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Transient elastohydrodynamic analysis of rough
surfaces using a novel coupled differential deflection
method

C D Elcoate, H P Evans¤, T G Hughes and R W Snidle
Mechanical Engineering and Energy Studies Division, Cardiff School of Engineering, Cardiff University, Wales, UK

Abstract: The paper presents a transient analysis technique for line contact elastohydrodynamic lubrication
problems using coupled elastic and hydrodynamic equations. Full coupling is made possible by use of a
novel differential deflection formulation. The lubricant is treated as non-Newtonian with a non-linear
Eyring-type relationship between shear stress and shear strain rate. Results are presented for moving rough
surfaces where the roughness data are taken from profilometer traces of run-in ground surfaces. A
complete range of slide–roll ratios has been considered and results are shown for one rough surface in
rolling/sliding motion against a smooth surface with extremely low lambda ratios (ratio of minimum film
clearance to r.m.s. roughness). Results are also shown for two rough surfaces in contact under severe thin-
film high-roughness conditions.

Keywords: moving roughness, non-Newtonian, transient, coupled method, differential deflection

NOTATION

b Hertzian semidimension
E1, E2 Young’s moduli of the two surfaces
E9 2=E9 ˆ (1 ¡ î2

1)=E1 ‡ (1 ¡ î2
2)=E2

f i influence coefficients in the quadrature formula
for d2u=dx2

gi influence coefficients in the quadrature formula
for u

h film thickness
hs constant in the film thickness formula
K parameter for partitioning differential deflection

pressure summation
l length of the finite element
n number of mesh points
nn number of shape functions for the finite element
Ni finite element shape functions
p pressure
r coordinate of the point relative to which elastic

deflection is obtained
R radius of relative curvature, 1=R ˆ 1=R1 ‡ 1=R2

R1, R2 radius of curvature of the surfaces in line contact
Ra surface roughness parameter
s dummy integration variable in the elastic deflec-

tion formula

S non-Newtonian parameter in the Reynolds equa-
tion

u elastic deflection
U mean entraining speed ˆ (U1 ‡ U2)=2
U1, U2 surface speeds relative to contact
w9 load per unit length
x coordinate in the direction of rolling
xc position of the exit cavitation boundary
xj coordinate of the jth mesh point
x1, xn first and last mesh points respectively
Z constant in the viscosity expression determined

from á

á pressure coefficient of viscosity
ç, ì constants in the compressibility equation
¢ mesh spacing
è viscosity
è0 viscosity at zero pressure
î1, î2 Poisson’s ratios of the two surfaces
ê slide–roll ratio ˆ 2(U1 ¡ U2)=(U1 ‡ U2)
r density
r0 density at zero pressure
ô0 representative or Eyring shear stress
ö roughness geometry modification function

1 INTRODUCTION

Gears, rolling element bearings and rolling traction
drives are crucial mechanical components in all kinds of
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machinery used in vehicles, aerospace and process plant.
(In these devices, forces are transmitted at heavily loaded
(low-conformity lubricated contacts, giving rise to very
high equivalent Hertzian elastic contact pressures (typically
up to 1.5 GPa in gears and 4 GPa in bearings). As a result,
fatigue, surface distress and wear of such contacts are the
most common causes of failure. A high degree of protec-
tion from damage can be provided by an effective lubricant
film which separates the surfaces in the region of their
contact. The vital physical mechanism which can generate
this separation is elastohydrodynamic lubrication (EHL).
The main features of EHL for perfectly smooth surfaces (a
dramatic increase in the viscosity of the lubricant at high
pressures together with significant elastic flattening of the
surfaces) are well understood from the early work of
Grubin [1] and the pioneering numerical solutions of
Dowson and Higginson [2]. However, an important feature
of many engineering contacts, particularly those between
the teeth of gears, is that the surfaces produced by present-
day manufacturing methods leave roughness asperities that
are significantly greater in scale than the predicted
thickness of the EHL film based on classical smooth
surface theory. Consequently they operate under conditions
in which asperity–asperity interactions significantly affect
both the deformation and the pressures within the nominal
contact region; this regime of lubrication is described as
‘micro-EHL’. In both spur and helical gears the teeth
contact nominally along a line and the finishing process
(typically grinding) leaves the lay of roughness perpendi-
cular to the rolling/sliding direction of the teeth. Even the
finest-quality gears manufactured in this way have typical
peak-to-valley asperity dimensions which exceed the EHL
film thickness calculated from smooth surface theory.
Typical roughness average Ra values for a finely finished
gear may well be 0.3 ím with peak-to-valley dimensions of
about 2 ím as considered in the results section of this
paper. Under heavily loaded high-temperature gear tooth
conditions the classical Dowson–Higginson film thickness
calculation may yield values of below 0.1 ím, and even
thinner films are expected under roughness conditions. To
gain a theoretical understanding of the processes at work in
these real engineering contacts it is therefore necessary to
direct modelling efforts at problems where the roughness
features are at least an order of magnitude greater than the
expected minimum films that can be generated by EHL
action. Running in, which has been shown to smooth the
surfaces to some degree, may mitigate the severity of
potential individual asperity contacts but does not signifi-
cantly change the relative magnitudes of roughness and the
expected minimum film thickness.

In most engineering contacts there is a combination of
rolling and relative sliding. In gears, for example, pure
rolling only occurs instantaneously when the contact is at
the pitch point of the gear pair. Sliding, with small
clearances, necessitates a fluid rheology model that re-
sponds to the high shear rates that are present in the
lubricant film. The EHL analysis of contacts must also take

account of the time-dependent geometry as roughness
features on both surfaces pass through the contact area.
Conventional Newtonian piezoviscous lubricant models are
known to overestimate significantly the surface shear
stress, and therefore frictional traction, under sliding
conditions. To remedy this deficiency a number of non-
Newtonian lubricant models have been proposed by Bair
and Winer [3] and Johnson and Tevaarverk [4] among
others. The first of these models is based on experimental
measurements of high-pressure shear behaviour in lubricant
samples. The second approach, which is adopted in the
current study, is based on analysis of disc machine
experiments in the EHL regime and as such is particularly
relevant to the problem under consideration.

The theoretical study of rough surface EHL has attracted
many researchers over the last decade or so. Initial efforts
involved stationary idealized roughness features [5–7], and
real roughness features where the Ra value is significant
compared with the film thickness were introduced by Kweh
et al. [8]. Transient (‘moving roughness’) effects have been
studied [9–11] using sinusoidal features or waveforms, and
attention has been drawn to the important differences
between Newtonian and non-Newtonian lubricant treat-
ments in transient micro-EHL [12, 13]. Real (or measured)
roughness has been included in a transient line contact
analysis [14, 15] and, more recently, transient point contact
analyses have been presented by Venner and Lubrecht [16]
using sinusoidal features and Xu and Sadhegi [17] using
measured roughness data. Where real roughness data have
been incorporated in transient treatments, however, it is
generally of a relatively low amplitude compared with the
minimum film thickness in the numerical solution. This is
indicative of the numerical difficulties that occur when the
roughness features are large compared with the residual
film thickness.

The contribution reported here significantly advances
the study of micro-EHL by providing a new fast solution
method, suitable for severe rough-surface thin-film condi-
tions. The work stems from an investigation of the potential
benefits (in terms of numerical stability and robustness) of
full mathematical coupling of the elastic and hydrodynamic
equations in the numerical solution scheme. This type of
approach has been used by other workers in the past
[18, 19] but has not been generally adopted by the EHL
community. The reason why fully coupled methods have
not been more eagerly pursued seems to be the presumption
that the elastic deflection integral, which causes the fully
coupled solution scheme matrix to be fully populated,
represents an intractable computing problem in spite of the
method’s potentially far greater robustness. In order to
overcome this specific obstacle to further development of
coupled methods in EHL, three of the present authors have
developed a differential elastic deflection formulation
[20, 21]. The essential feature of the formulation is that it
leads to a banded (as opposed to a fully populated) solution
matrix (thus giving fast computing times) without com-
promising the major benefits of full coupling. With this
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new approach, time-dependent analyses under very de-
manding rough-surface thin-film conditions can now be
carried out. The formulation of the new coupled method is
presented in detail in this paper together with initial results
aimed at developing understanding of the pressure
distributions and films generated between gear teeth under
engineering conditions. At this stage the method has been
developed for line contacts, but its extension to the
geometry of point contacts is possible.

2 THEORETICAL BASIS

The equations to be solved are the non-Newtonian
Reynolds equation for the fluid film after Conry et al. [22]
incorporating the time-dependent squeeze-film term:

@(rh)

@ t
‡ U

@(rh)

@x
¡ @

@x

rh3

12è S
@ p

@x

Á !
ˆ 0 (1)

The non-Newtonian factor S depends on the pressure, film
thickness, sliding speed and pressure gradient according to

S ˆ 3(ª cosh ª ¡ sinh ª)

ª3

3

���������������������������������������������������
1 ‡ è2(U2 ¡ U1)

2

ô2
0 h2

ª2

sinh2 ª

s

where

ª ˆ h

2ô0

d p

dx

This formulation is based on the shear thinning rheological
model proposed by Johnson and Tevaarwerk [4] found from
experimental traction tests. An alternative limiting shear
stress non-Newtonian model [3] may be considered but
does not allow the factor S to be considered in closed form,
a complication that is avoided in the present contribution
but has been considered by authors and co-workers else-
where [23].

The oil properties of density and viscosity are pressure
dependent after Roelands [24] and Dowson and Higginson
[2] respectively according to

è ˆ è0 exp(logè0 ‡ 9:67)[(1 ‡ 5:1 3 10¡9 p) Z ¡ 1]

(2)

and

r ˆ r( p) ˆ r0
1 ‡ ç p

1 ‡ ì p

� ´
(3)

The total elastic deflection of the surfaces treated as semi-
infinite bodies is given by

u(x) ˆ ¡ 4

ðE9

… xn

x1

p(s) ln

���� x ¡ s

r ¡ s

���� ds (4)

and together with the undeformed shape of the solid bodies
gives the film thickness in the form

h(x, t) ˆ u(x) ‡ x2

2R
‡ ö(x, t) ‡ hs (5)

where ö(x, t) is the function giving the spatial and
temporal distribution of deviations from the smooth surface
shape given by the radius of relative curvature, R.

The present authors have shown elsewhere [20, 21] that
equation (4) may usefully be formulated in a differential
form as

d2u(xj)

dx2
ˆ

X
all k

f k¡ j pk (6)

The coefficients f k decay rapidly as jkj increases from zero
in comparison with coefficients gk obtained in evaluating
equation (4) by the quadrature formula

u(xj) ˆ
X
all k

g k¡ j pk (7)

This sharp decay ensures that the effect of pressure on the
second derivative of deflection is highly localized. The
pressure discretization used to obtain coefficients f in
equation (6) is piecewise quadratic as presented in
reference [20].

Equation (5) can be differentiated with respect to x twice
and equation (6) used to give

@2 h(xj)

@x2
ˆ

X
all k

f k¡ j pk ‡ 1

R
‡ @2ö

@x2
(8)

In the solution method described in this paper, equations
(1) to (3) are used to describe the hydrodynamic action and
equation (8) to model the elastic deflection process. Equa-
tion (8) requires two boundary values to be specified. The
value of h at the entry boundary is an arbitrary constant
used to obtain the required load, and equation (4) in the
form of equation (7) is used to provide the second exit
boundary condition required, as described in the Appendix.

3 NUMERICAL FORMULATION

In this work the spatial variation of the hydrodynamic
equations is formulated numerically using the finite
element method as described by Hughes et al. [25] for the
second-order form of equation (1). The elastic deflection is
incorporated using the differential deflection method. The
accuracy of using the differential approach to the deflection
integral in EHL analyses [21], and the compatibility of the
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finite element formulation of the Reynolds equation with
finite difference approaches to the problem over a wide
range of operating conditions [26] has been established.

The basic formulation of equation (1) based on the
Galerkin weighted residual approach yields

… l =2

¡l =2

Ni
@(rh)

@ t
dx ‡ U

… l =2

¡l =2

Ni
@(rh)

@x
dx

¡ 1

12

…l =2

¡l =2

Ni
@

@x

rh3

è
S

@ p

@x

Á !
dx ˆ 0

where Ni are the shape functions adopted for the finite
element treatment and l is the length of the element. The
integrations are over the length of the finite elements and
limits of integration are omitted in subsequent equations
for simplicity. Using the ‘weak’ formulation (ignoring the
resultant boundary element term which cancels when the
global matrix is assembled) and manipulating the second
term gives

…
Ni

@(rh)

@ t
dx ‡ U

…
Ni h

@r
@x

‡ r
@h

@x

� ´
dx

‡ 1

12

…
@Ni

@x

rh3

è S
@ p

@x
dx ˆ 0 (9)

The time-dependent term is expressed using a centred
difference and the spatial terms are expressed as a weighted
sum of their values at two successive time steps to give

¡
…

Nirh dxj t ‡
…

Nirh dxj t‡¢t

‡ õ ¢t U

…
Ni h

@r
@x

‡ r
@h

@x

� ´
dx

"

‡ 1

12

…
@Ni

@x

rh3

è S
@ p

@x
dx

¶ t

‡ (1 ¡ õ) ¢t U

…
Ni h

@r
@x

‡ r
@h

@x

� ´
dx

"

‡ 1

12

…
@Ni

@x

rh3

è
S

@ p

@x
dx

¶ t‡¢ t

ˆ 0

(10)

The superscripts in equation (10) indicate the time at which
each of these terms is evaluated. The equation is implicit
for values of õ , 1:0 and becomes the standard Crank–
Nicolson method when the weighting is the usual value of
õ ˆ 0:5. In Crank–Nicolson form the time derivative,
which is evaluated at the mesh point mid-way between time
steps, has second-order accuracy in ¢t=2.

Using standard interpolation formulae and collecting

terms at the same time step together, equation (10)
becomes…

Ni ~r(Nj hj) dxj t‡¢ t ‡ (1 ¡ õ) ¢t

3 U

…
Ni

@~r
@x

(Nj hj) ‡ ~r
@Nj

@x
hj

� ´μ ¶
dx

( ) t‡¢ t

3(1 ¡ õ) ¢t
1

12

…
@Ni

@x

~r ~h3

~è
~S

@Nj

@x
pj

� ´
dx

" # t‡¢ t

ˆ
…

Ni ~r ~h dxj t ¡ õ ¢ t U

…
Ni

~h
@~r
@x

‡ ~r
@~h

@x

� ´
dx

"

‡ 1

12

…
@Ni

@x

~r ~h3

~è
~S

@~r
@x

dx

# t

(11)

where the repeated subscript j indicates summation and
averaged quantities are as defined in the Appendix.

The elastic deflection is given by equation (8) which is
expressed numerically using finite differences as

hj ¡ h j‡1

2
¡ h j‡1

2
‡ ¢2

2

X
jk¡ jj<K

f k¡ j pk

ˆ ¡ ¢2

2

X
jk¡ jj.K

f k¡ j pk ¡ ¢2

2R
‡ j j ¡ j j‡1

2
¡ j j‡1

2

(12)

The pressure summation is partitioned into contributions
within K mesh spaces of the point of application of the
equation which appear on the left-hand side of equation
(12), and the remainder that appear on the right-hand side.
These right-hand side contributions are linearized during
the numerical solution and are evaluated using pressures
from the time step’s previous iterative cycle.

Equations (11) and (12) are solved as a pair of coupled
equations and are arranged in matrix form as follows:

R p R h

E p Eh

μ ¶
i, j

pj

hj

� ¼
ˆ R r

E r

� ¼
i

(13)

where Rp, Rh and Rr are the coefficient submatrices
corresponding to the Reynolds equation and Ep, Eh and Er

are those corresponding to the differential deflection equa-
tion. The entries in these submatrices are given in the
Appendix.

A time step thus consists of evaluating Rr from the
pressure and film thickness distribution for the previous
time step. These pressure and film thickness distributions
are taken as a first approximation for the solution for the
new time step and used to evaluate coefficients Rp and Rh,
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and also the pressure-dependent contribution to Er. The
remaining coefficients in equation (13) are fixed for the
time step.

Equation (13) is then solved to give the next
approximation to the distributions of pressure and film
thickness at the new time step. The coefficients Rp, Rh and
Er are then recalculated based on the new approximation
for p(x, t ‡ ¢t) and h(x, t ‡ ¢t) and the process is
repeated until converged values for p(x, t ‡ ¢t) and
h(x, t ‡ ¢t) are obtained. The time step adopted is
typically ¢=(4Umax) where Umax is the larger of the two
surface velocities. When real rough surface profiles are
used to define the surface texture, as opposed to smooth
analytic functions, interpolation must be used to determine
the surface geometry at each time step from the measured
roughness profiles. The geometry changes imposed on a
model between time steps are greatest for the faster-moving
surface and the time step used is based on this maximum
surface velocity in order to regularize the interpolation of
the surface geometry. In numerical experiments carried out
with different time step values, ¢=(4Umax) has been found
to give results that are independent of the value selected.
For this value of the time step the calculation of
p(x, t ‡ ¢t) and h(x, t ‡ ¢t) typically takes five to ten
iterations. The value of K adopted is 7, giving a bandwidth
for the coupled problem of 30. The time taken to solve
equation (13) is O(nK2) [20] so that, for large numbers of
mesh points, evaluation of Er is the dominant computation
task.

The time-dependent solution is started by solving the
smooth surface problem. This is achieved within the same
software scheme by setting Rr to zero and using a very
long time step which effectively negates the last term in
Rh. The Hertz pressure is used for the initial pressure
distribution. Once this solution has been obtained, the
surfaces move forwards for the next time step and the
surface modification function j(x, t) is introduced. This
function has a value of zero over the whole of the solution
space initially, and the surface modification features then
enter the solution space progressively at the inlet boundary.
In this way the time-dependent solution obtained corre-
sponds to the physical problem of smooth rollers whose
surfaces have roughness upstream of the contact that
gradually moves into the contact region. Consequently a
large number of time steps are used to ensure that the
roughness detail has progressed to encompass the whole of
the contact.

For cases where the surface deviations are given by
profilometer trace information as presented in Section 5
the surface modification function j(x, t) is not known
analytically. This requires interpolation between data points
in the trace(s) in order to determine the values of j(xi, t) at
all time steps. It is also necessary to interpolate between
profile data points if the computing mesh is finer than the
resolution at which the profilometer trace was acquired.
(This will often be the case as the profilometer diamond
stylus tip shape is such that profile resolution finer than

2 ím is not meaningful.) A cubic spline interpolation is
used to provide surface heights at intermediate points
between the data points as required, both for using
computing meshes that differ from the profile trace spacing
and during the time-dependent solution. In this way the
surface is always represented by the same collection of
piecewise cubic splines. Slope continuity is an important
consideration in considering squeeze-film effects in time-
dependent problems and with a cubic spline interpolation
procedure both the profile height and its slope are
continuous. The computing nodes are fixed relative to the
point of contact so that there is no time dependence of the
basic curvature terms of the two surfaces.

4 EXIT CAVITATION

At the exit to an EHL contact the pressure falls to zero at
an unknown position where the Reynolds boundary condi-
tion

p ˆ @ p

@x
ˆ 0

is usually taken to apply. In numerical solutions this is
commonly interpreted as a condition that prevents the
lubricant pressure from falling below zero.

Such a condition is relatively easy to apply in an iterative
solution where the pressure is the only active variable, but
in the coupled approach described in this paper some care
is necessary. Setting negative pressures to zero within the
back substitution as equation (13) is solved does not
remove the influence of those negative values on the
remaining pressures and film thickness values. The method
used is as follows.

In the steady state initial solution the position of the exit
cavitation boundary, xc, is a variable that is initially set to
xn. This is the position of the node at which the exit
boundary condition p ˆ 0 is applied. As the solution
proceeds, negative pressures that occur upstream of xc are
set to zero and the cavitation position is moved upstream
progressively until negative pressures are no longer
calculated. For hydrodynamic rows of equation (13)
downstream of xc the Reynolds equation is replaced by the
condition p ˆ 0. Thus, for all values of i such that xi . xc,

Rp ˆ 1 for j ˆ i, Rp ˆ 0 for j 6ˆ i

Rh ˆ 0 for all j, Rr ˆ 0

The flow at the cavitation node, i.e. at xc, is calculated from
its value at the Gauss points in the cavitating element. This
flow is partitioned between each of the moving solid
surfaces downstream of xc. If during the calculation the
flow at the first cavitated point, x . xc, is found to exceed
rUh, then the film is re-established at that node and the
cavitation boundary moves downstream. In this way the
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steady state exit boundary position is located to the nearest
mesh point.

Having located the exit cavitation position for the steady
state, it is necessary to allow it to migrate upstream and
downstream within the time-dependent solution as called
for by the passage of individual roughness features through
the exit. This requires account to be taken of the flow
within each cavitated element in the time-dependent
formulation of the Reynolds equation, and the cavitated
fluid is taken to move with the speed of the surface to
which it is attached. To check this procedure the load
fixing parameter h1 has been varied steadily over 100 time
steps to a new fixed value until flow disturbances caused
by this squeezing of the film have propagated out of the
contact. The time-dependent solution then becomes the
steady state solution for the new value of h1. Comparing
the exit boundary position established with a standard
steady state solution at the same h1 value shows agreement
of xc to within one mesh spacing.

Cavitation at micro-asperity contacts within the contact
region with downstream re-formation of the film can be
treated using this general approach in principle. This
phenomenon has been reported in stationary roughness
examples [27] but does not occur in the transient cases
discussed in the current paper. Recent work by the present
authors suggests that it can be provoked in more extreme
circumstances, but the importance of reservoirs of oil in
pressurized valley features downstream of transient
microcontacts in maintaining a full film cannot be
overstated.

5 RESULTS

Results are presented for the time-dependent cases of a
single rough surface running against a smooth surface, and
for two rough surfaces running against each other.

5.1 Single rough surface

The rough surfaces used are those from profilometer traces
taken from axially finished steel discs used in scuffing
experiments [28]. The profiles concerned were taken from
the unscuffed part of a test disc that had experienced
running at a heavy load. The asperity height distribution is
therefore negatively skewed by the running-in process from
its initial almost Gaussian form. The discs were axially
finished using aerospace manufacturing procedures in
order to replicate as closely as possible the surface finish
found in gear teeth in aerospace auxiliary gearbox applica-
tions which were the focus of the experimental work.
Theoretical results have been obtained for a sequence of 11
slide–roll ratios of ê ˆ §2, §1.2, §0.6, §0.3, §0.15 and
0.0 (pure rolling). For cases having one smooth and one
rough surface the convention adopted is that positive values
of ê have the rough surface moving faster and the case

ê ˆ ¡2 has a stationary rough surface for which the
problem is quasi-steady. A series of three entraining
velocities was used to simulate different film thickness
conditions. These velocities and the oil specification cover
the experimental conditions used [28]. The results de-
scribed in this paper for a single rough surface are taken
from the two lower-velocity cases. Results for a prelimin-
ary analysis of the 25 m=s case have been presented by the
present authors elsewhere [29]. Table 1 specifies the
parameters for the analysis.

Visualization of solutions to moving roughness (time-
dependent) problems is best achieved by constructing an
animated sequence of film and pressure distributions for
successive time steps. In viewing such an animation for the
cases modelled in this paper it is seen that the film
thickness on an individual microcontact is formed by
the rolling/squeezing motion of the surfaces at the inlet
to the corresponding Hertzian area. The deformed shape of
the asperity stabilizes in the first quarter of the dry contact
area and then progresses through the contact in a broadly
unaltered way. The pressure distribution associated with the
deformed shape is a substantial perturbation to the smooth
surface pressure distribution and keeps pace with the
microcontact as it moves through the Hertzian area.
Travelling waves at the average surface velocity that have
been reported in studies of sinusoidal roughness with
Newtonian lubricants are not seen in the current work as a
result of the much reduced effective viscosity of the more
realistic non-Newtonian fluid model adopted.

The conditions assumed have a corresponding Hertzian
contact dimension b ˆ 0:36 mm and for smooth surface
conditions the maximum pressure is 1.07 GPa. The finite
element mesh for the solutions presented has 192 nodes in
the Hertzian dimension and, as the inlet boundary is located
at ¡3b, some 3000 time steps are needed for the roughness
profile to cover the entire contact. Figure 1 shows the
pressure and film thickness at time step 5500 for the case
having ê ˆ ¡0:6 and U ˆ 10 m=s. This entrainment
velocity results in minimum film thicknesses of the order
of 0.04 ím as the different surface roughness features pass
through the contact area which is only 6 per cent of the
corresponding Dowson–Higginson smooth surface value.
The figure also shows the undeformed surface roughness
profile to which a negative offset has been added for

Table 1 Conditions assumed for the real

roughness analyses

R1 and R2 19.05 mm
ô0 5.0 MPa
w9 600 kN=m
è0 0.0048 Pa s
U 5, 10 and 25 m=s
E1 and E2 206.8 GPa
î1 and î2 0.3
á 11.1 GPa¡1
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clarity. This clearly demonstrates the alignment of
undeformed and deformed features within the EHL film.
The shapes adopted by micro-asperities are formed in the
inlet and remain effectively unchanged as they traverse
the contact. This is illustrated by consideration of Figs 2
and 3 which show the situation at time steps 6000 and 6500
respectively. The 500 time step interval between these
figures corresponds to a distance moved by the rough
surface of 0:65b and it can be seen that during each of
these intervals the microcontacts within the contact have
progressed by this distance and their deflected shape
remains similar. For example, the microcontact in the range
¡0:8 , x=b , ¡0:6 in Fig. 1 is centred at x=b ˆ 0 in Fig.
2 and at x=b ˆ 0:65 in Fig. 3, and the similarity between
the pressure distributions at these locations is clear. The
film thickness over a short length of 100 mesh points
(including the feature referred to above) is examined at five
positions during its traverse of the contact area in Fig. 4.
These positions are each separated by 500 time steps.
Figure 4a shows the profile section in the inlet as it enters
the contact area in three positions within the contact area
and as it leaves the contact area. The undeformed profile is
also included and the figure shows that the film shape
corresponding to a microcontact feature remains almost the
same as it traverses the contact. The small differences can
be seen in Fig. 4b which shows the profile section at the
three central positions in greater detail. The microcontacts

can be seen to form film thickness features that are
convergent from left to right. Figure 5 shows the deviations
of pressure in these three cases from the smooth surface
pressure distribution at the corresponding position in the
contact. These pressure perturbations demonstrate that the
deflection required of the asperity by the EHL model is
substantially the same at the three positions.

Figure 6 shows the result for time step 6000 when the
direction of sliding is reversed so that ê ˆ 0:6. Comparison
with Fig. 2 shows that the deformed shapes of the
microcontacts are now different with the gentler pressure
gradients to the right of contact features and the steepest
pressure gradients to the left. Figures 7a and b show the
same profile section as examined in Fig. 4 during its
traverse of the contact area for this case (ê ˆ 0:6) where
relative sliding is in the opposite direction. Again the film
thickness is seen to be very similar during the traverse of
the contact but now the microcontacts deform so as to be
convergent from right to left. It can be seen in each case
that the microcontacts take on deformed shapes that cause
the oil film to be convergent in the direction of entrainment
relative to the asperity. In Fig. 4 the rough surface is
moving the slowest so that, relative to the asperity, the
entrainment is from left to right, but in Fig. 7 the rough
surface is moving faster so that entrainment is from right to
left relative to the asperity. The velocity relative to the
asperity thus takes on the role of (twice) the entrainment

Fig. 1 Pressure (upper curve) and film thickness distributions at time step 5500 for ê ˆ ¡0:6 and U ˆ 10 m=s.

Also shown (light curve) is the undeformed roughness profile at this time step with a negative offset for

clarity. Note that the solid surface is above the profile
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Fig. 2 Pressure (upper curve) and film thickness distributions at time step 6000 for ê ˆ ¡0:6 and U ˆ 10 m=s.
Also shown (light curve) is the undeformed roughness profile at this time step with a negative offset for

clarity. Note that the solid surface is above the profile

Fig. 3 Pressure (upper curve) and film thickness distributions at time step 6500 for ê ˆ ¡0:6 and U ˆ 10 m=s.

Also shown (light curve) is the undeformed roughness profile at this time step with a negative offset for
clarity. Note that the solid surface is above the profile
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Fig. 4 Film thickness for a particular 180 ím length of roughness profile at five positions during traverse of

contact for case ê ˆ ¡0:6 and U ˆ 10 m=s. (a) Five film thickness traces together with offset undeformed

profile (solid surface above profile). (b) Detailed view of traces centred at x=b ˆ ¡0:65 (– – –), x=b ˆ 0
(——) and x=b ˆ ‡0:65 (· · · · · ·)
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Fig. 5 Deviation of pressure from smooth surface distribution for the cases shown in Fig. 4b. Traces centred at
x=b ˆ ¡0:65 (– – –), x=b ˆ 0 (——) and x=b ˆ ‡0:65 (· · · · · ·)

Fig. 6 Pressure (upper curve) and film thickness distributions at time step 6000 for ê ˆ ‡0:6 and U ˆ 10 m=s.

Also shown (light curve) is the undeformed roughness profile at this time step with a negative offset for
clarity. Note that the solid surface is above the profile
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Fig. 7 Film thickness for a particular 180 ím length of roughness profile at five positions during traverse of

contact for ê ˆ ‡0:6 and U ˆ 10 m=s. (a) Five film thickness traces together with offset undeformed

profile (solid surface above profile). (b) Detailed view of traces centred at x=b ˆ ¡0:65 (– – –), x=b ˆ 0
(——) and x=b ˆ ‡0:65 (· · · · · ·)
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velocity once the microcontact has moved into the Hertzian
contact area. Sliding is therefore seen to have a hy-
drodynamic effect in micro-EHL which is absent in
smooth–smooth contacts in which film formation is
determined purely by the rolling velocity.

It is interesting that waves travelling at the contact’s
entrainment velocity that have been reported by other
investigators are not seen in these results. This would seem
to be due to the inclusion in this work of the non-
Newtonian lubricant formulation that allows pressure
gradients to cause fluid flow in the high pressure region.
The deep valley features that characterize real, run-in
surfaces may also be a significant factor in eliminating the
travelling waves seen in other numerical models as they
contain significant reservoirs of lubricant in comparison
with the flow perturbations induced by surface features at
the inlet. This ‘storage’ capability may influence this aspect
of the results by absorbing any travelling flow pertubations
by compression.

The importance of entrainment relative to the asperity is
emphasized by the results shown in Fig. 8. This shows the
film thickness of the profile section at the same contact
position for the full range of slide–roll ratios. The film
thickness distribution for each case is offset compared with
the others to enable comparison. It is clear that the cases
having negative slide–roll ratios form a family of EHL

responses to the rough surface with the asperity being
deformed to generate a film convergent from left to right.
The cases having positive slide–roll ratios form another
family of responses with the film convergent from right to
left. The case of pure rolling that is also included is
different as it does not generate entrainment relative to the
asperity within the contact area. For this case the pressure
response is markedly different, as can be seen in Fig. 9.
The asperity shape persists as formed in the inlet region,
and the pressure is much more sensitive to the details of
surface roughness, responding to each deviation in height,
even within the deep valleys.

Figure 10 shows time step 6000 for conditions ê ˆ ¡0:6
and U ˆ 5 m=s. The film thicknesses are now smaller than
those in the corresponding 10 m=s case shown in Fig. 2,
with minimum values of the order of 0.02 ím as the
different surface roughness features pass through the
contact area. The corresponding Dowson–Higginson
smooth surface value for this condition is 0.14 ím. The
increased conformity of the microcontacts required by this
thinner film regime causes an increased response of
pressure to the finer scale of roughness features, but the
predominant effect remains that of a series of micro-
contacts that progress almost unaltered through the contact.
Figure 11 shows the film thicknesses of the profile section
considered previously for each slide–roll ratio at this lower

Fig. 8 Film thickness for the particular 180 ím length of roughness profile at the centre of the contact for
U ˆ 10 m=s and ê ˆ ¡2 (highest curve), ¡1.2, ¡0.6, ¡0.3, ¡0.15, 0, 0.15, 0.3, 0.6, 1.2 and 2.0 (lowest

curve). Each film thickness curve is offset from its neighbours by 0.2 ím; the curve for ê ˆ 0 is offset by
0.6 ím
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Fig. 9 Pressure (upper curve) and film thickness distributions at time step 6000 for the pure rolling case with
U ˆ 10 m=s. Also shown (light curve) is the undeformed roughness profile at this time step with a negative
offset for clarity. Note that the solid surface is above the profile

Fig. 10 Pressure (upper curve) and film thickness distributions at time step 6000 for ê ˆ ¡0:6 and U ˆ 5 m=s.

Also shown (light curve) is the undeformed roughness profile at this time step with a negative offset for
clarity. Note that the solid surface is above the profile
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entrainment velocity and again shows two distinct families
of EHL responses corresponding to positive and negative
slide–roll ratios.

5.2 Two rough surfaces

Animated sequences are particularly useful in visualizing
the effect of incorporating surface roughness on both
surfaces. Single-time-step snapshots are shown in Figs 12
to 14 for a case with ê ˆ ¡0:3 and U ˆ 25 m=s. Again it
can be seen that the pressure distribution shows deviations
from the Hertzian shape that are on the scale of the larger
microcontacts rather than the individual roughness features.
Indeed in the figures shown the elastohydrodynamic
lubricant clearly causes load sharing between the macro-
contacts with relatively little influence of the finer scale of
roughness on the pressure distribution. The situation is
complicated by the interaction of such features on the two
surfaces. Some prominent features tend to maintain an
associated pressure deviation as they move in and out of
intimate contact with different features on the other surface
for example the feature of the lower surface just to the right
of the origin in Fig. 12 has a similar pressure deviation in
Fig. 13 where it is located at x ˆ 0:5b. On the other hand
the lower surface flat topped feature at x º ¡0:6b in Fig.

12 is associated with a relatively high pressure whereas in
Fig. 13 where it has progressed to a position x º ¡0:1b its
pressure is relatively low as is the case in Fig. 14 at position
x ˆ 0:4b. In general the inclusion of roughness on both
surfaces leads to a reduction in the minimum film thickness
in comparison with the case with one smooth surface. The
results shown are for the higher entrainment velocity of
25 m=s which enables a full film to be maintained through-
out the analysis. At lower entrainment speeds the combined
roughness of the two surfaces is sufficiently aggressive to
cause localized surface contact during some time steps.
Work is now in progress to develop the model to allow a
boundary lubrication treatment to be substituted locally
where such asperity collisions take place while maintaining
the essential mass-conserving properties of the model.

The sensitivity to mesh size of the numerical results
obtained with the model described in this paper is
illustrated in Fig. 15. The film thickness calculated at two
positions during transit of the contact area is illustrated for
three different mesh sizes: b=384, b=192 and b=96. The
results for these individual models are shown offset by 2, 3
and 4 ím respectively in the region of the figure where the
film thickness is negative. The curves are also shown with
no offset at the top of the figure. It is clear that there are no
significant differences in the predicted film thickness as

Fig. 11 Film thickness for the particular 180 ím length of roughness profile at the centre of the contact for
U ˆ 5 m=s and ê ˆ ¡2 (highest curve), ¡1.2, ¡0.6, ¡0.3, ¡0.15, 0, 0.15, 0.3, 0.6, 1.2 and 2.0 (lowest

curve). Each film thickness curve is offset from its neighbours by 0.2 ím; the curve for ê ˆ 0 is offset by

0.6 ím
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Fig. 12 Pressure (upper curve) and film thickness distributions at time step 4500 for ê ˆ ¡0:3 and U ˆ 25 m=s.

Also shown (light curve) are the two rough surfaces at this time step in their contact configuration with a
negative offset for clarity

Fig. 13 Pressure (upper curve) and film thickness distributions at time step 5000 for ê ˆ ¡0:3 and U ˆ 25 m=s.

Also shown (light curve) are the two rough surfaces at this time step in their contact configuration with a
negative offset for clarity
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the mesh is varied; indeed detailed comparison of the
results for b=192 and b=384 show that these film thickness
curves are almost identical. There are minor shape
differences at the asperity tips when the coarsest model is
used, but this is an inevitable consequence of the reduced
definition in the asperity geometry.

6 CONCLUSIONS

The new solution technique described in this paper enables
highly stable time-dependent EHL solutions to be com-
puted sufficiently quickly to allow examination of the
behaviour of real gear lubrication conditions in which
surface roughness is at least an order of magnitude greater
than the minimum oil-film thickness. The crucial advan-
tage of the coupled approach in dealing with these severe
cases lies in the fact that film thickness and pressure are
treated as simultaneously active variables throughout the
solution process. This leads to a highly robust and rapidly
convergent numerical scheme. A straightforward imple-
mentation of this approach causes the well-known diffi-
culty of a fully populated solution matrix, however, which
presents an overwhelming computing problem even for

steady state, line contacts and virtually rules out time-
dependent and two-dimensional cases. Partial coupling of
deformation and pressure is found to be inadequate [26]. A
key step in overcoming this obstacle is to formulate the
elastic deformation in terms of its second differential which
then allows the influence of distant points to be safely
linearized (giving a solution matrix banded about its
diagonal) without sacrificing any of the advantages of full
coupling. The resulting coupled–iterative scheme is rapidly
convergent and highly robust.

The results shown here demonstrate the ability of the
method to handle severe cases of rough surfaces and thin
films under time-varying conditions. A surprising feature
of the results is that the pressure deviations developed are
generally seen to have a wavelength that is longer than that
of the smallest scale of roughness features. Indeed those
features would seem to be of peripheral importance in
determining lubricant pressure response except in the
special case of pure rolling where the pressure becomes
more sensitive to the finer scale asperities.

What are effectively asperity contacts have been
observed in the case of two rough surfaces rolling/sliding
together under severe conditions. Modelling of this real
‘mixed lubrication’ regime represents a significant chal-
lenge. The coupled method described in the paper lends

Fig. 14 Pressure (upper curve) and film thickness distributions at time step 5500 for ê ˆ ¡0:3 and U ˆ 25 m=s.

Also shown (light curve) are the two rough surfaces at this time step in their contact configuration with a

negative offset for clarity
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itself well to the inclusion of localized ‘dry’ or boundary
lubricated regions. These may be determined dynamically
within the overall EHL contact, since boundary conditions
of zero film thickness can be imposed on the solution
where required while maintaining the essential mass-
conserving feature of the model.

Identifying suitable parameters to be obtained from EHL
analyses of rough surfaces is another important develop-
ment that is required if contact modelling is to produce

useful information to quantify surface performance. It is
possible to speculate that parameters that measure:

(a) pressure deviation from the mean,
(b) bearing ratio under EHL operation and
(c) load cycles per contact passage for load bearing

asperities

may be found relevant in quantifying surface durability.
Analyses in progress of surfaces produced by different

Fig. 15 Film thicknesses calculated at two positions, as shown in (a) and (b), during transit of the contact area

using different mesh sizes. Curves are for äx ˆ b=384 offset by ¡2 ím, for äx ˆ b=192 offset by ¡3 ím

and for äx ˆ b=96 offset by ¡4 ím. Curves with no offset are superimposed at the top of figures
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manufacturing methods incorporating a thermal treatment
are providing data that allow development of such
parameters.

This paper is concerned with line contacts, but the
methods described are equally extendable to side-leakage
point contacts and this work is now being pursued [30].
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APPENDIX

The averaged terms in equation (13) are evaluated over the
element as follows:
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Hydrodynamic equation submatrix entries are
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where Gauss point integration is used to evaluate the
integrals over each finite element.

Elastic equation submatrix entries are

Eh ˆ
1 for j ˆ i
¡0:5 for j ˆ i § 1
0 elsewhere

8<
: (18)

E p ˆ
¢2

2
f j¡i 8j j ¡ ij < K

0 elsewhere

8<
: (19)

E r ˆ ¡ ¢2

2

X
jk¡ij.K

f k¡i pk ¡ ¢2

2R
‡ ji ¡ ji‡1 ‡ ji¡1

2

(20)

The boundary conditions are applied as follows. At i ˆ 1
and at i ˆ n the pressure is set to zero. At i ˆ 1 the film
thickness is set to a prescribed value, so that h1 has an
equivalent role to the constant hs in equation (5). The value
of h1 is specified in order to obtain the required load. The
contributions for the elastic equation at i ˆ 1 are

Eh ˆ 1 for j ˆ i

0 for j 6ˆ i

�

E p ˆ 0, Er ˆ h1

At i ˆ n the film thickness hn is obtained by using
equations (5) and (7) to evaluate the difference hn ¡ h1 to
give

hn ¡ h1 ‡
X
all k

(gk¡1 ¡ g k¡n) pk

ˆ x2
n ¡ x2

1

2R
‡ j(xn, t) ¡ j(x1, t)

so that in equation (13) at i ˆ n

Eh ˆ
1 for j ˆ i
¡1 for j ˆ 1
0 elsewhere

8<
:

E p ˆ g j¡1 ¡ g j¡n

E r ˆ x2
n ¡ x2

1

2R
‡ j(xn, t) ¡ j(x1, t)

As the E p terms are all significant for this last elastic
equation they are all included in the left-hand side of
equation (13). This row has to be eliminated numerically
during the solution process but this does not present an
impediment to the rapid solution of the equation.
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