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The Drake Passage (DP) is the major geographic constriction for the
Antarctic Circumpolar Current (ACC) and exerts a strong control
on the exchange of physical, chemical, and biological properties
between the Atlantic, Pacific, and Indian Ocean basins. Resolving
changes in the flow of circumpolar water masses through this
gateway is, therefore, crucial for advancing our understanding of
the Southern Ocean’s role in global ocean and climate variability.
Here, we reconstruct changes in DP throughflow dynamics over
the past 65,000 y based on grain size and geochemical properties of
sediment records from the southernmost continental margin of
South America. Combined with published sediment records from
the Scotia Sea, we argue for a considerable total reduction of DP
transport and reveal an up to ∼40% decrease in flow speed along
the northernmost ACC pathway entering the DP during glacial times.
Superimposed on this long-term decrease are high-amplitude, mil-
lennial-scale variations, which parallel Southern Ocean and Antarctic
temperature patterns. The glacial intervals of strong weakening of
the ACC entering the DP imply an enhanced export of northern ACC
surface and intermediate waters into the South Pacific Gyre and
reduced Pacific–Atlantic exchange through the DP (“cold water
route”). We conclude that changes in DP throughflow play a critical
role for the global meridional overturning circulation and interbasin
exchange in the Southern Ocean, most likely regulated by variations
in the westerly wind field and changes in Antarctic sea ice extent.

paleoceanography | Drake Passage | Antarctic Circumpolar Current |
glacial–interglacial changes | sedimentology

The Antarctic Circumpolar Current (ACC) is the world’s largest
current system. Through inducing pronounced upwelling and

formation of new water masses, the ACC fundamentally affects
the global meridional overturning circulation (1) and the stability
of Antarctica’s ice sheets. The flow of the ACC is largely driven by
strong westerly winds and constricted to its narrowest extent in the
Drake Passage (DP). This so-called “cold water route” transport
through the DP is one important pathway for the return of fresh
and cold waters to the Atlantic, which strongly affects the strength
of the Atlantic meridional overturning circulation, in concert with
the “warm water route” inflow of warm and salty Indian Ocean
water masses through the Agulhas Current system (2, 3).
The DP is ∼800-km wide and located between Cape Horn and

the western Antarctic Peninsula (Fig. 1). Numerous hydrographic
surveys across the DP since the 1970s have contributed to the
understanding of yearlong and interannual variability in ACC
transport through the DP and the mechanisms forcing physical
and biological changes within the Southern Ocean (4, 5). How-
ever, even with hydrographic time series reaching back 20 y (6) in
this well-constrained region of the ACC and more sophisticated
model simulations (7), important issues such as the role of zonal
winds in forcing ACC transport remain controversial.
Compared with other parts of the Southern Ocean, the mod-

ern oceanography of the ACC within the DP is well-monitored.

The three major ACC oceanographic fronts (8) [the sub-Ant-
arctic Front (SAF), the Polar Front (PF), and the Southern ACC
Front (SACCF)] can be identified from north to south within the
DP. The exact location and occurrence of subsidiary fronts
change from year to year and strongly affect the current velocity
pattern across the DP (6, 9, 10) (Fig. 2B). The modern winter sea
ice margin presently does not extend significantly north into the
DP (11). The total ACC volume transported through the DP is
estimated between ∼130 and 150 Sv (4–6, 9). The many oceano-
graphic studies robustly show that more than one-half of the total
DP transport occurs at and north of the SAF (i.e., in the sub-
Antarctic Zone) followed by the Polar Frontal Zone (between the
SAF and the PF) (Fig. 2A). The relative contribution of DP
transport south of the PF is generally less than 20%.
Available proxy data and model simulations provide only little

information on the potential role of the DP region in driving
changes in the global ocean circulation at glacial–interglacial and
millennial timescales (12, 13). Downstream of the DP, a meridi-
onal section of low-resolution records from the Scotia Sea
revealed little overall bottom current speed variations between the
Last Glacial Maximum (LGM) sensu lato (18–28 ka) and the
Holocene (13). In contrast, a 500,000-y record from the southern
Indian Ocean (eastward from the Crozet–Kerguelen Plateau)
suggests that the ACC was weak during warm stages and strong
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during glacial epochs (14). Likewise, in the Southwest Pacific, the
deep western boundary current east of New Zealand intensified
during glacial periods over the past 1.2 My (15), which has been
related to a northward extension of the ACC along the New
Zealand continental margin (15, 16). Evidently, disagreement
exists for ACC flow intensity and its potential impact on changes
in DP throughflow in response to glacial and interglacial cycles.

Results and Discussion
Because of strong bottom currents and severe weather conditions,
the recovery of sediment records directly within the DP is difficult.
We, therefore, address changes in northern DP throughflow with
high-resolution sediment records recovered from the southernmost
Chilean continental slope directly upstream of the DP (core MD07-
3128; 52°39.57′ S, 75°33.97′ W; 1,032-m water depth) and the
Argentinian continental slope east of Cape Horn at the northern
margin of the DP (core MR0806-PC09; 55°42.58′ S, 66°08.06′ W;
684-m water depth) (Fig. 1). Core MD07-3128 is located un-
derneath the southward flowing Cape Horn Current (CHC), a
northern branch of the ACC that continues toward the DP and
provides a major fraction of the present day northern DP transport
(17). Satellite-tracked surface drifters reveal that, after crossing the
East Pacific Rise, sub-Antarctic Surface Water of the ACC is
transported northeastward across the Southeast Pacific toward the
Chilean coast at ∼45° S/75° W (18) (Fig. 1 and Fig. S1). Here,
presently only a minor part of ACC water is deflected northward
into the Humboldt Current System, whereas the major fraction is
deviated southward toward the DP. The CHC, thus, transports a
significant amount of northern ACC water toward the DP within a
narrow belt of ∼100–150-km width off the coast (18) (Fig. S1).
Site MD07-3128 provides an ∼30-m-long sediment core span-

ning the past ∼65,000 y (SI Methods and Table S1). The age model
[updated from the work by Caniupán et al. (19)] is well-con-
strained by radiocarbon dating, the occurrence of the Laschamp
paleomagnetic excursion, and correlation to the well-dated sedi-
ment record from Ocean Drilling Program Site 1233 (20). High
sedimentation rates during most of the glacial section (Fig. S2)
allow the investigation of CHC strength changes at millennial
timescales as an approximation of the northern ACC fraction of
DP throughflow. Previous work on this core revealed substantial
fluctuations of sea surface temperatures (SSTs) that largely fol-
low the timing of temperature fluctuations observed in Antarctic
ice cores (19). The lower-resolved, radiocarbon-dated core
MR0806-PC09 [age model updated from the work by Shiroya
et al. (21)] is used to complement glacial–interglacial ACC
strength estimates directly within the northern sector of the DP.

Sedimentological and Geochemical Current Strength Proxies. To re-
construct variations in the CHC/northern ACC flow speed, we use
changes in grain size and geochemical properties (SI Methods).
Our current strength proxies are the weight percentages of the 63-
to 150-μm fine-sand fraction and the mean sortable silt (SS) grain
size (SS; 10–63 μm) of the terrigenous sediment fraction (Figs. S3

and S4). The SS proxy is commonly used for estimating relative
changes in the near-bottom flow speed in deep sea sediments (22).
Modern surface current velocities within the CHC of >35 cm/s
(18) and high flow speeds of ∼20 cm/s extending to middepths
(Fig. S1), as suggested by vertical current speed profiles in the CHC
(23) and the DP (24), reasonably explain the coarse-grain size

Fig. 1. Schematic view of the DP region
with major surface and intermediate wa-
ter circulation and location of the sedi-
ment cores discussed (labeled red dots
refer to our data, and unlabeled black dots
indicate locations of cores in the Scotia
Sea) (13). The red line across the DP shows
the oceanographic Jason Track 104 (6).
Approximate locations are based on the
works by Orsi et al. (8) and Comiso et al.
(11). AAIW, Antarctic Intermediate Water;
HCS, Humboldt Current System; SPC, South
Pacific Current; WSI, winter sea ice.
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Fig. 2. DP throughflow during the LGM compared with the modern setting.
(A) Modern DP cumulative volume transport above 3,000-m water depth.
Values are cumulated along DP Jason Track 104 (Fig. 1 and Fig. S1) from
north to south. (B) The volume transport is calculated from across-track
surface geostrophic velocities (6). Front positions based on the geostrophic
velocities. (C) Holocene and glacial (LGM sensu lato, 18–28 ka) mean SS data
across the DP, including data south of the SAF in the Scotia Sea (13). Note
that the Holocene pattern reflects the northward increase in ACC flow across
the DP. The location of each core was projected on the oceanographic Jason
Track 104 (SI Methods). Error estimates (2σ/√n) are shown in Table S2. (D)
Current speed changes (percentages) during the LGM sensu lato. Compared
with the Holocene, mean LGM values are lower by ∼40% below the CHC and
∼20% in the northern DP, suggesting a substantial reduction of the sub-
Antarctic ACC contribution to DP throughflow. APF, Antarctic Polar; SACCF-N,
northern branch of the southern ACC front.
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distributions observed during the Holocene (Figs. S3 and S4). SS
data have been regionally calibrated with instrumental current
meter data showing a linear relationship (25, 26). The inference of
flow intensity may be complicated by changes in sediment supply.
Indeed, previous work at site MD07-3128 has shown that glacial
sediments contain ice-rafted debris (>150 μm) (19). Additional
changes in sediment supply might be expected as the modern
sediment depocenters in the proximal fjord systems become in-
active with lower sea level during glacials. However, the deposition
of ice-rafted debris at site MD07-3128 shows fluctuations that are
independent of SS and fine-sand contents (Fig. S3). Moreover,
changes in SS and the weight percentage of the SS component are
positively correlated, which is a strong argument for primarily
current-controlled grain size changes within the silt fraction (13)
(Fig. S3).
Substantial changes in the geochemical composition of the

sediments parallel grain size fluctuations at the CHC site MD07-
3128 (Fig. S5). The different grain size and geochemical indicators
show excellent correlations. Most notably, higher Zr/Rb and Si/Al
ratios occur in the coarser-grained intervals as typical indicators
for sediments affected by changes in current strength or eolian
input (27). Because biogenic opal contents are minor (1–4 wt %),
we interpret high Zr and Si contents to reflect coarser siliciclastic
sediment components, whereas finer-grained minerals, including
clay minerals, are more Rb- and Al-rich. Thus, ample changes in
CHC strength and underlying water masses are revealed by the
large grain size and sediment composition changes.

Evidence for a Glacial Reduction of DP Transport. At site MD07-
3128 below the CHC, the Holocene average SS grain size is
∼38 μm (Table S1). Using the latest calibration of SS with North
Atlantic current meter data (26), these SS values translate to
current speeds of ∼36 cm/s, consistent with modern velocity
estimates within the CHC (18). During the LGM, the average SS
is ∼21 μm, indicating that the CHC strength was reduced by
∼40% (Fig. 2 C and D). This strong decrease of flow speeds in
the CHC implies a weakening of the northern (sub-Antarctic)
ACC limb entering the DP. This paleoceanographic inference is
strongly supported by the geographic pattern of SST cooling in
the South Pacific during the LGM (Fig. 3 and Table S3). In the
eastern sub-Antarctic Pacific, the pronounced cooling of up to
∼7 °C is considerably larger than in the central sub-Antarctic
Pacific and implies a strong northward extension of the Antarctic
cold water influence in the Southeast Pacific during glacial
conditions (28). The cold water expansion decreases the back-
flow of northern ACC water through the CHC to the DP but
enhances its export into the South Pacific Gyre as indicated by
the strong cooling observed in published SST records along the
Humboldt Current system (Fig. 3 and Table S3). A similar
northward extension of cold ACC waters occurred in the
Southwest Pacific off New Zealand (16, 29).
The reduction of northern (sub-Antarctic) ACC flow as re-

constructed from our CHC core MD07-3128 is also evident at our
northern DP margin record (MR0806-PC09), which reveals ∼20%
finer SS values (Fig. 2 C and D). The lower amplitude of the
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glacial–interglacial SS change at this site might indicate an am-
plification of the signal within the CHC (for example, through
variations in the vertical structure of the flow along the South
American continental margin). However, the few available vertical
current strength profiles from the CHC show that the high ve-
locities reach down to >2,000-m water depth (23), and we,
therefore, do not expect large modifications of the vertical
flow structure at our site since the last glacial. Alternatively,
the northern DP record from core MR0806-PC09 might under-
estimate the glacial flow decrease because of the rather complex
flow geometry with major eddy structures in this region (6, 9, 30).
Taken together, qualitatively, our two sediment core records
uniformly document a substantial decrease in sub-Antarctic CHC/
northern ACC flow speeds upstream and within the DP.
A more reliable quantification of the glacial flow speed de-

crease in the sub-Antarctic section of the DP would require a
more densely spaced core transect in the future. To obtain a more
comprehensive view of last glacial changes in ACC flow in the
vicinity of the DP, we combined our sub-Antarctic ACC flow
speed estimates upstream and within the DP with the published
data from the central Scotia Sea downstream of the DP (13) (Figs.
1 and 2 and Table S2). Together, these records extend across all
major modern oceanographic zones within the ACC and DP.
During the LGM, the combined SS data indicate a strong re-
duction in flow speed in the northern sector (modern sub-Ant-
arctic Zone) that extends to the present Polar Frontal Zone,
whereas only minor changes occur south of the PF, except for a
slight reduction in glacial ACC flow in the southern Antarctic
Zone (Fig. 2). Modern oceanography suggests that current ve-
locities and transport are overall closely linked in the DP region,
with the major transport and the highest current velocities oc-
curring in the sub-Antarctic Zone (Fig. 2B) (5, 6, 9). Therefore, we
interpret our paleodata in terms of a substantial LGM decrease of
sub-Antarctic DP throughflow combined with an additional slight
reduction of ACC transport in the glacially extended sea ice zone
(13).
Today, Antarctic Intermediate Water (AAIW) formed in the

Southeast Pacific is partly exported into the South Atlantic (31).
Strongly reduced CHC vigor and more sluggish DP transport
during the LGM would plausibly decrease the export of Pacific
surface and intermediate water masses into the South Atlantic
and thus, reduce the cold water route contribution. Such glacial
Southern Ocean circulation is in accordance with a stronger
South Pacific Gyre and the export of well-oxygenated AAIW
along the Chilean margin (32, 33). Concurrently, proxy data in-
dicate poorly ventilated intermediate waters in the glacial South
Atlantic as contributions from the Pacific and Indian Oceans
were reduced (34), consistent with reduced export from the
major modern intermediate water formation region in the
Southeast Pacific through the DP (Fig. 1). Our suggested
strongly enhanced glacial northward export of cold water masses
to the tropical Pacific (Fig. 3) reinforces earlier modeling studies
showing the importance of southerly derived surface and in-
termediate water masses in the tropical Pacific for global cooling
during the LGM (35).

Millennial-Scale Variations During the Last Glacial. Superimposed on
the long-term glacial reduction of DP throughflow, we observe
prominent high-amplitude, millennial-scale variability in the CHC/
northern ACC flow speeds (Fig. 4), which is not resolved in the
Scotia Sea records or any other previous ACC current strength
record (13, 14). Substantial changes in the geochemical sediment
composition parallel these grain size fluctuations (Fig. S5). Within
age model uncertainties, most of the grain size maxima coincide
with millennial-scale temperature maxima in Antarctica (36) (Fig.
4), implying a strong sensitivity of the CHC and the northern ACC
in the Southeast Pacific to suborbital climate variations. This
pattern is particularly evident for the major Antarctic warmings

that correspond to Heinrich stadials in Greenland (36). Enhanced
DP throughflow during these warm periods is consistent with the
previously suggested impact of the bipolar seesaw mechanism on
the Southern Ocean (37–40), leading to, for example, surface
water warming, enhanced upwelling, and a stronger ACC caused
by southward-shifted westerlies. The last millennial-scale increase
in flow speeds at ∼17.5 ka coincides with Heinrich Stadial 1, the
beginning of Southern Ocean upwelling and the end of the last ice
age on a global scale (41). The reacceleration of sub-Antarctic DP
transport matches the major deglacial warming in the sub-Ant-
arctic Southeast Pacific and South Atlantic (42) (Fig. 4), suggesting
a close coupling of DP throughflow to the initiation of Southern
Hemisphere warming. Similar to the glacial–interglacial pattern,
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with temperature records. (A) Ratio of planktic foraminifera Neogloboquadrina
pachyderma (NPS) to total NPS counts indicative of surface ocean temperature
changes in the South Atlantic (42). (B) Mg/Ca SST record from the Galapagos
region (43) representing eastern tropical Pacific SST changes. (C) Alkenone SST
record from Ocean Drilling Program (ODP) Site 1233 located within the Hum-
boldt Current System (HCS) at ∼41° S (20) (updated age model) (SI Methods). (D
and E) Fine-sand (63–150 μm) contents and SS as proxies for CHC/northern ACC
strength. (F) Oxygen isotope record of the east Antarctic European Project for
Ice Coring in Antarctica Dronning Maud Land Ice Core (EDML) ice core (36)
[Antarctic ice core chronology (AICC) 2012 age scale]. Numbers mark Antarctic
Isotope Maxima and the largest Antarctic warmings from A1 to A4. (G) Oxygen
isotope record of the Greenland North Greenland Ice Core Project ice core (36)
(Greenland Ice Core Chronology 2005 age scale). Vertical gray bars mark
inferredmillennial-scale DP throughflow peaks that correspond with millennial-
scale temperature maxima in Antarctica and Heinrich stadials (Hs) in Greenland.
MIS, marine isotope stages; SMOW, standard mean ocean water.
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our inferred millennial-scale changes in DP throughflow are par-
alleled by SST changes in proxy records from the Southeast Pacific
(Ocean Drilling Program Site 1233) (20, 40) extending north to
the cold tongue in the eastern tropical Pacific (43) (Fig. 3). These
data imply that substantial changes in the oceanographic dynamics
of the South Pacific Gyre are related to the northward deflection
of ACC waters at millennial timescales.

Conclusions
Our study points to important changes of the cold water route in
the global meridional overturning circulation on both glacial–
interglacial and millennial timescales through sub-Antarctic
DP transport, which generally weakens (increases) during cold
(warm) climates. The glacial reduction of the cold water route
occurred in concert with the well-documented decrease of the
warm water route [Agulhas leakage (2)]. We, thus, propose that
both of these oceanographic corridors are critical for the South
Atlantic contribution to glacial meridional overturning circula-
tion strength changes.
Most oceanographic observations and models identify that var-

iations in the position and strength of the southern westerly wind
belt (SWW) impact changes in the strength of the ACC and DP
throughflow (44). This conceptual picture is consistent with our
reconstructed glacial reduction of sub-Antarctic DP throughflow
being linked to a northward shift of the SWW as supported by the
majority of the proxy-based SWW reconstructions (45). In partic-
ular, the reconstructions from southern South America indicate a
substantial decrease of the westerly winds over their present core
zone in the vicinity of the northern DP during colder intervals (46).
At the same time, stronger westerly winds extended northward as
indicated by a variety of proxy records from the winter rain zone of
Chile (45, 47) and are in line with our inferred strengthening of the
South Pacific Gyre. In contrast to the proxy records pointing to a
critical role of the SWW for DP throughflow and the global me-
ridional overturning circulation during the past 65,000 y, current
coupled ocean–atmosphere models do not show a coherent change
in the position and strength of the SWW and the ACC during the
LGM (48, 49). Hence, glacial ACC transport decreases might also

be regulated by additional factors, such as Southern Ocean sea ice
extent, that change the effective wind stress acting on the ocean
surface (13).
Although still hypothetical, important paleoceanographic changes

in the sub-Antarctic Southern Ocean are likely related to changes in
the SWW. If applicable to modern timescales, the strengthening and
poleward shift of the SWW seen in the Coupled Model Intercom-
parison Project Phase 5 (7) might lead to a future increase in sub-
Antarctic DP transport, strengthening of the ACC, and enhanced
interbasin exchange. However, recent instrumental volume transport
time series across the DP have not yet revealed any significant in-
crease in response to strengthened westerly winds (6). Thus, the
response of the ACC to future climate changes remains a major
challenge to be addressed.

Methods
We updated the published age models for cores MD07-3128 (19) and
MR0806-PC09 (21), which are primarily based on radiocarbon dating. A de-
tailed grain size analysis of the silt fraction (2–63 μm) and the fine-sand
fraction (63–150 μm) was performed by measurements with a Micromeritics
SediGraph 5100 (Fig. S3), a Coulter Counter, and a Beckman Coulter Laser
Diffraction Particle Size Analyzer. The glacial reduction of DP throughflow
was calculated from the mean SS values for the Holocene (0–11.5 ka) and
the LGM sensu lato (18–28 ka). Geochemical data from core MD07-3128
were derived from discrete atomic absorption spectrophotometry measure-
ments on discrete samples and high-resolution down-core scanning using an
AVAATECH Profiling X-Ray Fluorescence Core Scanner.
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