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Abstract: A numerical solution for the micro-elastohydrodynamic lubrication (EHL) problem
of two coated elastic bodies in line contact is presented. This incorporates non-Newtonian
behaviour of the lubricant, using an Eyring-type non-linear viscous model. The surface elastic
deformations are computed from full elasticity analysis of layered elastic half-spaces. The
coupled differential deflection method is used in the numerical solution of the micro-EHL
mathematical model. Results are presented for smooth surface, steady-state problems that
compare the influence of coating elastic modulus and coating thickness on calculated lubricant
pressure and film thickness distributions. Some transient results are also included, where the
effect of coatings on a single ridge feature and on a rough surface in rolling/sliding contact is
examined.

Keywords: EHL, coatings, transient EHL, rough surfaces

1 INTRODUCTION

The use of coatings to enhance the tribological per-
formance of surfaces has grown considerably in
recent years. Various coatings are now used routinely
in many applications where surfaces slide and roll
together under conditions of marginal lubrication,
such as those occurring, for example, in devices like
fuel pumps. The thickness of these coatings is
generally in the range of 100 nm to 500 mm, but of
particular significance are the types described as thin,
hard coatings, which are typically a few microns in
thickness. This class of coatings includes types such
as titanium nitride (TiN), titanium carbide (TiC),
aluminum oxide (Al2O3), and silicon carbide (SiC).
Two types that have been investigated recently [1]
as a possible means of improving the surface
durability of gears are the ‘super-hard’ diamond-
like carbon and boron carbide (B4C) coatings. The
lubrication conditions in gear tooth contacts are

particularly severe because of the high contact press-
ures (in excess of 1 GPa) and the lack of a full fluid film
because of the presence of roughness on the tooth
surfaces. In these circumstances, significant asperity
interactions occur, leading to transient metal-to-
metal contact at asperities. Under such partial or
‘mixed’ lubrication conditions, there is considerable
interest in using coating technology to mitigate
these effects, and thin hard coatings appear to provide
protection against adhesion and scuffing during these
severe encounters. The analysis reported in this
article is aimed at developing an understanding of
the effect of coatings in lubricated contacts.

In order to understand and predict the response of
thin coatings in tribological situations, it is necessary
to carry out analyses of their behaviour in contact
simulations under both dry and lubricated con-
ditions. The analysis of dry, coated (layered) contacts
has received considerable attention and two main
techniques are used. The first approach is based on
the solution of an integral equation whose kernels
are determined using a Fourier transformation
method [2–5]. The second technique uses the finite
element (FE) method [6–10], and both elastic and
elastic/plastic behaviour has been considered. The
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study of layered contacts under elastohydrodynamic
lubrication (EHL) conditions is less advanced, but
solutions have been obtained for the case of an elas-
tomeric layer bonded to an elastic substrate [11–14].
These solutions show that the presence of a surface
layer having elastic properties different from those
of the substrate can have a significant effect on the
main features of the pressure distribution and lubri-
cant film profile.

In considering the EHL response of real engineer-
ing surfaces, it is important to include the effect of
surface roughness because in most cases, the rough-
ness is of the same order, or even larger, than the film
that can be generated hydrodynamically. This is the
regime occurring in most types of gears, for example,
and the term micro-EHL has been used to describe
the lubrication mechanism involved. Micro-EHL
has been modelled with sinusoidal roughness or
well-defined protuberant features [15–21] or using
measured (real) roughness from gears and rollers
[22–26]. All these micro-EHL studies were limited
to uncoated surfaces. These solutions show con-
siderable rippling of the pressure profile as a result
of roughness, even when the nominal lubricant film
is thick when compared to the amplitude of the

roughness. Ripple pressures are found to be far
in excess of the corresponding smooth surface
(Hertzian) distribution, and this has consequences
for surface fatigue (micropitting). The presence of
roughness provides an opportunity for lubricant to
leak from a heavily loaded rolling contact, and this
mechanism provides a possible explanation for the
practical problem of scuffing [27].

In simulations of the most severe conditions of
micro-EHL, the film is found to break down, leading
to direct momentary ‘dry’ contact between opposing
asperity tips. This is the regime described as ‘mixed’
EHL because the surfaces are supported by a mixture
of fluid pressure and dry contact.

Figure 1 illustrates the lubricated line contact
between two rollers a and b. Each body is coated
with perfectly bonded multiple thin elastic layers
(only two layers are shown for illustration). Each
layer is of uniform thickness, and a loadwz is applied
to press the two bodies together. The two elastic
bodies have surface velocities ua and ub relative to
the contact point, and this motion draws lubricant
into the contact so that the surfaces of the two
coated bodies are completely separated by a hydro-
dynamic film.

Fig. 1 Representation of two coated cylindrical bodies in a lubricated contact
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The objective of the study reported in this article
was to investigate the effects of surface coating
(material and thickness) on the pressure and film
thickness response in EHL and rough surface
micro-EHL line contacts. Thermal effects within
the contact are neglected at this stage, and the analy-
sis is isothermal. A modified form of the Reynolds
equation, which incorporates the non-linear viscous
fluid model of Johnson and Tevaarwark [28] is used.
The surface elastic deformations are computed
from full elasticity analysis of a layered elastic half-
space after Elsharkawy and Hamrock [4]. The dry
contact problem is solved first in order to determine
the corresponding ‘Hertzian’ half-width of contact
b, themaximumcontact pressure p0, and the dry con-
tact pressure distribution. The coupled differential
deflection method developed by Hughes et al. [29]
and Elcoate et al. [30] is then used to solve the EHL
problem (or micro-EHL if the surface roughness is
incorporated) in order to predict the hydrodynamic
pressure profile and film shape. A study is presented,
which investigates the effects of single layered surface
coatings (with and without surface irregularities) on
the pressure profile and film thickness behaviour.

2 MULTILAYERED ELASTIC HALF-SPACE

An elastic half-space coated with a number of thin
elastic layers is shown in Fig. 2. These layers are
assumed to be bonded together. An arbitrary
normal surface pressure p(x) and tangential surface
traction q(x) are applied on the surface. The general
solution for a two-dimensional plane strain problem
has been expressed in terms of Fourier integrals by
Sneddon [31]. With reference to the coordinate
system shown in Fig. 2, the stresses and the displace-
ments are given by

sx ¼ @2f

@z2
¼ 1

2p

ð1
�1

d2G

dz2
e�ivx dv (1)

sz ¼ @2f

@x2
¼ � 1

2p

ð1
�1

v2Ge�ivx dv (2)

txz ¼ @2f

@x@z
¼ 1

2p

ð1
�1

iv
dG

dz
e�ivx dv (3)

ux ¼ 1� n2

2pE

ð1
�1

d2G

dz2
þ n

1� n

� �
v2G

� �
ie�ivx dv

v
(4)

uz ¼ 1� n2

2pE

ð1
�1

d3G

dz3
þ 2� n

1� n

� �
v2 dG

dz

� �
e�ivx dv

v2
(5)

where G(v, z) is the Fourier transformation for the
Airy stress function f(v, z), E is the modulus of elas-
ticity, n is the Possion’s ratio, and i ¼ ffiffiffiffiffiffiffi�1

p
in

equations (1) to (5) only. The general solution for G
is of the form G(v, z) ¼ (A1 þ A2z)e

�jvjzi þ
(A3 þ A4z)e

jvjzi so that for the layered system illus-
trated in Fig. 2 the transformed function G(v, z)
can be written for any layer i as

Gi(v, zi) ¼ (A1,i þ A2,i zi)e
�jvjzi

þ (A3,i þ A4,i zi)e
jvjzi (6)

The coefficients Am,i(v), where m ¼ 1, 2, 3, 4 and
i ¼ 1, 2, . . ., Nl, where Nl is the number of layers,
can be determined by applying the following bound-
ary conditions at the surface and at each interface
between adjacent layers.
Outside the contact region: (sz)z¼0 ¼ (txz)z¼0 ¼ 0
Inside the contact region: (sz)z¼0 ¼ �p(x),
(txz)z¼0 ¼ �q(x)

At a large distance from the contact region, the
stresses will die out so that

sx, sz, txz ! 0 as x ! +1 and z ! 1

At the interface between layer i and layer i þ 1, the
stresses and displacements should be continuous
because the layers are completely bonded to each
other

(txz)i ¼ (txz)iþ1, (sz)i ¼ (sz)iþ1,

(uz)i ¼ (uz)iþ1, (ux)i ¼ (ux)iþ1

Details of how the coefficients Am,i(v) can be deter-
mined are given in reference [4].

3 SURFACE ELASTIC DEFORMATION

In conventional EHL analysis, the surface elastic
deformation is computed for a semi-infinite elastic
solid. In order to investigate the effects of surface
coating on EHL performance, the surface elastic
deformation due to pressure loading may beFig. 2 Multilayered elastic half-space
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computed for a multilayered elastic half-space [4] as

uz(x) ¼ 2

pE 0
l

ðxend
xmin

ð1
0

½b1Fa(s)þ b2Fb(s)�
	

� cos s
x � x0

tT

� �� �
ds



p(x0)dx0 (7)

(Note that in reference [4], the expressions given are
for relative rather than absolute deflections.) In
equation (7)

Fa(s) ¼ d3G1a

dz3
� 2� n1a
1� n1a

s2
dG1a

dz

� �
z¼0

1

s2
(8)

Fb(s) ¼ d3G1b

dz3
� 2� n1b
1� n1b

s2
dG1b

dz

� �
z¼0

1

s2
(9)

tT ¼
XNl

i¼1

ti (10)

b1 ¼
1� n21a
� �

E1b

1� n21b
� �

E1a þ 1� n21a
� �

E1b

(11)

b2 ¼
1� n21b
� �

E1a

1� n21b
� �

E1a þ 1� n21a
� �

E1b

(12)

E 0
l ¼ 2E1aE1b

1� n21b
� �

E1a þ 1� n21a
� �

E1b

(13)

In these equations s ¼ vtT, z ¼ z=tT, tT is total thick-
ness of layers, xmin and xend are the two boundary
points of the conjunction beyond which the pressure
vanishes, and subscripts a and b are used to denote
body a and body b, respectively (Fig. 1).

For large values of s, both Fa(s) and Fb(s) will tend
to 2/s. Therefore, the integral from 0 to 1 can be
divided into two regions, one from 0 to s0 where
Fa(s) and Fb(s) are given by equations (8) and (9),
and another from s0 to 1, where the approximation
2/s is used for these terms. The first integration is
computed numerically by using a semi-open inte-
gration formula because the integrand is singular at
s ¼ 0. A closed form solution for the second integral
can be obtained, and values of s0 . 3 are usually suf-
ficient to ensure that the approximation involved in
Fa(s) and Fb(s) does not affect the result. It is worth
noting that if the two cylinders are coated with a
single coating of the same material, then b1 ¼ b2 ¼
0:5 and Fa(s) ¼ Fb(s).

The surface elastic deformation equation (7) can
be solved numerically by dividing the lubricated
region xmin 4 x 4 xend into subintervals between
mesh points xj. By considering a linear pressure dis-
tribution in each subinterval xj 4 x0 4 xjþ1

p(x0) ¼ (x0 � x jþ1)

(xj � x jþ1)
pj þ

(x0 � xj)

(x jþ1 � xj)
pjþ1 (14)

The surface elastic deformation can be obtained in
the following form

uz xj
� � ¼ X

all k

gk�jpk (15)

where gk�j is the influence coefficient at point j due
to a unit load at point k. In order to use the coupled
differential deflection method developed by Hughes
et al. [29], the surface elastic deformation is formu-
lated in a differential form as

@2uz xj
� �

dx2
¼ uz x jþ1

� �� 2uz xj
� �þ uz x j�1

� �
Dx2

¼
X
all k

fk�j pk (16)

The coefficients fk decay rapidly as jkj increases from
zero in comparison with coefficients gk. This sharp
decay ensures that the effect of pressure on the
second derivative of deflection is highly localized
and leads directly to the major advantage of this
technique, which is the ability to fully couple the dis-
cretized elastic and hydrodynamic equations within
a highly banded matrix structure.

For uncoated bodies the influence coefficients fk
are formally derived by differentiation of the deflec-
tion equation [32]. In the case of coated surfaces,
the complexity of equation (7) and its associated
terms mean that this route to obtaining the coeffi-
cients is extremely involved, and the simpler
approach of differencing the gk coefficients as
implicit in equation (16), is used. Thus, the fk coeffi-
cients are obtained directly from the gk coefficients
by

fk ¼ gk�1 � 2 gk þ gkþ1

Dx2
(17)

It may be emphasized that this differential treatment
of the elastic deflection calculation, that is, replacing
equation (15) with equation (16), gives rise to essen-
tially identical calculated deflection for the same
pressure distributions [32]. Comparisons of EHL sol-
utions produced using the two formulations show
the calculated film thickness for rough surface pro-
blems to differ by less than 0.4 per cent of the local
film thickness value [29]. For the current approach
using equation (17), the results of such a comparison
can be expected to be identical because equation
(16) is a linear combination of equation (15) at
three neighbouring mesh points.
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4 DRY CONTACT ANALYSIS

The frictionless dry line contact problem between
two multilayered elastic rollers can be formulated
as follows [4]

2

pE 0
l

ðb
�b

ð1
0

½b1Fa(s)þ b2Fb(s)�
	

� cos s
x � x0

tT

� �� �
ds



p(x0)dx0 ¼ d0 � x2

2R
(18)

ðb
�b

p(x0)dx0 ¼ wz (19)

where d0 is the deflection at the geometric centre of
the contact. Equation (19) represents the equilibrium
condition. An iterative numerical technique for
solving the dry contact problem is implemented to
determine the actual half-width of contact b and
the dry contact pressure distribution p(x) for given
values of R, wz, and E 0

l.

5 MICRO-EHL ANALYSIS

Under severe conditions occurring in an EHL con-
junction, most lubricants exhibit non-Newtonian
behaviour. Several models have been proposed to
describe this non-linear response, among which is
the Eyring-type model introduced by Johnson and
Tevaarwerk [28] for predicting traction, and exten-
sively used since for this purpose [33]. This model
has also been widely used in numerical simulations
dealing with the effect of non-Newtonian behaviour
on the film thickness and pressure profile in the
case of both smooth and rough surfaces [34–38].

Following Conry et al. [35], and Tao et al. [38], the
mathematical formulation of the transient micro-
EHL problem can be written

@(rh)

@t
þ (ua þ ub)

2

@(rh)

@x
� @

@x

rh3

12h
S
@p

@x

� �
¼ 0 (20)

@2 h xj
� �

@x2
¼

X
all k

fk�j pk þ 1

R
þ @2f

@x2
(21)

S ¼ 3 S coshS� sinhSð Þ
S
3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 ub � uað Þ

t20 h
2

S
2

sinh2 S

s
(22)

S ¼ h

2t0

dp

dx
(23)

h xð Þ ¼ h0 exp ln
h0

k

� �
1þ x p xð Þ� �Ẑ�1

h in o
(24)

r xð Þ ¼ r0
1þ gp xð Þ
1þ lp xð Þ

� �
(25)

ðxend
xmin

p xð Þdx ¼ wz (26)

p ¼ 0 at x ¼ xmin

p ¼ @p

@x
¼ 0 at x ¼ xend (27)

Equation (20) is the modified Reynolds equation
incorporating the Eyring-type non-linear viscous
fluid model. The non-Newtonian factor S given by
equation (22) depends on the pressure, film thick-
ness, sliding speed, and pressure gradient. The
dependence of both the lubricant viscosity
and density on pressure is given by equations (24)
and (25), respectively. Parameter Ẑ in equation (24)
is determined from the pressure coefficient of vis-
cosity a. Equation (26) represents the load equili-
brium condition. The boundary conditions given in
equation (27) must also be satisfied. The surface elas-
tic deflection process is modelled using equation
(21), which requires two boundary values to be speci-
fied. The value of h(xmin) at the entry boundary is an
arbitrary constant used to obtain the required load,
and equation (7) in the form of equation (15) is
used to provide the second exit boundary condition
by evaluation of the difference in deflection
uz(xmax)� uz(xmin). The coupled differential deflec-
tion method, which was presented in detail by
Hughes et al. [29] and Elcoate et al. [30], is utilized
to solve the transient micro-EHL system described
by equations (20) to (27). In this method, equations
(20) and (21) are solved simultaneously with
equations (22) to (27). In the current work, equation
(20) is discretized using first-order FEs and equation
(21) by a central difference scheme. The two
equations are expressed in an overall matrix problem
whose unknowns are the values of h(x) and p(x) at
each node of the computing mesh. The rapid decay
of the influence coefficients, fk, allows the problem
to be expressed in a narrow banded form [30].

Table 1 Operating conditions and lubricant properties

Radius of surfaces, Ra ¼ Rb 0.0381 m
Elastic modulus, Ea ¼ Eb 200 GPa
Poisson’s ratio, na ¼ nb 0.3
Poisson’s ratio of the coating material, nc 0.3
Hertzian pressure of uncoated case, pH 0.9833 GPa
Hertzian half-width of uncoated case, bH 0:3409� 10�3m
Surface velocity of body a, ua 28.125 m/s
Surface velocity of body b, ub 21.875 m/s
Viscosity of the lubricant at atmospheric

pressure, h0

0.0048 Pa s

Pressure–viscosity coefficient, a 11.1 GPa21

Pressure–viscosity index, Ẑ 0.5025
Eyring stress, t0 10 MPa
Parameter in equation (24), x 5.1 GPa21

Parameter in equation (25), g 2.266 GPa21

Parameter in equation (24), k 63.15 � 1026 Pa s
Parameter in equation (25), l 1.683 GPa21
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6 NUMERICAL SOLUTION

The numerical solution of the problem begins with a
solution to the dry contact coated problem for the
specified variables defining geometry and elastic
properties of contacting bodies (Ra, Rb, Ea, Eb, na,
and nb); coating layer (tc, Ec, and nc); lubricant prop-
erties (h0, a, and t0); applied normal load wz, surface
velocities (ua and ub); surface roughness type and
characteristics. This determines the corresponding
half-width of contact b, the maximum dry contact
pressure p0, and the dry contact pressure distri-
bution. The EHL or micro-EHL problem is then
solved using the coupled differential deflection
method [29, 30]. The pressure and surface shear
stress results are obtained for every timestep in the
case of a transient analysis.

7 RESULTS

The operating conditions and lubricant parameters
are presented in Table 1. The lubricant modelled is
Mobil Jet 2, a synthetic gas turbine lubricant. The
coating material and its thickness are the parameters
of most interest in this investigation, and their effects
on the pressure and film thickness distributions are
presented. Although the analysis presented is valid
for multiple layers, the case considered is that of
two bodies each coated with a single layer having
the same properties (i.e. E1a ¼ E1b ¼ Ec , n1a ¼ n1b ¼
nc, and t1a ¼ t1b ¼ tc). The ranges of elastic modulus

and layer thickness considered are 10 GPa 4
Ec 4 400 GPa and 1 mm 4 tc 4 100 mm, respect-
ively. The elastic modulus for steel (200 GPa) is
considered as a reference so that coatings with
E . 200 GPa are considered ‘hard’ and those with
E , 200 GPa are considered ‘soft’ (the words hard
and soft are used somewhat loosely in this way and
do not describe the hardness of the coatings in the
sense of the flow pressure, which is not a consider-
ation in the current study).

The computational domain in the EHL analysis is
taken as �3b 4 x 4 2b with uniform mesh discreti-
zation of Dx ¼ b/100 in the case of smooth surfaces
and Dx ¼ b/200 in the case of rough surfaces. The
computer code was first validated for both dry and
lubricated contacts. If the coating material is the
same as the substrate, the problem becomes the con-
ventional (uncoated) EHL problem because the coat-
ing layer is assumed to adhere completely to the
cylinder it covers. Therefore, for any coating thick-
ness, the results should be in agreement with the
uncoated EHL problems. Figure 3 shows a compari-
son of the rate of decay of the normalized weighting
factors fi=f0 (solid lines), and gi=g0 (dashed lines)
obtained from multilayered analysis when Ec ¼
200 GPa and tc ¼ 1mm. The normalized coefficients
fi=f0 can be seen to decay significantly faster than
the gi=g0 coefficients. The advantage of rapid decay
of fi=f0 is not, therefore, compromised by the
inclusion of coatings in the analysis. Figure 3 also
includes the corresponding coefficient variations
for the uncoated problem, which are obtained ana-
lytically. The differences can be seen to be small
and are attributable to the evaluation of gk by
numerical integration in the case of the thin coatings
(1 mm) adopted. For thicker coatings, the difference
in coefficients diminishes. The differences shown in
Fig. 3 have no effect in determining the EHL solution.
This can be seen in Fig. 4 which shows the pressure

Fig. 4 Comparison of pressure profile and film shape

when fi and gi are obtained from multilayered

analysis when Ec ¼ 200 GPa and tc ¼ 1mm

(solid lines), dry contact pressure (dotted),

with those obtained from uncoated analysis

(dashed lines)

Fig. 3 Comparison between normalized weighting

factors gi=g0 and fi=f0 obtained from

multilayered analysis when Ec ¼ 200GPa and

tc ¼ 1mm (symbols) and those obtained from

uncoated analysis (solid lines)
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distribution and film thickness obtained for this case
and also includes the corresponding curves obtained
from solving the equivalent uncoated problem. The
results presented are indistinguishable.

Figure 5 shows the effect of the elastic modulus of
the coating material Ec on the normalized weighting
factors gi=g0 and fi=f0 in the case of smooth surface.
The coating thickness tc was fixed at 20mm. The
value of Ec can be seen to have a significant effect
of Ec on the rate of decay of gi=g0, whereas its effect
on the decay of fi=f0 is much smaller. The pressure
and film thickness distributions for a series of
values of Ec for the case of a smooth surface contact
are shown in Fig. 6. The results are presented in
terms of the contact dimension, bH, for the uncoated
case. It is to be expected that surface elastic
deformations will increase when the elastic modulus
of the coating material is reduced. Reducing Ec

causes an increase in the contact area, with a conse-
quent reduction in the maximum pressure. The
pressure spike in the exit part of the contact is
decreased as the coating stiffness is reduced and
has disappeared for coatings with Ec , 50 GPa. In
contrast, the pressure spike is exacerbated in the
case of coatings with Ec .200 GPa because of the
increase in the viscosity caused by the resulting
high pressure. It is interesting to note that, in spite
of the changes in contact area, the difference in
film thickness between the various coating modulus
values is very small.

Figure 7 shows the effect of the coating thickness tc
on the pressure and film thickness profiles in the
case of a smooth surface. For this comparison, the
elastic modulus of the coating material was fixed at

Fig. 5 Normalized weighting factors gi=g0, and fi=f0 for

various values of the elastic modulus of the

coating material Ec when tc ¼ 20 mm

Fig. 6 Pressure distributions and film shapes for various values of the elastic modulus of the

coating material Ec when tc ¼ 20 mm
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100 GPa (soft coating). The results show that as the
coating thickness increases, the width of the contact
area increases, with a consequent reduction in the
magnitude of pressure. This is because the elastic
deformations in the case of a soft coating increase
as the coating thickness increases. Figure 8 makes
the corresponding comparison for the case of

Ec ¼ 400 GPa (hard coating). Here, it can be seen
that the coating thickness has an inverse effect on
the pressure and the width of the lubricated region
in comparison with the soft coating case of Fig. 7,
i.e. a reduction in contact area and an increase in
pressure as the coating thickness is increased. The
effect of the coating thickness on the film shape

Fig. 7 Pressure distributions and film shapes for various values of the coating thickness tc when

Ec ¼ 100 GPa(soft coating)

Fig. 8 Pressure distributions and film shapes for various values of the coating thickness tc when

Ec ¼ 400 GPa (hard coating)
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within the contact region is not significant, as can be
seen from Figs 7 and 8.

Figure 9 shows the effect of a moving ridge on the
transient pressure distribution and film shapes for
three different values of the elastic modulus of the
coating material Ec. The ridge assumed is the modu-
lated cosine form introduced by Venner and
Lubrecht [39], which has the formula

f ¼ Ab � 10�10 x�xbð Þ=Wb½ � cos 2p
x � xb
Wb

� �
(28)

Here, Ab represents constant amplitude, Wb is the
waviness length, and xb is the position of the centre
of the ridge. The parameters chosen are Ab ¼ 0:5mm
and Wb ¼ 170mm and the ridge is part of the faster
moving surface. The pressure distributions and
film shapes are displayed at three positions of the
ridge during its transit of the contact area,
xb=bH ¼ �0:5, 0, 0:5. A coating thickness of 20 mm
was used with three coating modulus values, 100,
200, and 400 GPa. It can be seen that the maximum
pressure developed because of the effect of the
ridge is reduced by 18 per cent in the case of the
soft coating (Ec ¼ 100 GPa) and increased by 17 per
cent in the case of the hard coating (Ec ¼ 400 GPa)
compared with the uncoated case (Ec ¼ 200 GPa).

Figure 10 illustrates the roughness profile used for
the results presented in Fig. 11. This profile was taken
from an FZG micropitting test carried out at QinetiQ
that had been run for several load stages. The profile
has a roughness average Ra ¼ 0.31 mm, and the
rounded nature of the prominent asperities brought
about by the running-in process leads to a skewed
distribution of surface heights. The question of ade-
quate mesh resolution for transient EHL analyses of
rough surfaces has been considered in reference
[40] where it is shown that for non-layered analyses
with both surfaces having a roughness profile of
the form of Fig. 10, the results for a mesh with

Fig. 9 Effect of a moving ridge on transient pressure

distribution and film shapes for various values

of the elastic modulus of the coating material

Ec when tc ¼ 20mm. (a) xb=bH ¼ �0:5, (b)

xb=bH ¼ 0, and (c) xb=bH ¼ 0:5

Fig. 10 Roughness profile used for the coating analysis

illustrated in Fig. 11, Ra ¼ 0:31mm. The profile

is illustrated with the metal below the profile

trace
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Dx ¼ b/200 are essentially the same as those for the
finer mesh of Dx ¼ b/400.

Figure 11 shows the transient pressure distri-
butions and film shapes obtained at one particular
timestep in the transient analysis of a single rough
surface with three different values of the elastic
modulus of the coating material Ec, and in each
case, a coating thickness of tc ¼ 20 mmwas specified.
The soft coating reduces the asperity pressures when
compared with the uncoated case. As was seen with
the single roughness feature of Fig. 9, the effect of
the lower modulus coating is to relieve the high
pressure developed on asperity features, whereas
the higher modulus coating increases the extreme
pressure values. This is also seen in the transient
analysis. For the asperity feature located at

x ¼ 0.3bH, for example, the Ec ¼ 100 GPa coating
reduces the pressure by 12 per cent and the
Ec ¼ 400 GPa coating increases the value by 13 per
cent when compared with the reference, uncoated
case. This result may suggest the mechanism by
which the soft coating can protect the surface from
rolling contact fatigue as shown experimentally by
Yoshida and Fujii [41].

It is worth noting that thermal effects were neg-
lected in this study and the analysis was limited to
line contacts. The surface properties of coating
material may have low or high thermal conductivity
in comparison with the substrate. A low conductivity
coating may substantially increase the surface temp-
erature. This temperature change will directly affect
the film thickness and coefficient of friction.

Fig. 11 Transient pressure distributions and film shapes obtained at a timestep for a single rough

surface with various values of the elastic modulus of the coating material Ec when

tc ¼ 20mm
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8 CONCLUSIONS

An EHL analysis for coated surfaces and a transient
micro-EHL analysis for two elastic bodies coated
with thin elastic layers has been introduced. The
differential deflection approach was adopted, and
the Reynolds equation used incorporated a non-
linear viscous fluid model of the Eyring-type. The
surface elastic deformations are computed from full
elasticity analysis of a layered elastic half-space.

The effects of surface coating modulus and thick-
ness on the pressure and film thickness profiles
obtained for smooth surfaces are presented and
discussed. The steady-state smooth surface results
presented suggest that as the elastic modulus of
the coating material decreases, the width of the
lubricated conjunction increases and the pressure
and the pressure spike decrease. For low modulus
coatings, as the coating thickness increases, the
width of the lubricated region increases and the
pressure decreases. The inverse is the case for high
modulus coatings.

Results for transient cases are presented both for a
single surface ridge feature and for a rough surface
profile taken from a gear test experiment. These illus-
trate the way in which a lower modulus coating can
reduce the extreme pressure values occurring at
asperity features and in which a high modulus coat-
ing can cause increased extreme pressures.
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APPENDIX

Notation

b half-width of dry contact, (m)
bH Hertzian half-width of the contact for

uncoated cylinders 8wzR= pE 0ð Þ½ �1=2 (m)
Ea modulus of elasticity of body a (Pa)
Eb modulus of elasticity of body b (Pa)
Ec modulus of elasticity of coating material

(Pa)
E 0 effective elastic modulus

2 1� n2a
� �

=Ea þ 1� n2b
� �

=Eb

 ��1
, (Pa)

h film thickness (m)
h0 constant (m)
p pressure (Pa)
pH maximum Hertzian pressure for uncoated

cylinders, ½wzE
0=(2pR)�1=2 (Pa)

p0 maximum contact pressure of dry contact
(Pa)

R effective radius of curvature, RaRb= Ra þ Rbð Þ
(m)

Ra radius of body a (m)
Rb radius of body b (m)
tc thickness of the coating layer (m)
u velocity component in x-direction (m/s)
ua surface velocity of body a (m/s)
ub surface velocity of body b (m/s)
ux surface deflection in x-direction (m)
uz surface deflection in z-direction (m)
wz normal load per unit width (N/m)
x coordinate direction tangential to surface

(m)
xend outlet meniscus distance (m)
xmin location of inlet pressure boundary (m)
z vertical coordinate (m)
ẑ pressure–viscosity index

a pressure–viscosity coefficient
h viscosity of the lubricant (Pa s)
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h0 viscosity of the lubricant at atmospheric
pressure, (Pa s)

na Poisson’s ratio of body a
nb Poisson’s ratio of body b
nc Poisson’s ratio of coating material
r density of the lubricant (kg/m3)

r0 density of the lubricant at atmospheric
pressure (kg/m3)

sx normal stress in x-direction (Pa)
sz normal stress in z-direction (Pa)
txz shear stress perpendicular to x-direction

and in z-direction (Pa)
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