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ABSTRACT 

Research on the self-healing cementitious composite material system named LatConX is 

presented, with predictions made as to the effectiveness of the system in limiting crack 

widths in concrete beams subjected to sustained loads. A layered beam numerical model for 

the transient thermo-mechanical behaviour of reinforced concrete has been developed and 

coupled to a previously published numerical model for transient thermo-mechanical 

behaviour of a shape memory polymer. The combined model has been validated by 

comparison with experimental data. Finally, the model is used to predict ten-year crack 

widths in standard reinforced concrete beams, and in beams employing the LatConX 

system. These results indicate that the LatConX system has the potential to reduce crack 

widths by up to 65 % when compared with an identical beam without the LatConX system. 



Abbreviations 

LCX - LatConX 

SMP – Shape memory polymer 

CDHM – Continuum damage healing mechanics 

FPZ – Fracture process zone 

SRC – Standard reinforced concrete 

1. INTRODUCTION 

This paper compares the predicted long-term behaviour of a new self-healing concrete 

material system with that of standard reinforced concrete. The new material system is 

named LatConX (LCX), it consists of both reinforcing steel and shape memory polymer 

(SMP) tendons included within a cementitious matrix. Once a beam has been cast, cured 

and loaded, the tendons’ shrinkage process is triggered, applying a compressive force to the 

cementitious matrix. This compressive force has been shown to be beneficial to the 

cementitious matrix in three ways: it closes any cracks that have developed; it applies a 

compressive stress to the cracked faces, leading to improved healing of the cracks; and it 

improves the structural performance of the composite system by acting in the same manner 

as a prestressing system. This system has been described in more detail by Jefferson et al 

[1]. The SMP tendons are formed from the widely available polymeric material polyethylene 

terephthalate (PET). 

A numerical model has been developed to facilitate the comparison between LCX and 

standard RC beams. The model is composed of a set of sub-models, which are combined in 

order to simulate the transient thermo-mechanical behaviour of reinforced concrete beams. 

The model accounts for all relevant material behaviour and their interactions. These include: 

mechanical damage, creep, shrinkage, thermal expansion/contraction, and self-healing of 

the cementitious matrix; mechanical behaviour of reinforcement; and transient thermo-

mechanical behaviour of SMP tendons. 

The model presented herein was developed with simplicity, ease of use, and robustness in 

mind; in particular, speed of convergence was a vital factor in the design of the model due to 

the large time scales under investigation. 
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1.1. Material modelling of concrete 

Most material models for concrete use either plasticity theory, damage mechanics or a 

combination of the two theories. Plasticity models require a yield surface, which is generally 

derived from a biaxial [2] or triaxial failure envelope, [3] [4], as well as a hardening/softening 

and flow rule. A number of effective plasticity models have been developed to simulate the 

nonlinear behaviour of concrete [5] [6] [7] although the natural weakness of plasticity theory, 

in this context, lies in its inability to simulate the stiffness degradation that accompanies 

physical micro-cracking in tension.  

Damage mechanics provides a natural means of simulating the loss of stiffness due to 

micro-cracking [8] and a number of effective isotropic damage models have been developed 

for the simulation of damage in both tension and compression [9]–[12]. Anisotropic damage 

models have also been investigated extensively over the last thirty years, which include 

those developed by Simo and Ju, Carol et al, Borst and Gutierrez, and Desmorat et al 

[13],[14],[15],[16].  

Many investigators have combined plasticity and damage theories to produce models that 

simulate both stiffness degradation and frictional behaviour, the latter of which is 

characterised by the development of permanent or plastic strains [17]–[22] 

For the present work, a one dimensional damage approach has been adopted to simulate 

tensile cracking and a plasticity model has been used to simulate the behaviour of concrete 

in compression. This cementitious material model has been applied in a nonlinear layered 

beam model. 

1.2. Healing 

The self-healing behaviour of cementitious materials has received considerable attention in 

recent years. Comprehensive reviews have been published by several authors including 

those of Joseph et al, Wu et al, and Van Tittelboom & De Belie [23] [24] [25]. 
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There has also been significant work, over the past two decades, on the development of 

material models for self-healing materials. Some of these models have been developed in 

relation to specific materials; for example, Miao and coworkers [26] presented a model for 

rock salt, while Mergheim and Stein [27] considered the behaviour of self-healing polymers. 

In addition, a number of generic self-healing models have been developed which are 

applicable to a range of materials [28]–[30]. The behaviour simulated by these models 

results from the healing of any microcracks (or macro-cracks) and microvoids present, a 

process which has been considered to be the opposite of damage, with healing sometimes 

being described as ‘negative damage’ [26],[28],[29]. This approach is often termed 

continuum damage healing mechanics (CDHM), a term originally coined by Barbero et al 

[28]. Furthering this concept, Voyiadjis and coworkers [30] developed a combined plasticity 

and CDHM model, including kinematic and isotropic hardening functions for plasticity, 

damage, and healing. Mergheim and Steinmann [27] developed a phenomenological model 

for self-healing polymers based on the assumption that healing is identical to negative 

damage. Their model is capable of simulating damage and healing processes 

simultaneously, and accounting for healing at non-zero strain. 

A simple one-dimensional form of a healing model was presented by Schimmel and 

Remmers [29]. Their model is described in relation to discrete damage models however it 

can also be conveniently applied to the healing of continuum damage. The model allows a 

proportion of any damage present to be recovered due to healing at one time only; the 

progress of healing at this time is governed by a healing function, the form of which is 

chosen depending on the precise healing agent or process under consideration. 

1.3. Modelling of creep and shrinkage in concrete 

According to Bažant [31] there are two main model types for predicting the creep and 

shrinkage behaviour of concrete. There are true constitutive equations that simulate the real 

creep and shrinkage mechanisms and there are phenomenological models that approximate 

the mean behaviour of larger concrete elements. 
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The design models that appear in concrete codes of practice are generally of the latter type, 

of which examples include the ACI-209R-82 model [32], the B3 [33] and B4 [34] models, the 

CEB-FIP 1990 [35] models, GL2000 model [36], and Eurocode 2 [37]. Goel et al [38] 

presented a comparative study of five of these creep and shrinkage models in which they 

summarised the merits, and shortcomings of the models reviewed. 

Bažant and coworkers [39],[40] developed a method for predicting concrete creep taking into 

account long-term aging and drying which has been termed solidification theory. A simplified 

version of a recently presented model [41], that uses some aspects of this solidification 

theory, has been developed for the present work. In this model, creep strains are predicted 

by a rheological model comprising multiple Maxwell elements in parallel. Creep strain 

predictions from Eurocode 2 [37] are also used to assess the accuracy of the computational 

creep model. 

2. LatConX System Model 

The non-linear numerical model developed to simulate the long-term behaviour of the LCX 

material system is illustrated in Figure 1. The model is composed of a number of elements; 

the exact configuration of which depends on the details of the LCX structure being 

considered. There are three different element types; continuum beam elements, fracture 

process zone (FPZ) elements and SMP bar elements. In all cases presented in this article, 

the model consists of two continuum beam elements either side of a central FPZ element, 

with the SMP element being incorporated as required. In this configuration, the model is 

applicable to situations in which either there is distributed time-dependent cracking along the 

beam, and/or there is a localised (dominant) crack at the centre of the beam. The latter, in 

particular, occurs in experimental beams that contain a central notch. The model in this form 

is considered adequate for all of the beam configurations considered in this paper; however, 

if required, the model could be applied with multiple FPZ elements and used to simulate a 

range of concrete beams types. 
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The model setup considered for all applications presented in this article is shown in Figure 1. 

This is a simply supported beam of length L, with a significant central notch, subjected to a 

centrally applied point load, P. The overall model comprises two continuum beam elements, 

each of length Le, and a central FPZ of length wc. The element that represents the PET 

tendon and the reinforcement layer are also shown in Figure 1 

The fracture process zone width represents the physical zone over which micro-cracking 

occurs adjacent to a macro-crack and is normally assumed to be approximately three to five 

times the size of the coarse aggregate particles [42]. However, since the post-peak stress-

strain relationship used in the FPZ element is scaled to wc, as in Bažant and Oh’s Crack-

Band theory, the results are always highly insensitive to the value used for wc [42]. 

A further note on the model is that cracking, creep and shrinkage are taken into account for 

the continuum elements using code based models, as explained in Section 2.3. 

 

2.1. Nonlinear Fracture Process Zone 

In this Section, the assumptions and relationships governing the behaviour of an FPZ 

element will be discussed. There are two key assumptions in the representation of an FPZ 

element: 

Figure 1 - Schematic diagram of numerical model 
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1. Plane sections remain plane 

2. The FPZ is subject to constant curvature 

Using these assumptions, the total strain (εtot) at any level z in a beam section may be 

derived to be  

 ε
�
 =ε


 − 2
w�

zθ� 
( 1 ) 

where ε


 is the mid-level reference strain, θ2 the angle of rotation, and wc is the width of the 

FPZ (see Figure 1). Using the relationship outlined in Equation 1, and the constitutive 

relationships for each material introduced in the following Sections, equilibrium equations 

may be established for the for FPZ element in terms of the rotation (θ2) and axial strain at 

the reference height (ε
) 

2.2. Constitutive Models 

The behaviour of the concrete, steel, and polymer in this model are each governed by 

separate constitutive models, which are described below. 

2.2.1. Mortar/concrete 

The constitutive behaviour of mortar or concrete is simulated with the one-dimensional 

model shown in Figure 2. Tensile behaviour is governed by a uniaxial damage model, in 

which damage evolution is controlled by an exponential softening function. In the 

compression region, the behaviour is assumed to be elastic-perfectly plastic, as illustrated in 

Figure 2. It is acknowledged that this uniaxial compressive stress-strain relationship is a 

significant idealisation of the true behaviour of concrete and mortar, but since the focus of 

the paper is on cracking and healing, and not on ultimate behaviour, this idealisation is 

considered adequate for the present work.   

The constitutive model also accounts for healing, creep, shrinkage, and thermal behaviour; 

the theories and resulting models governing these phenomena, as well as their integration 

with the basic mortar constitutive model, are described in the relevant sections below. 
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The effective mechanical strain εefm, which takes account of shrinkage, creep, and thermal 

strain is given by: 

 ε��� = ε
�
 − ε�� − ε�� − ε�� ( 2 ) 

where; εsh is the shrinkage strain, εcr is the creep strain, and εTH is the thermal strain. 

The constitutive equation for the tension zone is given by Equation ( 3 ). 

 σ = %1 − ω) ∙ E ∙ %ε��� − ε*+) ( 3 ) 

in which σ is the axial stress in a beam layer, and εpl is the plastic strain, ω∈[0,1]  is the 

damage parameter given by Equation ( 4 ) which is taken from Reference [20] and  accounts 

for the loss of stiffness in the cementitious matrix resulting from microcracking, E is Young’s 

modulus of the undamaged mortar/concrete, and εefm is the effective mechanical axial strain 

taking into account creep, shrinkage and thermal effects. 

 ω = 0             ∀  ζ ≤ εt ω = 1 − ε.ζ e/� ζ0ε.ε10ε.           ∀  ζ > εt 

( 4 ) 

 in which εt is the tensile strain limit, beyond which damage is initiated (i.e. 2
 = 34
5  ), and ζ is 

the maximum historical value of the effective strain parameter, which is initialised to εt. 

The strain at the effective end of the softening curve (ε6) is computed from ε6 = 71
89

, with :6 

being the crack opening displacement at the effective end of a stress-opening curve. u0 is 

calculated from the specific fracture energy parameter as follows  u6 ≈ �∙>?
�.

.  

The softening curve constant c is taken to be 5, as in reference [20]. 

The constitutive equation for the compression zone is given by Equation ( 5 ). 

 σ = E ∙ %ε@3A − ε*+) ( 5 ) 
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where E is Young’s modulus of the mortar/concrete, noting that fc in Figure 2, is the 

compressive strength of mortar/concrete. 

2BCD = 2B  ∀				F = GH 

Equation (5) implies that any cracks present will close completely when the material goes 

into compression.   

 

Figure 2 - Mortar constitutive model and primary variables 

2.2.1.1. Shrinkage Strain 

The shrinkage strain is calculated using Eurocode 2 [37]. In this code the shrinkage curve is 

calculated as a function of the environment’s relative humidity, the mean compressive 28 

day strength of the concrete, and the notional member size. It is noted that shrinkage is 

applied to both the continuum and FPZ elements. 

2.2.1.2. Creep Strain 

As mentioned above, a simplified version of the creep model developed by Jefferson et al 

[41] has been implemented for this work. This simplified model comprises of an elastic 
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spring and three Maxwell arms in parallel. Since the concrete stress is likely to vary through 

its depth, the creep strain is calculated separately for each layer of the FPZ element as a 

function of the stress applied to that layer. 

The viscoelastic strain, εI��, for each Maxwell arm is given by the standard solution shown in 

Equation ( 6 ). 

 εI��J = ε��� K1 − e/∆MNOP + εI��J/R Ke/∆MNOP 
( 6 ) 

where εefc is the effective strain on the creep unit (Equation ( 7 )), Δt is the length of the time 

step being considered in seconds, i is the increment number, and τc is the relaxation time of 

the Maxwell arm. 

 ε��� = ε
�
 − ε�� − ε�� − ε�� ( 7 ) 

in which εfr is the fracture strain, which is given by Equation (8 ). 

 ε�� = ω%ε
�
 − ε�� − ε�� − ε���  if ε
�
 − ε�� − ε�� − ε�� > 0 

ε�� = 0 otherwise 

(8 ) 

The above equations allow the viscoelastic strain for each Maxwell arm to be calculated, and 

these are combined into a single total creep strain for each FPZ element layer. The 

contribution of each Maxwell arm to this total creep strain is controlled by a set of weighting 

factors, βci. The total creep strain in the FPZ element is then given by; 

 ε�� = WβHJεI��JX
JY�  

( 9 ) 

where βci is the weighting factor for arm i, and εveci is the viscoelastic strain for each arm. The 

values of βc and τc for each arm were set by calibrating against the creep model presented in 

Eurocode 2 [37] for the desired environmental conditions. 
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An example calibration curve and the relevant βc and τc values can be seen in Table 1 and 

Figure 3. 

This creep model is only applied to the FPZ element. A simplified, code-based, approach is 

used for the continuum beam elements, as explained in section 2.3.  

Table 1 – βc and τc values used for example creep calibration curve 

Arm No 1 2 3 4 

ββββcccc    0.2 0.5 0.26 0.04 

ττττcccc (days) 

NA 0.6 50 2000 

 

 

Figure 3 – Example calibration curve. Compressive strength = 30 N/mm
2
, dimensions 300 x 450 mm, relative humidity 50 

%, loaded at 7 days 

2.2.1.3. Thermal Strain 

It is normal practice to assume that the component of early thermal cracking associated with 

the heat of hydration occurs due to cooling from the peak hydration temperature (Bamford 

2007 CIRIA guide and BD28/87).  The thermal strain (ε��) that gives rise to such cracking 

may be calculated as follows (BD28/87) 
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 ε�� = −0.8α�%TR + T�� ( 10 ) 

where αc is the coefficient of thermal expansion for concrete, taken as 12 x 10-6, and T1 and 

T2 are anticipated temperature decreases from the hydration peak. The values of T1 and T2 
are determined in accordance with BD28/87; T1 is the short term fall in temperature from the 

hydration peak, and T2 is the long term fall in temperature from ambient to the seasonal 

minimum.  

In the present model, the thermal strain is applied at time, tTH, which is before any other 

creep, shrinkage, or applied load effects are applied. This approach is considered adequate 

for the simulations reported in this paper. 

2.2.1.4. Self-Healing 

Post-damage strength regain, in the form of self-healing, is also accounted for in the 

mortar/concrete constitutive model. This strength regain could either be due to the action of 

healing additives or autogenous healing within the cementitious matrix. Hence, the degree of 

self-healing varies depending on the exact nature of the healing phenomenon considered. 

The healing model is similar to that of Schimmel and Remmers [29] however, instead of the 

healing progressing according to a healing function, it is assumed to occur instantaneously. 

Thus, there are just two parameters to consider; the time of healing (tH) and the percentage 

of current damage regained (H ∈[0,1]). Healed material is considered to form in a stress free 

state and thus the strain given by Equation ( 2 ) at the time that healing is applied (εH) is 

recorded and employed in equation (13). The level of damage at the time of healing (ωH ) is 

also recorded and included in the expression for the stress in the healed material, σH, given 

in Equation ( 11 ). The inclusion of ωH results in the level of healing being proportional to the 

existing level of damage at the time of healing. 
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 σ� = H ∙ ω� ∙ E^ ∙ _ε@3A − ε�` ( 11 ) 

where Young’s modulus EH of the healed mortar/concrete is a function of any strain applied 

to the material beyond the strain at healing i.e. ε-εH. 

Combining Equations ( 3 ) or ( 5 ), and ( 11 ) gives the total stress-strain relationship for the 

mortar/concrete shown in Equation ( 12 ). 

 σMbMc+ = σ + σ� ( 12 ) 

2.2.2. Reinforcing Steel 

The trilinear constitutive model governing the behaviour of the reinforcing steel is displayed 

in Figure 4. 

 

Figure 4 - Reinforcing steel constitutive model 

It is assumed that there is no slip between the cementitious matrix and the reinforcing steel, 

and therefore the strains applied to reinforcement elements are the total strains at the 

relevant level in the beam, obtained from Equation ( 1 ). This assumption is acceptable when 

the applied load considered does not exceed the anticipated working load level [43]. 
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In all of the examples presented in this article, the steel reinforcement material parameters 

are as shown in Table 2. 

Table 2 – Material parameters for steel reinforcement 

εεεεykykykyk    ffffykykykyk    εεεεyk2yk2yk2yk2    ffffyk2yk2yk2yk2    

0.0029 500 MPa 0.2480 653 MPa 

 

2.2.3. Polymer Tendons 

2.2.3.1. Constitutive Model 

The constitutive behaviour of the SMP tendons is governed by a transient thermo-

mechanical model developed previously [44]. The constitutive model is composed of a 

number of rheological elements (Figure 5).  

 

Figure 5 – Rheological representation of polymer constitutive model 

The stress in the polymer (σp) is given by Equation ( 13 ). 

 σ* = βf ∙ ER ∙ ε* + %1 − βf� ∙ ER ∙ _ε* − εI�R` + E�%T� ∙ _ε* − εI��` − _ER + E�%T�` ∙ α ∙ %T − Tc�gJ�hM� ( 13 ) 
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in which εp, εve1, εve2, E1, E2, are the strains, and material properties for each arm of the 

model, as shown in Figure 5, βR is the weighting factor for long term behaviour, T is the 

current temperature, Tambient is the ambient temperature, and α is the coefficient of thermal 

expansion. 

For each time increment (j) the viscoelastic strains (εve1, εve2) are updated according to the 

relationship in ( 14 ). 

 εI�n = εon_1 − e/∆M N⁄ ` + εI�n/R. e/∆M N⁄  ( 14 ) 

in which εθ is the overall strain on the model at the midpoint of the time increment i.e. θ = 

0.5, Δt is the size of the time step i.e. tj-tj-1, and τ = η/E. 

2.2.3.2. Combination with Beam Model 

For each time increment, the stress in any polymer tendon is computed on the assumption 

that it is restrained at a length equal to that of the beam at the level of the polymer tendon, 

(zp). This restraining length is denoted LR and is calculated according to Equation ( 15 ). 

 Lf = L + ∆L ( 15 ) 

in which L is the original length of the beam, and ΔL is the change in length of the beam 

which is contributed to by the displacements of both of the continuum beam elements (ΔLLe) 
and the FPZ (ΔLFPZ). In the FPZ, the sum of all contributing strains at any level is given by 

Equation ( 1 ), thus the total displacement at the level of the polymer tendon is: 

 ∆Luvw = ε
w� − 2θ�z* ( 16 ) 

The displacement in the two continuum beam elements is that shown in ( 17 ) which 

accounts for axial and rotational displacements in the elements due to applied moment, 

stress in the polymer, shrinkage, creep, and thermal strains. 

∆Lx� = 2L� y A*σ*AEH@3%t� + z*EH@3%t�I|}
%MA��� �A*σ*z* + M2� + �ε�� + ε��� � AEH@3%t�A�E� + AEH@3%t� + α�Sz*I|}
%MA����� ( 17 ) 
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in which Ap is the cross sectional area of the polymer tendon, σp is the stress in the polymer 

tendon at the end of the previous time increment, A is the concrete area, Ecef%t� is the 

effective  concrete Young’s modulus as a function of time, which accounts for creep 

behaviour in the continuum elements (see Equation ( 20 )), M is the applied moment, and 

I%Mmax� is the second moment of area of the beam as a function of the maximum historical 

applied moment, Mmax, As is the total area of reinforcement, Es is Young’s modulus of the 

reinforcement, αe is the modular ratio, and S is the first moment of area of the reinforcement. 

The model allows for cracking in the continuum beam elements in an averaged sense by 

using an inertia interpolated between a cracked and an uncracked state, as explained in 

section 2.3. 

An overall strain applied to the polymer is derived from this change in length and substituted 

into the stress strain relationship of Equation ( 13 ). In which, εp = (LR – Lpmin)/Lpmin, Lpmin = 

L/(1+εp0), and εp0 is the drawing strain used in the polymer manufacturing process, the value 

for this comes from the polymer constitutive model [44]. 

2.3. Continuum beam Elements 

In the model setup considered throughout this publication, one continuum beam element is 

located on either side of the central FPZ. 

The continuum beam elements are Bernoulli-Euler beam elements with nonlinear 

constitutive relationships that take account of cracking, creep, and shrinkage. The standard 

secant stiffness relationship for these elements is given by Equation ( 18 ). 

 

� FRMRF�M�
� = E���%t� ∙ IJhM%M�L�

���
���
� 12 L��� 6 L��6 L�� 4

−12 L��� 6 L��−6 L�� 2−12 L��� −6 L��6 L�� 2
12 L��� −6 L��−6 L�� 4 ���

���
�
�wRθRw�θ�

� ( 18 ) 
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The approach from Eurocode 2 [37] has been used to determine the effective cracked 

second moment of area (IJhM) and effective Young’s modulus (Ecef) of the beam sections, the 

expressions for these are: 

 

IJhM = %1 − δ�I7h + δ ∙ I�� ( 19 ) 

 

 E��� = Eφ + 1 
( 20 ) 

in which Iint is the interpolated value of the second moment of area, δ is a distribution factor 

used to take account of tension stiffening of a reinforced concrete section, Iun and Icr are the 

uncracked and cracked second moments of area respectively, and φ is the creep factor 

determined in accordance with Eurocode 2 [37]. 

Shrinkage in the continuum beam elements has been accounted for by calculating a 

curvature due to shrinkage according to Equation ( 21 ). 

 1�H� = 2���@ ��|}
 
( 21 ) 

 

in which rcs is the radius of curvature due to shrinkage. 

2.4. Assembly of equilibrium equations for FPZ 

The FPZ behaviour is modelled using a layered approach in which the beam is divided into a 

number of discrete layers (nlay – usually 100). Each layer has an effective width and depth of 

b and Δz respectively. The strain in each layer is computed using Equation ( 1 ). The effect 

of any reinforcement is accounted for in the same manner by adding its contribution to the 

overall axial and bending stiffness as a function of the reinforcement’s area, depth within the 

beam, and axial stiffness, according to the constitutive model presented in Figure 4. Thus, 

the internal axial force, N, and moment, M, for a reinforced concrete section subjected to a 

total strain at a specified reference height, 2,̅ and rotation, θ2 are given by ( 22 ) and ( 23 ) 

respectively. 
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 N = W%1 −ω�Eε���JbJ∆zJh+c�
JYR + W%1 −ω��ω�HE_ε���J − ε�J`bJ∆zJh+c�

JYR + W E�εJA�J
h��gc�

JYR  

( 22 ) 

 M = W%1 −ω�Eε���JbJzJ∆zJh+c�
JYR + W%1 −ω��ω�HE_ε���J − ε�J`bJzJ∆zJh+c�

JYR + W E�εJA�Jz�Jh��gc�
JYR  

( 23 ) 

in which zi and zri are the depths for each mortar/concrete or reinforcement layer 

respectively relative to the reference height; the damage parameters ω and ω2 for each layer 

are a function of εefmi and (εefmi – εHi) respectively; and Asi is the area of steel in each 

reinforcement layer. 

εi, and εefmi are the strains at the centre of each layer, as given by Equations ( 24 ) and ( 25 ), 

which are discretised forms of Equations ( 1 ) and ( 2 ). 

 εJ = ε
 − 2w� zJθ� 
( 24 ) 

 ε���J = εJ − ε�� − ε��J − ε�� ( 25 ) 

Combining Equations ( 22 ), ( 23 ), ( 24 ), and ( 25 ); equating ( 22 ) to the load from the 

polymer tendon, if present, and ( 23 ) to the externally applied moment, leads to a system of 

equilibrium equations for the FPZ as shown in Equation ( 26 ). 

   = �¡� ∙ �¢� ( 26 ) 

in which FFFF, ΩΩΩΩ, and uuuu are represented by the following: 

 

F =

�
�
�
�
�
� σ*A* + W bJ∆zJE ¤%1 −ωJ)_ε�� + ε�� +ε��J` + _1 −ω�J`ω�JH_ε�� + ε�� + ε��J + ε�J`¥

h+c�

JYR

Mc* + σ*A*z* + W bJzJ∆zJE ¤%1 −ωJ)_ε�� + ε�� +ε��J` + _1 −ω�J`ω�JH_ε�� + ε�� + ε��J + ε�J`¥
h+c�

JYR �
�
�
�
�
�
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  u = � ε

θ�� 

 

 

 

2.5. Summary of material parameters 

Due to the large number of material parameters required for the constitutive models described in 

this article, a summary table has been provided (Table 3), which describes each parameter, gives 

typical values, and provides some guidance on how the parameter should be determined. 

Table 3 – Summary of material parameters 

Symbol Description Typical 

Value 

Comments 

Concrete Material Parameters 

wc Length of fracture process 

zone 

100 mm 3-5x coarse aggregate size. 

E Young’s modulus of 

mortar/concrete 

20 – 35 kN/mm
2
 Standard material constant. 

c Stress-opening curve constant 5 This defines the slope and extent of the softening portion 

of the stress-strain curve for mortar/concrete in the 

tension regime (Figure 2). The value of 5 has been used as 

in reference [20]. 

Gf Specific fracture energy of 

mortar/concrete 

0.1 N/mm 

(0.025 for 

mortar) 

Standard material constant. 

ft Tensile strength of 

mortar/concrete 

2.9 N/mm
2
 Standard material constant. 

fc Compressive strength of 

mortar/concrete 

30-40 N/mm
2
 Standard material constant. 

τci Relaxation time for each 

Maxwell arm of the creep 

model 

Widely varied Set by calibration against the Eurocode 2 method. 

βci Creep model weighting factor Widely varied This governs the weight of contribution of each Maxwell 

arm viscoelastic strain to the total creep strain. The 

values are set by calibration with Eurocode 2 equations. 

T1 Short term fall in temperature 

for mortar/concrete from 

hydration peak 

28°C Design value taken from BD28/87 – assuming plywood 

formwork and Summer construction. 



 

20 

 

T2 Long term fall in temperature 

from ambient to the seasonal 

minimum for mortar/concrete 

0°C Design value taken from BD28/87 – Beam is less than 

15m in length. 

αc Coefficient of thermal 

expansion for mortar/concrete 

12x10
-6 

Standard material constant. 

tTH Time of application of thermal 

strain 

3 days Thermal strain of this nature occurs soon after casting 

(before the application of any load); providing this 

criterion is satisfied, the precise time has no effect on the 

solution. 

tH Time of healing Problem 

dependent 

This depends on the nature of healing being considered. 

H Healing parameter Problem 

dependent 

Percentage of level of damage at t=tH that is healed. 

Polymer Material Parameters 

σres Manufacturing drawing stress 25-30 MPa 

Determined in material tests, described by Hazelwood at 

al [44], and Dunn et al [45] 

βR Relaxation weighting factor for 

temperature independent 

0.95-0.99 

τp Relaxation time for 

temperature independent arm 

200000 seconds 

Etot Ambient temperature Young’s 

Modulus 

6000 MPa 

α Coefficient of thermal 

expansion 

10
-4.8 

ETH High temperature Young’s 

modulus 

845 MPa 

TLE Lower bound for thermal 

transition of Young’s modulus 

70°C 

THE Upper bound for thermal 

transition of Young’s modulus 

120°C 

bp Material constant governing 

temperature dependent 

material property functions 

3.3 

cp Material constant governing 

temperature dependent 

material property functions 

5 

dp Material constant governing 

temperature dependent 

material property functions 

1.2 

fp Material constant governing 

temperature dependent 

material property functions 

0.1 

η2L High temperature viscosity for 

temperature dependent arm 

3.122x10
7
 P 

η2H Low temperature viscosity for 1.575x10
4 

P 
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temperature dependent arm 

TLη Lower bound for thermal 

transition 

30°C 

THη Upper bound for thermal 

transition 

90°C 

Steel Material Parameters 

εyk Initial yield strain for steel 

reinforcement 

0.0029 Standard material constant. 

εyk2 Final yield strain beyond which 

hardening behaviour ceases 

for steel reinforcement 

0.2480 Standard material constant. 

fyk Initial yield stress for steel 

reinforcement 

500 MPa Standard material constant. 

fyk2 Final yield stress beyond which 

hardening behaviour ceases 

for steel reinforcement 

653 MPa Standard material constant. 

2.6. Model Algorithms 

The overall algorithm for simulating the long term behaviour of a structural element is 

outlined below, with further algorithms for specific parts of the model being given in Appendix 

A. 

2.6.1. Main algorithm defining details for analysis 

1 (is, t, T, εve1, εve2, εp, M, εbar, θ2, εL, ζ, εsh, εcr, εvec, σp, εH, ωH, εLH, 
ζH) = 0 

Initialise all variables and counters 

2 while t < tTH 

 is = is + 1, t = t + ∆t 

 (T, εve1, εve2, εp, M, εbar, θ2, εL, ζ, εsh, εcr, εvec, σp, 
 εH, ωH, εLH, ζH)is = (T, εve1, εve2, εp, M, εbar, θ2, εL, ζ, 
 εsh, εcr, εvec, σp, εH, ωH, εLH, ζHprev)is-1 

Time dependent processes are 
assumed to begin at t = tTH thus 
update counters and set variables up 
to this point 

3 if t = tTH 

 Set εTH 

Apply thermal strain at t = tTH 

See Equation ( 10 ). 

4 See iterative solver algorithm in Appendix A Compute updated beam configuration 
for thermal strain 

5 See time step algorithm in Section 2.6.2 Simulate time dependent processes 
and compute updated beam 
configuration for each time step up 
until time of loading, t0 

6 ∆t = 0, ∆¨ = ©ª«}¬4­« 
See iterative solver algorithm in Appendix A 

Incrementally apply permanent 
moment and compute beam 
configurations throughout 

7 See time step algorithm in Section 2.6.2 Simulate time dependent processes 
and compute updated beam 
configuration for each time step up for 
required length of time I.e. up to tfinal 
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2.6.2. Algorithm for each time step 

1 t, T, εve1, εve2, εp, M, εbar, θ2, εL, ζ, εsh, εcr, εvec, σp, εH, ωH, εLH, ζH Input all values from previous time 
step 

2 is = is + 1 Update counters 

3 t = t + ∆t , T = T + ∆T Set conditional changes for time step 

4 See creep algorithm in Appendix A Update creep strains 

5 See shrinkage algorithm in Appendix A Update shrinkage strains 

6 See polymer algorithm in Appendix A Update polymer state 

7 See iterative solver algorithm in Appendix A Compute updated beam configuration  

3. EXAMPLES 

The data from two experimental programs have been used to validate the numerical model. 

In the examples that follow, healing has not been considered unless stated otherwise. 

3.1. Example 1 

This example considered experimental data from Jefferson et al [1]. This test series used 

hollow prismatic mortar beams with SMP tendons fixed within; the beam cross-sections were 

25mm square with a central 10mm square void. These samples were first mechanically 

tested 4 days after casting, with the polymer in its pre-activated state, thus providing no 

resistance to the applied load. Next, the samples were heated to 90°C and soaked at this 

temperature for 18 hours, in order to activate the shrinkage process of the polymer tendons. 

The specimens were then mechanically tested for a second time 4 days later (8 days after 

casting) i.e. with the restrained activated polymer contributing to the load deflection 

behaviour. During both the test at 4 days and the test at 8 days, the fracture-softening 

behaviour was recorded. With the exception of the healed parameter (H) the material 

properties of the mortar were determined from material tests carried out by Jefferson et al. 

Both the mean value and coefficient of variation for each material property found in these 

materials tests are displayed in Table 4, with the mean value being used in the numerical 

predictions. H has been set by experimental calibration to the 8 day test data. The creep 

parameters for the FPZ element are shown in Table 5. No thermal strain is applied in this 
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example since the beams were not considered to be under any significant restraint during 

the period of cooling from the maximum heat of hydration. 

Table 4 - Material parameters for example 1 

 

EEEE    
kN/mm

2
 

EEEEpppp    
kN/mm

2
 

AAAApppp    
mm

2
 

σσσσresresresres    
N/mm

2
 

wwwwcccc    
mm 

ffffcccc    
N/mm

2
 

fffftttt    
N/mm

2
 

HHHH    GGGGffff    
N/mm 

Mean  24.8 6.0 20.7 33.8 5 19.5 2.0 0.005 0.025 

CoV % 1.6 2.5 - 2.3 - 8.3 7.3 - 11.7 

 Note: fc is taken as 0.85*fcu, where fcu was the strength obtained from 40mm cubes; Ep  is the total 

 Young’s modulus for the polymer i.e. E1 + E2 in the numerical model. 

Table 5 – Parameters used in creep model for all example and long term simulations 

Arm 1 Arm 2 Arm 3 Arm 4 

  
β τ β τ β τ β τ 

Example 1 0.08 

NA 

0.84 0.5 0.07 100 0.01 2000 

Example 2 
Beams 0.3 0.35 1.2 0.25 40 0.1 1000 

Slabs 0.17 0.67 1.6 0.14 110 0.02 2200 

Long term Eurocode Simulation 0.2 0.5 0.6 0.26 50 0.04 2000 

 

Figure 6 shows the comparison between the experimental data and the model predictions, in 

terms of the applied load and the crack mouth opening displacement (CMOD), using the 

material properties from Table 4, and it can be seen that the numerical predictions closely 

match the experimental data. It should be noted that in this example the importance and 

impact of the healing parameter is minimal (0.5 % strength regain): this parameter becomes 

more important when a more complete self-healing concrete system is considered, i.e. one 

which combines the expected crack closure capability of LatConX with a healing additive 

agent that aids strength regain. It is anticipated that further research will lead to a better 

understanding of the level of strength regain expected for different types of healing system. 
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Figure 6 - Comparison between experimental data and numerical simulation predictions for example 1 

3.2. Example 2 

In this example, the nonlinear time-dependent beam model was used to analyse 12 singly 

reinforced concrete specimens tested by Gilbert [46]. Over a period of 400 days, the simply 

supported specimens were subjected to a constant sustained service load. A more detailed 

description of the tests and specimens can be found in reference [46]. The material 

parameters and geometric specimen data are given in Table 6 and Table 7 respectively. The 

creep parameters used for the FPZ element are shown in Table 5. A thermal strain 

corresponding to temperature values of T1 = 10, and T2 = 0, was applied on the third day 

after casting. 

Table 6 – General material parameters for example 2 

L 

(mm) 

E 

(GPa) 

fc 

(MPa) 

ft 

(MPa) 

Es 

(GPa) 

fyk 

(MPa) 

Φ 

(400 days) 

εsh 

(400 days) 

T1 

(°C) 

T2 

(°C) 

wc 

(mm) 

Gf 

(N/mm) 

3500 22.82 18.3 2.57 200 500 1.71 0.000825 10 0 100 0.05 

 Note: Gf is a relatively low value for this example, however as the concrete was loaded at an early age 

 (14 days) this is considered reasonable. 
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Table 7 – Individual specimen parameters for example 2 

 

Beams Slabs 

Specimen 1a 1b 2a 2b 3a 3b 1a 1b 2a 2b 3a 3b 

b (mm) 250 250 250 250 250 250 400 400 400 400 400 400 

h (mm) 348 348 333 333 333 333 161 161 161 161 161 161 

d (mm) 300 300 300 300 300 300 130 130 130 130 130 130 

As (mm
2
) 400 400 400 400 600 600 226 226 339 339 452 452 

Map 24.90 17.00 24.80 16.80 34.60 20.80 6.81 5.28 9.87 6.81 11.40 8.34 

 

A comparison between the predicted and measured 400 day deflections is given in Table 8. 

The predictions show good agreement, with a mean percentage difference of 12.46 %. The 

standard deviation is 8.54 % which, although apparently large, is considered within 

acceptable limits when taking into account the variability of concrete properties. 

Table 8 – Example 2 – Results 

 

Beams Slabs 

Specimen 1a 1b 2a 2b 3a 3b 1a 1b 2a 2b 3a 3b 

400 day 

deflection 

(mm) 

Measured 12.1 7.4 12.4 7.9 13.3 7.9 25.1 19.9 29.8 21.9 32.5 22.9 

Simulated 11.7 8.5 11.8 8.7 12.6 8.7 31.1 26.2 33.0 26.0 32.0 26.2 

% difference 3.31 14.86 4.84 10.13 5.26 10.13 23.90 31.66 10.74 18.72 1.54 14.41 

         Mean % difference 12.46 

         Standard deviation 8.54 

 

This agreement is considered to validate the numerical model’s ability to take account of the 

time-dependent creep and shrinkage behaviour of the concrete, strains due to thermal 

contraction of the concrete, and the effects of cracking in both the continuum beam and FPZ 

elements on the load-deflection response. 
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4. LONG TERM SIMULATIONS 

At present, no experimental tests have been developed to quantify the long term 

performance of the LCX system, thus predictions of the relevant behaviour will now be made 

using the model presented herein. Predictions from this model are expected to be useful in 

the future development of the system; both by guiding experimental studies, and aiding the 

design of reinforced concrete elements employing the LCX system. 

The long term behaviour of two beam types has been simulated here in order to 

demonstrate the capabilities of the model and provide quantifiable predictions for the crack 

closure benefits of the LCX system. 

Crack widths in this section are calculated from the product of the fracture strain for the 

bottom layer (εfr) and the FPZ width (wc). The long term behaviour of each beam has been 

simulated for two different cases; a standard reinforced concrete section (SRC), and a 

section employing the LCX system; and the results quantitatively compared. 

In each simulation, the beam’s behaviour has been simulated for a period of 10 years, a 

period considered sufficient for trends to be reliably observed. In simulations including the 

LCX system; activation of the polymer occurs 28 days after casting, the polymer bars have 

an area equal to 2 % of the gross concrete area, and are positioned one third of the full 

concrete depth above the bottom face. Except for in the simulations referred to as LCX–100, 

and LCX–100–0.5 in Figure 8, the values of the material parameters used in the polymer 

constitutive model were taken from the work of Hazelwood et al [44] (see Table 9). Healing 

was only considered to have an effect in the LCX–100–0.5 simulation, thus in all other 

simulations parameter H was set to zero. 

Table 9 – SMP material parameters 

αααα    
EEEETHTHTHTH    EEEEpppp    TTTTLELELELE    TTTTHEHEHEHE    bbbbpppp    ddddpppp    σσσσresresresres    
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10
-4.8

 845 MPa 6000 MPa 70
o
C 120

o
C 3.3 1.2 26.57 MPa 

ηηηη2L2L2L2L    ηηηη2H2H2H2H    TTTTLLLLη    TTTTHHHHη    ccccpppp    ffffpppp    ττττpppp    ββββRRRR    

1.575 x 10
4
 P 3.122 x 10

7
 P 30

o
C 90

o
C 5 

0.1 2 x 10
5
 s 

0.98 

 

 Note: Some of the symbols names here have been changed from those used in the work of Hazelwood 

 et al [44] due to the possibility of duplicate symbols within the present work. 

All specimens from Example 2 have been analysed using the same parameters as those 

given in Table 5, Table 6, and Table 7; and described in the previous section relating to this 

example. 

The full predicted behaviour of specimen B1a over the ten-year period is displayed in Figure 

7 (this specimen was chosen due to the model’s accuracy in predicting the 400 day 

deflection of this beam - see Table 8). The predicted ten-year crack widths for all specimens 

are displayed in Table 10. 

 

Figure 7 – Long term simulations of both RC and LCX behaviour for specimen B1a 

The predicted crack width development with time for the SRC beam shown in Figure 7 is as 

expected. The shape of the curve for the LCX beam is similar, except that there is a sharp 

decrease in the crack width when the polymer is activated. After this point, the crack width 
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continues to increase at the same rate as observed in the SRC beam. Putting this into 

context; in the SRC beam, a ten-year crack width of approximately 0.33 mm is predicted, 

compared to a ten-year crack width of approximately 0.27 mm in the LCX beam; a 17.0 % 

reduction. These trends were consistently predicted for all beams analysed. The quantitative 

predictions for all 12 specimens are shown in Table 10. 

Table 10 – Ten-year RC and LCX crack widths for all validation specimens 

 

Beams Slabs 

Specimen 1a 1b 2a 2b 3a 3b 1a 1b 2a 2b 3a 3b 

MMMMapapapap/MMMMuuuu (%) 44.3 30.2 44.1 29.8 42.4 25.5 49.0 38.0 48.6 33.6 43 31.6 

AstAstAstAst/bdbdbdbd (%) 0.53 0.53 0.53 0.53 0.83 0.83 0.43 0.43 0.65 0.65 0.87 0.87 

Crack width 

(mm) 

RC 0.33 0.278 0.303 0.255 0.295 0.237 0.414 0.37 0.402 0.339 0.376 0.326 

LCX 0.269 0.218 0.252 0.203 0.261 0.203 0.321 0.276 0.339 0.276 0.329 0.279 

% decrease 17.0 19.8 15.5 18.4 10.5 13.1 21.0 23.5 14.4 17.1 11.7 13.5 

         Mean % decrease 16.3 

 

Table 10 shows that, for the 12 long term comparisons considered, the percentage decrease 

in ten-year crack width ranges from a minimum of 10.5 % to a maximum of 23.5 %, with a 

mean of 16.3 %. Closer observation of the data presented in Table 10 reveals a trend of 

increasing crack width reduction with decreasing reinforcement as a percentage of gross 

concrete area. This trend occurs because any increase in reinforcement area causes an 

increase in damage to the cementitious matrix due to creep, shrinkage, and thermal effects 

as a result of the increased restraint. Providing the reinforcement has not been loaded 

beyond its elastic limit, the effectiveness of the SMP tendons is independent of the area of 

reinforcement present and thus, as a percentage, the crack width reduction is greater for 

beams with lower areas of reinforcement. 
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A second long term simulation has been carried out on a beam designed to Eurocode 2 [37]. 

The dimensions of the beam and applied loading have been chosen to be typical of an insitu 

RC beam in an office building. The design criteria for this beam are shown in Table 11. 

Table 11 – Design criteria for Eurocode designed beam 

Design life (years) Exposure class Span (m) Live UDL (kN/m) 

(unfactored) 

Dead UDL (kN/m) 

(unfactored) 

50 XC1 5 9 22 

 

The resulting beam dimensions and material properties used in the simulation are shown in 

Table 12. The material strengths for the steel and concrete properties have been taken as 

mean values, thus the predictions given below are assumed to represent the actual 

behaviour of a beam with averaged material parameters. 

Table 12 – Model parameters for Eurocode designed beam 

E (GPa) fc (MPa) ft (MPa) Es (GPa) fyk (MPa) b (mm) h (mm) d (mm) Gf (N/mm) 

33 38 

2.9 200 580 300 450 410 0.12 

As (mm
2
) Map (kNm) T1 (°C) T2 (°C) wc (mm) tTH (days) t0 (days) tH (days) 

 

942 86.0 28 0 100 3 7 32  

 

The creep parameters applied to the FPZ element are shown in Table 5. A thermal strain 

corresponding to temperature values of T1 = 28, and T2 = 0, was applied on the third day 

after curing in this example (Equation ( 10 )). These values were based on BD28/87 [47]. 

A predicted crack width of 0.271mm, due to quasi permanent loads, was calculated 

according to Eurocode 2 [37]. A long term simulation of this beam (assuming SRC) gave a 

fifty-year crack width of 0.234 mm. The 13.7% discrepancy is considered to be reasonable. 
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As well as the SRC simulation, three LCX simulations were carried out for this beam. The 

two additional simulations aimed to demonstrate the potential capability of a fully developed 

LCX system. The first of these is a simulation with identical polymer properties to those used 

in the above LCX simulations. In the second and third LCX simulations, the potential 

restrained shrinkage stress, σres, was been increased from 27 MPa to 100 MPa. The value of 

a 100MPa was based on the work of Long and Ward [48]. Furthermore, in the third LCX 

simulation, the healing parameter H was set to 0.5, which assumes that 50% of damage was 

healed. This percentage is considered to be a conservative estimate of the healing potential 

possible with certain polymeric based healing agents [25]. This 50 % healing was applied 

immediately after the activation of the polymer. 

The results from the ten-year simulation for a standard reinforced concrete version and from 

the three LCX versions of the Eurocode beam are shown on Figure 8 with the three LCX 

simulations labelled LCX, LCX–100, and LCX-100–0.5 respectively. 

 

Figure 8 – Long term simulations of both RC and LCX behaviour for beam designed to Eurocode 
specification 

Similar behaviour is observed for the SRC and LCX simulations in Figure 8 as that 

previously noted and described in Figure 7. The LCX–100, and LCX–100–0.5 simulations 
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show identical initial behaviour up to the point of activation. At this time, as would be 

expected, the crack closure is significantly greater (approximately 4 times) in the LCX-100 

case than in the case of the LCX simulation with a σres value of 26.6 MPa.  After activation, 

the crack width once again continues to grow with continued creep and shrinkage of the 

concrete. In the LCX–100–0.5 simulation, this growth occurs more slowly than in the LCX–

100 simulation, as would be expected for a specimen in which 50 % of damage has been 

healed. 

Figure 8 shows that, in the standard reinforced concrete beam, a ten-year crack width of 

approximately 0.23 mm is predicted, compared to a ten-year crack width of approximately 

0.19 mm in the LCX beam; a 15.4 % decrease in crack width. The predicted ten-year crack 

for the LCX-100 case was 0.10 mm and 0.08 mm for the LCX–100–0.5 case, decreases of 

57 % and 65 % respectively. Finally, it is noted that these latter shrinkage potential and 

healing values are expected to be realised in the near future. 

4.1. Model sensitivity 

Some sensitivity studies have been undertaken to ascertain which factors, if any, have a 

significant effect on the predictions of the model. The sensitivity of the SRC and LCX–100 

simulations, displayed in Figure 8, to variations in the magnitude of the creep strain, 

shrinkage strain, and polymer relaxation has been assessed. 

A 10 % increase in shrinkage strain increased the ten-year crack width by 2 % and 4 % in 

the SRC and LCX–100 beams respectively. This caused the predicted effectiveness of the 

LatConX system to decrease very slightly, with ten-year crack width reductions of 56 % 

compared to the baseline of 57 %. 

A 10 % increase in creep strain increased the ten-year crack width by 8 % and 14 % in the 

SRC and LCX–100 beams respectively. This caused the predicted effectiveness of the 

LatConX system to decrease slightly more than in the shrinkage sensitivity just described, 

with ten-year crack width reductions of 54 % expected. 
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Finally, the most significant reduction in the predicted effectiveness of the LatConX system 

was found in the polymer relaxation sensitivity. A 10 % increase in the percentage of 

polymer stress subject to relaxation caused the ten-year crack width for the LCX–100 beam 

to increase by 14 %, this gives a 50 % reduction in ten-year crack width compared to the 

SRC beam. This is considered to be a highly pessimistic scenario and it is encouraging that 

significant reductions in crack width are still predicted. 

  



 

33 

 

5. CONCLUSION 

A numerical study on the long-term behaviour of a novel self-healing cementitious composite 

material system, named LatConX, has been presented. A new numerical model is described 

that couples a layered beam model for the long-term behaviour of reinforced concrete 

beams with a thermo-mechanical transient model for shape memory polymer tendons. The 

coupled model has been validated using a range of experimental data. 

Finally, a set of ten-year predictions for crack widths in standard reinforced concrete beams 

and beams employing the LatConX system have been compared. The long term simulations 

provide strong evidence for the potential effectiveness of the LatConX system in limiting 

crack widths in reinforced concrete structural elements. The results showed that a polymer 

with a shrinkage stress potential of 27MPa resulted in a 16.3% reduction in 10-year crack 

widths. However, the results also show that a 65% reduction is achievable when a polymer 

shrinkage stress of 100MPa is employed and 50% of the damage is healed. These latter 

figures are expected to be achievable in the near future. 
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Appendix A – Model algorithms 

Creep 

The creep strain is a function of both time and stress, thus it is different for each beam layer. 

The algorithm outlined details how the creep strain is computed for a single layer and is 

therefore run in full for each layer. 

1 εprevcr = εcr Record current creep strains 

2 εcr = 0 Reset εcr array to zeros 

3 if (εtot – εsh – εTH – εprevcr) > 0 

 εfr = ω(ζ)*( εtot – εsh – εTH – εprevcr) 

otherwise 

 εfr = 0 

Compute εfr to take account of any 
tensile creep 

See Equation (8 ). 

4 εefc = εtot – εsh – εTH – εfr Compute effective creep strain to be 
applied to creep model for current 
time step 

See Equation ( 7 ). 

5 for i = 2…4 

 2¯@H|° = 2@3H ±1 − ²/∆4³´µ + 2¯@H|°/R ±²/∆4³´µ  

 εcr = εcr +βi εveci 

Compute viscoelastic strain for each 
dashpot and updated creep strain for 
each layer 

See Equations ( 6 ) and ( 9 ). 

6 ∆εcr = εcr - εprevcr Compute change in creep strain for 
time step 

Shrinkage 

Determining the shrinkage strain, εsh, is the simplest process as the strain is purely time-

dependent and as such is the same for each beam layer. 

1 ∆εsh = εsh(t) - εsh(t- ∆t) Compute change in shrinkage strain 
for time step 

2 εsh = εsh + ∆εsh Update total shrinkage strain 
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Polymer Functions 

1 2¯@R = 2¶ ±1 − ²/∆
· µ + 2¯@RC¸@¯ ±²/∆
· µ 

2¯@� = 2¶ K1 − ²/ ∆
·%¹�P + 2¯@�C¸@¯ K²/ ∆
·%¹�P 

Update viscoelastic strains 

Iterative Solver  

1 εbar, θ2, εL, ζ, εLH, ζH, T, M, ∆M, σp, εsh, ∆εsh, εcr, ∆εcr, εTH,  ∆εTH, εH, 
ωH, H, εve1, εve2, εp 

Inputs from time dependent 
processes and current beam 
configuration 

2 ζprev = ζ, ζHprev = ζH, ψ = 10
20

 , isec = 0, σprev = σp Initialise previous damage array, 
convergence parameter and 
tangent/secant matrix selector 
parameter 

3 º¶ = º + ∆º»¼½ + ∆º}D@ 

2¶ = º¶ − ºCA|}ºCA|}  

FC = ¾ ∙ ¿R ∙ 2¼ + %1 − ¾� ∙ ¿R ∙ %2¼ − 2¯@R� + ¿�%À� ∙ %2¼ − 2¯@�� − �∙ _¿R + ¿�%À�` ∙ %À − À�AÁ|@}
� 
∆σp = σp - σprev 

Update polymer stress for updated 
viscous strains and compute 
change in polymer stress 

See Equations ( 13 ) - ( 17 ). 

4 while ψ > 10
-5 

Enter iterative loop 

5 Ω = Â¹%2Á�¸ , Ä�, Å, 2^, Æ^, Ç, Å^� 
ÈÇ� = ÈÇ�_∆¨, ∆FC, ∆2��, ∆2H¸ , ∆2¹^, Å, 2^, Æ^, Ç, Å^, 2Á�¸ , Ä�` 

Form stiffness matrix for nonlinear 
fracture zone and right hand side of 
equation 

6 �∆2Á�¸∆Ä� � = �Â�/R ∗ �ÈÇ�� Solve system of equations 

7 εbar = εbar + ∆εbar , θ2 = θ2 + ∆θ2 Add strain increments to current 
strain level 

8 2Ê = 2Á�¸ − 2 Ä�ËH ÌÊ − 2�� − 2H¸ − 2¹^ 

Å = ÍÎÏ_0.9992
, 2Ê, ÅC¸@¯` 

2Ê^ = 2Ê − 2^ 

Å^ = ÍÎÏ_0.9992
, 2Ê^, Å^C¸@¯` 

Update layer data 

9 Ψprev = ψ 

Ñ = ÈÇ�_¨, FC, 2��, 2H¸ , 2¹^, Å, 2^, Æ^, Ç, Å^, 2Á�¸ , Ä�`− Â%2Á�¸ , Ä�, Å, 2^ , Æ^ , Ç, Å^� 
Store previous convergence 
parameter, and compute current 
convergence. 

10 if ψ - Ψprev > 0 

 isec = 1 

Set tangent/secant matrix selector 
parameter 

11 if ψ < 10
-5

 Evaluate convergence and break if 
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 Break 

 return (εbar, θ2, ζ, σp, ζH) 

else 

 continue iterative procedure below 

converged 

12 RHS = ψ 

if isec = 0 

 Ω = Â¹%2Á�¸ , Ä�, Å, 2^, Æ^, Ç, Å^� 
else 

 Ω = Â%2Á�¸ , Ä�, Å, 2^, Æ^ , Ç, Å^� 

Reform stiffness matrix for latest 
strains and damage parameters, 
RHS is the out of balance force 
from previous iteration 

13 while ψ > 10
-5

 

 Repeat steps 6 – 13 

Continue iterative process from 
step 6 onwards 

  



 

37 

 

[1] Jefferson, A.D. et al. 2010. A new system for crack closure of cementitious materials using 

shrinkable polymers. Cement and Concrete Research 40(5) pp, 795–801. 

[2] Kupfer, H.B. and Gerstle, K.H. 1973. Behavior of Concrete Under Biaxial Stresses. ASCE Journal 

of Engineering Mechanics Division 99(EM4), pp. 853–866. 

[3] William, K.J. and Warnke, E.P. 1975. Constitutive models for triaxial behavior of concrete. Proc 

Int Assoc Bridge Struct. Engrg (Report 19), pp. 1–30. 

[4] Chen, A.C.T and Chen, W.F. 1975. Constitutive Relations for Concrete. ASCE Journal of 

Engineering Mechanics Division 101(4), pp. 465–481. 

[5] Etse, G. and Willam, K. 1994. Fracture energy formulation for inelastic behavior of plain 

concrete. Journal of Engineering Mechanics 120(9), pp. 1983–2011. 

[6] Feenstra, P.H. and De Borst, R. 1995. A plasticity model and algorithm for mode-I cracking in 

concrete. International Journal for Numerical Methods in Engineering 38(15), pp. 2509–2529. 

[7] Chen, W.F. 1996. Plasticity in reinforced concrete. Florida: J. Ross Publishing. 

[8] Krajcinovic, D. 1996. Damage mechanics. Amsterdam ; New York: Elsevier. 

[9] Mazars, J. 1986. A description of micro- and macroscale damage of concrete structures. 

Engineering Fracture Mechanics 25(5–6), pp. 729–737. 

[10] Oliver, J. et al. 2002. From continuum mechanics to fracture mechanics: the strong 

discontinuity approach. Engineering Fracture Mechanics 69(2), pp. 113–136. 

[11] Comi, C. and Perego, U. 2001. Fracture energy based bi-dissipative damage model for concrete. 

International Journal of Solids and Structures 38(36–37), pp. 6427–6454. 

[12] Giry, C. et al. 2011. Stress-based nonlocal damage model. International Journal of Solids and 

Structures 48(25–26), pp. 3431–3443. 

[13] Simo, J.C. and Ju, J. W. 1987. Strain- and stress-based continuum damage models-I. 

Formulation. International Journal of Solids and Structures 23(7), pp. 821–840. 

[14] Carol, I. et al. 2002. An ‘extended’ volumetric/deviatoric formulation of anisotropic damage 

based on a pseudo-log rate. Eur. J. Mech. - ASolids 21(5), pp. 747–772. 

[15] De Borst, R. and Gutiérrez, M. A. 1999. A unified framework for concrete damage and fracture 

models including size effects. Int. J. Fract., 95(1–4), pp. 261–277. 

[16] Desmorat, R. et al. 2007. Nonlocal anisotropic damage model and related computational 

aspects for quasi-brittle materials. Engineering Fracture Mechanics 74(10), pp. 1539–1560. 

[17] Ortiz, M. 1985. A constitutive theory for the inelastic behavior of concrete. Mech. Mater., 4(1), 

pp. 67–93. 

[18] Lubliner, J. et al. 1989. A plastic-damage model for concrete. International Journal of Solids and 

Structures 25(3), pp. 299–326. 

[19] Lee, J. and Fenves, G.L. 1998. Plastic-damage model for cyclic loading of concrete structures. 

Journal of Engineering Mechanics 124(8), pp. 892–900. 

[20] Jefferson, A.D. 2003. Craft - A plastic-damage-contact model for concrete. I. Model theory and 

thermodynamic considerations. International Journal of Solids and Structures 40(22), pp. 5973–

5999. 

[21] Jason, L. et al. 2006. An elastic plastic damage formulation for concrete: Application to 

elementary tests and comparison with an isotropic damage model. Comput. Methods Appl. 

Mech. Eng. 195(52), pp. 7077–7092. 

[22] Grassl, P. and Jirásek, M. 2006. Damage-plastic model for concrete failure. International 

Journal of Solids and Structures 43(22–23), pp. 7166–7196. 

[23] Joseph, C. et al. 2011. Self-healing cementitious materials: A review of recent work. Proc. Inst. 

Civ. Eng. Constr. Mater. 164(1), pp. 29–41. 

[24] Wu, M. et al. 2012. A review: Self-healing in cementitious materials and engineered 

cementitious composite as a self-healing material. Construction and Building Materials 28(1), 

pp. 571–583. 

[25] Van Tittelboom, K. and De Belie, N. 2013. Self-healing in cementitious materials-a review. 

Materials 6(6), pp. 2182–2217. 



 

38 

 

[26] Miao, S. et al. 1995. Constitutive models for healing of materials with application to 

compaction of crushed rock salt. Journal of Engineering Mechanics 121(10), pp. 1122–1129. 

[27] Mergheim, J. and Steinmann, P. 2013. Phenomenological modelling of self-healing polymers 

based on integrated healing agents. Computational Mechanics 52(3), pp. 681–692. 

[28] Barbero, E.J. et al. 2005. Continuum Damage-healing Mechanics with Application to Self-

healing Composites. International Journal of Damage Mechanics 14(1), pp. 51–81. 

[29] Schimmel, E.C. and Remmers, J.J.C. 2006. Development of a constitutive model for self-healing 

materials. Delft Aerospace Computational Science. 

[30] Voyiadjis, G.Z. et al. 2011. A thermodynamic consistent damage and healing model for self 

healing materials. International Journal of Plasticity 27(7), pp. 1025–1044. 

[31] Bažant, Z.P. 2001. Prediction of concrete creep and shrinkage: past, present and future. Nucl. 

Eng. Des. 203(1), pp. 27–38. 

[32] American Concrete Institute (ACI). 1982. Prediction of creep, shrinkage, and temperature 

effects in concrete structures. ACI Comm. 209. 

[33] Bažant, Z.P. and Baweja, S. 1995. Creep and shrinkage prediction model for analysis and design 

of concrete structures- model B3, Mater. Struct. 28(6), pp. 357–365. 

[34] Wendner, R. et al.2013. The B4 model for multi-decade creep and shrinkage prediction. In 

Proceedings of Ninth International Conference on Creep, Shrinkage, and Durability Mechanics 

(CONCREEP-9). Cambridge, Massachusetts 22-25 September 2013. Virginia: American Society 

of Civil Engineers pp. 429–436. 

[35] CEB-FIP, CEB-FIP model code 1990: Design code. London: Thomas Telford, 1994. 

[36] Gardner, N.J. and Lockman, M.J. 2002. Design provisions for drying shrinkage and creep of 

normal-strength concrete. ACI Materials Journal 99(1), pp. 111–112. 

[37] BSI, BS EN 1992-1-1:2004 Eurocode 2: Design of concrete structures - Part 1-1: General rules 

and rules for buildings. London, UK: BSI, 2004. 

[38] Goel, R. et al. 2007. Comparative study of various creep and shrinkage prediction models for 

concrete. J. Mater. Civ. Eng. 19(3), pp. 249–260. 

[39] Bažant, Z.P. and Prasannan, S. 1989 Solidification theory for concrete creep I. Formulation. 

Journal of Engineering Mechanics 115(8), pp. 1691–1703. 

[40] Bažant, Z.P. et al. 1997. Microprestress-solidification theory for concrete creep. I: Aging and 

drying effects. Journal of Engineering Mechanics 123(11), pp. 1188–1194. 

[41] Jefferson, A.D. et al. 2014. Finite element crack width computations with a thermo-hygro-

mechanical- hydration model for concrete structures. European Journal of Environmental Civil 

Engineering 18(7), pp. 793–813. 

[42] Bažant Z. P. and Oh, B. H. 1983. Crack band theory for fracture of concrete. Mater. Struct. 16 

pp. 155–177. 

[43] Beeby, A.W. and Scott, R.H. 2005. Cracking and deformation of axially reinforced members 

subjected to pure tension. Magazine of Concrete Research (57)10, pp. 611–621. 

[44] Hazelwood, T. et al. 2014. Long-term stress relaxation behaviour of predrawn poly(ethylene 

terephthalate). Journal of Applied Polymer Science 131(23). 

[45] Dunn, S.C. et al. 2011. Shrinkage behaviour of poly(ethylene terephthalate) for a new 

cementitious-shrinkable polymer material system. Journal of Applied Polymer Science 120(5), 

pp. 2516–2526. 

[46] Gilbert, R.I. 2013. Time-dependent stiffness of cracked reinforced and composite concrete 

slabs. Procedia Engineering 57, pp. 19–34. 

[47] The Highways Agency, BD 28/87 Early Thermal Cracking of Concrete. 1987. 

[48] Long, S.D. and Ward, I.M. 1991. Shrinkage force studies of oriented polyethylene 

terephthalate. Journal of Applied Polymer Science (42)7, pp. 1921–1929. 

 
 


