

differentiated MSNs, in this study, was well-defined and efficient.  

In 2014, a paper by Victor et al. 2014 was published using essentially the same 

protocol as in this study, but with slight differences in the cell line, type and the genes 

that were ectopically expressed. MicroRNA (mRNA)-9/9 and mRNA-124 were used for 

direct programming, as they have a role, during neural development, in an ATP-

dependent chromatin-remodeling regulation process that is essential for functional 

neuronal differentiation (Wu et al. 2009; Yoo et al. 2009; Staahl et al. 2013). As the 

neuronal progenitors exit cell cycle, migrate and differentiate, the process of chromatin-

remodeling is taking place where the neural precursor Brg/Brm-associated factor 

switches through a change in conformation to neuron specific Brg/Brm-associated 

factor. This process typically is driven by mRNA-9/9 and mRNA-124 (Staahl et al. 

2013). TFs MASH1, NEUROD2 and MYT1L (MNM), used in conjunction with mRNA-

9/9 and mRNA-142 (mRNA9/9-142) can direct differentiation into neurons (Yoo et al. 

2011). However, the outcome of this procedure was a mixture of inhibitory and 

excitatory neurons. Victor et al. (2014) used mRNA9/9-142 with TFs CTIP2, DLX1, 

DLX2 (CDM) and MYT1L to replace the TFs with brain enriched genes that 

characterised the MSN so as to promote mRNA9/9-142 to mediate the neuronal 

differentiation into more specific cell types such as striatal MSNs (Victor et al. 2014). 

This work directly reprogrammed MSNs from human postnatal cells by lentiviral 

transduction (Victor et al. 2014). The differentiated cells expressed 70% of DARPP-32 

in this case, whereas in our study, 85% of DARPP-32 and CTIP2 were expressed. In 

addition, it was found that when TFs MNM and CDM were expressed individually in 

human postnatal cells without the mRNA-9/9-142, the cells were not direct 

differentiated into neurons and were immuno-negative to MAP2 (Yoo et al. 2011; Victor 

et al. 2014). However, the reprogramming of hPSCs by TFs DLX2 and MASH1 has 
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been shown in this work to convert cells successfully into LGE-like neurons that then 

terminally differentiate to mature MSN. 

 

7.4 Limitation of study 
 

It is generally known that the efficiency of neuronal nucleofection with plasmids is 

poor. In this study, it was shown that the efficiency of expression of vector 

nucleofection into hPSC-derived nrNPCs before G418 selection was around 26% that 

was increased to around 80% after selection. While a lentiviral system has advantages, 

screening of multiple constructs by creating them as plasmids is more straightforward. 

Promising candidates emerging from this primary test can then be cloned further to 

create the lentiviral constructs that can increase efficiency of transduction. Thus, 

lentiviral transduction, as used by Victor et al. (2014) to differentiate human postnatal 

cells, can be used to obtain high yield, stable TF transduction into hPSCs-derived 

nrNPCs.  

 

7.5 Future work 
 

The successful development of a protocol to direct the differentiation of iPSCs 

into functionally mature MSNs opens new avenues for future research. Future work will 

include establishing a disease model for HD using the following methods. Skin 

fibroblasts from HD patients can be collected to generate stable iPSCs derived using 

established methods from Takahashi, Yamanaka and their colleagues, who used the 

retroviral introduction of ESC TFs, such as, OCT3/4, SOX2, KLF4 and c-MYC 

(Takahashi et al. 2007; Takahashi and Yamanaka 2006). Other options for generating 

HD patient-derived iPSCs involve using non-retroviral vectors such as polycistronic 

vectors (Sommer et al. 2009), piggyBac transposons (Woltjen et al. 2009), transient 

episomal delivery (Okita et al. 2008), RNA (Warren et al. 2010) and even protein 
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delivery (Kim et al. 2009). These HD patient-derived iPSCs can then be differentiated 

into neural progenitor cells to generate NSC that characterised by self-renewal and 

proliferation. Finally, these NSC can be differentiated into specific neuron types, such 

as mature MSNs, using the protocol described in this thesis, which is the ectopic 

expression of DLX2 and MASH1. Future successful generation of MSN-like cells from 

HD-patient specific iPSCs, that recapitulate the phenotype of HD neuropathology, can 

facilitate HD disease modeling in vitro to understand HD progression, cell replacement 

therapy for human medical trials and therapeutic drug screening (Figure 7.1). In 

addition, generating HD-iPSCs with different CAG repeat lengths is recommended as it 

was reported that HD cell lines with longer CAG repeats were most vulnerable to 

BDNF withdrawal and cellular stressors (Consortium 2012). 

In addition, the use of an isogenic genetically modified iPSCs model could be 

used to replace the mutated HTT gene with a healthy sequence gene using zinc finger-

mediated gene transfer or BAC-mediated homologous recombination. According to An 

et al. (2012), the BAC technique was used to correct the mutated HTT in iPSCs 

derived from an HD patient, and the characterisation of iPSCs were maintained (An et 

al. 2012). Therefore, this technique could be used to generate an isogenic control 

model from HD-iPSCs, and then this study protocol could be used to direct 

differentiation into MSNs. The generation of successful MSNs from genetically modified 

iPSCs would be used for HD disease modeling and hence for cell replacement therapy 

(Figure 7.1). 
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Over the last 4 years, there have been several studies that differentiated hPSCs 

into MSN-like cells and used these for cell replacement therapy in the rodent brain. 

However, functional studies, such as the motor and cognitive roles as well as 

electrophysiological connectivity, were not fully carried out. Consequently, functional 

effectiveness in further complex screening is required, such as the characterisation of 

motor and cognitive roles as well as electrophysiological connectivity in more detail. 

Examples of some tests for functional studies include: IntelliCage (Krackow et al. 

2010), Giant Analysis System that includes Trendmill and GaintScan software (Malone 

et al. 1998), Conditioned Place Preference (CPP) (Rosecrans et al. 2009) and 

Ultrasonic Vocalisation Analysis System (UVAS) (Branchi et al. 2001).  

 

7.6 Weakness and strength of the thesis 
 

7.6.1 Weakness of the thesis 
 

All combinations of TFs with the exception of MASH1 and GSX2 (pcagg-

MASH1/GSX2), and each TF alone apart from GSX2 (pCAGG-GSX2) were sub-cloned 

to the expression vector pCAGG. The overexpression of MASH1 and GSX2 in hPSCs, 

and their effects on MSN reprogramming should be investigated. It was shown that 

GSX2 (Méndez-Gómez and Vicario-Abejón 2012) and MASH1 (Fode et al. 2000) 

antagonize cortical fates, and they are both essential in determining the genetic 

network for the development of post mitotic MSNs, since cells migrate and differentiate 

in the MZ. In addition, overexpression of GSX2 in hPSCs and its role in gene 

expression of dorso-ventral markers, especially the ventral markers such as DLX2 and 

MASH1, in comparison with other expression vectors such as pCAGG-DLX2, pCAGG-

MASH1, pCAGG-DLX2/MASH1, PCAGG-DLX2/GSX2 and pCAGG-

DLX2/MASH1/GSX2 should be considered since the expression of ventral markers 

was up-regulated by GSX2. However, the sub-cloning of GSX2 in pCAGG-MASH1 to 



                                                                                                        Chapter 7: General discussion 

 270 

construct (pCAGG-MASH1/GSX2), or in pCAGG to construct (pCAGG-GSX2) was not 

finished on time. 

 

7.6.2 Strength of the thesis 
 

One of the strengths of this thesis is the use of hPSCs to differentiate into MSNs. 

The protocol achieved in this study will enable differentiation of HD-patient specific 

iPSCs into MSN. Generate of an HD-iPSCs disease model would lead to an improved 

understanding of the pathophysiology of HD. 

Two cell lines were used for direct differentiation into MSNs: hESCs (H9) and h-

iPSCs (34D6). Consequently, in this study it has been shown that the strategy for direct 

reprogramming of MSN by ectopic expression is effective in two different cell lines. The 

resulting hPS-derived MSNs are abundant, express the profile of several striatal 

GABAergic markers and most notably are able to generate spontaneous action 

potentials. Consequently the strategy used in this study has the potential to be 

transferred to HD-patient specific iPSCs and to produce diseased MSNs in vitro. 

 

In conclusion, this study provides the first example of ectopic expression of TFs 

(such as DLX2 and MASH1) in h-iPSCs to direct their differentiation into MSN-like 

cells. Overexpression of MASH1 and DLX2 in h-iPSCs-derived nrNPCs promoted 

generation of fully differentiated MSN that expresses FOXP2/EBF1/CTIP2/DARPP-

32/DRD1&2/GAD2 and CALBIN-1. These MSN can be used for HD-modeling to 

understand the mechanisms of neurodegeneration in human HD, facilitate the 

development of a potential cell-based therapy and aid in therapeutic drug screening. 
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2.2 Table of the target genes that found to play fundamental roles in the 

development of forebrain and striatal medium spiny neuron fate: 

 
Gene Name Process 

achaete-scute complex homolog 1 (Drosophila)  
Neurogenesis. adhesion molecule with Ig like domain 1 

basic leucine zipper and W2 domains 2 

calcium/calmodulin-dependent protein kinase I 

cell adhesion molecule with homology to L1CAM 

dedicator of cytokinesis 7 

disabled homolog 1 (Drosophila) 

Doublecortin 

doublecortin-like kinase 1 

drebrin 1 

ELAV (embryonic lethal, abnormal vision, Drosophila)-like 3 (Hu 
antigen C) 

enabled homolog (Drosophila) 

ephrin B2 

ephrin B3 

G-protein signalling modulator 1 (AGS3-like, C. elegans) 

Gene Name 

growth arrest specific 7 

hairy and enhancer of split 5 (Drosophila) 

kinesin family member 2A 

L1 cell adhesion molecule 

LIM homeobox protein 6 

myelin transcription factor 1-like 

myocyte enhancer factor 2C 

myocyte enhancer factor 2D 

neurogenic differentiation 1; neurogenic differentiation 5 

neurogenic differentiation 2 

neuron navigator 1 

neuronal guanine nucleotide exchange factor 

neuropilin 1 

orthopedia homolog (Drosophila) 

PHD finger protein 10 

platelet-activating factor acetylhydrolase, isoform 1b, subunit 1 

roundabout homolog 1 (Drosophila) 

RUN and FYVE domain containing 3 

slit homolog 2 (Drosophila) 

spastin 

SRY-box containing gene 11 

achaete-scute complex homolog 1 (Drosophila)  
Activator transcription factor. activating transcription factor 2 

activating transcription factor 5 

activating transcription factor 7 interacting protein 

AF4/FMR2 family, member 3 

ataxin 7-like 3 

bromodomain and WD repeat domain containing 1 

BTB and CNC homology 2 

calmodulin binding transcription activator 1 

cAMP responsive element binding protein 3-like 1 

Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-
terminal domain, 4 

chromodomain helicase DNA binding protein 8 

churchill domain containing 1 

circadian locomoter output cycles kaput 

cone-rod homeobox containing gene 

CREB binding protein 
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cysteine-serine-rich nuclear protein 3 

D site albumin promoter binding protein 

dachshund 1 (Drosophila) 

DEAH (Asp-Glu-Ala-His) box polypeptide 9 

delta/notch-like EGF-related receptor 

DNA methyltransferase (cytosine-5) 1 

E2F transcription factor 1 

E74-like factor 2 

early B-cell factor 1 

endothelial PAS domain protein 1 

enhancer of yellow 2 homolog (Drosophila) 

ets variant gene 1 

eyes absent 2 homolog (Drosophila) 

family with sequence similarity 120, member B 

forkhead box D3 

forkhead box F2 

forkhead box H1 

forkhead box K1 

Friend leukemia integration 1 

heterogeneous nuclear ribonucleoprotein D-like 

IKAROS family zinc finger 2 

interferon activated gene 204 

interferon regulatory factor 3 

interleukin enhancer binding factor 2 

Kruppel-like factor 1 (erythroid) 

Kruppel-like factor 11 

Kruppel-like factor 17 

Kruppel-like factor 3 (basic) 

Kruppel-like factor 5 

Kruppel-like factor 6 

Kruppel-like factor 7 (ubiquitous) 

LIM domain containing preferred translocation partner in lipoma 

LIM homeobox protein 3 

mediator complex subunit 1 

mediator complex subunit 13 

mediator complex subunit 13-like 

mediator complex subunit 15 

mediator of RNA polymerase II transcription, subunit 11 homolog 
(S. cerevisiae) 

mediator of RNA polymerase II transcription, subunit 12 homolog 
(yeast)-like 

mediator of RNA polymerase II transcription, subunit 25 homolog 
(yeast) 

mediator of RNA polymerase II transcription, subunit 28 homolog 
(yeast) 

mediator of RNA polymerase II transcription, subunit 8 homolog 
(yeast) 

mediator of RNA polymerase II transcription, subunit 9 homolog 
(yeast) 

Meis homeobox 1 

membrane-bound transcription factor peptidase, site 2 

microphthalmia-associated transcription factor 

MYB binding protein (P160) 1a 

myeloblastosis oncogene-like 1 

myocyte enhancer factor 2C 

myocyte enhancer factor 2D 

MYST histone acetyltransferase monocytic leukemia 4 

N-acetyltransferase 14 

nascent polypeptide-associated complex alpha polypeptide 

neurogenic differentiation 1; neurogenic differentiation 5 

nuclear factor I/A 
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nuclear factor I/B 

nuclear factor of activated T-cells 5 

nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 2 

nuclear protein in the AT region 

nuclear receptor subfamily 2, group E, member 1 

nuclear receptor subfamily 5, group A, member 1 

nuclear respiratory factor 1 

nuclear transcription factor-Y alpha 

one cut domain, family member 2 

paraspeckle protein 1 

peroxisome proliferator activated receptor gamma 

POU domain, class 2, transcription factor 1 

POU domain, class 3, transcription factor 2 

pre B-cell leukemia transcription factor 1 

pre B-cell leukemia transcription factor 2 

RAR-related orphan receptor alpha 

ras responsive element binding protein 1 

recombination signal binding protein for immunoglobulin kappa J 
region 

regulatory factor X, 4 (influences HLA class II expression) 

RNA binding motif protein 39 

SET domain containing 1B 

Sp7 transcription factor 7 

Spi-B transcription factor (Spi-1/PU.1 related) 

splicing factor proline/glutamine rich  

SRY-box containing gene 19; SRY-box containing gene 4 

SRY-box containing gene 2 

SRY-box containing gene 6 

steroid receptor RNA activator 1 

sterol regulatory element binding transcription factor 1 

SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily a, member 1 

SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily a, member 2 

thyrotroph embryonic factor 

trans-acting transcription factor 1 

trans-acting transcription factor 3 

transcription factor 4 

transducin (beta)-like 1 X-linked 

transformation related protein 53 binding protein 1 

transformation/transcription domain-associated protein 

ubiquitin specific peptidase 49 

v-maf musculoaponeurotic fibrosarcoma oncogene family, protein 
B (avian) 

YY1 transcription factor 

zinc finger homeobox 3 

zinc finger protein 143 

zinc finger protein 326 

zinc finger protein 410 

zinc finger protein 521 

zinc finger protein, autosomal 

ZXD family zinc finger C 

 
AE binding protein 2  

Transcriptional repressor. B-cell CLL/lymphoma 11A (zinc finger protein) 

B-cell leukemia/lymphoma 11B 

BTB and CNC homology 2 

C-terminal binding protein 2 

CUG triplet repeat, RNA binding protein 2 

DNA methyltransferase (cytosine-5) 1 
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DNA methyltransferase 3A 

E4F transcription factor 1 

Ets2 repressor factor 

GATA-like 1 

Kruppel-like factor 11 

Kruppel-like factor 12 

Kruppel-like factor 17 

Kruppel-like factor 3 (basic); similar to BKLF 

Kv channel interacting protein 3, calsenilin 

MAF1 homolog (S. cerevisiae) 

MYB binding protein (P160) 1a 

MYST histone acetyltransferase monocytic leukemia 4 

Max dimerization protein 3 

Max interacting protein 1 

NF-kappaB repressing factor 

PHD finger protein 21A 

SAP30-like 

SET domain containing (lysine methyltransferase) 8; predicted 
gene 8590 

Sin3A associated protein 

TGFB-induced factor homeobox 1 

TSC22 domain family, member 1 

WT1-interacting protein 

YY1 transcription factor 

acidic (leucine-rich) nuclear phosphoprotein 32 family, member A 

activating transcription factor 7 interacting protein 

additional sex combs like 1 (Drosophila) 

additional sex combs like 3 (Drosophila) 

amine oxidase, flavin containing 1 

arginine glutamic acid dipeptide (RE) repeats 

chromobox homolog 4 (Drosophila Pc class) 

chromobox homolog 6; neuronal pentraxin receptor; Cbx6-Nptxr 
readthrough transcripts 

chromodomain helicase DNA binding protein 8 

cofactor of BRCA1 

cold shock domain protein A 

core-binding factor, runt domain, alpha subunit 2, translocated to, 
3 (human) 

cryptochrome 1 (photolyase-like) 

dachshund 1 (Drosophila) 

forkhead box D3 

forkhead box K1 

forkhead box P1 

forkhead box P2 

forkhead box P4 

hairy and enhancer of split 5 (Drosophila) 

hairy/enhancer-of-split related with YRPW motif 1 

heterogeneous nuclear ribonucleoprotein A/B 

heterogeneous nuclear ribonucleoprotein D-like 

histone deacetylase 11 

histone deacetylase 8 

homeobox, msh-like 1 

hypothetical protein LOC100046298; akirin 2 

interferon activated gene 204 

lysine (K)-specific demethylase 2B 

mediator complex subunit 13 

mediator complex subunit 13-like 

mediator of RNA polymerase II transcription, subunit 12 homolog 

(yeast)-like 

membrane-bound transcription factor peptidase, site 2; similar to 
zinc finger, X-linked, duplicated B; Yy2 transcription factor 



                                                                                                                                          Appendix 2.2 

 311 

mesoderm induction early response 1, family member 2 

methyl CpG binding protein 2 

myelin basic protein expression factor 2, repressor 

nuclear receptor co-repressor 1 

nuclear receptor co-repressor 2 

nuclear receptor coactivator 5 

nuclear receptor interacting protein 1 

nuclear receptor subfamily 1, group D, member 2; predicted gene 
5827 

nuclear receptor subfamily 2, group E, member 1 

nuclear receptor subfamily 5, group A, member 1 

paired box gene 4 

polycomb group ring finger 3 

predicted gene 13886; TAR DNA binding protein 

predicted gene 14457; predicted gene 14503; zinc finger protein 
161; predicted gene 14509 

prohibitin 2 

proliferation-associated 2G4; predicted gene 5297 

ras responsive element binding protein 1 

recombination signal binding protein for immunoglobulin kappa J 
region 

retinoblastoma 1 

retinoblastoma binding protein 7; predicted gene 6382 

ring finger protein 2 

scaffold attachment factor B2 

similar to MBD2 (methyl-CpG-binding protein)-interacting zinc 
finger protein; similar to MBD2-interacting zinc finger; histone H4 
transcription factor 

similar to NFkB interacting protein 1; protein phosphatase 1, 

regulatory (inhibitor) subunit 13 like 

similar to c-Maf long form; avian musculoaponeurotic fibrosarcoma 
(v-maf) AS42 oncogene homolog 

similar to transcriptional regulator protein; SAP30 binding protein 

sin3 associated polypeptide 

special AT-rich sequence binding protein 1 

splicing factor proline/glutamine rich (polypyrimidine tract binding 
protein associated); similar to PTB-associated splicing factor 

suppression of tumorigenicity 18 

suppressor of variegation 4-20 homolog 2 (Drosophila) 

trans-acting transcription factor 1 

transcription elongation regulator 1 (CA150) 

transcriptional regulator, SIN3B (yeast) 

transducin-like enhancer of split 1, homolog of Drosophila E(spl) 

transducin-like enhancer of split 3, homolog of Drosophila E(spl) 

tripartite motif-containing 24 

tripartite motif-containing 27 

v-maf musculoaponeurotic fibrosarcoma oncogene family, protein 
B (avian) 

zinc finger protein 148 

zinc finger protein 318 

zinc finger protein 503 

zinc finger protein 521 

zinc finger protein 639 

zinc finger, MYND domain containing 11 

zinc fingers and homeoboxes 3 
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B-cell leukemia/lymphoma 11B  

Neuron development. Eph receptor A4 

Eph receptor A7 

Eph receptor B2 

FIG4 homolog (S. cerevisiae) 

Kruppel-like factor 7 (ubiquitous) 

L1 cell adhesion molecule 

LIM homeobox protein 2 

LIM homeobox protein 3 

LIM homeobox protein 6 

MYC binding protein 2 

POU domain, class 4, transcription factor 3 

RAS protein-specific guanine nucleotide-releasing factor 1 

RAS-related C3 botulinum substrate 1 

RAS-related C3 botulinum substrate 3 

SLIT and NTRK-like family, member 4 

Unc-51 like kinase 2 (C. elegans) 

achaete-scute complex homolog 1 (Drosophila) 

activated leukocyte cell adhesion molecule 

adenosine A2a receptor 

adhesion molecule with Ig like domain 1 

amyloid beta (A4) precursor protein-binding, family B, member 2 

ankyrin 3, epithelial 

autophagy-related 7 (yeast); similar to AGP7 

biregional cell adhesion molecule-related/down-regulated by 
oncogenes (Cdon) binding protein 

cadherin 23 (otocadherin) 

cadherin 4 

calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 

cell adhesion molecule with homology to L1CAM 

chemokine (C-X-C motif) ligand 12 

crumbs homolog 1 (Drosophila) 

deleted in colorectal carcinoma 

dihydropyrimidinase-like 5 

distal-less homeobox 5 

dopamine receptor D1A 

doublecortin 

doublecortin-like kinase 1 

dystonin; hypothetical protein LOC100047109 

enabled homolog (Drosophila) 

ephrin B3 

ets variant gene 1 

glutamate receptor ionotropic, NMDA3A 

growth arrest specific 1 

growth arrest specific 7 

guanine nucleotide binding protein, alpha q polypeptide 

guanine nucleotide binding protein, alpha transducing 1 

huntingtin 

kelch-like 1 (Drosophila) 

kinesin family member 5C 

leukemia inhibitory factor 

leukocyte specific transcript 1 

methyl CpG binding protein 2 

microtubule-associated protein 1B 

microtubule-associated protein 1S 

microtubule-associated protein 2 

myocardial infarction associated transcript (non-protein coding) 

netrin 3 

neurofilament, light polypeptide 
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ATP/GTP binding protein 1  

Neuron differentiation.  B-cell leukemia/lymphoma 11B 

BCL2-associated athanogene 1 

Eph receptor A4 

Eph receptor A7 

Eph receptor B2 

FIG4 homolog (S. cerevisiae) 

Kruppel-like factor 7 (ubiquitous) 

L1 cell adhesion molecule 

LIM domain binding 1 

LIM homeobox protein 2 

LIM homeobox protein 3 

LIM homeobox protein 6 

MYC binding protein 2 

POU domain, class 3, transcription factor 2 

POU domain, class 3, transcription factor 4 

POU domain, class 4, transcription factor 3 

RAR-related orphan receptor alpha 

RAS protein-specific guanine nucleotide-releasing factor 1 

neurogenic differentiation 2 

neuron-glia-CAM-related cell adhesion molecule 

neuropilin 1 

neurotrophin 3 

neurturin 

nuclear receptor subfamily 2, group E, member 1 

numb-like 

one cut domain, family member 2 

paired box gene 6 

phosphatase and tensin homolog 

plexin A3 

predicted gene 8566; superoxide dismutase 1, soluble; similar to 
Superoxide dismutase 

protein kinase C, iota 

protein kinase, cGMP-dependent, type I 

protein tyrosine phosphatase, receptor type Z, polypeptide 1 

reelin 

reticulon 4 receptor-like 1 

ribosomal protein L24; predicted gene 9385; predicted gene 7380 

roundabout homolog 1 (Drosophila) 

runt related transcription factor 1 

sema domain, seven thrombospondin repeats (type 1 and type 1-
like), transmembrane domain (TM) and short cytoplasmic domain, 

(semaphorin) 5A 

similar to Ena-VASP-like; Ena-vasodilator stimulated 
phosphoprotein 

similar to PBX3a; pre B-cell leukemia transcription factor 3 

similar to RIKEN cDNA 2610109H07 gene; RIKEN cDNA 
2610109H07 gene 

similar to clusterin; clusterin 

slit homolog 2 (Drosophila) 

sodium channel and clathrin linker 1 

superoxide dismutase 2, mitochondrial 

taurine upregulated gene 1 

thymus cell antigen 1, theta 

topoisomerase (DNA) II beta 

tyrosine hydroxylase 

v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog (avian) 

ventral anterior homeobox containing gene 2 

wingless-related MMTV integration site 3A 
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RAS-related C3 botulinum substrate 1 

RAS-related C3 botulinum substrate 3 

SLIT and NTRK-like family, member 4 

SRY-box containing gene 2 

SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily a, member 1 

Unc-51 like kinase 2 (C. elegans) 

achaete-scute complex homolog 1 (Drosophila) 

activated leukocyte cell adhesion molecule 

activator of basal transcription 1 

adenosine A2a receptor 

adhesion molecule with Ig like domain 1 

amyloid beta (A4) precursor protein-binding, family B, member 2 

ankyrin 3, epithelial 

autophagy-related 7 (yeast); similar to AGP7 

biregional cell adhesion molecule-related/down-regulated by 
oncogenes (Cdon) binding protein 

cadherin 23 (otocadherin) 

cadherin 4 

calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 

cell adhesion molecule with homology to L1CAM 

cell division cycle 42 homolog (S. cerevisiae); predicted gene 
7407 

ceroid-lipofuscinosis, neuronal 8 

chemokine (C-X-C motif) ligand 12 

crumbs homolog 1 (Drosophila) 

deleted in colorectal carcinoma 

delta-like 1 (Drosophila) 

dihydropyrimidinase-like 5 

distal-less homeobox 1 

distal-less homeobox 2 

distal-less homeobox 5 

dopamine receptor D1A 

doublecortin 

doublecortin-like kinase 1 

dystonin; hypothetical protein LOC100047109 

enabled homolog (Drosophila) 

ephrin B3 

ets variant gene 1 

glutamate receptor ionotropic, NMDA3A 

growth arrest specific 1 

growth arrest specific 7 

guanine nucleotide binding protein, alpha q polypeptide 

guanine nucleotide binding protein, alpha transducing 1 

hairy and enhancer of split 5 (Drosophila) 

huntingtin 

inhibitor of DNA binding 4 

kelch-like 1 (Drosophila) 

kinase non-catalytic C-lobe domain (KIND) containing 1 

kinesin family member 5C 

leukemia inhibitory factor 

leukocyte specific transcript 1 

methyl CpG binding protein 2 

microtubule-associated protein 1B 

microtubule-associated protein 1S 

microtubule-associated protein 2 

myocardial infarction associated transcript (non-protein coding) 

myotrophin 

netrin 3 

neurofilament, light polypeptide 

neurogenic differentiation 2 
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neuron-glia-CAM-related cell adhesion molecule 

neuropilin 1 

neurotrophin 3 

neurotrophin 5 

neurturin 

nuclear receptor subfamily 2, group E, member 1 

numb-like 

one cut domain, family member 2 

orthopedia homolog (Drosophila) 

paired box gene 6 

phosphatase and tensin homolog 

plexin A3 

predicted gene 8566; superoxide dismutase 1, soluble; similar to 
Superoxide dismutase 

proprotein convertase subtilisin/kexin type 9 

protein kinase C, iota 

protein kinase, cGMP-dependent, type I 

protein tyrosine phosphatase, receptor type Z, polypeptide 1 

recombination signal binding protein for immunoglobulin kappa J 
region 

reelin 

reticulon 4 receptor-like 1 

ribosomal protein L24; predicted gene 9385; predicted gene 7380 

roundabout homolog 1 (Drosophila) 

runt related transcription factor 1 

sema domain, seven thrombospondin repeats (type 1 and type 1-
like), transmembrane domain (TM) and short cytoplasmic domain, 
(semaphorin) 5A 

similar to Ena-VASP-like; Ena-vasodilator stimulated 

phosphoprotein 

similar to PBX3a; pre B-cell leukemia transcription factor 3 

similar to RIKEN cDNA 2610109H07 gene; RIKEN cDNA 
2610109H07 gene 

similar to Stat3B; signal transducer and activator of transcription 3 

similar to clusterin; clusterin 

slit homolog 2 (Drosophila) 

sodium channel and clathrin linker 1 

superoxide dismutase 2, mitochondrial 

taurine upregulated gene 1 

thymus cell antigen 1, theta 

topoisomerase (DNA) II beta 

transforming growth factor, beta receptor I 

tubby-like protein 3 

tyrosine hydroxylase 

v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog (avian) 

ventral anterior homeobox containing gene 2 

wingless-related MMTV integration site 3A 

 
LIM homeobox protein 6  

Generation of neuron in 
forebrain.  

POU domain, class 3, transcription factor 4 

SRY-box containing gene 2 

asp (abnormal spindle)-like, microcephaly associated (Drosophila) 

autophagy-related 7 (yeast); similar to AGP7 

distal-less homeobox 1 

distal-less homeobox 2 

guanine nucleotide binding protein, alpha q polypeptide 

orthopedia homolog (Drosophila) 

paired box gene 6 

plexin A3 

wingless-related MMTV integration site 3A 
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LIM homeobox protein 6  
Forebrain in neuron 
differentiation. 

POU domain, class 3, transcription factor 4 

SRY-box containing gene 2 

autophagy-related 7 (yeast); similar to AGP7 

distal-less homeobox 1 

distal-less homeobox 2 

guanine nucleotide binding protein, alpha q polypeptide 

orthopedia homolog (Drosophila) 

paired box gene 6 

plexin A3 

E2F transcription factor 1  
Forebrain development. LIM homeobox protein 2 

LIM homeobox protein 3 

LIM homeobox protein 6 

N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1 

POU domain, class 3, transcription factor 2 

POU domain, class 3, transcription factor 4 

RAS-related C3 botulinum substrate 1 

SRY-box containing gene 2 

SRY-box containing gene 3 

achaete-scute complex homolog 1 (Drosophila) 

aldehyde dehydrogenase family 1, subfamily A3 

alpha thalassemia/mental retardation syndrome X-linked homolog 
(human) 

amyloid beta (A4) precursor-like protein 1 

apoptotic peptidase activating factor 1 

asp (abnormal spindle)-like, microcephaly associated (Drosophila) 

autophagy-related 7 (yeast); similar to AGP7 

bone morphogenetic protein receptor, type 1A 

centrosomal protein 120 

chordin 

deleted in liver cancer 1 

disabled homolog 1 (Drosophila) 

distal-less homeobox 1 

distal-less homeobox 2 

dopamine receptor D1A 

doublecortin-like kinase 1 

fibroblast growth factor receptor substrate 2 

forkhead box P2 

guanine nucleotide binding protein, alpha q polypeptide 

homeobox, msh-like 1 

huntingtin 

inhibitor of DNA binding 4 

neurofibromatosis 1 

nuclear factor I/B 

nuclear receptor co-repressor 1 

nuclear receptor co-repressor 2 

nuclear receptor subfamily 2, group E, member 1 

numb-like 

orthopedia homolog (Drosophila) 

paired box gene 6 

platelet-activating factor acetylhydrolase, isoform 1b, subunit 1 

plexin A3 

protein kinase, cGMP-dependent, type I 

recombination signal binding protein for immunoglobulin kappa J 
region 

reelin 

regulatory factor X, 4 (influences HLA class II expression) 

similar to RIKEN cDNA 2610109H07 gene; RIKEN cDNA 
2610109H07 gene 

sine oculis-related homeobox 3 homolog (Drosophila) 
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topoisomerase (DNA) II beta 

wingless-related MMTV integration site 3A 

LIM homeobox protein 2  

Telencephalon development. LIM homeobox protein 6 

POU domain, class 3, transcription factor 2 

RAS-related C3 botulinum substrate 1 

SRY-box containing gene 2 

achaete-scute complex homolog 1 (Drosophila) 

aldehyde dehydrogenase family 1, subfamily A3 

autophagy-related 7 (yeast); similar to AGP7  

centrosomal protein 120 

disabled homolog 1 (Drosophila) 

distal-less homeobox 1 

distal-less homeobox 2 

dopamine receptor D1A 

forkhead box P2 

huntingtin 

inhibitor of DNA binding 4 

neurofibromatosis 1 

nuclear receptor co-repressor 2 

nuclear receptor subfamily 2, group E, member 1 

paired box gene 6 

platelet-activating factor acetylhydrolase, isoform 1b, subunit 1 

plexin A3 

reelin 

sine oculis-related homeobox 3 homolog (Drosophila) 

wingless-related MMTV integration site 3A 

Eph receptor B2  
Regulation of neurogenesis. Meis homeobox 1 

POU domain, class 3, transcription factor 2 

SRY-box containing gene 2 

TGFB-induced factor homeobox 1 

Unc-51 like kinase 2 (C. elegans) 

X-ray repair complementing defective repair in Chinese hamster 
cells 6 

achaete-scute complex homolog 1 (Drosophila) 

adhesion molecule with Ig like domain 1 

asp (abnormal spindle)-like, microcephaly associated (Drosophila) 

bone morphogenetic protein receptor, type 1A 

cadherin 4 

calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 

cone-rod homeobox containing gene 

delta-like 1 (Drosophila) 

distal-less homeobox 1 

distal-less homeobox 2 

hairy and enhancer of split 5 (Drosophila) 

homeo box D3 

hypothetical protein LOC100044170; X-ray repair complementing 
defective repair in Chinese hamster cells 4 

inhibitor of DNA binding 4 

kinase non-catalytic C-lobe domain (KIND) containing 1 

leucine rich repeat containing 4C 

microtubule-associated protein tau 

neurofibromatosis 1 

neurofilament, light polypeptide 

neurofilament, medium polypeptide 

neuroligin 1 

neuropilin 1 

neurotrophin 3 

nuclear receptor subfamily 2, group E, member 1 
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orthopedia homolog (Drosophila) 

paired box gene 6 

plexin A3 

pre B-cell leukemia transcription factor 1; region containing RIKEN 
cDNA 2310056B04 gene; pre B-cell leukemia transcription factor 1 

steroidogenic acute regulatory protein 

tetratricopeptide repeat domain 3 

thymus cell antigen 1, theta 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, eta polypeptide 

vascular endothelial growth factor C 

Eph receptor B2  
Positive regulation of 
neurogenesis. 

SRY-box containing gene 2 

X-ray repair complementing defective repair in Chinese hamster 
cells 6 

achaete-scute complex homolog 1 (Drosophila) 

adhesion molecule with Ig like domain 1 

cadherin 4 

hypothetical protein LOC100044170; X-ray repair complementing 
defective repair in Chinese hamster cells 4 

microtubule-associated protein tau 

neurofilament, light polypeptide 

neurotrophin 3 

orthopedia homolog (Drosophila) 

paired box gene 6 

steroidogenic acute regulatory protein 

vascular endothelial growth factor C 

Rac GTPase-activating protein 1; predicted gene 1859  
Neuroblast proliferation. achaete-scute complex homolog 1 (Drosophila) 

asp (abnormal spindle)-like, microcephaly associated (Drosophila) 

fibroblast growth factor receptor substrate 2 

inhibitor of DNA binding 4 

numb-like 

platelet-activating factor acetylhydrolase, isoform 1b, subunit 1 

wingless-related MMTV integration site 3A 

ADP-ribosylation factor-like 4A  
Fate cell differentiation. C-terminal binding protein 2 

SH2B adaptor protein 2 

chibby homolog 1 (Drosophila) 

cyclin D1 

glutathione peroxidase 1 

glycogen synthase kinase 3 beta 

integrin alpha 6 

mediator complex subunit 1 

methyltransferase like 8 

nuclear receptor co-repressor 2 

nudix (nucleoside diphosphate linked moiety X)-type motif 7 

peroxisome proliferator activated receptor gamma 

predicted gene 14506; BCL2/adenovirus E1B interacting protein 3; 
predicted gene 6532; similar to E1B 19K/Bcl-2-binding protein 
homolog 

regulator of G-protein signaling 2 

runt-related transcription factor 1; translocated to, 1 (cyclin D-
related) 

selenium binding protein 1; hypothetical protein LOC100044204 

solute carrier family 2 (facilitated glucose transporter), member 4 

stromal cell derived factor 4 

transducin (beta)-like 1 X-linked 

Eph receptor B2  
Regulation of neuron 

differentiation. 
Meis homeobox 1 

POU domain, class 3, transcription factor 2 
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SRY-box containing gene 2 

TGFB-induced factor homeobox 1 

Unc-51 like kinase 2 (C. elegans) 

achaete-scute complex homolog 1 (Drosophila) 

adhesion molecule with Ig like domain 1 

asp (abnormal spindle)-like, microcephaly associated (Drosophila) 

cadherin 4 

calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 

cone-rod homeobox containing gene 

delta-like 1 (Drosophila) 

hairy and enhancer of split 5 (Drosophila) 

homeo box D3 

inhibitor of DNA binding 4 

kinase non-catalytic C-lobe domain (KIND) containing 1 

leucine rich repeat containing 4C 

microtubule-associated protein tau 

neurofilament, light polypeptide 

neurofilament, medium polypeptide 

neuroligin 1 

neuropilin 1 

nuclear receptor subfamily 2, group E, member 1 

paired box gene 6 

plexin A3 

pre B-cell leukemia transcription factor 1; region containing RIKEN 
cDNA 2310056B04 gene; pre B-cell leukemia transcription factor 1 

tetratricopeptide repeat domain 3 

thymus cell antigen 1, theta 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, eta polypeptide 

LIM homeobox protein 6  
Forebrain neuron fate 
commitment. 

distal-less homeobox 1 

distal-less homeobox 2 

paired box gene 6 

Eph receptor A7 

achaete-scute complex homolog 1 (Drosophila) 

ataxia telangiectasia mutated homolog (human)  

Regulation of neuron 
apoptosis. 

leukocyte specific transcript 1 

lymphotoxin A 

neurofibromatosis 1 

nuclear receptor subfamily 3, group C, member 1 

proprotein convertase subtilisin/kexin type 9 

POU domain, class 4, transcription factor 3 

apoptotic peptidase activating factor 1 

ataxia telangiectasia mutated homolog (human)  
Neuron apoptosis. caspase 3 

huntingtin 

predicted gene 14506; BCL2/adenovirus E1B interacting protein 3; 
predicted gene 6532; similar to E1B 19K/Bcl-2-binding protein 
homolog 

tumor necrosis factor receptor superfamily, member 21 
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4.1 DNA Sequencing: 

 

4.1.1 P3X-2A-DLX2 (3,595 bp) 
 

CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAA

TAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGG

CGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGC

CAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTT

GTAAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAATTGGCGGAAGGCCGTCAAGGCC

ACGTGTCTTGTCCAGAGCTCGTCGACGAATTCAGCGCTCTCGAGACCGGTGCCGCCATGGGAGGATCCCAGTG

TACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCCAGATCTGAGGGCAGAGGA

AGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTTCTAGAGCCACGAAGCAAGCAGGAGATGTTG

AAGAAAACCCCGGTCCT 

gct agc ATG act gga gtc ttt gac agt cta gtg gct gat atg cac tcg acc cag 

atc gcc gcc tcc agc acg tac cac cag cac cag cag ccc ccg agc ggc ggc ggc 

gcc ggc ccg ggt ggc aac agc agc agc agc agc agc ctc cac aag ccc cag gag 

tcg ccc acc ctt ccg gtg tcc acc gcc acc gac agc agc tac tac acc aac cag 

cag cac ccg gcg ggc ggc ggc ggc ggc ggg ggc tcg ccc tac gcg cac atg ggt 

tcc tac cag tac caa gcc agc ggc ctc aac aac gtc cct tac tcc gcc aag agc 

agc tat gac ctg ggc tac acc gcc gcc tac acc tcc tac gct ccc tat gga acc 

agt tcg tcc cca gcc aac aac gag cct gag aag gag gac ctt gag cct gaa att 

cgg ata gtg aac ggg aag cca aag aaa gtc cgg aaa ccc cgc acc atc tac tcc 

agt ttc cag ctg gcg gct ctt cag cgg cgt ttc caa aag act caa tac ttg gcc 

ttg ccg gag cga gcc gag ctg gcg gcc tct ctg ggc ctc acc cag act cag gtc 

aaa atc tgg ttc cag aac cgc cgg tcc aag ttc aag aag atg tgg aaa agt ggt 

gag atc ccc tcg gag cag cac cct ggg gcc agc gct tct cca cct tgt gct tcg 

ccg cca gtc tca gcg ccg gcc tcc tgg gac ttt ggt gtg ccg cag cgg atg gcg 

ggc ggc ggt ggt ccg ggc agt ggc ggc agc ggc gcc ggc agc tcg ggc tcc agc 

ccg agc agc gcg gcc tcg gct ttt ctg ggc aac tac ccc tgg tac cac cag acc 

tcg gga tcc gcc tca cac ctg cag gcc acg gcg ccg ctg ctg cac ccc act cag 

acc ccg cag ccg cat cac cac cac cac cat cac ggc ggc ggg ggc gcc ccg gtg 

agc gcg ggg acg att ttc gct agc 

TAAGTCGACGGTACCTGGAGCACAAGACTGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAGTCGGGAA

ACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCT

CACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCA

GGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCG

ACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC

GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGC

TTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGA

ACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGAC

TTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT

TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTAC

CTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGC

AAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTC

AGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTT

AAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTA

ATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGA

TAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGC

TCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCC

TCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTG

TTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACG

ATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTC

AGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCAT

CCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAG

TTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGA

AAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTG
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CACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGC

CGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGC

ATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTC

CGCGCACATTTCCCCGAAAAGTGCCAC 
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4.1.2 P3X-2A-MASH1 (3,319 bp) 

 
CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAA

TAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGG

CGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGC

CAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTT

GTAAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAATTGGCGGAAGGCCGTCAAGGCC

ACGTGTCTTGTCCAGAGCTCGTCGACGAATTCAGCGCTCTCGAGACCGGTGCCGCCATGGGA  

gga tcc ATG gaa agc tct gcc aag atg gag agc ggc ggc gcc ggc cag cag ccc 

cag ccg cag ccc cag cag ccc ttc ctg ccg ccc gca gcc tgt ttc ttt gcc acg 

gcc gca gcc gcg gcg gcc gca gcc gcc gca gcg gca gcg cag agc gcg cag cag 

cag cag cag cag cag cag cag cag cag cag gcg ccg cag ctg aga ccg gcg gcc 

gac ggc cag ccc tca ggg ggc ggt cac aag tca gcg ccc aag caa gtc aag cga 

cag cgc tcg tct tcg ccc gaa ctg atg cgc tgc aaa cgc cgg ctc aac ttc agc 

ggc ttt ggc tac agc ctg ccg cag cag cag ccg gcc gcc gtg gcg cgc cgc aac 

gag cgc gag cgc aac cgc gtc aag ttg gtc aac ctg ggc ttt gcc acc ctt cgg 

gag cac gtc ccc aac ggc gcg gcc aac aag aag atg agt aag gtg gag aca ctg 

cgc tcg gcg gtc gag tac atc cgc gcg ctg cag cag ctg ctg gac gag cat gac 

gcg gtg agc gcc gcc ttc cag gca ggc gtc ctg tcg ccc acc atc tcc ccc aac 

tac tcc aac gac ttg aac tcc atg gcc ggc tcg ccg gtc tca tcc tac tcg tcg 

gac gag ggc tct tac gac ccg ctc agc ccc gag gag cag gag ctt ctc gac ttc 

acc aac tgg ttc gGA TCC 

CAGTGTACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCCAGATCTGAGGGCA

GAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTTCTAGAGCCACGAAGCAAGCAGGAGA

TGTTGAAGAAAACCCCGGTCCTGCTAGCTAAGTCGACGGTACCTGGAGCACAAGACTGGCCTCATGGGCCTTC

CGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTG

CGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCC

TAATGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCC

GCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA

CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCC

GCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCG

TTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCG

TCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCG

AGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTG

GTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCAC

CGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCT

TTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTAT

CAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTA

AACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC

ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAA

TGATACCGCGAGAACCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCG

CAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGT

TCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTA

TGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGT

TAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCA

CTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCAT

TCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAG

CAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTG

AGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTG

GGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCAT

ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGT

ATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC 
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4.1.3 P3X-2A-DLX2/MASH1 (4,309 bp) 

 
CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAA

TAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGGCCGCTACAGGG

CGCTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGC

CAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTT

GTAAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGCGAATTGGCGGAAGGCCGTCAAGGCC

ACGTGTCTTGTCCAGAGCTCGTCGACGAATTCAGCGCTCTCGAGACCGGTGCCGCCATGGGA  

gga tcc ATG gaa agc tct gcc aag atg gag agc ggc ggc gcc ggc cag cag ccc 

cag ccg cag ccc cag cag ccc ttc ctg ccg ccc gca gcc tgt ttc ttt gcc acg 

gcc gca gcc gcg gcg gcc gca gcc gcc gca gcg gca gcg cag agc gcg cag cag 

cag cag cag cag cag cag cag cag cag cag gcg ccg cag ctg aga ccg gcg gcc 

gac ggc cag ccc tca ggg ggc ggt cac aag tca gcg ccc aag caa gtc aag cga 

cag cgc tcg tct tcg ccc gaa ctg atg cgc tgc aaa cgc cgg ctc aac ttc agc 

ggc ttt ggc tac agc ctg ccg cag cag cag ccg gcc gcc gtg gcg cgc cgc aac 

gag cgc gag cgc aac cgc gtc aag ttg gtc aac ctg ggc ttt gcc acc ctt cgg 

gag cac gtc ccc aac ggc gcg gcc aac aag aag atg agt aag gtg gag aca ctg 

cgc tcg gcg gtc gag tac atc cgc gcg ctg cag cag ctg ctg gac gag cat gac 

gcg gtg agc gcc gcc ttc cag gca ggc gtc ctg tcg ccc acc atc tcc ccc aac 

tac tcc aac gac ttg aac tcc atg gcc ggc tcg ccg gtc tca tcc tac tcg tcg 

gac gag ggc tct tac gac ccg ctc agc ccc gag gag cag gag ctt ctc gac ttc 

acc aac tgg ttc gga tcc  

CAGTGTACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCCAGATCTGAGGGCA

GAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTTCTAGAGCCACGAAGCAAGCAGGAGA

TGTTGAAGAAAACCCCGGTCCT  

gct agc ATG act gga gtc ttt gac agt cta gtg gct gat atg cac tcg acc cag 

atc gcc gcc tcc agc acg tac cac cag cac cag cag ccc ccg agc ggc ggc ggc 

gcc ggc ccg ggt ggc aac agc agc agc agc agc agc ctc cac aag ccc cag gag 

tcg ccc acc ctt ccg gtg tcc acc gcc acc gac agc agc tac tac acc aac cag 

cag cac ccg gcg ggc ggc ggc ggc ggc ggg ggc tcg ccc tac gcg cac atg ggt 

tcc tac cag tac caa gcc agc ggc ctc aac aac gtc cct tac tcc gcc aag agc 

agc tat gac ctg ggc tac acc gcc gcc tac acc tcc tac gct ccc tat gga acc 

agt tcg tcc cca gcc aac aac gag cct gag aag gag gac ctt gag cct gaa att 

cgg ata gtg aac ggg aag cca aag aaa gtc cgg aaa ccc cgc acc atc tac tcc 

agt ttc cag ctg gcg gct ctt cag cgg cgt ttc caa aag act caa tac ttg gcc 

ttg ccg gag cga gcc gag ctg gcg gcc tct ctg ggc ctc acc cag act cag gtc 

aaa atc tgg ttc cag aac cgc cgg tcc aag ttc aag aag atg tgg aaa agt ggt 

gag atc ccc tcg gag cag cac cct ggg gcc agc gct tct cca cct tgt gct tcg 

ccg cca gtc tca gcg ccg gcc tcc tgg gac ttt ggt gtg ccg cag cgg atg gcg 

ggc ggc ggt ggt ccg ggc agt ggc ggc agc ggc gcc ggc agc tcg ggc tcc agc 

ccg agc agc gcg gcc tcg gct ttt ctg ggc aac tac ccc tgg tac cac cag acc 

tcg gga tcc gcc tca cac ctg cag gcc acg gcg ccg ctg ctg cac ccc act cag 

acc ccg cag ccg cat cac cac cac cac cat cac ggc ggc ggg ggc gcc ccg gtg 

agc gcg ggg acg att ttc gct agc 

TAAGTCGACGGTACCTGGAGCACAAGACTGGCCTCATGGGCCTTCCGCTCACTGCCCGCTTTCCAGTCGGGAA

ACCTGTCGTGCCAGCTGCATTAACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCT

CACTGACTCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAGCAAAAGGCCA

GGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCG

ACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC

GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGC

TTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGA

ACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGAC

TTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT

TGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTAC

CTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGC

AAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTC

AGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTT

AAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTA
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ATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGA

TAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAACCACGCTCACCGGC

TCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCC

TCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTG

TTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACG

ATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTC

AGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCAT

CCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAG

TTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGA

AAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTG

CACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGC

CGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGC

ATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTC

CGCGCACATTTCCCCGAAAAGTGCCAC 
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4.1.4 pCAGG (6,407 bp) 

 
TAGTTATTTCTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCC

ATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCA

TTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGACT

ATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAA

TGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATC

TACGTATTAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCC

CCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGGGGGG

GGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCA

ATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAG

CGCGCGGCGGGCGGGAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCCGCCCGCCC

CGGCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGC

GCTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTAAAGGGCTCCGGGAGGGCCCTTT

GTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCCGCGTGCGGCCCGCGCTG

CCCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGC

CGGGGGCGGTGCCCCGCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGG

GGTGAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGC

ACGGCCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGCCGTGCCGGGCGGGGGGTGGCG

GCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCC

GGAGCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCA

GGGACTTCCTTTGTCCCAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCG

GGCGAAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCC

CTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGGGGACGGGGCAGGGCGGGGTT

CGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTAACCATGTTCATGCCTTCTTCTTTTTCCTACAG

CTCCTGGGCAACGTGCTGGTTGTTGTGCTGTCTCATCATTTTGGCAAAGAATTCTGCAGTCGACGGTACCGCG

GGCCCGGGATCCGCCCCTCTCCCTCCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTG

TGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCT

GTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGA

AGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCC

CCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCC

CAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGC

TGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGT

TTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGA

TAATATGGCCACAACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTG

GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGA

CCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGG

CGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGC

TACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGG

GCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAA

GCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAAC

TTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCG

GCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGA

GAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTAC

AAGTAAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAA

CCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCT

TATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTT

GTGGTTTGTCCAAACTCATCAATGTATCTTAAGGCGTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGT

TAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGA

ATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAAC

GTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGG

GGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCC

GGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTC

ACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGG

GAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA

ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGCTGTGGAATGTGT

GTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTC

AGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCA
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GCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCC

ATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTG

AGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCGTTTCGCATGAT

TGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAA

CAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGA

CCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGT

TCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGG

CAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGC

ATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGAT

GGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCC

AGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCA

TGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACAT

AGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGT

ATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGG

GTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAA

AGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGT

TCTTCGCCCACCCTAGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGAC

GGCAATAAAAAGACAGAATAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGC

TGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCC

ACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCCTCAGG

TTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTT

GATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCA

AAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGC

GGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATA

CCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACC

TCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAG

ACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGA

ACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGG

CGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTG

GTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGG

CGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACA

TGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCATGCAT 
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4.1.5 pCAGG-DLX2 (7,622 bp) 

 
TAGTTATTTCTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATT

AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGC

TGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGC

CAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGC

AGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGG

CCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCT

ACGTATTAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCC

CCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGC

AGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCG

GGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTT

CCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG

GAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCCGCCCGCCCCG

GCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGC

TGTAATTAGCGCTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTA

AAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTG

TGTGCGTGGGGAGCGCCGCGTGCGGCCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGC

GGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCC

GCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGT

GAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAG

TTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGC

CGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCC

GGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGC

GAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCC

CAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGCG

AAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCC

GCCGTCCCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGG

GGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTA

ACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTGTTGTGCT

GTCTCATCATTTTGGCAAAGAATTCTGCAGTCGACGAATTCAGCGCTCTCGAGACCGGTGC

CGCCATGGGAGGATCCCAGTGTACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAG

AGCAACCCAGGTCCCAGATCTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGG

AGAATCCCGGCCCTTCTAGAGCCACGAAGCAAGCAGGAGATGTTGAAGAAAACCCCGGTCC

T 

gct agc ATG act gga gtc ttt gac agt cta gtg gct gat atg cac 

tcg acc cag atc gcc gcc tcc agc acg tac cac cag cac cag cag 

ccc ccg agc ggc ggc ggc gcc ggc ccg ggt ggc aac agc agc agc 

agc agc agc ctc cac aag ccc cag gag tcg ccc acc ctt ccg gtg 

tcc acc gcc acc gac agc agc tac tac acc aac cag cag cac ccg 

gcg ggc ggc ggc ggc ggc ggg ggc tcg ccc tac gcg cac atg ggt 

tcc tac cag tac caa gcc agc ggc ctc aac aac gtc cct tac tcc 

gcc aag agc agc tat gac ctg ggc tac acc gcc gcc tac acc tcc 

tac gct ccc tat gga acc agt tcg tcc cca gcc aac aac gag cct 

gag aag gag gac ctt gag cct gaa att cgg ata gtg aac ggg aag 

cca aag aaa gtc cgg aaa ccc cgc acc atc tac tcc agt ttc cag 

ctg gcg gct ctt cag cgg cgt ttc caa aag act caa tac ttg gcc 

ttg ccg gag cga gcc gag ctg gcg gcc tct ctg ggc ctc acc cag 
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act cag gtc aaa atc tgg ttc cag aac cgc cgg tcc aag ttc aag 

aag atg tgg aaa agt ggt gag atc ccc tcg gag cag cac cct ggg 

gcc agc gct tct cca cct tgt gct tcg ccg cca gtc tca gcg ccg 

gcc tcc tgg gac ttt ggt gtg ccg cag cgg atg gcg ggc ggc ggt 

ggt ccg ggc agt ggc ggc agc ggc gcc ggc agc tcg ggc tcc agc 

ccg agc agc gcg gcc tcg gct ttt ctg ggc aac tac ccc tgg tac 

cac cag acc tcg gga tcc gcc tca cac ctg cag gcc acg gcg ccg 

ctg ctg cac ccc act cag acc ccg cag ccg cat cac cac cac cac 

cat cac ggc ggc ggg ggc gcc ccg gtg agc gcg ggg acg att ttc 

gct agc 

TAAGTCGACGGTACCGCGGGCCCGGGATCCGCCCCTCTCCCTCCCCCCCCCCTAACGTTAC

TGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATA

TTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTC

CTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGC

AGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGG

AACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTG

CAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATG

GCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATG

GGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAAC

GTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAATATGG

CCACAACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGA

GCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCC

ACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGC

CCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT

GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC

TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCC

TGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCA

CAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAC

GGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCG

ACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTA

CCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTG

CTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCG

GCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAA

AACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACT

TGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAA

AGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGC

GTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCA

TTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGA

TAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAA

CGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAA

TCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCC

GATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAA

AGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCC

GCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGCG

GAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA

ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGC

TGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTAT

GCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCA
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GGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTC

CGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAAT

TTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGA

GGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCG

TTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGC

TATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCT

GTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAA

CTGCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTG

TGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCA

GGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATG

CGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCA

TCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGA

GCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGC

GAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCC

GCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGC

GTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTG

CTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGT

TCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCA

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGG

ACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCTAG

GGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCA

ATAAAAAGACAGAATAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGT

CCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGT

TTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAAC

GTCGGGGCGGCAGGCCCTGCCATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAA

AACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAA

AATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGA

TCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGC

TACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGG

CTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCAC

TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTG

CTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAA

GGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACC

TACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGA

GAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCT

TCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG

CGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGG

CCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATC

CCCTGATTCTGTGGATAACCGTATTACCGCCATGCAT 

  



                                                                                                                                          Appendix 4.1 

 350 

4.1.6 pCAGG-MASH1 (7,346 bp) 

 
TAGTTATTTCTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATT

AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGC

TGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGC

CAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGC

AGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGG

CCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCT

ACGTATTAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCC

CCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGC

AGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCG

GGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTT

CCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG

GAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCCGCCCGCCCCG

GCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGC

TGTAATTAGCGCTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTA

AAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTG

TGTGCGTGGGGAGCGCCGCGTGCGGCCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGC

GGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCC

GCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGT

GAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAG

TTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGC

CGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCC

GGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGC

GAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCC

CAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGCG

AAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCC

GCCGTCCCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGG

GGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTA

ACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTGTTGTGCT

GTCTCATCATTTTGGCAAAGAATTCTGCAGTCGACGAATTCAGCGCTCTCGAGACCGGTGC

CGCCATGGGA  

gga tcc ATG gaa agc tct gcc aag atg gag agc ggc ggc gcc ggc 

cag cag ccc cag ccg cag ccc cag cag ccc ttc ctg ccg ccc gca 

gcc tgt ttc ttt gcc acg gcc gca gcc gcg gcg gcc gca gcc gcc 

gca gcg gca gcg cag agc gcg cag cag cag cag cag cag cag cag 

cag cag cag cag gcg ccg cag ctg aga ccg gcg gcc gac ggc cag 

ccc tca ggg ggc ggt cac aag tca gcg ccc aag caa gtc aag cga 

cag cgc tcg tct tcg ccc gaa ctg atg cgc tgc aaa cgc cgg ctc 

aac ttc agc ggc ttt ggc tac agc ctg ccg cag cag cag ccg gcc 

gcc gtg gcg cgc cgc aac gag cgc gag cgc aac cgc gtc aag ttg 

gtc aac ctg ggc ttt gcc acc ctt cgg gag cac gtc ccc aac ggc 

gcg gcc aac aag aag atg agt aag gtg gag aca ctg cgc tcg gcg 

gtc gag tac atc cgc gcg ctg cag cag ctg ctg gac gag cat gac 

gcg gtg agc gcc gcc ttc cag gca ggc gtc ctg tcg ccc acc atc 

tcc ccc aac tac tcc aac gac ttg aac tcc atg gcc ggc tcg ccg 

gtc tca tcc tac tcg tcg gac gag ggc tct tac gac ccg ctc agc 

ccc gag gag cag gag ctt ctc gac ttc acc aac tgg ttc gga tcc 
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CAGTGTACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCCA

GATCTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTTC

TAGAGCCACGAAGCAAGCAGGAGATGTTGAAGAAAACCCCGGTCCTGCTAGCTAAGTCGAC

GGTACCGCGGGCCCGGGATCCGCCCCTCTCCCTCCCCCCCCCCTAACGTTACTGGCCGAAG

CCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCT

TTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTC

TTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCT

GGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCA

CCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGG

CACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTC

AAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGAT

CTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCC

CCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAATATGGCCACAACCA

TGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGG

CGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGC

AAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCG

TGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCA

CGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAG

GACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACC

GCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGA

GTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAG

GTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACC

AGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCAC

CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTC

GTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCGACT

CTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCA

CACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTG

CAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTT

TTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGCGTAAATTGT

AAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAAC

CAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGA

GTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGG

GCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTT

TTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAG

CTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGG

CGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTT

AATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTA

TTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATA

AATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGCTGTGGAATG

TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCAT

GCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGT

ATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCC

CGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTAT

TTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTT

TTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCGTTTCGCATG

ATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCT

ATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCA

GGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGAC
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GAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACG

TTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCT

GTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTG

CATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAG

CACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGG

GCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCTC

GTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTG

GATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTAC

CCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGT

ATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAG

CGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTC

GATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCT

GGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCTAGGGGGAGGCT

AACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGA

CAGAATAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCT

GGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTT

TTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCG

GCAGGCCCTGCCATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAAAACTTCATT

TTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTA

ACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGA

GATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGG

TGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAG

AGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAAC

TCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTG

GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG

GTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAA

CTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGG

ACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGG

AAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTT

TTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTAC

GGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTC

TGTGGATAACCGTATTACCGCCATGCAT 
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4.1.7 pCAGG-DLX2/MASH1 (8,336 bp) 

 
TAGTTATTTCTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATT

AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGC

TGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGC

CAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGC

AGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGG

CCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCT

ACGTATTAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCC

CCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGC

AGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCG

GGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTT

CCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG

GAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCCGCCCGCCCCG

GCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGC

TGTAATTAGCGCTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTA

AAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTG

TGTGCGTGGGGAGCGCCGCGTGCGGCCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGC

GGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCC

GCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGT

GAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAG

TTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGC

CGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCC

GGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGC

GAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCC

CAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGCG

AAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCC

GCCGTCCCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGG

GGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTA

ACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTGTTGTGCT

GTCTCATCATTTTGGCAAAGAATTCTGCAGTCGACGAATTCAGCGCTCTCGAGACCGGTGC

CGCCATGGGA  

gga tcc ATG gaa agc tct gcc aag atg gag agc ggc ggc gcc ggc 

cag cag ccc cag ccg cag ccc cag cag ccc ttc ctg ccg ccc gca 

gcc tgt ttc ttt gcc acg gcc gca gcc gcg gcg gcc gca gcc gcc 

gca gcg gca gcg cag agc gcg cag cag cag cag cag cag cag cag 

cag cag cag cag gcg ccg cag ctg aga ccg gcg gcc gac ggc cag 

ccc tca ggg ggc ggt cac aag tca gcg ccc aag caa gtc aag cga 

cag cgc tcg tct tcg ccc gaa ctg atg cgc tgc aaa cgc cgg ctc 

aac ttc agc ggc ttt ggc tac agc ctg ccg cag cag cag ccg gcc 

gcc gtg gcg cgc cgc aac gag cgc gag cgc aac cgc gtc aag ttg 

gtc aac ctg ggc ttt gcc acc ctt cgg gag cac gtc ccc aac ggc 

gcg gcc aac aag aag atg agt aag gtg gag aca ctg cgc tcg gcg 

gtc gag tac atc cgc gcg ctg cag cag ctg ctg gac gag cat gac 

gcg gtg agc gcc gcc ttc cag gca ggc gtc ctg tcg ccc acc atc 

tcc ccc aac tac tcc aac gac ttg aac tcc atg gcc ggc tcg ccg 

gtc tca tcc tac tcg tcg gac gag ggc tct tac gac ccg ctc agc 

ccc gag gag cag gag ctt ctc gac ttc acc aac tgg ttc gga tcc 
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CAGTGTACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCCA

GATCTGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTTC

TAGAGCCACGAAGCAAGCAGGAGATGTTGAAGAAAACCCCGGTCCT 

gct agc ATG act gga gtc ttt gac agt cta gtg gct gat atg cac 

tcg acc cag atc gcc gcc tcc agc acg tac cac cag cac cag cag 

ccc ccg agc ggc ggc ggc gcc ggc ccg ggt ggc aac agc agc agc 

agc agc agc ctc cac aag ccc cag gag tcg ccc acc ctt ccg gtg 

tcc acc gcc acc gac agc agc tac tac acc aac cag cag cac ccg 

gcg ggc ggc ggc ggc ggc ggg ggc tcg ccc tac gcg cac atg ggt 

tcc tac cag tac caa gcc agc ggc ctc aac aac gtc cct tac tcc 

gcc aag agc agc tat gac ctg ggc tac acc gcc gcc tac acc tcc 

tac gct ccc tat gga acc agt tcg tcc cca gcc aac aac gag cct 

gag aag gag gac ctt gag cct gaa att cgg ata gtg aac ggg aag 

cca aag aaa gtc cgg aaa ccc cgc acc atc tac tcc agt ttc cag 

ctg gcg gct ctt cag cgg cgt ttc caa aag act caa tac ttg gcc 

ttg ccg gag cga gcc gag ctg gcg gcc tct ctg ggc ctc acc cag 

act cag gtc aaa atc tgg ttc cag aac cgc cgg tcc aag ttc aag 

aag atg tgg aaa agt ggt gag atc ccc tcg gag cag cac cct ggg 

gcc agc gct tct cca cct tgt gct tcg ccg cca gtc tca gcg ccg 

gcc tcc tgg gac ttt ggt gtg ccg cag cgg atg gcg ggc ggc ggt 

ggt ccg ggc agt ggc ggc agc ggc gcc ggc agc tcg ggc tcc agc 

ccg agc agc gcg gcc tcg gct ttt ctg ggc aac tac ccc tgg tac 

cac cag acc tcg gga tcc gcc tca cac ctg cag gcc acg gcg ccg 

ctg ctg cac ccc act cag acc ccg cag ccg cat cac cac cac cac 

cat cac ggc ggc ggg ggc gcc ccg gtg agc gcg ggg acg att ttc 

gct agc 

TAAGTCGACGGTACCGCGGGCCCGGGATCCGCCCCTCTCCCTCCCCCCCCCCTAACGTTAC

TGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATA

TTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTC

CTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGC

AGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGG

AACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTG

CAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATG

GCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATG

GGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAAC

GTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAATATGG

CCACAACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGA

GCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCC

ACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGC

CCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT

GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC

TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCC

TGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCA

CAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAC

GGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCG

ACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTA

CCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTG

CTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCG
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GCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAA

AACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACT

TGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAA

AGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGC

GTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCA

TTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGA

TAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAA

CGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAA

TCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCC

GATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAA

AGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCC

GCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGCG

GAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA

ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGC

TGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTAT

GCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCA

GGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTC

CGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAAT

TTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGA

GGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCG

TTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGC

TATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCT

GTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAA

CTGCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTG

TGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCA

GGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATG

CGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCA

TCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGA

GCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGC

GAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCC

GCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGC

GTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTG

CTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGT

TCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCA

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGG

ACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCTAG

GGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCA

ATAAAAAGACAGAATAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGT

CCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGT

TTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAAC

GTCGGGGCGGCAGGCCCTGCCATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAA

AACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAA

AATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGA

TCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGC

TACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGG

CTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCAC

TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTG

CTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAA
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GGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACC

TACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGA

GAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCT

TCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG

CGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGG

CCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATC

CCCTGATTCTGTGGATAACCGTATTACCGCCATGCAT 
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4.1.8 pCAGG-DLX2/GSX2 (8,540 bp) 

 
TAGTTATTTCTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATT

AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGC

TGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGC

CAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGC

AGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGG

CCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCT

ACGTATTAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCC

CCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGC

AGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCG

GGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTT

CCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG

GAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCCGCCCGCCCCG

GCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGC

TGTAATTAGCGCTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTA

AAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTG

TGTGCGTGGGGAGCGCCGCGTGCGGCCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGC

GGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCC

GCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGT

GAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAG

TTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGC

CGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCC

GGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGC

GAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCC

CAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGCG

AAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCC

GCCGTCCCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGG

GGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTA

ACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTGTTGTGCT

GTCTCATCATTTTGGCAAAGAATTCTGCAGTCGACGAATTCAGCGCTCTCGAGACCGGTGC

CGCCATGGGAGGATCCCAGTGTACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAG

AGCAACCCAGGTCCC 

aga tct ATG tcg cgc tcc ttc tat gtc gac tcg ctc atc atc aag 

gac acc tca cgg cct gcg ccc tcg ctg cct gaa ccg cac ccc ggg 

ccg gat ttc ttc atc ccg ctt ggc atg ccg ccc cca ttg gtg atg 

tcc gtg tcc ggc ccc ggc tgc ccg tcc cgc aag agc ggc gcg ttc 

tgc gtg tgc cct ctc tgc gtc act tcg cac ctg cac tcc tct cgg 

ggg tct gtg ggc gcc ggc agc ggg ggc gca ggg gcc ggg gtt acc 

ggg gcc gga ggc agt ggg gtg gca ggg gcc gca ggg gca ctg cct 

ctg ctt aag agc cag ttc tct tcg gct cct ggg gac gcg cag ttt 

tgc ccg cgg gtg aac cat gcg cat cat cac cac cac ccg ccg cag 

cac cac cat cac cat cat cag ccc cag cag cct ggc tcg gcc gcg 

gcg gcg gca gca gca gca gcg gcg gcg gcg gcc gcg gcg gcc ttg 

ggg cac ccg cag cac cac gca cct gtc tgc acc gcc acc acc tac 

aac gtg gcg gac ccg cgg aga ttc cac tgc ctc acc atg gga ggc 

tct gac gcc agc cag gta ccc aat ggc aag agg atg agg acg gcg 

ttc act agc acg caa ctc ctg gag ctg gag aga gaa ttc tct tcc 
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aac atg tac ctg tct cga ctc cgg agg att gaa atc gcc act tac 

ctg aac ctg tcg gag aag cag gtg aaa atc tgg ttt cag aac cgc 

cga gtg aag cac aag aag gag ggg aag ggc acg cag agg aac agt 

cac gcg ggc tgc aag tgc gtc ggg agc cag gtg cac tac gcg cgc 

tcc gag gat gag gac tcc ctg tcg ccg gcc tca gcc aac gat gac 

aag gag att tcc ccc tta aga tct 

GAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTTCTAGAG

CCACGAAGCAAGCAGGAGATGTTGAAGAAAACCCCGGTCCT 

gct agc ATG act gga gtc ttt gac agt cta gtg gct gat atg cac 

tcg acc cag atc gcc gcc tcc agc acg tac cac cag cac cag cag 

ccc ccg agc ggc ggc ggc gcc ggc ccg ggt ggc aac agc agc agc 

agc agc agc ctc cac aag ccc cag gag tcg ccc acc ctt ccg gtg 

tcc acc gcc acc gac agc agc tac tac acc aac cag cag cac ccg 

gcg ggc ggc ggc ggc ggc ggg ggc tcg ccc tac gcg cac atg ggt 

tcc tac cag tac caa gcc agc ggc ctc aac aac gtc cct tac tcc 

gcc aag agc agc tat gac ctg ggc tac acc gcc gcc tac acc tcc 

tac gct ccc tat gga acc agt tcg tcc cca gcc aac aac gag cct 

gag aag gag gac ctt gag cct gaa att cgg ata gtg aac ggg aag 

cca aag aaa gtc cgg aaa ccc cgc acc atc tac tcc agt ttc cag 

ctg gcg gct ctt cag cgg cgt ttc caa aag act caa tac ttg gcc 

ttg ccg gag cga gcc gag ctg gcg gcc tct ctg ggc ctc acc cag 

act cag gtc aaa atc tgg ttc cag aac cgc cgg tcc aag ttc aag 

aag atg tgg aaa agt ggt gag atc ccc tcg gag cag cac cct ggg 

gcc agc gct tct cca cct tgt gct tcg ccg cca gtc tca gcg ccg 

gcc tcc tgg gac ttt ggt gtg ccg cag cgg atg gcg ggc ggc ggt 

ggt ccg ggc agt ggc ggc agc ggc gcc ggc agc tcg ggc tcc agc 

ccg agc agc gcg gcc tcg gct ttt ctg ggc aac tac ccc tgg tac 

cac cag acc tcg gga tcc gcc tca cac ctg cag gcc acg gcg ccg 

ctg ctg cac ccc act cag acc ccg cag ccg cat cac cac cac cac 

cat cac ggc ggc ggg ggc gcc ccg gtg agc gcg ggg acg att ttc 

gct agc 

TAAGTCGACGGTACCGCGGGCCCGGGATCCGCCCCTCTCCCTCCCCCCCCCCTAACGTTAC

TGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATA

TTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTC

CTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGC

AGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCTTTGCAGGCAGCGG

AACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCTG

CAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATG

GCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATG

GGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAAC

GTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAATATGG

CCACAACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGA

GCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCC

ACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGC

CCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT

GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATC

TTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCC

TGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCA
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CAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAAC

GGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCG

ACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTA

CCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTG

CTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCG

GCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAA

AACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACT

TGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAA

AGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGC

GTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCA

TTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGA

TAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAA

CGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAA

TCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCC

GATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAA

AGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCC

GCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGCG

GAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA

ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGC

TGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTAT

GCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCA

GGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTC

CGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAAT

TTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGA

GGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCG

TTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGC

TATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCT

GTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAA

CTGCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTG

TGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCA

GGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATG

CGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCA

TCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGA

GCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGC

GAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCC

GCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGC

GTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTG

CTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGT

TCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCA

CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGG

ACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCTAG

GGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCA

ATAAAAAGACAGAATAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGT

CCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGT

TTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAAC

GTCGGGGCGGCAGGCCCTGCCATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAA

AACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAA

AATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGA



                                                                                                                                          Appendix 4.1 

 360 

TCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGC

TACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGG

CTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCAC

TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTG

CTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAA

GGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACC

TACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGA

GAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCT

TCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAG

CGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGG

CCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATC

CCCTGATTCTGTGGATAACCGTATTACCGCCATGCAT 
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4.1.9 pCAGG-DLX2/MASH1/GSX2 (9,254 bp) 

 
TAGTTATTTCTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATT

AGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGC

TGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGC

CAATAGGGACTTTCCATTGACGTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGC

AGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGG

CCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCT

ACGTATTAGTCATCGCTATTACCATGGGTCGAGGTGAGCCCCACGTTCTGCTTCACTCTCC

CCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGC

AGCGATGGGGGCGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCG

GGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAGTTT

CCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGG

GAGTCGCTGCGTTGCCTTCGCCCCGTGCCCCGCTCCGCGCCGCCTCGCGCCGCCCGCCCCG

GCTCTGACTGACCGCGTTACTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGC

TGTAATTAGCGCTTGGTTTAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTA

AAGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTG

TGTGCGTGGGGAGCGCCGCGTGCGGCCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGC

GGCGCGGGGCTTTGTGCGCTCCGCGTGTGCGCGAGGGGAGCGCGGCCGGGGGCGGTGCCCC

GCGGTGCGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGT

GAGCAGGGGGTGTGGGCGCGGCGGTCGGGCTGTAACCCCCCCCTGCACCCCCCTCCCCGAG

TTGCTGAGCACGGCCCGGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGCGGGGCTCGC

CGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCC

GGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGC

GAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCC

CAAATCTGGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCTAGCGGGCGCGGGCG

AAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCC

GCCGTCCCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGACGGCTGCCTTCGGGGG

GGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTA

ACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGCTGGTTGTTGTGCT

GTCTCATCATTTTGGCAAAGAATTCTGCAGTCGACGAATTCAGCGCTCTCGAGACCGGTGC

CGCCATGGGA  

gga tcc ATG gaa agc tct gcc aag atg gag agc ggc ggc gcc ggc 

cag cag ccc cag ccg cag ccc cag cag ccc ttc ctg ccg ccc gca 

gcc tgt ttc ttt gcc acg gcc gca gcc gcg gcg gcc gca gcc gcc 

gca gcg gca gcg cag agc gcg cag cag cag cag cag cag cag cag 

cag cag cag cag gcg ccg cag ctg aga ccg gcg gcc gac ggc cag 

ccc tca ggg ggc ggt cac aag tca gcg ccc aag caa gtc aag cga 

cag cgc tcg tct tcg ccc gaa ctg atg cgc tgc aaa cgc cgg ctc 

aac ttc agc ggc ttt ggc tac agc ctg ccg cag cag cag ccg gcc 

gcc gtg gcg cgc cgc aac gag cgc gag cgc aac cgc gtc aag ttg 

gtc aac ctg ggc ttt gcc acc ctt cgg gag cac gtc ccc aac ggc 

gcg gcc aac aag aag atg agt aag gtg gag aca ctg cgc tcg gcg 

gtc gag tac atc cgc gcg ctg cag cag ctg ctg gac gag cat gac 

gcg gtg agc gcc gcc ttc cag gca ggc gtc ctg tcg ccc acc atc 

tcc ccc aac tac tcc aac gac ttg aac tcc atg gcc ggc tcg ccg 

gtc tca tcc tac tcg tcg gac gag ggc tct tac gac ccg ctc agc 

ccc gag gag cag gag ctt ctc gac ttc acc aac tgg ttc gga tcc 
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CAGTGTACTAATTATGCTCTCTTGAAATTGGCTGGAGATGTTGAGAGCAACCCAGGTCCC 

aga tct ATG tcg cgc tcc ttc tat gtc gac tcg ctc atc atc aag 

gac acc tca cgg cct gcg ccc tcg ctg cct gaa ccg cac ccc ggg 

ccg gat ttc ttc atc ccg ctt ggc atg ccg ccc cca ttg gtg atg 

tcc gtg tcc ggc ccc ggc tgc ccg tcc cgc aag agc ggc gcg ttc 

tgc gtg tgc cct ctc tgc gtc act tcg cac ctg cac tcc tct cgg 

ggg tct gtg ggc gcc ggc agc ggg ggc gca ggg gcc ggg gtt acc 

ggg gcc gga ggc agt ggg gtg gca ggg gcc gca ggg gca ctg cct 

ctg ctt aag agc cag ttc tct tcg gct cct ggg gac gcg cag ttt 

tgc ccg cgg gtg aac cat gcg cat cat cac cac cac ccg ccg cag 

cac cac cat cac cat cat cag ccc cag cag cct ggc tcg gcc gcg 

gcg gcg gca gca gca gca gcg gcg gcg gcg gcc gcg gcg gcc ttg 

ggg cac ccg cag cac cac gca cct gtc tgc acc gcc acc acc tac 

aac gtg gcg gac ccg cgg aga ttc cac tgc ctc acc atg gga ggc 

tct gac gcc agc cag gta ccc aat ggc aag agg atg agg acg gcg 

ttc act agc acg caa ctc ctg gag ctg gag aga gaa ttc tct tcc 

aac atg tac ctg tct cga ctc cgg agg att gaa atc gcc act tac 

ctg aac ctg tcg gag aag cag gtg aaa atc tgg ttt cag aac cgc 

cga gtg aag cac aag aag gag ggg aag ggc acg cag agg aac agt 

cac gcg ggc tgc aag tgc gtc ggg agc cag gtg cac tac gcg cgc 

tcc gag gat gag gac tcc ctg tcg ccg gcc tca gcc aac gat gac 

aag gag att tcc ccc tta aga tct 

GAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTTCTAGAG

CCACGAAGCAAGCAGGAGATGTTGAAGAAAACCCCGGTCCT  
gct agc atg act gga gtc ttt gac agt cta gtg gct gat atg cac tcg acc cag 

atc gcc gcc tcc agc acg tac cac cag cac cag cag ccc ccg agc ggc ggc ggc 

gcc ggc ccg ggt ggc aac agc agc agc agc agc agc ctc cac aag ccc cag gag 

tcg ccc acc ctt ccg gtg tcc acc gcc acc gac agc agc tac tac acc aac cag 

cag cac ccg gcg ggc ggc ggc ggc ggc ggg ggc tcg ccc tac gcg cac atg ggt 

tcc tac cag tac caa gcc agc ggc ctc aac aac gtc cct tac tcc gcc aag agc 

agc tat gac ctg ggc tac acc gcc gcc tac acc tcc tac gct ccc tat gga acc 

agt tcg tcc cca gcc aac aac gag cct gag aag gag gac ctt gag cct gaa att 

cgg ata gtg aac ggg aag cca aag aaa gtc cgg aaa ccc cgc acc atc tac tcc 

agt ttc cag ctg gcg gct ctt cag cgg cgt ttc caa aag act caa tac ttg gcc 

ttg ccg gag cga gcc gag ctg gcg gcc tct ctg ggc ctc acc cag act cag gtc 

aaa atc tgg ttc cag aac cgc cgg tcc aag ttc aag aag atg tgg aaa agt ggt 

gag atc ccc tcg gag cag cac cct ggg gcc agc gct tct cca cct tgt gct tcg 

ccg cca gtc tca gcg ccg gcc tcc tgg gac ttt ggt gtg ccg cag cgg atg gcg 

ggc ggc ggt ggt ccg ggc agt ggc ggc agc ggc gcc ggc agc tcg ggc tcc agc 

ccg agc agc gcg gcc tcg gct ttt ctg ggc aac tac ccc tgg tac cac cag acc 

tcg gga tcc gcc tca cac ctg cag gcc acg gcg ccg ctg ctg cac ccc act cag 

acc ccg cag ccg cat cac cac cac cac cat cac ggc ggc ggg ggc gcc ccg gtg 

agc gcg ggg acg att ttc gct agc 

TAAGTCGACGGTACCGCGGGCCCGGGATCCGCCCCTCTCCCTCCCCCCCCCCTAACGTTACTGGCCGAAGCCG

CTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGG

GCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAG

GTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACCCT

TTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTGTATAAGATACACCT

GCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAA

GCGTATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTG

CACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTC

CTTTGAAAAACACGATGATAATATGGCCACAACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTG

CCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATG
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CCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGT

GACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAG

TCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCG

CCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGG

CAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAG

AACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACC

AGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCT

GAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTC

GGCATGGACGAGCTGTACAAGTAAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGT

TTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTT

AACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTT

TTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGCGTAAATTGTAAGCGTTAATA

TTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAAT

CCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTA

AAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCAC

CCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAG

AGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCG

CTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGT

CAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTA

TCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGA

ACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAG

CATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGC

ATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTT

CCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGA

GCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATG

AGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTC

GGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCC

CGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGGCAGCGCGGCTATCGTG

GCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTA

TTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTG

ATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGA

GCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCG

CCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATG

CCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGC

GGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGC

TTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCT

TCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCC

ACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCG

GGGATCTCATGCTGGAGTTCTTCGCCCACCCTAGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGA

AGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGC

GGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTT

CTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGG

CCCTGCCATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATC

TAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAG

ACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAA

AAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGC

TTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTG

TAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCT

TACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA

CAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGC

TTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCT

TCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTG

TGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTT

GCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCATGCA

T 
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5.1 Negative and background control for immunocytochemistry 

A) Negative control: 

 

 

 

Β-TUBULIN III DAPI 

DAPI 

DAPI 

DARPP-32 

CTIP2 Nuclear Staining 

hESCs (H9): 

GFP MASH1 DAPI 

DLX2 DAPI 
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B) Background control (secondary antibodies only): 

 

 

 

FOXG1 DAPI 

hESC derived nrNPCs at PdD10: 

GSX2 DAPI 

Primary cells: MIidbrain 

DAPI Anti-mouse 594  Anti-rabbit 488 

Anti-rabbit 594  Anti-rat 350 Nuclear Staining  


