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In an empirical context, a method to use nonlinear control theory in the dynamic analysis of supply

chain resilience is developed and tested. The method utilises block diagram development, transfer func-

tion formulation, describing function representation of nonlinearities and simulation. Using both ‘shock’

or step response and ‘filter’ or frequency response lenses, a system dynamics model is created to analyse

the resilience performance of a distribution centre replenishment system at a large grocery retailer. Po-

tential risks for the retailer’s resilience performance include the possibility of a mismatch between supply

and demand, as well as serving the store ine�ciently and causing on-shelf stockouts. Thus, resilience is

determined by investigating the dynamic behaviour of stock and shipment responses. The method allows

insights into the nonlinear system control structures that would not be evident using simulation alone,

including a better understanding of the influence of control parameters on dynamic behaviour, the iden-

tification of inventory o↵sets potentially leading to ‘drift’, the impact of nonlinearities on supply chain

performance and the minimisation of simulation experiments.

Keywords: Supply chain dynamics, nonlinear control theory, describing function, supply chain

resilience

1. Introduction

Grocery retailers have modernised their supply chains in order to improve operational e�ciencies.
Over many years, this had led to the view that they are international leaders in supply chain
management (Fernie 1992; Hingley et al. 2011). Since the 1980s, retail companies have integrated
primary and secondary distribution to decrease lead-times and take inventory out of their supply
chains (Potter et al. 2007). This logistical change has increased the importance of having an e�cient
and responsive replenishment system in distribution centres (DCs). According to Corsten and
Gruen (2003), the “availability of products is the new battleground in the fast moving consumer
goods industry”, therefore, on-shelf availability is a key performance indicator for the retail industry
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and has great impact on profits and customer loyalty (Fernie and Sparks 2004; Aastrup and Kotzab
2009). Under these circumstances, the ability of a supply chain to be resilient is vital to sustain
competitiveness (Pettit et al. 2010; Bhamra et al. 2011).

A system dynamics approach combining nonlinear control theory (NCT) and simulation mod-
elling is applied to evaluate the resilience performance of a DC replenishment system at one of
the largest grocery retailers in the UK. System dynamics play a significant role in supply chain
performance. These dynamics are normally driven by the application of di↵erent control system
policies and can be considered a source of supply chain disruption, depending on the control system
design (Mason-Jones and Towill 1998; Christopher and Peck 2004; Colicchia et al. 2010). In the
retail industry, 15% of retail out-of-stock issues occur due to problems in the DC replenishment
control system (Corsten and Gruen 2003).

We aim to determine the methodological benefits of NCT in supporting simulation-based em-
pirical research on supply chain resilience, with the context being the UK grocery industry. As
Ivanov and Sokolov (2013) have emphasised, there is a need to further develop the research area of
resilience and adaptation within the domains of supply chain dynamics analysis and control. It has
also been argued that the use of simulation alone may lead to a time-consuming and unrewarding
analysis process (Atherton 1975; Vukic et al. 2003).

In developing our approach, we employed a well-established framework proposed by Naim and
Towill (1994) to design a supply chain system. Figure 1 illustrates the steps taken in our research
process. There were two distinct but overlapping phases of analyses. In the qualitative phase, both
the objective of the study and the key variables were identified through a visualisation and soft
modelling process, that is, via the use of input-output and causal loop diagrams. The quantitative
analysis, which encompassed the development and analysis of mathematical and simulation models.
We will refer to this framework as we present the findings of the case study research in later sections.

This paper proceeds by reviewing the relevant literature on system dynamics, nonlinear systems
and supply chain resilience. Next, the replenishment system of the retailer is discussed, leading to
the formulation of mathematical and simulation models. These models are then analysed in detail,
with particular focus on the resilience performance and the impact of inherent nonlinearities. We
conclude by reflecting on the implications of utilising NCT with simulations versus using the
simulations alone.

2. Literature Review

2.1 Supply chain dynamics and nonlinear systems

Forrester’s (1958) work on industrial dynamics calls attention to the importance of considering
nonlinear models to represent industrial and social processes. “Nonlinearity can introduce unex-
pected behaviour in a system” (Forrester 1968), causing instability and uncertainty. Despite this,
most studies of supply chain dynamics that use mathematical modelling focus on ‘presumably’
linear models (e.g. Towill 1982; John et al. 1994; Disney and Towill 2005; Gaalman and Disney
2009; Zhou et al. 2010), which greatly limits the applicability of published results (Wang et al.
2014). To maintain linearity in production and inventory control systems, previous studies assume
that order rates can take negative values, shipments to customers can occur even when there is
no holding inventory, no batching is considered in the material flow and the system has unlimited
capacity.

With the advance of computer technology, most of the recent research about nonlinear supply
chain models has been undertaken through computer simulation (Table 1). This research has led
to the understanding of particular phenomena, such as:

• stability and chaos (Larsen et al. 1999; Laugesen and Mosekilde 2006),
• the impact of capacity and batching constraints (e.g. de Souza et al. 2000; Paik and Bagchi

2007; Cannella et al. 2008; Juntunen and Juga 2009; Hamdouch 2011; Ivanov et al. 2014a)
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Figure 1. Framework to design resilient supply chains
Adapted from Naim and Towill (1994)

and collaborative strategies (e.g. Cannella and Ciancimino 2010; Spiegler and Naim 2014) on
system dynamics and supply chain performance,

• shipment planning (Shukla et al. 2009; Mula et al. 2013) and
• the e↵ects of psychological pressure, misperceptions and misjudgement in work environments

(Sterman 1989; Syntetos et al. 2011; Bruccoleri et al. 2014).

However, engineering and mathematics experts have made advances in NCT and, despite this still
being an area for debate, new tools and techniques to deal with high-order, nonlinear systems with
multiple loops have been developed (Karafyllis and Jiang 2011). Despite many analytical methods
being cited and recommended by system dynamics scholars over 30 years ago (Mohapatra 1980)
and lately by Saleh et al. (2010), there are few applications of such methods. Notable exceptions
are Jeong et al. (2000), Wang and Disney (2012) and Wang et al. (2014).

Jeong et al. (2000) applied the Matsubara time delay theorem and small perturbation theory
to find a state-space representation of three echelons in a variant form of the Forrester model.
Despite e↵orts to linearise part of the model, they use only simulation methods to analyse the
e↵ect of di↵erent capacity levels on the factory’s production rate, unfilled orders and design de-
cision rules so that the supply chain achieves a stable response when the system saturates, that
is, reaches capacity. Wang and Disney (2012) and Wang et al. (2014) used eigenvalue methods
to explore the stability boundaries of a piecewise linear inventory control system and identify a
set of behaviours in the unstable region. Their work is limited to the analysis of a single-valued
discontinuous nonlinearity given by a non-negative constraint on the replenishment order. In this

3
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Table 1. Analysis of nonlinear supply chain systems and scope of this research

Author Method of analysis Supply chain application Key findings
NCT Simulation

Sterman (1989) 4 Investigation of misperceptions of
time delays and feedback loops via
a tabletop management simulator,
the Beer Game

Dynamic distortions and amplifi-
cation in a supply chain are also
caused by human misperceptions
about inventory and demand infor-
mation

Larsen et al. (1999);
Laugesen and Mosekilde
(2006)

4 Shaping stability regions of the
Beer Game

The influence of di↵erent inventory
control policies upon dynamics and
costs are discussed

Shukla et al. (2009) 4 Backlash, or shipment profile,
analysis of the Beer Game

The backlash e↵ect is a reflection
of the bullwhip e↵ect, analogous to
physical waveforms in a channel or
pipe and can lead to high transport
costs due to ine�cient scheduling
and premium transport rates

de Souza et al. (2000);
Paik and Bagchi (2007);
Cannella et al. (2008);
Juntunen and Juga (2009);
Shukla et al. (2009);
Cannella and Ciancimino
(2010); Hamdouch (2011);
Spiegler and Naim (2014);
Ivanov et al. (2014a)⇤

4 E↵ect of capacity and batch-
ing constraints and collaborative
strategies on production opera-
tions, customer service and finan-
cial performance

Capacity and batching constraints
can result in complex behaviour
and create secondary dynamics in
the system. Collaboration can help
in mitigating such behaviour

Syntetos et al. (2011) 4 Analysis of judgemental adjust-
ments by managers on the demand
forecasting process and replenish-
ment orders

Judgemental interventions may
have a substantially adverse e↵ect
on supply chain performance

Mula et al. (2013) 4 Developing simulation models to
quantify the trade-o↵ between the
number of truck shipments and in-
ventory level

Integrating simulation models with
MRP systems can help companies
improve their transport planning
practices and better meet customer
needs

Bruccoleri et al. (2014) 4 Designing order and inventory
policies taking into account work-
ers’ behavioural reactions to work
pressure

Order and inventory variances are
a↵ected by the psychological sta-
bility and workload pressure of
workers

Jeong et al. (2000) 4 4 Use of small perturbation theory
to linearise Forrester’s model and
conduct robust control of supply
chain decision rules

Potential for a control algorithm,
consisting of state feedback and fil-
tering with an integral controller,
in achieving a stable response when
the system saturates

Wang and Disney (2012) 4 4 Eigenvalue and Lyapunov-based
stability analysis of a nonlinear
production and inventory system

A complex and diversified set of
behaviours and patterns identified
in the asymptotically unstable re-
gion

Wang et al. (2014) 4 4 Eigenvalue analysis of a nonlinear
production and inventory system

Di↵erent classes of dynamic be-
haviour identified

This paper 4 4 Use of describing function method
to analyse non-negative batching
constraints and backlog situation

We aim to gain better understand-
ing of the influence of control pa-
rameters on nonlinear dynamic be-
haviour

⇤Ivanov et al. (2014a) combine optimal control theory with optimisation methods in a numerical experiment setting

paper, we use the describing function method to analyse both single- and multi-valued nonlineari-
ties given by non-negative batching constraints in the ordering rule and backlog situations in the
shipment estimation. Moreover, our work focuses on understanding behaviour within the system’s
stable region and proposing system redesign.
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2.2 Supply chain resilience and dynamics

The idea of resilience has emerged in the supply chain literature in recent years (Christopher and
Peck 2004; She� and Rice 2005) and is defined as “the adaptive capability of the supply chain
to prepare for unexpected events, respond to disruptions, and recover from them by maintaining
continuity of operations at desired levels of connectedness and control over structure and function”
(Ponomarov and Holcomb 2009). This definition implies achieving three properties: readiness (being
prepared or available for service), response (reaction to a specific stimulus) and recovery (a return to
‘normal’ stable or steady state conditions). By combining all attributes of typical system dynamics
responses with the three resilience properties, Spiegler et al. (2012) demonstrated that when the
region between the system’s actual response and the target level is minimised, as highlighted in
Figure 2, then supply chain resilience is improved. This follows the same reasoning as minimising
the resilient triangle (Tierney and Bruneau 2007; Zobel and Khansa 2011); however in Spiegler
et al. (2012) approach, it is considered that the output may overshoot and/or undershoot before
recovering, thus not assuming a triangular shape but some form of oscillatory behaviour, which is
typical of dynamic systems.

The body of knowledge relating to supply chain resilience is still in its infancy, and research
findings are fragmented across the literature (Blackhurst et al. 2011). Most existing studies in this
area are qualitative in nature, with the preferred methods being theory building and case studies
(Bhamra et al. 2011). Moreover, the focus has been on identifying sources of risks and on determin-
ing mitigation and contingency strategies (Spiegler et al. 2012). In a systematic literature review,
Pereira et al. (2014) identified the need to analyse trade-o↵s occurring between intra-organisational
issues, such as internal communication, inventory, product flexibility and information technology,
and inter-organisational issues, such as strategic sourcing, supply chain design and re-engineering,
transportation and risk monitoring to improve supply chain resilience. Using case studies, Alblas
and Jayaram (2015) identified di↵erent types of flexibility and design resilience measures that help
in clustering practices and in planning resilient organisations. However, quantitative approaches to
assess di↵erent resilience strategies are limited.
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Figure 2. Assessing supply chain resilience: readiness, response and recovery
Source: Spiegler et al. (2012)

There is a need for more systematic examinations of supply chain dynamics and control for plan-
ning resilience and adaptation strategies (Ivanov and Sokolov 2013) as the literature contains only
a few studies that applied a system dynamics research method in studying resilience. For instance,
Wilson (2007) analysed the impact caused by disruptions in transport processes on customer ser-
vice, inventory and goods in transit and evaluated how a more collaborative supply chain, such
as vendor-managed inventory, can help to overcome these disruptions. Spiegler et al. (2012) inves-
tigated how di↵erent control policies and system dynamics in supply chains a↵ect the readiness,
response and recovery of inventory and shipments, which are performance indicators of demand
and supply matching. Their study also evidenced a trade-o↵ between production cost and resilience
design. Ivanov and Sokolov (2013) proposed general mathematical formulations for analysing sta-
bility, robustness and resilience within a supply chain dynamics and control framework. The same
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methodology has been applied by Ivanov et al. (2014b) to model the e↵ects of disruption prop-
agated through the supply chain and recommended suitable methods for mitigating this ‘ripple
e↵ect’. However, all these works are either conceptual or exploratory and have limited empirical
data.

In this study, we focus on the operational supply chain performance and potential risks of mis-
matching supply and demand. Therefore, we extend the Spiegler et al. (2012) analytical framework
by assessing the supply chain resilience of a grocery retailer. In this way, we also supplement the
literature with empirical data. Moreover, we explore alternative analytical methods as simulation
is the predominant method for quantitative analysis of system dynamics, despite its limitations.

3. Empirical model formulation and validation

In this section, we explain our research process from a real-world situation through data capture,
modelling and validation, as illustrated in Figure 1. Dynamic analysis, resilience assessment and
redesign recommendations will be presented in Section 4. The research in this paper was carried
out in conjunction with a major UK grocery retailer, with the aim of examining the resilience of
its DC replenishment system. The purpose was to suggest improvements to the system, although
the underlying structure could not be adjusted.

To construct the model, a number of interviews were conducted with the manager responsible
for the DC replenishment system we focus on in this study. This led to the conceptualisation of
the system through input-output and causal loop diagrams (Appendix A). The replenishment rules
were determined during the course of the interviews and were then converted into a block diagram
in the Laplace domain, ‘s’, as given in Figure 3.

In order to satisfy the Orders from Store (OS), the DC replenishment order calculation is based
on an order-up-to system. Each order takes into account both the time until the order is generated
plus the time until the next order is delivered. The raw order quantity (ROQ) is calculated from
the following elements:

• Demand forecasting policy

Forecast demand(s) = (DA + DB)
OS(s)

1 + Ta.s
, (1)

where DA is the percentage of the store demand that occurs during the review time (Period
A), DB is the percentage of the store demand that occurs during the delivery lead-time
(Period B) and the parameter Ta is used to represent the exponential smoothing function
with ↵ = 1

(�t(1+Ta))
and is normally set equal to 2 by the DC.

• Stock error

Stock error(s) = Safety Stock(s) � Stock(s) + Backlog(s), (2)

where Safety Stock(s) = K(12DA + DB)Forecast weekly demand(s) and K is the service
level determinant.

• Actual Goods in Transit (GIT)

GIT (s) =
1

s

�
Supplier Order(s) � Delivery(s)

�
. (3)

In the ‘As Is’ scenario, which describes the current situation in the DC replenishment sys-
tem, a target GIT is not specified. In other words, it is currently being set equal to zero.

6



July 17, 2015 International Journal of Production Research NCTGrocerySC

However, for designing reasons we have included this target in the block diagram of Figure
3. A parameter Ti has also been included in the block diagram representation to represent
the time actual and safety stocks takes to balance. In the ‘As Is’ scenario this is set equal to
1 by the DC. Hence the ROQ is finally given by:

ROQ(s) = Forecast demand(s) +
Stock error(s)

Ti
+ (target GIT � GIT (s)). (4)

Once the ROQ has been calculated, a ROUNDING function is imposed on the order, based on
the Buying Quantity and Truckload Constraint. The former ensures that the system orders in
unit loads. In most cases, this equates to a full pallet. This rounding helps reduce warehousing
costs. In imposing the Truckload Constraint, all orders with the same origin and destination
are grouped together. The volume of goods is then compared against the capacity of the vehicles
used on that route. Therefore, the amount of rounding for each product may vary. Moreover, in
the rounding process, orders can never assume negative values, which means that goods are never
returned to suppliers. When determining the shipments to the store, the CLIP function denotes
that shipments will depend upon stock levels and deliveries from suppliers. When the shipments
are not equal to the OS, then a backlog builds up. Therefore, the desired shipment in the next
replenishment period will be OS plus any backlog. The presence of the CLIP and ROUNDING
functions makes the model nonlinear.

Mathematical and simulation models were created from the block diagram representation with
the aim of building a simple but credible representation of the real system. The mathematical
model is given by transfer function formulations and piecewise linear equations formulated later
for the nonlinear analysis. This model is continuous in time, and the delay caused by the delivery
lead-time (Tp) is implemented as a first order delay. A spreadsheet simulation model (Appendix
B) was also developed so that the model could be easily understood by retailer sta↵. This model is
discrete in time and the delay is implemented as pure lag. Although results between discrete and
continuous time modelling may di↵er, it can be argued that the management insights gained from
both time approaches are very similar and that their qualitative natures are essentially the same
(Disney et al. 2006; Warburton and Disney 2007).
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As noted by Bailey (1994), a model is a simplification of reality and can provide a good represen-
tation of the system under study. Therefore, there are a number of assumptions in our mathematical
and simulation models:

• Store replenishment orders are aggregated, rather than being placed on a store-by-store basis.
This simplifies the mathematical model and speeds up the simulation run time.

• Only a single generic product is modelled. Although this assumption is usually made in
inventory theory, it has some implications in terms of the Truckload Constraint. Thus, in
this study the rounding e↵ect will consider a single product group.

• All supplier deliveries are made in full when compared with the ordered volume. That means
that the order is received 100% complete with no missing products. This does not fully
reflect the real supply chain where some deliveries will be incomplete. However, this does
not happen often as penalties are imposed by retailers (Blythman 2004; Groceries Code
Adjudicator 2014). Therefore, under normal operating conditions, this assumption is realistic
and has been adopted by other system dynamics scholars investigating replenishment control
systems (e.g. Disney and Towill 2005; Shukla et al. 2009; Cannella and Ciancimino 2010;
Spiegler and Naim 2014).

Limitations of the simulation model arise when these assumptions are not met. In the mathe-
matical model, approximations will be made in the linearisation process in order to gain insights
into the model’s dynamic behaviour analytically. However, simulation will be used to cross-check
the findings.

Having developed the mathematical and simulation models, the next stage was to verify and
validate the findings. This is an important step in assuring accuracy of the model (Sargent 2013).
Using Table 2 as reference, a number of tests and sensitivity analyses were carried out to verify the
model structure and behaviour. First, the model was verified by talking the system manager through
the equations entered into the spreadsheet. Next, tests using extreme input and parameter values
and eliminating assumptions were undertaken. The mathematical model, given by transfer function
formulation, piecewise linear equations and the block diagram in Figure 3, was also tested using
Wolfran MathematicaTM and MatlabTM/SimulinkTM in parallel with the spreadsheet simulation
to crosscheck the results.

Table 2. Model Validation and Verification Tests - Adapted from Sterman (1984)

Test used Questions addressed by test How tackled in this research

V
E
R
IF

IC
A
T
IO

N

Structure Consistent with system description? Detailed feedback of model to interviewee to
confirm accuracy.

Parameters Consistent with system data and de-
scription?

Comparison of simulation model performance
to real world data.

Extremities Does every equation make sense even
with extreme values?

Parameter values varied in increments to ex-
treme values to check for consistent changes.

Boundaries Are all important factors included? Importance of factors and nature of assump-
tions agreed with retailer.

Dimensionality Are all equations dimensionally consis-
tent?

Daily time increments throughout and cases as
smallest unit.

V
A
L
ID

A
T
IO

N Behaviour Reproduction Can all behavioural characteristics of
real system be generated?

Comparison of simulation model performance
to real world data.

Behaviour Anomalies Are there anomalies if one model as-
sumption is deleted?

Increasing the range of demand variability to
account for peaks and weather changes still
produced a consistent response.

Family Member Does the model reproduce behaviour
observed in cognate systems?

Performance attributes consistent with those
of generic models.

Finally, actual data used for validation were the actual system parameters, the sales data and
the supplier orders. The sales data from three di↵erent products were used to generate stochastic
demand signals. All three products have lead-time Tp = 2 days, smoothing time constant Ta = 2
days, service level determinant K = 2.58 (for a stock availability figure of 99%), Buying Quantity=
1 pallet (65 cases) and Truckload Constraint = 1 pallet. Tp is the only non-controllable parameter

8
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because it represents a physical delay between the store and the DC. All the other parameters are
controllers set by the DC replenishment system manager.

Table 3 presents the results of this validation process. The average and standard deviation values
of the products were used to create a stochastic input signal. Next, the variances of the DC Supplier
Order outputted from the model were compared with the real world data. The simulation model
appears to represent the response of the empirical system upon which it is derived well, especially
for products with high average demand and lower standard deviations. For instance, for Product
1 the percentage di↵erence between the real and model output data is very small.

In this validation process, we assumed the following characteristics of the data collected:

• Products are sold on an everyday low price basis with no promotions. This is consistent
with the retailer’s policy for the products tested. Promotions would provoke distortion in the
demand data and would interfere with our validation process, where a normally distributed
demand pattern was assumed.

• The products’ demand is una↵ected by unpredictable external factors such as the weather.
Therefore, any manual adjustments in the forecast were not taken into account. These may
negatively a↵ect the validation process because we would not be able to di↵erentiate between
normal demand and weather-boosted demand. As indicated in Table 2, other stages of the
validation process address these assumptions.

Table 3. Numerical validation of the DC replenishment system model

Product 1 Product 2 Product 3

Input signal Average real world demand (cases per week) 10,320 8,547 2,563
Standard deviation of demand (as % of demand) 0 .186 0.250 0.325

Output signal Variances in Supplier Order
Real world data 522,684 339,147 41,863
Model data 513,406 393,214 49,866
Percentage di↵erence between real and model data -1.7% +15.9% +19.1%

4. Resilience performance analysis

In this section, analysis of the DC replenishment system’s resilience performance is undertaken. To
analyse the resilience performance of the DC replenishment system, we chose to combine NCT and
system dynamics simulation methods. Although statistical techniques are depicted in our research
framework in Figure 1, stochastic inputs and basic statistical analysis were used only to validate
the model, as explained in the previous section.

When confronted with a nonlinear system, the primary approach is to classify the nonlinearities
in order to identify appropriate analytical methods. In Figure 1, we show that for continuous nonlin-
earities, small perturbation theory can be applied. This method enables the system to be examined
through successive approximations in the form of power series in the perturbation parameter. To
investigate discontinuous nonlinearities, the describing function method, a quasi-linearisation tech-
nique, is applied. After linearisation, we can estimate the e↵ect of ‘shock’ and ‘filter’ input signals
(Towill et al. 2007) on the performance of this nonlinear system using linear control techniques.

When analysing system dynamics replenishment models via the ‘shock lens’ or step input analysis
(Towill et al. 2007), readiness can be illustrated by the vertical displacement of the inventory
response (refer to Figure 2). The smaller the vertical displacement is, the more prepared or available
for service the supply chain may be said to be. Response and recovery can be measured by the time
it takes for the inventory to recover target levels. According to Spiegler et al. (2012), resilience can
then be obtained by designing systems in which the integral of time multiplied by the absolute
value of the error (ITAE) between target and actual inventory responses is minimised.

9
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On the other hand, when analysing system dynamics models via the ‘filter lens’, or sinusoidal
input in response to recurring peak demand (Towill et al. 2007), the natural frequency (!n) and
damping ratio (⇣) can be utilised. The former determines how fast the system’s output oscillates
during the transient response, while the latter describes how oscillations in the system decay with
time (Nise 2000). A resilient system will require a fast response and recovery of the inventory
response while avoiding high oscillations. We will illustrate the e↵ect of !n and ⇣ in our analysis
and specifically in Sections 4.2 and 4.3.

4.1 Analysis via the ‘shock’ lens

In the case of the DC replenishment system, no continuous nonlinearities were found. Therefore,
to analyse the model via the ‘shock lens’, we assume that the discontinuous nonlinearities are
inactive. In other words, we assume the system is operating under ideal conditions. We will see
later in Section 4.2 that for a certain range of demand amplitudes and frequencies, the system
does not reach these capacity constraints and thus behaves linearly. Also, this preliminary analysis
will help us to understand the basic underlying system structure prior to undertaking nonlinear
analysis.

Under ideal operating conditions, a backlog situation would not occur and therefore shipments
to the store would be made in full every period. Moreover, if Buying Quantity and Truckload
Constraints could be overcome when trying to seek ‘batch of one’ operations, then nonlinearities
in the model in Figure 3 could be eliminated. Therefore, under linear conditions we find that the
transfer functions for the Supplier Order, Stock and GIT are respectively:

SupplierOrder

OS
=

1 + s(K + Ta + Ti + Tp) + s2(K + Ta + Ti)Tp

(1 + sTa)[1 + s(TiTp + Ti) + s2TiTp]
, (5)

Stock

OS
=

K � TiTp + s(�TaTiTp � TaTi � TiTp) � s2TaTiTp

(1 + sTa)[1 + s(TiTp + Ti) + s2TiTp]
, (6)

GIT

OS
=

(1 + s(K + Ta + Ti))Tp

(1 + sTa)[1 + s(TiTp + Ti) + s2TiTp]
. (7)

Initial and final value theorems are used to determine how the outputs will respond to a step
change in the input. Table 4 presents the results for the final values of Supplier Order, Stock and
GIT when OS undergoes a unit step change (from 0 to 1 unit). The initial values of all responses
are zero, including their target initial values.

Table 4. Results from the Final Value Theorem

Response Final value Target final value

Supplier Order 1 1
Stock K � T

i

T
p

K
GIT T

p

0

The results in Table 4 demonstrate that there is a permanent o↵set occurring in both Stock and
GIT responses. The negative stock o↵set has a significant impact on the resilience performance
because the system has been designed in such way that stock levels will never recover from changes
in the orders received from the store. There may also be impacts on stock holding or customer
service levels (Disney and Towill 2005). The company had not recognised this problem until the
analysis was undertaken as no systematic control theory-based approach was previously utilised,
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and the system algorithms had only ever been tested with ‘real world’ stochastic orders received
from the stores.

The reason the drift occurs is found when investigating the model further. The target GIT should
never be set to zero because the pipeline always exists due to non-zero lead-times. Moreover, the
target GIT should not be fixed since it depends on OS. Therefore, a proposed solution for the
target GIT is to make it variable as a function of both demand and lead-time, assuming that
lead-time is always known or at least estimated. In the empirical environment studied, suppliers
are given consistent two-day delivery lead-times and therefore this is a reasonable assumption.

In order to calculate the ITAE of the Stock response, the error between the safety and actual
inventories is needed. Because of the existing drift, this error will lead to an infinite ITAE index.
Instead, the final value of Stock given in Table 4 can be used as to estimate which parameter
values would increase the system’s readiness and decrease the response and recovery times. From
Equation 6, a fraction expansion method can be used to determine the time function for the Stock.
In this way, ITAE can be estimated as:

ITAE =

Z 1

0
t.|e(t)| dt =

Z 1

0
t.|K � TiTp � Stock(t)|dt =

= KT 2
a � T 3

i Tp(1 + Tp)
2 + Ti(T

2
a � KTp + KTa(1 + Tp)) + T 2

i (Tp + 2T 2
p + Ta(1 + Tp)

+ K(1 + Tp)
2). (8)

Note that Equation 8 is only valid for Ta > 0 and K > TiTp. It is also assumed that after the
step change, the stock level drops and recovers without overshooting again. Therefore, Equation
8 should be used only for exploratory analysis before undertaking simulation. By fixing K with a
considerably high value (enough to maintain K > TiTp as true), Equation 8 shows that ITAE can
be minimised; thus resilience can be maximised by decreasing Ti, Ta and Tp.

4.2 Analysis via the ‘filter’ lens

When considering the ROUNDING nonlinearity active in the ordering process, the system will
behave as in Figure 4 when assuming open loop control and a sinusoidal input for ROQ such that

ROQ(t) = Acos(!t) + B, (9)

where ! is the angular frequency, A is the amplitude and B is the mean. The nonlinearity will
produce an output, Supplier Order, of the same frequency and phase but di↵erent amplitude
and mean. Each step in the output response corresponds to a Buying Quantity combined with a
Truckload Constraint. Additionally, by clipping the output signal at its lower limit, the output
response is never allowed to reach negative values.

Although Supplier Order function is nonlinear, it can be represented by multiple piecewise linear
equations. In order to ease calculation, we can simplify this equation using a best fit or quantised
approximation (Atherton 1975) to yield a piecewise linear representation with only two pieces:

SupplierOrder(t) =

(
ROQ(t), if � � < !t < �

0, if � ⇡ < !t < �� and � < !t < ⇡.
(10)

Given ROQ as a sinusoidal input, the output SupplierOrder can be approximated to:
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Figure 4. Asymmetric output saturations observed via the ‘filter’ lens

SupplierOrder(t) ⇡ NAAcos(!t + �) + NBB, (11)

where �, NA and NB are the phase angle, the gains in amplitude and the mean, respectively. For
the describing function analysis, only NA is needed. In order to determine NA, we need to expand
the series and determine its first harmonic coe�cients. The Fourier series expansion method is used
to represent the output as a series, such as:

SupplierOrder(t) ⇡ b0 +
1X

k=1

[akcos(k.!t) + bksin(k.!t)], (12)

where ak, bk and b0 are the Fourier coe�cients.
For the describing function, only the first, or fundamental harmonic is usually used to approxi-

mate the periodic series. If we approximate the piecewise linear output Supplier Order to the first
harmonic, we have:

SupplierOrder(t) = b0 + a1cos(!t) + b1sin(!t) = b0 +
q

a21 + b21 cos(!t + �), (13)

where, � = arctan( b1a1
).

In this way, we can define the describing function gain as:

NA =

p
a21 + b21
A

. (14)

For single-valued nonlinearities, the coe�cient b1, the imaginary part of the describing function,
will be equal to zero and therefore the phase angle will also be zero. Therefore, we find that:

NA =
� � cos(�)sin(�)

⇡
, (15)

where � = cos�1(�B
A ).

Figure 5 illustrates how the coe�cients of the describing function vary as the amplitude of the
ROQ increases. For amplitudes lower than the mean B, the system behaves linearly and Supplier
Order will be equal to the input ROQ corresponding to an NA equal to 1. However, when the
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amplitude of ROQ increases, only a fraction of this rate will actually be ordered. By inspecting
Equation 15, we find that as the amplitude of ROQ approaches infinity, NA approaches 0.5. So,
the gain of the describing function can only vary from 0.5 to 1.
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Figure 5. Describing function gain caused by the ROUNDING function

The second nonlinearity in the model is the CLIP function in the shipment system, which is used
to avoid any shipments being made to the store if no stock is available. While in the ROUNDING
function all constraints, Buying Quantity, Truckload Constraint and non-negative orders, were
fixed, in the CLIP function the constraint is given by current responses of DC stock and delivery,
which vary over time. Because of that, this nonlinearity is not only amplitude-dependent but also
frequency-dependent. Therefore, there will be one describing function for each frequency. MatlabTM

and SimulinkTM have been used to automate calculations and find the describing function gains
for a set of amplitudes and frequency, resulting in Figure 6. The shaded areas indicate that NA

is below 1 and thus the system behaves nonlinearly. In contrast, the unshaded areas indicate the
input frequencies and amplitudes for which the system behaves in a linear fashion. It should be
noted that there is a not so obvious unshaded region for which the system has linear behaviour.
That is, where ! approaches zero NA approaches 1.

Although each nonlinearity in the DC replenishment system has di↵erent features, they both
decrease their respective output gains, whose value, as per inspection of Equation 15 for the ROQ
and Figure 6 for the shipment, is always between 0.5 and 1 and is a consequence of the asymmetry
of the nonlinearities. Root locus techniques can be used to predict how these nonlinearities a↵ect
the system responses and the resilience performance. By replacing the ROUNDING and CLIP
functions with the gains NA(ROQ) and NA(Ship.), respectively, and using block diagram algebra, we
again find that the new system characteristic equation is equal to:

(1 + s.Ta)[NA(ROQ) + s(NA(ROQ).Ti.Tp + Ti) + s2Ti.Tp] = 0. (16)

In this way, the e↵ect of the change in gains on !n and ⇣ can be calculated as:

!n =

s
NA(ROQ)

TiTp
(17)

⇣ =
(1 + NA(ROQ).Tp)Ti

2NA(ROQ)

s
NA(ROQ)

TiTp
. (18)
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In interrogating Equations 17 and 18, we find that a decrease in NA(ROQ) will result in a reduc-
tion in !n. ⇣, which determines the degree of damping in the system, also decreases when NA(ROQ)

decreases, although not to the same degree as !n. When substituting the actual parameter values
used in the DC replenishment system, we find that ⇣ decreases from 1.06 to 1 when NA(ROQ) de-
creases from 1 to 0.5. Thus, the responses switch from an overdamped, or slow decay of oscillations,
to critically damped. Ti can also be adjusted in order to achieve responses which ideally have a ⇣ =
0.7 (Nise 2000). In Section 4.3, we will illustrate what these changes in !n and ⇣ mean for supply
chain resilience.

Note that the CLIP function, whose describing function gain is NA(Ship.), has no e↵ect on either
!n or ⇣. Thus, it does not influence the DC stock and Supplier Order responses. However, this
nonlinearity has an impact on the shipment response. When the CLIP nonlinearity takes e↵ect, it
means that the DC Backlog is no longer zero, shipments to customers will be cut and the supply
chain will be less resilient.
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Figure 6. Describing function gain caused by the CLIP function
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4.3 Simulation results

We start our simulation process by applying a step input of 10% such that OS varies from 1000
to 1100 cases at time t = 20 days. Figure 7(a) illustrates the first problem previously identified
by the final value theorem, the permanent negative o↵set. Negative o↵sets aggravate the resilience
performance of the DC replenishment system, especially in the case of multi-event disruptions
(Zobel and Khansa 2011) and increasing demand patterns. Figure 7(b) demonstrates how the
system would behave if the proposed change in the GIT feedback information is made as stated
in Section 4.1.
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Figure 7. Step input of 10%

In order to force a backlog situation and understand the impact of both nonlinearities, we in-
creased the step input by 100%. By eliminating the o↵set, we are able to evaluate the impact of
!n and ⇣ on the DC stock responses (Figure 8). Figure 8 can be used to draw an analogy to Figure
2. Figure 8(a) demonstrates that for low !n the system recovery is slower than for systems with
high !n possibly leads to a quicker backlog situation. According to Figure 8(b), if the system has
no damping (⇣ = 0), oscillations will prevail and the inventory response will never recover and are
therefore not resilient. On the other hand, if the system is too overdamped (take ⇣ = 2 as an ex-
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ample) the inventory recovery will take too long, making the system vulnerable to multiple related
disruption events (Zobel and Khansa 2011). When cross-referencing the results from Equations 17
and 18 and Figure 8, we found that the ROUNDING nonlinearity needs to be considered carefully
as the value of NA(ROQ) does not have a simple relationship to resilience performance vis-à-vis the
model parameter values, Buying Quantity and Truckload Constraint.
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Figure 8. The e↵ects of natural frequency and damping ratio on inventory response

Figure 9 illustrates the impact of changing Ti on the DC Stock and Shipment responses. When
stock levels are negative or there is backlog shipments to the stores are no longer made in full,
which may lead to on-shelf stockouts. Therefore, the replenishment system becomes less resilient
to greater changes in demand and the stock o↵set is also intensified. By decreasing the values of
the control parameter Ti, as in Figures 9(b) and 9(c), we observed an improvement in the resilience
performance due to:
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(a) T
i

=1(‘As Is’ scenario)

(b) T
i
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(c) T
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=0.6

Figure 9. Impact of T
i

on the resilience performance of the DC
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i the stock o↵set decreases because the final value of stock oppositely depends on this parameter
as demonstrated in Table 4 and

ii inventory response and recovery times are reduced and therefore the system recovers from the
backlog situation quicker.

In order to quantify the results, ITAE values of the Stock and Shipment responses have been
calculated and normalised in relation to the ‘As Is’ index value. As Figure 9 shows, the ITAE
decreases as Ti is adjusted to lower values. However, if Ti is too small, in this case lower than 0.5,
the Stock response will start to oscillate considerably and potentially become unstable. Improved
resilience is also obtained when decreasing the forecasting constant Ta and lead-time Tp.

Another phenomenon discovered by employing the describing function technique was that the
CLIP nonlinearity in the shipment process only takes e↵ect for low to medium frequencies and
high amplitudes. The e↵ect of high-amplitude demands has been demonstrated by increasing the
step sizes in the ‘shock’ lens analysis, as previously demonstrated in Figures 7 and 9. In order to
confirm the e↵ect of demand frequencies, simulations using sinusoidal inputs of the same amplitude
but di↵erent frequencies have been undertaken. Figure 10 shows that as the demand frequency
decreases from 62.82 rad/day to 37.68 rad/day, a backlog situation starts to occur and therefore
the system is less resilient at this frequency. But with further decreases in the input frequency,
the shipment process behaves linearly and resilience is attained again, confirming the results of
Figure 6. Without the analysis made in Section 4.2, this phenomenon would not have been so
easily identified by conducting simulations alone.

5. Discussion and managerial implications

A number of analytical insights have been obtained from the application of NCT techniques. Table
5 summarises the insights gained from using ‘shock’ and ‘filter’ lenses, the resulting simulation
experiments and the implications of not conducting a mathematical analysis before simulation.

These findings suggest that some potential improvements to the DC replenishment system can
be made in order for it to become more resilient. These include the following:

• The permanent o↵set in the DC stock response is the most urgent issue to be resolved.
It was shown here that inventory drift is a problem for the supply chain to maintain its
resilience performance, especially under multi-event disruptions and uncertain demand. A
proposed solution is to make the target GIT a variable related to demand and a function of
the lead-time.

• Given the fact that the resilience performance has a trade-o↵ with production, inventory
and transportation costs (Christopher and Peck 2004; She� and Rice 2005; Spiegler et al.
2012), the retailer may consider automatically adjusting the control parameters to increase
resilience in times of uncertain demand patterns and abrupt, sharp changes in stock levels.
Thus, the supply chain manager can prioritise change programmes that will deliver resilience
or cost benefits.

• Being aware of the impact of the system’s nonlinearities and constraints is very important
for the retailer. This study demonstrated that, depending on the demand amplitude and
frequency, backlog situations may or may not occur. The system manager does not have to
be concerned about shipment constraints (CLIP function) when demand has very high fre-
quencies and low amplitudes. Analysis of the impact of the ROUNDING function on order
quantity suggests that the system manager should group products with the same demand pat-
tern to determine the order quantity that maximises resilience without negatively impacting
warehousing and transportation costs.

A key feature of the above managerial implications is being aware of the frequency and amplitude
of demand signals. Grocery customers’ normal shopping habits tend to generate high frequency
demands, with peaks concentrated on Fridays and weekends when customers tend to buy most of
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Table 5. Insights gained from undertaking preliminary analysis of system dynamics models

Analytical insights Proposed simulation experiments Potential consequences if nonlin-
ear analysis not undertaken

A
n
a
ly
si
s
v
ia

th
e
‘s
h
o
ck

’
le
n
s

• Possibility to find system’s
transfer functions and ITAE
estimated equations.

• Simulation process focused on impor-
tant parameters for achieving supply
chain resilience.

• A better understanding of each con-
trol parameter’s influence on resilience
was achieved using both analytical and
simulation techniques.

Example 1: The parameter T
i

was found to be an important control parameters for resilience. It provokes opposite
impacts on ITAE values. Therefore it was investigated in greater detail in the simulation process as its value may
impact system stability.
Example 2: Small values of T

a

will always benefit resilience. Simulations confirmed that a demand chase strategy
(T

a

= 0 or ↵ = 1) is preferable and this parameter causes no problem in terms of stability.
Example 3: Delivery lead-time T

p

is also important for resilience and should be minimised.
• Possibility to find an inven-
tory drift problem in the DC
replenishment system.

• Simulations were undertaken to visu-
alise the problem and to test solutions.

• Possibly gone unnoticed. Although
step input simulation revealed the
same result, this drift e↵ect is only per-
ceived if plotting both safety and cur-
rent stocks together.

Example 1: Initial and final value theorems revealed how parameters T
i

and T
p

influence the inventory o↵set. This
would have been impractical with a numerical/simulation technique only.
Example 2: Simulations confirm that T

a

does not change the stock’s final value.

A
n
a
ly
si
s
v
ia

th
e
‘fi

lt
e
r’

le
n
s

• Understanding the impact
of the di↵erent nonlinearities
(CLIP and ROUNDING func-
tions) and input amplitudes on
the system’s damping ratio and
natural frequency.

• Simulations were undertaken to
check whether the analysis gave cor-
rect insights, and more e↵ort has been
given to check unexpected results.

• The understanding of nonlinearities
would be very di�cult and some re-
sults would have been missed when us-
ing only simulation techniques.

Example 1: Analysis showed that the ROUNDING function may cause a positive or negative impact on resilience
depending on control parameters. Not much simulation e↵ort was required to explore these findings. Moreover, the
positive impact on resilience might never have been discovered when using only simulation.
Example 2: The CLIP function does not cause any impact on other system responses. This e↵ect was easily
identified using describing function techniques and is confirmed via simulations.
• Understanding the impact of
di↵erent input frequencies on
the system’s behaviour.

• Simulations were undertaken only to
confirm analytical insights.

• Several simulation experiments
would have been necessary to gain the
same insights.

the groceries needed for the week (Kamarainen et al. 2001; Anckar et al. 2002). However, ‘lunch
on the go’ products, such as sandwiches, salad and pasta pots, have an extremely high frequency,
with daily peaks during the middle of each day (Wang et al. 2008). In both of these cases, demand
levels (in e↵ect amplitude) may double or treble between the lowest and highest values, possibly
triggering the system’s nonlinearities. Therefore, the potential risk of mismatching supply and
demand could be mitigated by levelling peaks and troughs.

On the other hand, for medium-low frequency demands, the nonlinearity in the shipment system
will take e↵ect more often, possibly causing backlogs and slower response and recovery. Examples
of products with medium demand frequencies include cleaning products and toiletries, which are
purchased on a less than weekly basis. However, considering the aggregate demand of all consumers,
it is possible that the retailer does not experience such seasonality for these products.

In contrast to the above products, festive goods have almost an impulse demand, with low/no
demand for most of the year and then a short peak for sales. For the UK retailer Tesco, pumpkin
sales in 2012 were typically less than 15,000 units/day during most of the year but rose in the two
weeks before Halloween, peaking at over 300,000 units/day on 29th October. By 1st November,
sales had returned to normal levels (Autumn’s Supermarket Secrets 2013).

The above discussion reflects demand signals in the food retailing industry. However, similar
patterns can be observed in other retail environments including apparel and toys (Wong et al.
2006) and in other industries such as the steel industry (Taylor 1999; Potter and Lalwani 2008)
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6. Conclusion

Preliminary mathematical analysis using NCT techniques has been undertaken in order to gain ini-
tial insights in the understanding of the DC replenishment system. This allowed the identification
of specific behaviour changes in the DC stock and shipment responses, which are key indicators
for assessing supply chain resilience, without going through a time-consuming simulation process.
Transfer function analysis, root locus techniques and describing function techniques are a precur-
sor for undertaking system dynamics simulations. While simulation generates confidence, analysis
breeds insights.

This research is limited to the dynamics of a single-echelon supply chain system. Although the
demand data and the store replenishment system have been considered in the validation process,
this study has focused on analysing the resilience performance of the DC replenishment system
alone. Consideration of the multi-echelon supply chain will be left for future research. Future
research should also evaluate the impact of structural changes made in the DC replenishment
system, such as the inclusion of new capacity constraints or introducing a collaborative strategy
with suppliers. Finally, other types of nonlinearities in system dynamics models, such as the ones
caused by time varying parameters, can be analysed using NCT. These nonlinearities have been
so far analysed using simulation only, although several other analytical methods exist (Atherton
1975; Vukic et al. 2003; Karafyllis and Jiang 2011).
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Appendix A. Qualitative phase: conceptualising the model
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Figure A1. Input-output diagram of the grocery retailer replenishment control system
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Figure A2. Causal loop diagram of the DC replenishment control system
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Appendix B. Non-linear di↵erence equations of the DC replenishment system

Table B1. Di↵erence equations

Description Di↵erence equation

Time period w, in weeks

Time period d, in days

Orders from Store

8
><

>:

OS(d),OS are received daily

OS(w) =
7X

i=1

OS(d� i), for forecasting purpose OS are aggregated weekly

Forecast Weekly Demand FWD(w) = FWD(w � 1) + 1
1+Ta

(OS(w)� FWD(w � 1))

Period A Demand Period A Demand(d) = D
A

.FWD(w)

Period B Demand Period B Demand(d) = D
B

.FWD(w)

Forecast Demand Forecast Demand(d) = Period A Demand(d) + Period B Demand(d)

Delivery from suppliers Delivery(d) = Supplier Order(d� Tp)

Maximum shipping Max.ship.(d) = Stock(d� 1) +Delivery(d)

Desired shipping D.ship.(d) = Backlog(d� 1) +OS(d)

Shipment Shipment(d) = MIN [D.ship.(d),Max.ship.(d)]

Safety Stock SS(d) =
⇣

1
2 Period A Demand(d)+Period B Demand(d)

⌘
K

DC On Hand Stock Level Stock(d) = Stock(d� 1) +Delivery(d)� Shipment(d)

Backlog Level Backlog(d) = Backlog(d� 1) +OS(d)� Shipment(d)

Goods in Transit GIT (d) =
TpX

i=1

Supplier Order(d� Tp� i)

Raw Order Quantity ROQ(d) = Forecast Demand(d� 1) +

�
SS(d�1)�Stock(d�1)

�

Ti

+
�
Target GIT �GIT (d� 1)

�

Supplier Order Supplier Order(d) = MAX
⇥
0, ROUND[ROQ(d), (Buying Quantity, T ruckload Constraint)]

⇤
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