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The book on history of tribology by Kragelsky and
Shchedrov [1] calls attention to pioneering works on
tribological problems by da Vinci, Amontons, Euler,
Kotelnikov and Coulomb. These historical studies are
referred to by Dowson in his book on the history of
tribology [2] which is well known amongst English
speaking scientists. These books, and papers that have
been drawn based on them, describe the development
of tribology in various countries. In particular, they
gave credit to some tribological studies in Russia, e.g.
Euler and his former student Kotelnikov [3] are cred-
ited with the use of the Greek mu (μ) to represent
the friction coefficient (see, e.g. Blau [4]). It is worth-
while for the tribology community to be made aware
of some other important contributions that have not
been published in English, and this contribution seeks
to achieve this for Zhuravlev’s paper.

The statistical modelling of a nominally flat rough
surfaces by independent spherical, elastic protuber-
ances with a random height distribution that are
deformed according to Hertz, is now classic. Assum-
ing that the protuberances have the same radii, but
various heights (so that the protuberance number at a
given height increases with depth), the result that the
true contact area is approximately proportional to the
external compressing force can be obtained. A number
of publications and text books on tribology have asso-
ciated this result with the Greenwood and Williamson
model of 1966 [5]. In fact, this model for purely elastic
contact was developed by Zhuravlev and published in
1940 [6]. A similar scheme developed by Greenwood
and Williamson [5] modifies the Zhuravlev model
by considering elasto-plastic transition of protuber-
ances. Although Zhuravlev’s results were discussed
in a number of Russian books on contact mechan-
ics and tribology (e.g. Kragelsky and Shchedrov [1],

Demkin [7], Kragelsky et al. [8], Galin [9], Sviridenok
et al. [10], Argatov and Dmitriev [11]), his paper is
rarely cited in technical literature published in English.
To the best of the author’s knowledge, by 2001 the
paper had only been cited three times in English
language publications, namely by Johnson [12],
Greenwood [13] and Adams and Nosonovsky [14]. In
2001 the author translated the paper into English and
started to publicise it to the tribology community (see,
e.g. [15]).

Zuravlev did not continue his study in the field
started in the paper. Unfortunately little is known of
his fate. He was a young researcher who worked in
the Tajik capital Dushanbe which at that time was
called as Stalinabad. His supervisor was Davidenkov,
a member of the USSR Academy of Sciences and a
staff member of the Ioffe Physico-Technical Institute.
Kragelsky reportedly received uncertain information
that Zhuravlev had perished during the Second World
War (M. N. Dobychin, 2004, personal communica-
tion). The Zhuravlev paper was published in Zhurnal
Tekhnicheskoi Fiziki (Journal of Technical Physics).The
journal was founded by the Ioffe Physico-Technical
Institute of the USSR Academy of Sciences in 1931.
In 1956 the Journal was started to be translated
into English first as Soviet Physics – Technical Physics,
and then as Technical Physics. Currently this jour-
nal contains practical information on all aspects of
applied physics, especially on molecular physics, sur-
face physics, instrumentation and measurement tech-
niques. When Technical Physics was founded, it was
the leading Russian journal not only in applied physics
but also in theoretical mechanics. However, the centre
of gravity of mechanical publications has since moved
to Journal of Applied Mathematics and Mechanics
(PMM), another journal of the USSR Academy of
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Sciences, was founded in 1937. This may well be the
reason that the Zhuravlev paper has not been more
widely recognized by the Tribology community.

Kragelsky [16] noted that instead of protuberances
that are deformed according to Hertz, Zhuravlev could
consider flat-ended protuberances. Indeed, the model
of multiple contact between flat-ended protuber-
ances and an elastic half-space was introduced by
Goryacheva and Dobychin [17] (see also Galin [9]
and Goryacheva [18]). This approach was also used
by Borodich and Mosolov [19] in application to frac-
tal rough surfaces. The interactions between con-
tact spots for both flat-ended cylindrical protuber-
ances and spherical protuberances were studied by
Goryacheva [18].

Kragelsky [16] also noted that the height distribution
of protuberances is approximately Gaussian rather
than the linear distribution considered by Zhuravlev.
However, Kragelsky did not use the Gaussian distri-
bution in his calculations. Greenwood [13] notes that
the Greenwood and Williamson model [5] improves on
Zhuravlev by assuming a Gaussian height distribution
(still of identical spherical caps). However, as can be
seen from [5], they considered an exponential distri-
bution of the sphere tops as an approximation to the
Gaussian distribution.

The other significant improvement by Greenwood
and Williamson is that Zhuravlev did not consider the
question of whether the deformation of a protuber-
ance will be elastic or plastic, whereas including this
consideration leads to a new plasticity index [5]

� = E∗

H

√
σ

R

where E∗ is the contact elastic modulus of the two
bodies, H is the hardness, σ is the standard deviation
of the summit heights and R is the radius of curva-
ture of the protuberances. The physical sense of � is
as follows [13]: if � = 1 then about 1 per cent of the
surface is plastically deformed, if � = 0.9, then there
is hardly any plastic deformation, while for � = 1.1,
the proportion of plastic area is much more than
1 per cent.

So far, only contact aspects of the Zhuravlev paper
have been discussed. However, as is clear from its title,
the main purpose of the paper was to consider the fric-
tion law. Giving a high appraisal of Zhuravlev paper,
Kragelsky and Shchedrov [1] also made the following
two criticisms: (a) Zhuravlev assumed that the specific
frictional force is constant, i.e. μ = Ff /P, while only
one term of two in the Amontons–Coulomb law does
not depend on the pressure; and (b) the linear distribu-
tion of spherical cap heights is not observed in reality.
The latter criticism was also made by Demkin [7].
Indeed, it is known [1, 2, 18] that while the Amontons
law for the friction force Ff is Ff = μP, the Coulomb

law suggests that the total friction force could be
represented as the sum of a constant force (A) depend-
ing on sticking of surfaces and a force that depends on
the load P: Ff = A + μP. Derjaguin [20] gave a molec-
ular meaning to the Coulomb’s force A. He wrote Ff =
μ(P + Sp0) where S is the true area of the interacting
surface, and p0 is the specific attractive force. Hence,
the term A = μSp0 represents the tangential compo-
nent of the force of molecular interactions. Zhuravlev
actually considered the Amontons law rather than the
Amontons–Coulomb law. However, if adhesive forces
can be neglected then the Amontons–Coulomb law
reduces to the Amontons law and Zhuravlev was the
first to offer an explanation of this phenomenon. Con-
cerning the criticism on linear distribution of the
protuberance heights, it is worthwhile to note that
Zhuravlev gave a general expression for the true con-
tact area, as can be seen from the paper (see equation
(8)), and he considered the linear distribution as an
approximation that allows analytical integration of the
expression. Zhuravlev also noted that his preliminary
calculations showed that other distribution functions
may give better results.

In addition to the comments mentioned above,
Kragelsky noted that although the limits of integration
were not taken accurately by Zhuravlev, this does not
affect the final results from a practical point of view.
The question of integration was discussed recently by
Argatov and Dmitriev [11].

The idea of offering a translation of Zhuravlev’s
paper for publication and to write this introduction
was influenced by Rossmanith’s introduction [21] to
his translation of Wieghardt’s pioneering paper on
fracture mechanics [22]. It is interesting to note that
before Rossmanith’s translation was published, only
German and Russian researchers had referred to the
paper (see, e.g. [23]). One can see that the history of
science is a very difficult task. However, studies of the
history of science lead to better understanding of the
development of ideas and help to avoid repetitions of
errors. The author hopes that this is only the first his-
torical paper to appear in the Journal of Engineering
Tribology and that one day everyone will be able to
read in English the famous historical papers by C. Cat-
taneo, B. V. Derjaguin, and other great scientists who
worked in the field of tribology.
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On the question of theoretical justification of the
Amontons–Coulomb law for friction of unlubricated
surfaces
V A Zhuravlev

First published in Zh. Tekh. Fiz. (Journal of Technical Physics), 1940, vol. 10, issue 17, pp. 1447–1452.

Translated from the Russian by F. M. Borodich.

1
The laws of friction, first formulated by Amontons [1]
and later discovered independently by Coulomb [2],
have not yet received a full theoretical justification
despite the great practical importance of friction
phenomena (this statement relates only to dry fric-
tion, i.e. friction of unlubricated surfaces. For fric-
tion of lubricated surfaces, there is a hydrodynamic
theory due mainly to Reynolds). It seems that the
most substantiated among the few suggested theo-
ries of dry friction is that presented by Tomlinson [3]

(there is a review of theory of friction in a paper by
Kontorova (journal ‘Uspekhi fizicheskikh nauk’, 1937,
XVIII, issue 3)). Tomlinson sees cohesion between
molecules of the rubbing solids as the cause of the
frictional force. He considers the process of friction as
successive decohesion of contacting molecules and
creation of new molecular contacts. In practice, rub-
bing surfaces are almost never ideally smooth; so
that their contact is realized by a number of contacts
between separate surface ‘protuberances’. Assuming
that both the number of contacts between separate

JET176 © IMechE 2007 Proc. IMechE Vol. 221 Part J: J. Engineering Tribology

 at Cardiff University on April 4, 2012pij.sagepub.comDownloaded from 

http://pij.sagepub.com/


896 F M Borodich

molecules and the cohesion force are functions of
the true contact area, and calculating the area of
contact between two protuberances using the Hertz
theory of elastic contact between two balls, Tomlin-
son finds an expression for the coefficient of friction
up to a factor. He gives a satisfactory explanation for
the observed correlation between the coefficients of
friction and elastic constants of solids. However, as
shown by Kontorova [4], the Tomlinson theory has a
serious disadvantage. It follows from the theory that
the coefficient of friction must be inversely propor-
tional to the cube root of normal pressure whereas
in reality it is a constant independent of the load. In
Kontorova’s opinion the cause of this disagreement
between the Tomlinson theory and practice is that the
contacts between protuberances are elastic only for
small pressures, and the coefficient of friction must
indeed be inversely proportional to the cube root of
normal pressure for these conditions. However, the
character of contact changes for greater loads, as it
becomes plastic and ceases to depend on the pressure.

The cause of the independence between the coef-
ficient of friction and the pressure at plastic contacts
was not studied by Kontorova in detail. However, this
explanation is not very convincing. Indeed, if the valid-
ity of the Amontons–Coulomb law at large normal
pressures were caused by plastic deformations then
it would be unclear why Amontons’s law is valid for
brittle solids like glass.

An attempt to derive Amontons’s law theoretically,
based on somewhat different assumptions concern-
ing the nature of contact between rubbing surfaces is
given below.

2
Following Tomlinson, let us assume that rubbing

surfaces are covered by a number of protuberances.
However, we assume that the protuberances have var-
ious heights and the number of the protuberances
(or more precisely, the number of the summits) at a
specific height increases as the level of consideration
goes deeper into the rough surface. Upon pressing
two rough surfaces together, the highest protuber-
ances come into contact first, and they are deformed as
the compressive load increases, causing new, deeper
protuberances to come into contact.

Let us consider an arbitrary element of the area
of the compressed surfaces �σ . We will assume the
topography and the elastic properties of the surfaces
are the same and that the protuberances of the rough
surfaces are spherical and the radii are the same. How-
ever, the number of protuberances situated at different
levels will vary. Let the distribution of the protuber-
ance summits at various levels for the element �σ of a
rough surface be characterized by a function

n = n(ξ)

dn = n(ξ)dξ is the number of summits situated in the
layer dξ at depth ξ . The total number of protuberance
summits situated at various levels of the element �σ

from the highest summit to the level of depth x, is

N =
∫ x

0
n(ξ) dξ

Let a compressive force P act for the element �σ . Let
the compressing displacement between both surfaces
be equal to x (under the term ‘displacement’ here
and later on, we mean the relative approach between
two points of either solid situated at such distances
between the points that the compressive deformations
can be neglected). Since the surfaces are completely
the same, the compressing displacements x1 and x2 of
each surface are

x1 = x2 = x
2

Let us calculate the force P that has to act on the ele-
ment �σ to give the compressing displacement x. We
will assume that deformations are entirely elastic. The
force is composed of forces arising at separated con-
tacts between protuberances. The largest forces are at
contacts between the highest protuberances (ξ = 0)

because their displacements are the greatest.
For these we have from Hertz theory of elastic

contact between spheres

x = 3

√
9π2p2k2

2R
(1)

where x is the compressing displacement, p is the force
acting on a protuberance, R is the radius of the spher-
ical protuberance, k = (1 − ν2)/πE , ν is the Poisson
ratio and E is the Young’s modulus. Writing (1) in terms
of the force p, we have

p = 1
3π k

√
2R x3/2 (2)

We now consider a protuberance of one of the surfaces
(surface A), whose summit is situated at depth ξ1. In
the process of compression, it contacts the protuber-
ance of the other surface (surface B), whose summit is
situated at depth ξ2. If the compressing displacement
isx then the displacement of the contacting protu-
berances is x − (ξ1 + ξ2) because these protuberances
must have an approach displacement of ξ1 + ξ2 before
contact ensues. The force arising at the contact is
therefore

√
2R

3πk
[x − (ξ1 + ξ2)]3/2 (3)

We now consider a layer dξ1 of surface A situated at
depth ξ1. It will have n(ξ1)dξ1 of the protuberance
summits. Let us find the force corresponding to all
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protuberances whose summits are in this layer. As
shown above, at the contact between one of the protu-
berances of the layer and a protuberance of the layer
dξ2 situated at the depth ξ2, the force arising is

√
2R

3πk
[x − (ξ1 + ξ2)]3/2

The expected number of such contacts is equal to the
product of the number of summits in the layer dξ1 and
the probability of a summit of the layer dξ1 (surface A)
meeting a protuberance summit of the layer dξ2 of
surface B. The probability is equal to the ratio of the
number of summits in the layer dξ2to the total num-
ber of summits of the element �σ of surface B (FB:
There was a misprint in the original paper where the
expression was written (n(ξx) dξ2)/N ).

n(ξ2) dξ2

N

Thus the expected number of such contacts is

n(ξ1) dξ1
n(ξ2) dξ2

N

The corresponding force is equal to
√

2R
3πkN

[x − (ξ1 + ξ2)]3/2n(ξ1)n(ξ2) dξ1 dξ2 (4)

We obtain the force acting on all protuberances of the
surface A with summits in the layer dξ1 by adding
together expressions (4) for all active layers of sur-
face B. Thus, integrating (4) with respect to ξ2 from
0 to x/2 gives

∫ x/2

0

√
2R

3πkN
[x − (ξ1 + ξ2)]3/2n(ξ1)n(ξ2) dξ1 dξ2

=
√

2R
3πkN

∫ x/2

0
[x − (ξ1 + ξ2)]3/2n(ξ1)n(ξ2) dξ1 dξ2

(5)

Finally, to obtain the force acting on the element
�σ of surface A, we must sum the forces acting on its
various layers, i.e. integrate the above expression with
respect to ξ1 from 0 to x/2. Thus

P =
√

2R
3πkN

∫ x/2

0

∫ x/2

0
[x − (ξ1 + ξ2)]3/2n(ξ1)n(ξ2) dξ1 dξ2

(6)

Now we can calculate the true area of contact
between an element �σ of surface A and the corre-
sponding element �σ of surface B. This area is the
sum of contact areas for separate protuberances. From
the theory of elastic contact between two spheres, we
have the formula for the radius a of the contact region

between two spheres under compression

a = 3

√
3πkRp

4
(7)

The area of an elementary contact region �S is

�S = πa2 = π

(
3πkRp

4

)2/3

Let us express �S in terms of the compressing
displacement x using (1)

�S = π

(
3πkR

4

)2/3

p2/3

= π

(
3πkR

4

)2/3
(√

2R
3πk

)2/3

x = π Rx
2

At the contact between a protuberance of surface A
whose summit is situated at depth ξ1 and a protuber-
ance of surface B whose summit is situated at depth
ξ2, the contact area is

πR
2

[x − (ξ1 + ξ2)]

For computing the true contact area S of all protu-
berances of the element �σ , we use arguments com-
pletely analogous to those used above for computing
the force P. We thus obtain the contact area as

S = πR
2N

∫ x/2

0

∫ x/2

0
[x − (ξ1 + ξ2)]n(ξ1)n(ξ2) dξ1 dξ2 (8)

Let us assume that the number of contacts between
individual molecules of surfaces A and B is propor-
tional to the true contact area S. The frictional force
F must be proportional to the number of molecular
contacts, therefore, it will also be proportional to the
true contact area

F = αS (9)

where F is the frictional force, S is the true contact area,
and α is a coefficient depending on cohesive forces.

From (8) and (9) we obtain the following expression

F = απR
2N

∫ x/2

0

∫ x/2

0
[x − (ξ1 + ξ2)]n(ξ1)n(ξ2) dξ1 dξ2

(10)

Now we can obtain the relation between the
frictional force F and the force of normal compres-
sion P. For this purpose, we should exclude x from
expressions (6) and (10).

In order to eliminate x it is first necessary to
evaluate the integrals in these equations. However,
integrating (6) and (10), requires knowledge of the
function n = n(ξ), i.e. we should know the distribu-
tion of depths for protuberances of the rough surfaces.
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Determination of the form of the function n = n(ξ) is
a rather difficult procedure. So in the first instance we
will approximate it as a linear function, i.e. we put

n(ξ) = βξ

where β is a proportionality coefficient. Then (6) and
(10) become

F = απRβ2

2N

∫ x/2

0

∫ x/2

0
[x − (ξ1 + ξ2)] ξ1ξ2 dξ1 dξ2 (11)

and

P =
√

2Rβ2

3πkN

∫ x/2

0

∫ x/2

0
[x − (ξ1 + ξ2)]3/2ξ1ξ2 dξ1 dξ2

(12)

Integrating (12), we obtain

P =
√

2Rβ2

3πkN
C1x11/2 (13)

Integrating (11), we obtain

F = απRβ2

2N
C2x5 (14)

where C1 and C2 are constants.
Eliminating x from (13) and (14) and combining the

constants into a single factor C , we have

F = C
αR1/11β2

N 1/11
k10/11P10/11 (15)

or taking into account that k = ((1 − ν2)/πE),

F = C
αR1/11β2

N 1/11

(
1 − ν2

πE

)10/11

P10/11

= C
αR1/11β2

N 1/11

(
1 − ν2

πE

)10/11

P−(1/11)P (16)

It follows from the above expression that the rel-
ationbetween the normal compressing force and the
frictional force is close to linear (10/11 = 0.909 ∼= 1),
i.e. Amontons’s law is JUSTIFIED in a general way.

For the coefficient of friction μ, we obtain from (16)

μ = C
αR1/11β2

N 1/11

(
1 − ν2

πE

)10/11

P−(1/11)

Hence, the coefficient of friction μ is inversely pro-
portional to the eleventh root of the load, i.e. its
dependence on the load is very small.

The dependence of the coefficient of friction
on the elastic constants is defined by the factor

((1 − ν2)/πE)10/11. If the above arguments are valid
then the ratio ((1 − ν2)/πE)10/11/μ should be approxi-
mately constant for various materials.

The numerical values of the ratio ((1 − ν2)/πE)10/11/μ
for some materials are presented in Table 1.

Table 1

Material E (kgf/mm2) ν μ
((1 − ν2)/πE)10/11

μ(10−5)10/11

Steel 21 500 0.28 0.39 3.40
Cu 12 600 0.34 0.60 3.45
Al 7200 0.34 0.94 3.60
Pt 17 000 0.39 0.44 3.42
Sn 5500 0.39 1.11 4.00

This ratio should not be expected to be exactly con-
stant because the expression for the coefficient of
friction contains factors depending on the cohesive
forces that are different for different materials.

As preliminary calculations have shown, the expres-
sion for the relation between the normal compres-
sive force and the frictional force can be improved
(in the sense of closer approximation to the linear
relation observed in the reality) by proper choice
of the function n = n(ξ). For this purpose, a device
is being constructed at the Physical Laboratory of
the T. G. Shevchenko Pedagogical Institute (Stalin-
abad) to determine the contact area between rubbing
surfaces by measurement of electrical resistance of
the junction.
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