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Abstract

In this work various symbol spaces with values in a sequentially complete locally convex vector

space are introduced and discussed. They are used to define vector-valued oscillatory integrals

which allow to extend Rieffel’s strict deformation quantization to the framework of sequentially

complete locally convex algebras and modules with separately continuous products and module

structures, making use of polynomially bounded actions of ❘n. Several well-known integral for-

mulas for star products are shown to fit into this general setting, and a new class of examples

involving compactly supported ❘n-actions on ❘n is constructed.
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1 Introduction

Deformation quantization as introduced in [3] comes in several different flavours: in formal deforma-
tion quantization one deforms the commutative pointwise product of the Poisson algebra of smooth
functions on a Poisson manifold into a noncommutative star product as a formal associative defor-
mation in the sense of Gerstenhaber [16] with deformation parameter ~. Here the general existence
and classification for arbitrary Poisson manifolds is known and follows from Kontsevich’s formality
theorem [25], see [28] for an introductory textbook.

However, for many reasons formal deformations are not sufficient: for the original application to
quantum mechanics one has to treat ~ as a positive number and not just as a formal parameter.
But also applications beyond quantum theory require a more analytic framework. In particular,
deformation quantization provides fundamental examples in noncommutative geometry where a C∗-
algebraic formulation is needed.

In [27], Rieffel introduced a very general way to construct C∗-algebraic deformations based on a
strongly continuous action of ❘d on a C∗-algebra A. For the smooth vectors A∞ with respect to
the action a product formula based on an oscillatory integral was established, generalizing the well-
known Weyl quantization of ❘2n. In a second step, a matching C∗-norm is constructed, leading to a
continuous field of C∗-algebras over the parameter space of ~ ∈ ❘. This construction and variants of it
have by now found many applications in noncommutative geometry [12,15,27] and quantum physics,
in particular in the context of quantum field theory on noncommutative spacetimes [2, 9, 13,19,21].

While for the construction of deformed C∗-algebras Rieffel’s work is sufficient, it turns out that
the first step of deforming the smooth vectors A∞ is of interest already for it’s own sake: Rieffel
worked with a Fréchet algebra with an isometric action.

It is this situation which we want to generalize in various directions in the present work. First the
restriction to a Fréchet algebra has to be overcome as there are several examples of interest which
do not fall into this class. When interested in noncommutative spacetimes, a smooth structure in
form of a deformation of the smooth functions is needed for many reasons. Thus we are interested
in e.g. deformations of C∞

0 (M). Moreover, together with a deformation of algebras one is interested
in a possible deformation of modules as well. In the above example one might also be interested in a
corresponding deformation of the distribution spaces C∞

0 (M)′. Hence we clearly have to pass beyond
a Fréchet situation. Here we face several new phenomena: first of all products or module structures
may be separately continuous without being continuous. In fact, there are many natural examples like
this. Second, sequentially complete locally convex spaces need not be complete, with the distribution
spaces as the most prominent examples. Third, the restriction to isometric actions, which is natural
in the original C∗-setting, seems to be too restrictive in a more general locally convex framework.
Again, many examples of interest show that one has to overcome this restriction.

As is well known, scalar-valued oscillatory integrals can be defined for more general functions than
smooth functions with bounded derivatives – here the Hörmander symbols are a natural candidate.
Thus we will adapt the notion of a symbol to the vector-valued case and study oscillatory integrals.
These will be needed to handle actions of ❘n which are not isometric but satisfy certain polynomial
growth conditions. Compared to the scalar case the new feature is that for every continuous seminorm
(of a defining system of seminorms) of the target space we have to allow for a specific growth. The
examples show that we cannot expect to have a uniform growth for all seminorms.

The main result of this work is the construction of a Rieffel deformation for a sequentially complete
locally convex algebra with a separately continuous product with respect to a smooth polynomially
bounded action of ❘n by automorphisms. Analogously, we give the corresponding deformation for a
sequentially complete locally convex module with separately continuous module structure, provided
the module structure is covariant for the ❘n-action. To this end we introduce the relevant symbol
spaces and their oscillatory integrals based on a Riemann integral as we want to include sequentially
complete spaces as well. This part is clearly of independent interest. We discuss several known
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examples within this framework and provide one new example of an action of ❘n with compact
support. A priori one can only guarantee exponential bounds for the derivatives of such an action,
but by a particular construction we achieve polynomial growth behaviour. Actions of this type are
needed in models of locally noncommutative spacetimes as introduced in [2, 21]. In fact, the wish to
have a smooth version of [21] was one of the main motivations to develop the above generalization
of Rieffel’s original work as a compactly supported action cannot be expected to be isometric for the
seminorms of smooth functions. In the diploma thesis [20, Sect. 6.2] some aspects of the vector-valued
oscillatory integrals were already anticipated.

It should be mentioned that there are still generalizations possible. One important step beyond
Rieffel’s original setting is to include actions of other Lie groups than ❘n. Here one first needs to find
an analogue of Weyl quantization which then serves as universal deformation formula. This point
of view was taken in the works of Bieliavsky et al., see e.g. [4–6, 8]. While these works mainly deal
with the C∗-algebraic deformation, in a more recent work [7], Bieliavsky and Gayral discuss also
deformation aspects of Fréchet algebras based on symbol spaces and oscillatory integrals similar to
ours. We leave it to a future investigation of whether their construction can be extended beyond the
Fréchet case: in principal this looks very promising.

The paper is organized as follows. In Section 2 we introduce vector-valued symbols in the spirit
of Hörmander symbols. However, the order as well as the type of the symbol may depend on the
seminorm of the target space, a generalization needed to deal with the examples discussed later. We
introduce in detail various symbol spaces, investigate the continuity properties of the usual algebraic
manipulations, and show that the affine symmetries of the domain give continuous group actions on
the symbol spaces. In particular, the translations act smoothly. In Section 3 we discuss the oscillatory
integrals. Our approach follows the usual scalar case with the technical complication that we have to
deal with many seminorms on the target instead of one. Thus a careful investigation of the polyno-
mial growth is presented. The integrals are based on a Riemann integral for the smooth compactly
supported functions as we want to include targets which are only sequentially complete. After this
preparation, Section 4 is devoted to the deformation program. Based on the developed oscillatory
integrals we extend Rieffel’s construction to actions of ❘n by automorphisms on sequentially complete
locally convex algebras with separately continuous products and their modules. In case where the
products are continuous also the resulting deformed products are continuous. For ∗-algebras, we also
study positivity aspects of this deformation procedure. Extending results of [24], we show how to
deform positive functionals on the original algebra to positive functionals on the deformed algebra.

Finally, Section 5 contains several examples of our general construction. First we discuss the
usual action of ❘2n on itself by translations and the induced action on various function spaces. Here
in particular the scalar symbol spaces, the Schwartz space, and certain distribution spaces are dis-
cussed. This way we show that the well-known Weyl product formula, being defined pointwise for
these spaces, can be understood as resulting from the oscillatory integral formulas. This is a nontrivial
statement as in all cases the action is not isometric. As a second example, we consider in a Hilbert
space setting unbounded operators which satisfy polynomial bounds with respect to the generators
of a suitable action of ❘n. We then discuss deformations of their action on a suitable smooth sub-
space, thereby giving examples of the general module deformation which is typical for applications in
quantum physics. The third example will be used in a future project for the construction of locally
noncommutative spacetimes and corresponding quantum field theory models. It provides an action of
❘n on ❘n with compact support inside a given compact subset such that the induced action on the
smooth functions is polynomially bounded. The difficulty is to pass from a trivially given exponential
growth of the derivatives to a polynomial growth.

Acknowledgements: It is a pleasure to thank Pierre Bieliavsky, Victor Gayral, and Ryszard Nest
for various discussions. We gratefully acknowledge the hospitality and support extended to us by
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the Erwin-Schrödinger Institute (S.W.) and the University of Freiburg (G.L.) during different stages
of this work. Finally, we would like to thank the participants of the Scalea conference 2011, where
the results have been presented, for fruitful discussions. The work of G.L. is supported by the FWF
project P22929–N16 “Deformations of Quantum Field Theories”.

2 Vector-valued symbols

In this section we introduce vector-valued symbols as smooth functions F : ❘n → V which take
values in a sequentially complete locally convex vector space V over ❈ and satisfy polynomial growth
conditions for all their derivatives. At the present stage, all definitions also make sense for a V being
a real vector space only, but as soon as we discuss the oscillatory integral, complex phases will enter
the game. In the case of scalar functions, with target space V = ❈, these spaces are closely related
to Hörmander’s symbol classes [23, Section 7.8], see also [18,22].

Definition 2.1 Let V be a sequentially complete locally convex space and let F ∈ C k(❘n, V ) where
k ∈ ◆0∪{+∞}. Then for every continuous seminorm q on V , every multiindex µ ∈ ◆n

0 with |µ| ≤ k,
and m, ρ ∈ ❘, we define

‖F‖m,ρ
q,µ := sup

x∈❘n

(

1 + ‖x‖2
)− 1

2
(m−ρ|µ|)

q

(

∂|µ|F

∂xµ
(x)

)

∈ [0,+∞]. (2.1)

The quantity ‖F‖m,ρ
q,µ controls how the µ-th derivative of F grows at infinity with respect to the

seminorm q, compared to a polynomial of order m: A polynomial P ∈ V [x1, . . . , xn] of order m
clearly satisfies ‖P‖m,1

q,µ < ∞ for all multiindices µ, and ‖F‖m,ρ
q,µ < ∞ with ρ > 1 (respectively ρ < 1)

indicates that the derivatives of F grow slower (respectively faster) than those of a polynomial.
In order to define the symbol classes we now fix a defining system Q of continuous seminorms

on V . The canonical choice is of course to take all continuous seminorms, but sometimes it will be
advantageous to take only a small and manageable system. The following definitions will formally
depend on this choice, but the effect is only minor. Later we will see that the oscillatory integrals are
independent of the particular choice of Q.

We assign to every q ∈ Q real numbers m(q) and ρ(q). The corresponding map

m : Q ∋ q 7→ m(q) ∈ ❘ (2.2)

will be called an order for Q and the map

ρ : Q ∋ q 7→ ρ(q) ∈ ❘ (2.3)

is referred to as a type for Q.
The natural ordering of ❘ induces one for the set of all orders as well as for the set of all types.

For two orders m, m′ we write
m ≤ m′ if m(q) ≤ m′(q) (2.4)

for all q ∈ Q. Then “≤” makes the set of all orders a directed set, and we also write m < m′ if
m(q) <m′(q) for all q ∈ Q.

If we set m(q) := m ∈ ❘ for all q ∈ Q we get an order, called the constant order, and analogously
the constant type ρ(q) = ρ ∈ ❘. It will turn out that this is usually too restrictive and we need more
freedom in choosing an order and a type. More generally, an order m is called bounded from above
or from below by some number α or β if for all q ∈ Q one has m(q) ≤ α or m(q) ≥ β, respectively.

In the following it will be reasonable to ask for the condition

m(c q) = m(q) (2.5)
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whenever q, c q ∈ Q for a constant c > 0. In particular, for a Banach space V we usually take only
the constant orders by specifying their value on the norm. If V is a Fréchet space, we will usually
take a countable system Q, and often consider unbounded orders.

Definition 2.2 (Symbols) Let V be a sequentially complete locally convex space with defining system
of seminorms Q, and let m and ρ be an order and a type for Q. A function F ∈ C∞(❘n, V ) is called
a symbol of order m and type ρ if for all q ∈ Q and µ ∈ ◆n

0 one has

‖F‖m,ρ
q,µ := ‖F‖m(q),ρ(q)

q,µ <∞. (2.6)

The set of all symbols of order m and type ρ is denoted by Sm,ρ(❘n, V ).

Sometimes we will abbreviate the space of symbols simply by Sm,ρ(V ) or even by Sm,ρ if V is
clear from the context. However, note that Sm,ρ(❘n, V ) still depends on the choice of Q.

It is clear that the ‖ · ‖m,ρ
q,µ are seminorms on Sm,ρ(❘n, V ). We will endow the space of symbols

with the corresponding locally convex topology, called the Sm,ρ-topology. This makes Sm,ρ(❘n, V ) a

Hausdorff locally convex space since V is Hausdorff and the prefactor (1 + ‖x‖2)− 1
2
(m(q)−ρ(q)|µ|) is

nowhere vanishing.
In the following, the smooth functions C∞(❘n, V ) will always be equipped with the topology

determined by all seminorms

pK,ℓ,q(F ) := sup
x∈K
|µ|≤ℓ

q(∂µxF (x)), (2.7)

where K runs over compact subsets of ❘n, l ∈ ◆0, and q ∈ Q, and the smooth functions of compact
support C∞

0 (❘n, V ) carry their usual inductive limit topology.

Proposition 2.3 Let V be a sequentially complete locally convex space with a defining system of
seminorms Q, and let m and ρ be an order and a type for Q.

i.) We have continuous inclusions

C
∞
0 (❘n, V ) −→ Sm,ρ(❘n, V ) −→ C

∞(❘n, V ). (2.8)

ii.) The symbols Sm,ρ(❘n, V ) are dense in C∞(❘n, V ).

iii.) The symbols Sm,ρ(❘n, V ) are sequentially complete and complete if V is complete.

iv.) For m ≤ m′ and ρ ≥ ρ′ we have the continuous inclusion

Sm,ρ(❘n, V ) −→ Sm
′,ρ′

(❘n, V ). (2.9)

More precisely, we have for all F ∈ Sm,ρ, all q ∈ Q, and all µ ∈ ◆n
0

‖F‖m′,ρ′

q,µ ≤ ‖F‖m,ρ
q,µ . (2.10)

Proof: Clearly, we have a set-theoretic inclusion in (2.8) as compactly supported functions decay
fast enough to have finite symbol norms (2.1) for any choices of the orders or types. With a compact
set K ⊆ ❘n, and F ∈ C∞

K (❘n, V ), we get

‖F‖m,ρ
q,µ ≤ max

x∈K

(

1 + ‖x‖2
)− 1

2
(m(q)−ρ(q)|µ|)

· pK,|µ|,q(F ),

with the seminorm (2.7). Since the maximum over the first factor is finite, we see that for every com-
pact subset K, the inclusion C∞

K (❘n, V ) −→ Sm,ρ(❘n, V ) is continuous. By the universal property
of the inductive limit topology of C∞

0 (❘n, V ), this is equivalent to the continuity of the first inclusion
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in (2.8). For the second inclusion, we fix a compact subset K ⊆ ❘n as well as ℓ ∈ ◆0 and q ∈ Q.
Then for a symbol F ∈ Sm,ρ(❘n, V ) it is easy to find a constant c > 0 with

pK,ℓ,q(F ) ≤ cmax
|µ|≤ℓ

‖F‖m,ρ
q,µ ,

using the fact that the continuous function x 7→ (1 + ‖x‖2)− 1
2
(m(q)−ρ(q)|µ|) is nowhere vanishing and

hence has a locally bounded inverse. This shows the continuity of the second inclusion in (2.8). But
then the second part is clear since already C∞

0 (❘n, V ) is dense in C∞(❘n, V ). In order to show
sequential completeness, let (Fi)i∈◆ be a Cauchy sequence in Sm,ρ(❘n, V ). Since the C∞-topology is
coarser than the Sm,ρ-topology by the first part, and since C∞(❘n, V ) is sequentially complete, we
get convergence Fi −→ F to some smooth function F ∈ C∞(❘n, V ) in the C∞-topology. We have to
show that F ∈ Sm,ρ(❘n, V ) and Fi −→ F in the Sm,ρ-topology. This requires a standard argument
familiar from the scalar theory which we shall omit here. Clearly, if V is even complete we can repeat
the argument with nets instead of sequences. For the last part, it is sufficient to show the estimate
(2.10) which follows immediately from m(q) ≤ m′(q) and ρ(q) ≥ ρ′(q). �

In case V is a Banach space, we choose just its norm ‖ · ‖ in order to define the space of symbols.
In this case, the order m := m(‖ · ‖) and the type ρ := ρ(‖ · ‖) are just single numbers, and we
write ‖ · ‖m,ρ

µ instead of ‖ · ‖m,ρ
‖·‖,µ. However, Sm,ρ(❘n, V ) is no longer a Banach space but a Fréchet

space since we have to take care of countably many differentiations. For a Fréchet space V , we take a
countable defining system of seminorms and hence an order is determined by fixing countably many
numbers m(qn). Thus, in this situation the symbols are again a Fréchet space.

Note that the inclusion C∞
0 (❘n, V ) ⊂ Sm,ρ(❘n, V ) is in general not (sequentially) dense in the

Sm,ρ-topology. However, in Proposition 2.9, iv.), we show that it is dense in a weaker topology.

2.1 Operations with symbols

In this subsection we discuss several operations one can perform with symbols, like differentiation,
multiplication, composition with linear maps, and restriction. We begin by showing that the topologies
of the symbol spaces are compatible with differentiation.

Proposition 2.4 Let V be a sequentially complete locally convex space with a defining system of
seminorms Q, and m,ρ an order and a type for Q. Then the partial derivatives are continuous linear
maps

∂|ν|

∂xν
: Sm,ρ(❘n, V ) −→ Sm−ρ|ν|,ρ(❘n, V ). (2.11)

More precisely, we have for all µ ∈ ◆n
0 and F ∈ Sm,ρ(❘n, V )

∥

∥

∥

∥

∥

∂|ν|F

∂xν

∥

∥

∥

∥

∥

m−ρ|ν|,ρ

q,µ

= ‖F‖m,ρ
q,µ+ν . (2.12)

Proof: We only have to show (2.12) which is clear from the definition. �

For a general discussion of multiplication of symbols, we now consider three sequentially complete
locally convex spaces V , W , and U together with a bilinear map

µ : V ×W −→ U. (2.13)

For simplicity, we require that µ is continuous and not just separately continuous or sequentially
continuous. In many applications, this will be the case. Now we fix a defining system R of seminorms
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on U and filtrating defining systems of seminorms Q and Q′ on V and W , respectively. Then by
continuity of µ we get for every r ∈ R seminorms q ∈ Q and q′ ∈ Q′ and a constant c such that

r(µ(v, w)) ≤ c q(v) q′(w) , v ∈ V ,w ∈W . (2.14)

For two orders m and m′ on V and W we consider an order m′′ on U such that for all r ∈ R we have
q ∈ Q and q′ ∈ Q′ such that (2.14) holds and

m′′(r) ≥ m(q) +m′(q′). (2.15)

In this case, we symbolically write m′′ ≥ m + m′ by some slight abuse of notation. Note that we
relate here orders on different sets of seminorms (even on different spaces). Clearly, for given orders
m and m′ we can construct an order m′′ with this property by fixing a choice of seminorms q(r) and
q′(r) satisfying (2.14) and setting

m′′(r) = m(q(r)) +m′′(q′(r)) (2.16)

for all r ∈ R. In the same spirit we write ρ′′ ≤ min(ρ,ρ′) for types ρ on V , ρ′ on W , and ρ′′ on U ,
again with respect to the continuous bilinear map µ. With these conventions in mind, we can prove
the following statement.

Proposition 2.5 Let V , W , and U be sequentially complete locally convex spaces, R a defining
system of seminorms on U , and Q, Q′ filtrating defining systems of seminorms on V , W respectively.
Furthermore, let µ : V ×W −→ U be a continuous bilinear map.

i.) Pointwise evaluation of µ gives a continuous bilinear map

µ : Sm,ρ(❘n, V )× Sm
′,ρ′

(❘n,W ) −→ Sm
′′,ρ′′

(❘n, U), (2.17)

whenever m′′ ≥ m + m′ and ρ′′ ≤ min(ρ,ρ′) with respect to µ. More precisely, for F ∈
Sm,ρ(❘n, V ) and G ∈ Sm

′,ρ′
(❘n,W ) we get

‖µ(F,G)‖m′′,ρ′′

r,κ ≤ 2|µ|c max
ν≤κ

‖F‖m,ρ
q,ν max

ν′≤κ
‖G‖m′,ρ′

q′,ν′ , (2.18)

whenever r, q, and q′ satisfy the continuity property (2.14) with respect to µ.

ii.) For F ∈ Sm,ρ(❘n, V ), G ∈ Sm
′,ρ′

(❘n′
,W ), let µ(F,G) : ❘n ⊕❘n′ → U be defined by

µ(F,G)(x, y) := µ(F (x), G(y)). (2.19)

Then we have a continuous bilinear map

µ : Sm,ρ(❘n, V )× Sm
′,ρ′

(❘n′
,W ) −→ Sm

′′,ρ′′
(❘n ⊕❘n′

, U) (2.20)

whenever m′′ ≥ max{m,m′,m+m′} and ρ′′ ≤ min{0,ρ,ρ′} with respect to µ. Explicitly, for
F ∈ Sm,ρ(❘n, V ), G ∈ Sm

′,ρ′
(❘n′

,W ), we get, ν ∈ ◆n
0 , ν

′ ∈ ◆n′

0 ,

‖µ(F,G)‖m′′,ρ′′

r,ν⊕ν′ ≤ c ‖F‖m,ρ
q,ν ‖G‖m′,ρ′

q′,ν′ (2.21)

whenever r, q, q′ satisfy the continuity property (2.14) with respect to µ.

Proof: For i.), even though the formulation looks rather technical, this is essentially just the Leibniz
rule. Let r ∈ R, choose corresponding seminorms q ∈ Q and q′ ∈ Q′ satisfying (2.14), and κ ∈ ◆n

0 .
Then using the Leibniz rule for the derivatives of the product µ(F,G) we get

‖µ(F,G)‖m′′,ρ′′

r,κ ≤ 2|κ|c max
ν≤κ

‖F‖m,ρ
q,ν max

ν′≤κ
‖G‖m′,ρ′

q′,ν′ .
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This shows (2.18), which implies the continuity of the map (2.17). For ii.), it is clear that for any
F ∈ Sm,ρ(❘n, V ), G ∈ Sm

′,ρ′
(❘n′

,W ), we have µ(F,G) ∈ C∞(❘n ⊕❘n′
, U), and that µ is bilinear.

To prove the continuity of this map, we have to verify the bound (2.21). The estimate necessary for
this is based on the fact that given k, k′ ∈ ❘, there holds for all a, b ∈ ❘

(1 + a2 + b2)−K ≤ (1 + a2)−k(1 + b2)−k′ if K ≥ max{k, k′, k + k′} . (2.22)

This will allow for estimate the pre-factor (1+‖x‖2+‖y‖2)γ by factorizing it into appropriate powers
of (1 + ‖x‖2) and (1 + ‖y‖2). �

For continuous linear maps, a similar result holds.

Proposition 2.6 Let A : V −→ W be a continuous linear map between sequentially complete locally
convex spaces V,W with defining systems of seminorms Q, Q′, and let Q be filtrating. Furthermore,
let orders m and m′ and types ρ and ρ′ for Q and Q′ be given. Suppose for every seminorm q′ ∈ Q′

we find a seminorm q ∈ Q such that

q′(Av) ≤ c q(v), m(q) ≤ m′(q′), and ρ(q) ≥ ρ′(q′) (2.23)

for some c > 0 and all v ∈ V . Then pointwise evaluation of A gives a continuous linear map

A : Sm,ρ(❘n, V ) −→ Sm
′,ρ′

(❘n,W ). (2.24)

More precisely, for every F ∈ Sm,ρ(❘n, V ) and every µ ∈ ◆n
0 , we have

‖AF‖m′,ρ′

q′,µ ≤ c ‖F‖m,ρ
q,µ . (2.25)

Proof: Note that the first condition q′(Av) ≤ c q(v) can always be satisfied since Q was assumed to
be filtrating and A is continuous. Thus assume that the other two requirements in (2.23) are fulfilled
as well. Then (2.25) is a straightforward estimate proving the claim. �

The main application of Proposition 2.5, i.), is to multiply vector-valued symbols with scalar
symbols: Choosing one target space just to be ❈, with seminorms just the absolute value, we get for
every order m ∈ ❘ and every type ρ ∈ ❘ the space of scalar symbols

Sm,ρ(❘n) = Sm,ρ(❘n,❈). (2.26)

Note that here the order and the type are indeed just single numbers. We now formulate two corollaries
about multiplications of symbols. Their proofs follow immediately from Proposition 2.5 and are
therefore omitted.

Corollary 2.7 Let V be a sequentially complete locally convex space with a defining system of semi-
norms Q.

i.) For all orders m and types ρ for Q, and all m, ρ ∈ ❘, the pointwise multiplication gives a
continuous bilinear map

Sm,ρ(❘n,❈)× Sm,ρ(❘n, V ) −→ Sm+m,min(ρ,ρ)(❘n, V ). (2.27)

ii.) In particular, if the type ρ is bounded by ρ ∈ ❘, then

Sm,ρ(❘n,❈)× Sm,ρ(❘n, V ) −→ Sm+m,ρ(❘n, V ) (2.28)

is a continuous bilinear map.
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iii.) If m ≤ 0 then Sm,ρ(❘n,❈) is a Fréchet algebra and Sm,ρ(❘n, V ) is a continuous module over it
for all bounded ρ ≤ ρ.

Corollary 2.8 Let A be a sequentially complete locally convex algebra with a defining system of
seminorms Q. Then the multiplication induces a continuous product

Sm,ρ(❘n,A)× Sm
′,ρ(❘n,A) −→ Sm+m

′,ρ(❘n,A). (2.29)

In particular, for m ≤ 0 the symbols Sm,ρ(❘n,A) form a sequentially complete locally convex algebra
themselves and any Sm

′,ρ(❘n,A) is a sequentially complete locally convex continuous module over
them.

We come now to the approximation of symbols by compactly supported functions, which will be
important for our subsequent construction of an oscillatory integral. As usual, balls in ❘n will be
denoted Br(0) := {x ∈ ❘n : ‖x‖ ≤ r}.

Proposition 2.9 Let χ ∈ C∞
0 (❘n) be a compactly supported smooth function with

χ|Br(0) = 1 and suppχ ⊆ BR(0), (2.30)

where 0 < r < R and let χǫ ∈ C∞
0 (❘n) be defined by χǫ(x) = χ(ǫx) for ǫ > 0.

i.) One has χǫ − 1 ∈ S0,ρ(❘n,❈) for all ρ ∈ ❘.

ii.) One has
lim
ǫ−→0

χǫ = 1 (2.31)

in the Sm,ρ-topology for all m > 0 and ρ ≤ 1.

iii.) For all F ∈ Sm,ρ(❘n, V ) we have
lim
ǫ−→0

χǫF = F (2.32)

in the Sm
′,ρ′

-topology for all m′ >m and ρ′ ≤ min(1,ρ).

iv.) For all m′ > m and ρ′ ≤ min(1,ρ), the compactly supported smooth functions C∞
0 (❘n, V ) are

sequentially dense in Sm,ρ(❘n, V ) with respect to the Sm
′,ρ′

-topology.

Proof: The first and second part are well-known from the scalar theory. For the third part we rely
on the estimates proved in Proposition 2.5, i.): for F ∈ Sm,ρ(❘n, V ) and a fixed seminorm q from
the defining system Q we get the estimate

‖(χǫ − 1)F‖m′,ρ′

q,µ ≤ 2|µ|max
ν≤µ

‖χǫ − 1‖m,ρ
ν max

ν′≤µ
‖F‖m,ρ

q,ν

for every m and m′ provided m′(q) ≥ m(q) +m, and every ρ and ρ′ provided ρ′(q) ≤ min(ρ,ρ(q)).
Now from the second part we know that ‖χǫ − 1‖m,ρ

ν converges to zero whenever ρ ≤ 1 and m > 0.

This means that for the fixed seminorm q we get ‖(χǫ − 1)F‖m′,ρ′

q,µ −→ 0 whenever m′(q) > m(q)
and ρ′(q) ≤ min(1,ρ(q)). Since this is the condition for every q ∈ Q we get the third part. Note that
we are allowed to make the parameter m depend on q as long as we have m > 0. Thus m′(q) >m(q)
does not have to be uniformly satisfied. The last part is now clear as it suffices to take ǫ = 1

n as
usual. �

As the last operation to be discussed, we consider the restriction of a symbol to a subspace of
its domain of definition. To this end, we take symbols F : ❘n1 ⊕ ❘n2 → V depending on two
variables (x1, x2) ∈ ❘n1 ⊕ ❘n2 , and introduce the embeddings ιj : ❘

nj → ❘n1 ⊕ ❘n2 , j = 1, 2,
defined as ι1(x1) := (x1, 0) and ι2(x2) := (0, x2). For a symbol F ∈ Sm,ρ(❘n1 ⊕ ❘n2 , V ), we write
ι∗jF = F ◦ ιj : ❘nj → V for the pull-back with ιj as usual where j = 1, 2.
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Lemma 2.10 Let m,ρ be an order and a type for Q. Then the restriction maps

ι∗j : S
m,ρ(❘n1 ⊕❘n2 , V ) −→ Sm,ρ(❘nj , V ) (2.33)

are linear and continuous for j = 1, 2.

Proof: Let F ∈ Sm,ρ(❘n1 ⊕❘n2 , V ). It is clear that ι∗jF is a smooth map from ❘nj to V , and that
ι∗j is linear. For j = 1, we estimate with q ∈ Q, µ ∈ ◆n1

0 ,

‖ι∗1F‖m,ρ
q,µ ≤ sup

x∈❘n1⊕❘n2

q(∂µ⊕0
x F (x))

(1 + ‖x‖2) 1
2
(m(q)−ρ(q)|µ|)

= ‖F‖m,ρ
q,µ⊕0.

Hence ι∗1F ∈ Sm,ρ(❘n1 , V ), and ι∗1 is continuous. The case j = 2 is analogous. �

2.2 Symbol spaces

In this subsection, we introduce various spaces of symbols of arbitrary order and a vector-valued
Schwartz space as suitable unions respectively intersections of the Sm,ρ(❘n, V ). To show that these
are intrinsic definitions, we will first discuss how our definition of the spaces Sm,ρ(❘n, V ) depends on
the choice of the defining system of seminorms Q. To this end, we shall proceed in two steps: First we
show how one can pass from an arbitrary system to a filtrating one, then we compare two filtrating
systems.

Now suppose Q is an arbitrary defining system of continuous seminorms for V . Then we consider
the larger system

Q̃ :=
{

q = max{q1, . . . , qn}
∣

∣ n ∈ ◆ and q1, . . . , qn ∈ Q
}

, (2.34)

which is filtrating. Suppose now that m is an order with respect to Q. Then we want to extend m

to an order on Q̃ as follows. We define

mmax(max{q1, . . . , qn}) := max{m(q1), . . . ,m(qn)}. (2.35)

Clearly, this gives an order on Q̃ which extends m. Analogously, for a type ρ with respect to Q we
define a type ρmin with respect to Q̃ extending ρ by taking the minimum of the types ρ(qi) instead
of the maximum.

Proposition 2.11 Let Q be a defining system of continuous seminorms on V and Q̃ the corresponding
filtrating system of finite maxima. Then for every order m and every type ρ with respect to Q and
their corresponding extensions mmax and ρmin to Q̃ we have

Sm,ρ(❘n, V ) = Smmax,ρmin(❘n, V ) (2.36)

as locally convex spaces.

Proof: First let F ∈ Sm,ρ(❘n, V ) and let q1, . . . , qn ∈ Q be given. We set q := max{q1, . . . , qn}.
For µ ∈ ◆n

0 we have the estimate

‖F‖mmax,ρmin
q,µ ≤

n
∑

i=1

sup
x∈❘n

(

1 + ‖x‖2
)− 1

2
(m(qi)−ρ(qi)|µ|)

qi

(

∂|µ|F

∂xµ
(x)

)

=
n
∑

i=1

‖F‖m,ρ
qi,µ

.

This shows F ∈ Smmax,ρmin(❘n, V ) as well as the continuity of the inclusion “⊆” in (2.36). Conversely,
let F ∈ Smmax,ρmin(❘n, V ) be given. Then F ∈ Sm,ρ(❘n, V ) since all the seminorms ‖ · ‖m,ρ

q,µ of the

Sm,ρ-topology appear also as seminorms of the Smmax,ρmin-topology, since Q ⊆ Q̃ and the order and
type are extended to the larger system of seminorms. With respect to these seminorms ‖ · ‖m,ρ

q,µ , the
reverse inclusion “⊇” is even isometric and hence continuous, too. Thus we have mutually inverse
continuous inclusions proving the claim. �
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Next we consider two defining systems of seminorms Q and Q′ on V where we can assume that
they are already filtrating. Thus for every q ∈ Q we find a q′ ∈ Q′ with q ≤ c q′ for some positive
c > 0, and vice versa. In this situation we have the following statement:

Proposition 2.12 Let Q and Q′ be defining systems of seminorms for V with Q′ being filtrating.
Moreover, let m, m′ be orders and ρ,ρ′ be types for Q, Q′, respectively. If for every q ∈ Q there exists
a q′ ∈ Q′ such that

q ≤ c q′, m(q) ≥ m′(q′), and ρ(q) ≤ ρ′(q′), (2.37)

then one has a continuous inclusion

Sm
′,ρ′

(❘n, V ) ⊆ Sm,ρ(❘n, V ). (2.38)

Proof: Let q ∈ Q be given and choose q′ according to (2.37). Then for every µ ∈ ◆n
0 a simple

estimate gives ‖F‖m,ρ
q,µ ≤ c ‖F‖m′,ρ′

q′,µ , which shows the claim. �

Corollary 2.13 Let Q and Q′ be defining systems of continuous seminorms on V . Moreover, let m′

and ρ′ be an order and a type for Q′. Then there exists an order m and a type ρ for Q such that

Sm
′,ρ′

(❘n, V ) ⊆ Sm,ρ(❘n, V ) (2.39)

is continuously included. If in addition m′ or ρ′ are bounded then m and ρ can be chosen to satisfy
the same bounds, respectively.

Proof: By Proposition 2.11 we can pass to a filtrating system without changing the symbol space
on the left hand side. Thus we can assume that Q′ is already filtrating without restriction. Let q ∈ Q,
then we fix a particular choice q′(q) ∈ Q′ with q ≤ c q′ for some appropriate c > 0. This defines a
map Q −→ Q′, existing thanks to the fact that Q′ is filtrating. Now we define m(q) := m′(q′(q))
and ρ(q) := ρ(q′(q)). Then clearly the condition (2.37) from Proposition 2.12 is satisfied and we get
(2.39). The statement about the bounds is then clear. �

Corollary 2.14 Let Q and Q′ be two defining systems of seminorms for V and let F ∈ C∞(❘n, V )
be a smooth function. Then F is a symbol of some (bounded) order m and some (bounded) type ρ

for Q iff F is a symbol of some (bounded) order m′ and some (bounded) type ρ′ for Q′ (and the same
bounds).

Proof: By Proposition 2.11 we can assume to have filtrating systems from the beginning. Since
the extension of the order and the type according to that Proposition clearly preserves the bounds,
Corollary 2.13 can be applied in both directions. �

We can now use the last corollaries to speak about the space of all symbols: there are two
alternatives whether or not we allow for bounded orders only:

Definition 2.15 Let V be a sequentially complete locally convex space. Then we define for a given
type ρ for a defining system of seminorms Q

S∞,ρ(❘n, V ) :=
⋃

m bounded

Sm,ρ(❘n, V ) (2.40)

and
S∞+,ρ(❘n, V ) :=

⋃

m

Sm,ρ(❘n, V ). (2.41)
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Moreover, we set

S∞(❘n, V ) := S∞,1(❘n, V ) , S∞+(❘n, V ) := S∞+,1(❘n, V ) (2.42)

and
S(❘n, V ) :=

⋃

−1<ρ≤1

S∞+,ρ(❘n, V ) . (2.43)

It follows that for another defining system of seminorms Q′ we get the same spaces S∞(❘n, V ),
S∞+(❘n, V ), S(❘n, V ), which are therefore intrinsically defined. The space S(❘n, V ) will be relevant
in the context of oscillatory integrals, presented in Section 3.

Note that for a Banach space V with Q consisting just of the norm itself we have S∞,ρ(❘n, V ) =
S∞+,ρ(❘n, V ) for all types ρ ∈ ❘. However, in general we have a proper inclusion

S∞,ρ(❘n, V ) ⊂ S∞+,ρ(❘n, V ). (2.44)

Also the intersection of all the symbol spaces is of interest: here we get an analog of the usual
Schwartz space. First we note the following simple facts:

Lemma 2.16 Let V be a sequentially complete locally convex space and F ∈ C∞(❘n, V ). Then the
following statements are equivalent:

i.) For all continuous seminorms q of a defining system Q, for all µ ∈ ◆n
0 and all m ∈ ◆0 one has

qm,µ(F ) = sup
x∈❘n

(

1 + ‖x‖2
)m

2
q

(

∂|µ|F

∂xµ
(x)

)

<∞. (2.45)

ii.) For all orders m and all types ρ for a given defining system Q of continuous seminorms one has
F ∈ Sm,ρ(❘n, V ).

iii.) For all orders m and one type ρ for a given defining system Q of continuous seminorms one has
F ∈ Sm,ρ(❘n, V ).

Proof: First we note that if i.) holds for a defining system of seminorms Q then it also holds for
all continuous seminorms of V . This is clear. Thus assume i.) and let Q be a defining system
of seminorms. Moreover, fix an order m and a type ρ for this system Q. Then for µ ∈ ◆n

0 we
have ‖F‖m,ρ

q,µ ≤ qm,µ(F ), with m being any integer larger than −m(q) + ρ(q)|µ|. This shows that
F ∈ Sm,ρ(❘n, V ). The implication ii.) =⇒ iii.) is trivial. Thus assume iii.) and hence let
F ∈ Sm,ρ(❘n, V ) for all orders m and a fixed type ρ. Then let m ∈ ◆0 and µ ∈ ◆n

0 be given. We
have qm,µ(F ) ≤ ‖F‖m,ρ

q,µ , where we have to choose an order m such that m(q)−ρ(q)|µ| ≤ −m. This
is clearly possible as we can e.g. take the constant order with m = −m+ρ(q)|µ|. Thus i.) follows.�

Thus for the intersection of all symbol spaces the type ρ does not play any role any more. Also the
dependence on the chosen system of seminorms Q disappears. This motivates the following definition:

Definition 2.17 (Vector-valued Schwartz space) Let V be a sequentially complete locally convex
space. Then we define the symbols of order −∞ by

S−∞(❘n, V ) :=
⋂

m,ρ

Sm,ρ(❘n, V ). (2.46)

We also use the notation S (❘n, V ) := S−∞(❘n, V ) and call S (❘n, V ) the space of V -valued Schwartz
functions.
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Clearly, the V -valued Schwartz functions are a straightforward generalization of the scalar case.
The Schwartz space S (❘n, V ) will always be endowed with the locally convex topology determined
by the seminorms qm,µ as in (2.45). We call this the S−∞- or the Schwartz topology of S (❘n, V ).
We collect now some easy properties of the Schwartz space:

Proposition 2.18 Let V be a sequentially complete locally convex space with a defining system of
seminorms Q.

i.) The Schwartz space S (❘n, V ) is sequentially complete and complete if V is complete.

ii.) We have continuous inclusions

C
∞
0 (❘n, V ) −→ S (❘n, V ) −→ Sm,ρ(❘n, V ) (2.47)

for all orders m and all types ρ for Q.

iii.) C∞
0 (❘n, V ) is sequentially dense in S (❘n, V ) and S (❘n, V ) is sequentially dense in the symbol

space Sm,ρ(❘n, V ) in the Sm
′,ρ′

-topology whenever m′ >m and ρ′ ≤ min(1,ρ).

iv.) The partial derivatives are continuous linear maps

∂|ν|

∂xν
: S (❘n, V ) −→ S (❘n, V ) (2.48)

satisfying the estimate (equality)

qm,µ

(

∂|ν|F

∂xν

)

= qm,µ+ν(F ). (2.49)

v.) If W and U are two other sequentially complete locally convex spaces and µ : V ×W −→ U is a
continuous bilinear map then it induces continuous bilinear maps

µ : S (❘n, V )× S (❘n,W ) −→ S (❘n, U), (2.50)

µ : Sm,ρ(❘n, V )× S (❘n,W ) −→ S (❘n, U), (2.51)

and
µ : S (❘n, V )× Sm

′,ρ′
(❘n,W ) −→ S (❘n, U) (2.52)

for all orders m and types ρ for Q and all orders m′ and types ρ′ for some defining system of
seminorms Q′ for W .

vi.) For all orders m ∈ ❘ and types ρ ∈ ❘ the pointwise multiplication

Sm,ρ(❘n,❈)× S (❘n, V ) −→ S (❘n, V ) (2.53)

is a continuous bilinear map.

Proof: The first statement can most easily be checked using the explicit seminorms qm,µ in the
same spirit as the proof of Proposition 2.3, iii.). Then also the second part is clear since we get a
continuous inclusion of C∞

K (❘n, V ) into S (❘n, V ) with estimates like

qm,µ(F ) = ‖F‖m,0
q,µ ≤ cK pK,|µ|,q(F )

for every compact subset K ⊆ ❘n. The second inclusion is continuous thanks to the estimate
‖F‖m,ρ

q,µ (F ) ≤ qm,µ(F ) for m an integer being at least −m(q)+ρ(q)|µ|, which we have established in
the proof of Lemma 2.16. The density of C∞

0 (❘n, V ) in S (❘n, V ) is checked directly as in the scalar
case. The second statement of part iii.) is clear as C∞

0 (❘n, V ) has this property by Proposition 2.9,
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iv.). The fourth part is clear since the estimate (2.49) is obvious by definition. For part v.) we first
consider the case (2.51). Thus let F ∈ Sm,ρ(❘n, V ) and G ∈ S (❘n,W ) be given. The continuity of
µ means that for a continuous seminorm r on U we find q ∈ Q and a continuous seminorm q′ on W
such that

r(µ(v, w)) ≤ q(v) q′(w)

for all v ∈ V and w ∈ W since we can assume that the defining system Q on V is already filtrating
by Proposition 2.11. Then for m ∈ ◆0 and κ ∈ ◆n

0 we estimate using the Leibniz rule

rm,κ(µ(F,G)) ≤ 2|κ| sup
x∈❘n

∑

ν+ν′=κ

(

1 + ‖x‖2
)m

2
q

(

∂|ν|F

∂xν
(x)

)

q′

(

∂|ν
′|G

∂xν′
(x)

)

≤ 2|κ|
∑

ν+ν′=κ

‖F‖m,ρ
q,ν q′m′,ν′(G),

with m′ = m+m(q)−ρ(q)|ν|. This shows the continuity of (2.51) and (2.52) is analogous. But then
(2.50) follows as well since S (❘n, V ) −→ Sm,ρ(❘n, V ) is continuous. The last part is then clear. �

Corollary 2.19 Let A be a (sequentially) complete locally convex algebra and let M be a (sequentially)
complete locally convex topological module over A. Then S (❘n,A) is a (sequentially) complete locally
convex algebra and S (❘n,M) is a (sequentially) complete locally convex topological module over
S (❘n,A).

2.3 Affine symmetries and symbol-valued symbols

In this subsection we investigate the action of the affine group of ❘n on the symbol spaces. For A ∈
GLn(❘) and a translation y ∈ ❘n, we denote their pullback by (A∗F )(x) = F (Ax) and (τ∗yF )(x) =
F (x+ y) as usual. We start with the following basic observations:

Lemma 2.20 Let q be a continuous seminorm on V and m, ρ ∈ ❘. Then for F ∈ C∞(❘n, V ) we
have for all µ ∈ ◆n

0 and all A ∈ GLn(❘)

‖A∗F‖m,ρ
q,µ ≤ cm,ρ

µ (A)
∑

ν∈◆n
0

|ν|=|µ|

‖F‖m,ρ
q,ν (2.54)

with some cm,ρ
µ (A) > 0 depending continuously on A and satisfying cm,ρ

µ (✶) = 1.

Proof: As usual, this is to be understood as an inequality in [0,+∞]. The proof consists in a
standard estimate of the derivatives of A∗F by means of e.g. the operator norm ‖A‖ of A. Explicitly,
the constant

cm,ρ
µ (A) = ‖A‖|µ|max

{

1, ‖A‖m−ρ|µ| ,
∥

∥A−1
∥

∥

−m+ρ|µ|
}

will do the job. �

Lemma 2.21 Let q be a continuous seminorm on V and m, ρ ∈ ❘. Then for F ∈ C∞(❘n, V ) we
have for all µ ∈ ◆n

0 and all y ∈ ❘n

∥

∥τ∗yF
∥

∥

m,ρ

q,µ
≤ cm,ρ

µ (y) ‖F‖m,ρ
q,µ , (2.55)

with some positive scalar symbol cm,ρ
µ ∈ S|m−ρ|µ||,1(❘n).
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Proof: The proof proceeds as in the well-known scalar case: we have to estimate the behaviour of
the scalar prefactor (1 + ‖x‖2)− 1

2
(m−ρ|µ|) under the translation by y. A lengthy but straightforward

estimate leads directly to (2.55) with cm,ρ
µ (y) = c(1 + ‖y‖2) 1

2
|m−ρ|µ|| and some numerical constant

c > 0 depending on the parameters m, ρ, and µ. �

Remark 2.22 Note that for the translations τy the pre-factor cm,ρ
µ (y) in (2.55) is always a symbol

of non-negative order, even if m− ρ|µ| was negative. Thus the bounds in (2.55) typically grow with
y and are also growing with increasing differentiations µ unless ρ = 0.

As an easy consequence of the two lemmas we get the affine invariance of the symbol spaces:

Proposition 2.23 Let V be a sequentially complete locally convex space and Q a defining system of
seminorms. Moreover, let m and ρ be an order and a type for Q. Then the affine group GLn(❘)⋉❘n

of ❘n acts on the symbols Sm,ρ(❘n, V ) via pull-backs by continuous endomorphisms.

Proof: The pull-backs with A ∈ GLn(❘) or with a translation by y ∈ ❘n map Sm,ρ(❘n, V ) contin-
uously into itself according to Lemma 2.20 and Lemma 2.21, respectively. The fact that this gives a
(right) group action is clear. �

In a next step we want to refine this statement for the translations: we want to show that the
map y 7→ τ∗yF is actually smooth. We begin with the following observation:

Lemma 2.24 Let F ∈ Sm,ρ(❘n, V ). Then the map

❘
n ∋ y 7→ τ∗yF ∈ Sm,ρ(❘n, V ) (2.56)

is continuous at zero provided ρ ≥ 0.

Proof: We have to show that τ∗yF −→ F in the Sm,ρ-topology for y −→ 0. Let x ∈ ❘n be given.
Then we have for y ∈ ❘n and q ∈ Q by virtue of the mean value theorem

q

(

∂|µ|(τ∗yF )

∂xµ
(x)− ∂|µ|F

∂xµ
(x)

)

≤
√
n sup

t∈[0,1]
i=1,...,n

q

((

∂

∂xi
∂|µ|F

∂xµ

)

(x+ ty)

)

‖y‖ . (∗)

Since F is a symbol the (µ+ ei)-th derivative of F satisfies

q

((

∂

∂xi
∂|µ|F

∂xµ

)

(x+ ty)

)

≤
(

1 + ‖x+ ty‖2
) 1

2
(m−ρ|µ|−ρ)

‖F‖m,ρ
q,µ+ei

, (∗∗)

where for abbreviation we have set m = m(q) and ρ = ρ(q). Then we get

∥

∥τ∗yF − F
∥

∥

m,ρ

q,µ
≤

√
n ‖y‖ sup

x∈❘n

t∈[0,1]
i=1,...,n

(

1 + ‖x− ty‖2
)− 1

2
(m−ρ|µ|) (

1 + ‖x‖2
) 1

2
(m−ρ|µ|−ρ)

‖F‖m,ρ
q,µ+ei

.

We can again estimate the first factor by the same techniques as in the Lemma 2.21: we get a constant
c (depending on m, ρ, and µ but not on ty or x) such that we can continue our estimate and get

∥

∥τ∗yF − F
∥

∥

m,ρ

q,µ
≤ c ‖y‖

(

1 + ‖y‖2
) 1

2
|m−ρ|µ||

sup
x∈❘n

(

1 + ‖x‖2
)− ρ

2
max

i=1,...,n
‖F‖m,ρ

q,µ+ei
.

Now if ρ ≥ 0 then the supremum over all x ∈ ❘n exists and hence we get an estimate of the form

∥

∥τ∗yF − F
∥

∥

m,ρ

q,µ
≤ c′ ‖y‖

(

1 + ‖y‖2
) 1

2
|m−ρ|µ||

,

from which the continuity at y = 0 follows. �
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Lemma 2.25 Let F ∈ Sm,ρ(❘n, V ) be given with ρ ≥ 0. Then we have

lim
ǫ−→0

τ∗ǫeiF − F

ǫ
=
∂F

∂xi
(2.57)

in the Sm,ρ-topology for all i = 1, . . . , n.

Proof: We proceed analogously to the continuity statement. Let again q ∈ Q and set m = m(q)
and ρ = ρ(q) for abbreviation. First we note that for all x ∈ ❘n and µ ∈ ◆n

0 we have by repeated
use of the mean value theorem

q

(

1

ǫ

(

∂|µ|(τ∗ǫeiF )

∂xµ
(x)− ∂|µ|F

∂xµ
(x)

)

− ∂

∂xi
∂|µ|F

∂xµ
(x)

)

= q

(

∫ 1

0

∫ 1

0

∂

∂xi
∂

∂xi
∂|µ|F

∂xµ
(x+ tsǫei)tǫ d s d t

)

≤ ǫ sup
s∈[0,1]

(

1 + ‖x+ sǫei‖2
) 1

2
(m−ρ|µ|−2ρ)

‖F‖m,ρ
q,µ+2ei

,

since by assumption F ∈ Sm,ρ(❘n, V ). Thus we get

∥

∥

∥

∥

1

ǫ

(

τ∗ǫeiF − F
)

− ∂F

∂xi

∥

∥

∥

∥

m,ρ

q,µ

≤ ǫ sup
x∈❘n

s∈[0,1]

(

1 + ‖x‖2
)− 1

2
(m−ρ|µ|) (

1 + ‖x+ sǫei‖2
) 1

2
(m−ρ|µ|−2ρ)

‖F‖m,ρ
q,µ+2ei

.

Using again ρ ≥ 0 shows that the remaining supremum is finite. Thanks to the pre-factor ǫ we get
the desired limit (2.57). �

These two lemmas are now enough to conclude the following smoothness statement of the action
of the translations:

Proposition 2.26 Let V be a sequentially complete locally convex space and let Q be a defining
system of seminorms for V . Let m and ρ be an order and a type for Q and assume ρ ≥ 0. Then the
action τ of ❘n on Sm,ρ(❘n, V ) by translations is smooth, i.e. for every F ∈ Sm,ρ(❘n, V ) the map
τ(F ) : y 7→ τ∗yF is a smooth map. The derivatives are explicitly given by

∂|µ|

∂yµ
τ∗yF = τ∗y

∂|µ|F

∂xµ
. (2.58)

Proof: This is a general argument about group actions of Lie groups: We know already that τ(F )
is continuous at y = 0 by Lemma 2.24. Moreover, every map τ∗y is continuous by Lemma 2.21. Thus
we have by the group action property

lim
y−→y′

τ∗yF = lim
y−→0

τ∗y′+yF = lim
y−→0

τ∗y τ
∗
y′F = τ∗y′F

in the Sm,ρ-topology since we have continuity at zero. This shows continuity everywhere. Moreover,
by the same argument

lim
ǫ−→0

τ∗y+ǫeiF − τ∗yF

ǫ
= lim

ǫ−→0
τ∗y
τ∗ǫeiF − F

ǫ
= τ∗y lim

ǫ−→0

τ∗ǫeiF − F

ǫ
= τ∗y

∂F

∂xi
,
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using Lemma 2.25 and the continuity of τ∗y . This shows that τ(F ) has first partial derivatives every-

where given as in (2.58). Now ∂F
∂xi ∈ Sm−ρ,ρ(❘n, V ) ⊆ Sm,ρ(❘n, V ) thanks to ρ ≥ 0 and Proposi-

tion 2.3, iv.) as well as Proposition 2.4. Thus the partial derivatives ∂
∂yi
τ(F ) = τ( ∂F

∂xi ) are again of

the form as we started with. Hence they are continuous and thus τ(F ) is C 1. This allows to iterate
the above argument finishing the proof. �

As a first application of the affine invariance of the spaces Sm,ρ(❘n, V ) we get the following
generalization of the approximation from Proposition 2.9, iii.).

Corollary 2.27 Let χ ∈ C∞
0 (❘n) satisfy χ

∣

∣

Br(0)
= 1 for some r > 0. Consider τ∗yχǫ for ǫ > 0 and

y ∈ ❘n where as usual χǫ(x) = χ(ǫx). Then for every F ∈ Sm,ρ(❘n, V ) we have

lim
ǫ−→0

(τ∗yχǫ)F = F (2.59)

in the Sm
′,ρ′

(❘n, V )-topology provided ρ′ ≤ min(1, ρ) and m′ >m.

Proof: We have (τ∗yχǫ)F = τ∗y (χǫτ−yF ) and then the continuity of τ∗y according to Proposition 2.23
allows to exchange τ∗y with the limit. Then the result follows from Proposition 2.9, iii.). �

The smoothness of the translations also allows to consider symbols taking values in other symbol
spaces, as we shall do now. Recall that given an order m and a type ρ for a defining system of
seminorms Q on V , the symbol space Sm,ρ(❘n, V ) is a sequentially complete locally convex space
(Proposition 2.3, iii.)), which can therefore be used as a target space instead of V . To define symbols

taking values in it, we first have to specify an order m̂ and a type ρ̂ on the seminorms ‖ · ‖m(q),ρ(q)
q,µ

generating the topology of Sm,ρ(❘n, V ). For q ∈ Q and µ ∈ ◆n
0 , we put

m̂(‖ · ‖m(q),ρ(q)
q,µ ) := max{0, m(q)} and ρ̂(‖ · ‖m(q),ρ(q)

q,µ ) := ρ(q). (2.60)

Proposition 2.28 Let V be a sequentially complete locally convex space with defining system of
seminorms Q, and let m be an order and ρ ≥ 0 a positive type for Q. Moreover, let F ∈ Sm,ρ(❘n1 ⊕
❘n2 , V ) be given. Then

F1 : ❘
n1 −→ Sm,ρ(❘n2 , V ), with F1(x1) : x2 7→ F (x1, x2) (2.61)

is a symbol in Sm̂,ρ̂(❘n1 , Sm,ρ(❘n2 , V )) of order m̂ and type ρ̂ (2.60), and the map

Sm,ρ(❘n1 ⊕❘n2 , V ) ∋ F 7→ F1 ∈ Sm̂,ρ̂(❘n1 , Sm,ρ(❘n2 , V )) (2.62)

is linear and continuous. Explicitly, one has the bound

‖F1‖m̂,ρ̂
‖·‖m,ρ

q,µ ,ν
≤ ‖F‖m,ρ

q,ν⊕µ (2.63)

for q ∈ Q, ν ∈ ◆n1
0 , µ ∈ ◆n2

0 . Completely analogous statements hold for the map

F2 : ❘
n2 −→ Sm,ρ(❘n1 , V ), with F2(x2) : x1 7→ F (x1, x2). (2.64)

Proof: In terms of the embedding ι2 : ❘
n2 → ❘n1 ⊕ ❘n2 , ι2(x2) := (0, x2), and the previously

discussed translations τ , the map F1 reads F1(x1) = ι∗2(τ
∗
x1⊕ 0F ). But according to Proposition 2.26,

x1 7→ τ∗x1⊕ 0F is a smooth map from ❘n1 to Sm,ρ(❘n1 ⊕ ❘n2 , V ), and according to Lemma 2.10,
ι∗2 : S

m,ρ(❘n1 ⊕❘n2 , V ) → Sm,ρ(❘n2 , V ) is linear and continuous. Hence F1 : ❘
n1 → Sm,ρ(❘n2 , V ) is
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smooth. Since F 7→ F1 is clearly linear, it only remains to verify the estimate (2.63). To this end, let
q ∈ Q, ν ∈ ◆n1

0 , µ ∈ ◆n2
0 , and put q̂ := ‖ · ‖m,ρ

q,µ for short. The seminorm in question can be factorized

‖F1‖m̂,ρ̂
q̂,ν = sup

x1∈❘n1

1

(1 + ‖x1‖2)
1
2
(m̂(q̂)−ρ̂(q̂)|ν|)

sup
x2∈❘n2

q(∂µx2∂
ν
x1
F1(x1)(x2))

(1 + ‖x2‖2)
1
2
(m(q)−ρ(q)|µ|)

.

Note that by definition of m̂, ρ̂, the powers k := −1
2(m̂(q̂)− ρ(q)|ν|) and k′ := −1

2(m(q)− ρ(q)|µ|)
satisfy max{k, k′, k + k′} ≤ K with K := −1

2(m(q)− ρ(q)|ν ⊕ µ|) for all µ, ν. Hence we can use the
inequality (2.22) to estimate

‖F1‖m̂,ρ̂
q̂,ν ≤ sup

x1∈❘
n1

x2∈❘
n2

q(∂ν⊕µF (x1, x2))

(1 + ‖x1‖2 + ‖x2‖2)
1
2
(m(q)−ρ(q)|ν⊕µ|)

= ‖F‖m,ρ
q,ν⊕µ .

This establishes (2.63) and thus the continuity of F 7→ F1. The arguments for F2 are analogous. �

3 Oscillatory integrals for vector-valued symbols

3.1 Construction of the integral map

We now come to the definition of oscillatory integrals of symbols. Again, we proceed in close analogy
to the scalar case, see [23, Sect. 7.8] as well as [22]. The essential idea is to use the Riemann integral
for compactly supported smooth functions and show that it enjoys a remarkable continuity property
with respect to the symbol topologies. We are here not interested in the most general case, where
oscillatory integrals are used to define maps from test function spaces to distributions, as discussed
in [23, Sect. 7.8]. Instead we are just interested in the values of the oscillatory integrals per se. To this
end, we endow ❘n with a non-degenerate bilinear form 〈 · , · 〉. Then we consider for F ∈ C0(❘

n, V )
the integral with an oscillatory phase

I0(F ) :=
1

(2π)n

∫

❘2n

dp dx ei〈p,x〉F (x, p) , (3.1)

which is a well-defined Riemann integral thanks to the continuity of the integrand and the compact
support of F . The integral defines a linear map

I0 : C0(❘
2n, V ) −→ V, (3.2)

which is continuous in the C0-topology. Since the C0-topology is coarser than every C k
0 -topology for

k ∈ ◆0 ∪ {+∞}, we see that for all k we have a continuous map

I0 : C
k
0 (❘

2n, V ) −→ V. (3.3)

Up to now, we have not used any particular properties of the phase function besides its continuity.
However, it turns out that the continuity with respect to the C k

0 -topologies is not the right one to
extend I0 to the symbol spaces.

Instead we have to show the continuity of I0 with respect to some appropriate Sm,ρ-topology, and
this step will make use of more specific properties of the phase function. We begin with the following
preparations. Consider the polynomial

P (x) := (i+ x1) · · · (i+ xn) (3.4)

on ❘n which is clearly of degree n and hence a scalar symbol P ∈ Sn,1(❘n,❈).
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Since each factor (i + xk) is non-vanishing, we can define arbitrary powers (i + xk)
s for s ∈ ❩,

which are scalar symbols of order s. Note that given a symbol F ∈ Sm,ρ(❘2n, V ) of some order m

and type ρ ≤ 1, the function

❘
2n ∋ (x, p) 7→ P s(x)P s(p)F (x, p) ∈ V (3.5)

is a symbol of order m + 2sn and type ρ. This follows directly by application of Corollary 2.7, i.),
since (x, p) 7→ P s(x)P s(p) is of order 2sn and type 1, and ρ ≤ 1 by assumption.

We also note the well-known fact that given s ∈ ◆0, there exists a differential operator

Qs =
∑

|µ|,|ν|≤s

aµνs
∂|µ|

∂xµ
∂|ν|

∂pν
(3.6)

of order at most s in both the x and p variables with constant coefficients aµνs ∈ ❈ such that

Qse
i〈p,x〉 = P s(x)P s(p)ei〈p,x〉 . (3.7)

After these preparatory remarks, we now derive the crucial estimate of the integral I0 with respect
to the symbol topologies. The proof is based on the usual technique of converting differentiability
properties of the integrand to damping factors by integration by parts against ei〈p,x〉. As shown below,
for this technique to work we only have to make a restriction on the type, but not on the order.

Lemma 3.1 Let Q be a defining system of seminorms for V , with order m and type ρ such that
−1 < ρ ≤ 1. Then for every q ∈ Q there exists a constant c > 0 and N ∈ ◆0 such that for all
F ∈ C∞

0 (❘2n, V ) we have

q (I0(F )) ≤ c
∑

|µ|≤N

‖F‖m,ρ
q,µ . (3.8)

Proof: Let F ∈ C∞
0 (❘2n, V ) have compact support in a compact interval K ⊆ ❘2n. Then we

compute using (3.7) and an integration by parts

I0(F ) =
1

(2π)n

∫

K
ei〈p,x〉QT

s

F (x, p)

P s(x)P s(p)
dn x dn p, (∗)

where QT
s =

∑

0≤|µ|,|ν|≤s(−1)|µ|+|ν|aµνs
∂|µ|

∂xµ
∂|ν|

∂pν denotes the transposed differential operator and s ∈ ◆0

is arbitrary. Indeed, the integration by parts is possible since F has compact support inside the interval
K. Since (∗) is valid for all s ∈ ◆0, the idea is to use a large enough s which produces under the
integral an integrable symbol on the right hand side, independent of K. Since F has compact support
it is a symbol for any order and any type. Thus also the function (x, p) 7→ F (x,p)

P s(x)P s(p) is a symbol, say
of order m− 2sn and type ρ. Thus for all µ, ν ∈ ◆n

0 we have the estimate

q

(

∂|µ|

∂xµ
∂|ν|

∂pν
F (x, p)

P s(x)P s(p)

)

≤
(

1 + ‖(x, p)‖2
) 1

2
(m(q)−2sn−ρ(q)|µ⊕ν|)

∥

∥

∥

∥

F ( · , · )
P s( · )P s( · )

∥

∥

∥

∥

m−2sn,ρ

q,µ⊕ν

for all s ∈ ◆0. We know that |µ⊕ ν| = |µ|+ |ν| ≤ 2sn as the operator Qs is of order 2sn only. Hence
the condition ρ(q) > −1 shows that there is a s ∈ ◆0 such that for all |µ|, |ν| ≤ sn we have

m(q)− 2sn− ρ(q)|µ⊕ ν| < −2(n+ 1). (3.9)

In fact, we get the left hand side as negative as we want by taking large enough s. Finally, by
Proposition 2.5, i.), we get the estimate

∥

∥

∥

∥

F

P s( · )P s( · )

∥

∥

∥

∥

m−2sn,ρ

q,µ⊕ν

≤ 2|µ|+|ν| max
µ′⊕ν′≤µ⊕ν

∥

∥

∥

∥

1

P s( · )P s( · )

∥

∥

∥

∥

−2sn,1

µ′⊕ν′
max

µ′′⊕ν′′≤µ⊕ν
‖F‖m,ρ

q,µ′′⊕ν′′ ,
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since we have ρ ≤ 1 and 1
P s( · )P s( · ) is a scalar symbol of order −2sn and type 1. Taking now s large

enough so that (3.9) is satisfied we get the estimate

q (I0(F )) ≤
1

(2π)n

∫

K
q





∑

0≤µ,ν≤s

aµνs (−1)|µ|+|ν| ∂
|µ|

∂xµ
∂|ν|

∂pν
F (x, p)

P s(x)P s(p)



 dn x dn p

≤ 1

(2π)n

∑

0≤µ,ν≤s

|aµνs |
∫

K

(

1 + ‖(x, p)‖2
)−(n+1)

dn x dn p

∥

∥

∥

∥

F

P s( · )P s( · )

∥

∥

∥

∥

m−2sn,ρ

q,µ⊕ν

≤ c
∑

0≤|µ|,|ν|≤s

‖F‖m,ρ
q,µ⊕ν ,

with the constant

c =
22sn

(2π)n

∫

❘2n

dn x dn p
(

1 + ‖(x, p)‖2
)−(n+1)

max
0≤|µ|,|ν|≤s

|aµνs | max
0≤|µ′|,|ν′|≤s

∥

∥

∥

∥

1

P s( · )P s( · )

∥

∥

∥

∥

−2sn,1

µ′⊕ν′
<∞.

Note that the integral is finite indeed as we were able to make the exponent (3.9) negative enough
such that the dependence on the compact interval K disappears. �

We now define oscillatory integrals for symbols F ∈ Sm,ρ(❘2n, V ) of non-compact support by
extending the integral I0 defined on C∞

0 (❘2n, V ). Doing so, we will rely in an essential manner on
the preceding lemma and Proposition 2.9, iv.), and therefore restrict to types ρ with −1 < ρ ≤ 1.
The order m will be arbitrary.

To describe the extension procedure, we consider in addition to m and −1 < ρ ≤ 1 an auxiliary
order m′ >m and type −1 < ρ′ ≤ ρ for Q, and the corresponding inclusions

I0 : C
∞
0 (❘2n, V ) ⊂ Sm,ρ(❘2n, V ) ⊂ Sm

′,ρ′
(❘2n, V ) −→ V .

In general, C∞
0 (❘2n, V ) ⊂ Sm,ρ(❘2n, V ) is not (sequentially) dense in the Sm,ρ-topology. But ac-

cording to Proposition 2.9, iv.), the sequential closure of C∞
0 (❘2n, V ) in the weaker Sm

′,ρ′
-topology

contains Sm,ρ(❘2n, V ). Moreover, according to the bound (3.8), I0 : C∞
0 (❘2n, V ) −→ V is a contin-

uous linear map in the Sm
′,ρ′

-topology. We can thus extend I0 to a continuous linear map from the
sequential completion of C∞

0 (❘2n, V ) in the Sm
′,ρ′

-topology to V . The restriction of this extension
to Sm,ρ(❘2n, V ) is our definition of oscillatory integral on Sm,ρ(❘2n, V ); it is denoted by

Im,ρ
m′,ρ′ : S

m,ρ(❘2n, V ) −→ V . (3.10)

Theorem 3.2 Let V be a sequentially complete locally convex space with defining system of semi-
norms Q, and m, −1 < ρ ≤ 1 an order and a type for Q.

i.) The integrals Im,ρ := Im,ρ
m′,ρ′ (3.10) are independent of the order and type m′, ρ′ as long as

m′ >m and −1 < ρ′ ≤ ρ.

ii.) The integral Im,ρ : Sm,ρ(❘2n, V ) −→ V is linear and continuous.

iii.) For F ∈ C∞
0 (❘2n, V ), we have Im,ρ(F ) = I0(F ).

iv.) For orders m,m′, types −1 < ρ,ρ′ ≤ 1, and F ∈ Sm,ρ(❘2n, V ) ∩ Sm
′,ρ′

(❘2n, V ), we have

Im,ρ(F ) = Im
′,ρ′

(F ) . (3.11)
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Proof: For the first part, let m′,m′′ be orders and ρ′,ρ′′ types for Q, with m′,m′′ > m and
−1 < ρ′,ρ′′ ≤ ρ, and F ∈ Sm,ρ(❘2n, V ). We have to show Im,ρ

m′,ρ′(F ) = Im,ρ
m′′,ρ′′(F ). By the above

construction of these maps, there exist sequences {F ′
n}, {F ′′

n} ⊂ C∞
0 (❘2n, V ) converging to F in the

topology of Sm
′,ρ′

(❘2n, V ) and Sm
′′,ρ′′

(❘2n, V ), respectively, and

Im,ρ
m′,ρ′(F ) = lim

n→∞
I0(F

′
n) , Im,ρ

m′′,ρ′′(F ) = lim
n→∞

I0(F
′′
n ) . (3.12)

To show that these limits coincide, let m′′′, ρ′′′ be an order and type with m′′′ ≥ m′,m′′, and
−1 < ρ′′′ ≤ ρ′,ρ′′. Fixing a seminorm q ∈ Q, we can use the bound (3.8) and (2.10) to estimate with
some constants c > 0, N ∈ ◆0,

q(I0(F
′
n)− I0(F

′′
n )) ≤ c

∑

|µ|≤N

‖F ′
n − F ′′

n‖m
′′′,ρ′′′

q,µ

≤ c
∑

|µ|≤N

(

‖F ′
n − F‖m′′′,ρ′′′

q,µ + ‖F − F ′′
n‖m

′′′,ρ′′′

q,µ

)

≤ c
∑

|µ|≤N

(

‖F ′
n − F‖m′,ρ′

q,µ + ‖F − F ′′
n‖m

′′,ρ′′

q,µ

)

.

In view of the approximation properties of the sequences {F ′
n}, {F ′′

n}, the last expression converges
to zero for n → ∞, i.e., we have q(I0(F

′
n) − I0(F

′′
n )) → 0. Since q was arbitary, (3.12) now gives

Im,ρ
m′,ρ′(F ) = Im,ρ

m′′,ρ′′(F ). From now on, we write Im,ρ := Im,ρ
m′,ρ′ for this integral. For part ii.), by

construction, Im,ρ : Sm,ρ(❘2n, V ) −→ V is a linear map which is continuous in the Sm
′,ρ′

-topology
for m′ > m and −1 < ρ′ ≤ ρ. But as the topology of Sm,ρ(❘2n, V ) is stronger than that of
Sm

′,ρ′
(❘2n, V ), this map is continuous in the Sm,ρ-topology as well. By the very definition of Im,ρ,

we have Im,ρ(F ) = I0(F ) for F ∈ C∞
0 (❘2n, V ), i.e. iii.) holds. It remains to check iv.), and

to this end, we consider an order m′′ > m,m′ and type −1 < ρ′′ ≤ ρ,ρ′. Then for any F ∈
Sm,ρ(❘2n, V ) ∩ Sm

′,ρ′
(❘2n, V ), there exists a sequence {Fn} ⊂ C∞

0 (❘2n, V ) converging to F in the
topology of Sm

′′,ρ′′
(❘2n, V ), and in view of i.), we have

Im,ρ(F ) = Im,ρ
m′′,ρ′′(F ) = lim

n→∞
I0(Fn) = Im

′,ρ′

m′′,ρ′′(F ) = Im
′,ρ′

(F ) . (3.13)

This proves (3.11). �

The compatibility (3.11) of the integral maps Im,ρ with the structure of the symbol spaces allows
us to consistently define an oscillatory integral on the space S(❘2n, V ), see (2.43), consisting of all
Sm,ρ(❘2n, V ), with arbitary orders m and types −1 < ρ ≤ 1.

Definition 3.3 The oscillatory integral is the linear map I : S(❘2n, V ) → V uniquely determined by
I|Sm,ρ(❘2n,V ) := Im,ρ, −1 < ρ ≤ 1. If the target space or the domain of integration needs to be
emphasized, we write more precisely IV or I❘2n,V instead of I. We also use the symbolic notation

(2π)−n

∫

❘2n

dp dx ei〈p,x〉F (p, x) := I(F ) . (3.14)

Note that according to the discussion in Section 2.3, the space S(❘2n, V ) and the oscillatory
integral I do not depend on a choice of defining system Q of seminorms, but are intrinsically defined.
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3.2 Calculational rules for the oscillatory integral

We now derive the main properties of the integral I. To begin with, we note how oscillatory integrals
can be computed in practice.

Proposition 3.4 i.) Let F ∈ S(❘2n, V ), p0, x0 ∈ ❘n, and χ ∈ C∞
0 (❘2n,❘) with χ(p, x) = 1 for

(p, x) in some open neighborhood of (0, 0). Then the oscillatory integral of F is the limit of
Riemann integrals

I(F ) = (2π)−n lim
ε→0

∫

❘2n

dp dx ei〈p,x〉χ(ε(p− p0), ε(x− x0))F (p, x) . (3.15)

ii.) Let Q be a defining system of seminorms on V , with order m and type ρ such that there exist
constants C1, C2 ∈ ❘ satisfying

m(q) ≤ C1 , 1 ≥ ρ(q) ≥ C2 > −1 (3.16)

for all q ∈ Q. Then there exists s ∈ ◆, and bµν ∈ ❈, µ, ν ∈ ◆n
0 , |µ|, |ν| ≤ s, such that for all

F ∈ Sm,ρ(❘2n, V ), the oscillatory integral is given by a convergent Riemann integral

I(F ) =
∑

|µ|,|ν|≤s

bµν

∫

❘2n

dp dx ei〈p,x〉
∂|µ|

∂pµ
∂|ν|

∂xν

(

F (p, x)
∏n

k=1(i+ pk)s(i+ xk)s

)

. (3.17)

Proof: Fixing a defining system of seminorms Q on V , we consider a symbol F ∈ Sm,ρ(❘2n, V )
for some order m and type −1 < ρ ≤ 1 for Q. Furthermore, let m′,ρ′ be an auxiliary order
and type for Q such that m′ > m and −1 < ρ′ ≤ ρ. It has been shown in Corollary 2.27 that
(χεF )(p, x) := χ(ε(p − p0), ε(x − x0))F (p, x) converges to F in the topology of Sm

′,ρ′
(❘2n, V ) as

ε → 0. Since χεF ∈ C∞
0 (❘2n, V ), the formula I(F ) = limε→0 I0(χεF ) (3.15) holds by definition of

I as the Sm,ρ-continuous extension of I0. This proves the first part. The second part is basically a
corollary of the proof of Lemma 3.1: One first checks that if (3.16) holds, then there exists s ∈ ◆0

such that the inequality (3.9) is valid for all q ∈ Q for the same value of s. Using a cutoff function χ
as in the first part of this proposition, we can then apply the arguments in the proof of Lemma 3.1
to χεF ∈ C∞

0 (❘2n, V ) to conclude that there exist coefficients bµν such that

I0(χεF ) =
∑

|µ|,|ν|≤s

bµν

∫

❘2n

dp dx ei〈p,x〉
∂|µ|

∂pµ
∂|ν|

∂xν
χ(εp, εx)F (p, x)

∏n
k=1(i+ pk)s(i+ xk)s

. (3.18)

To control the limit ε→ 0, we again use the same arguments as in Lemma 3.1: For any seminorm q,
we find an integrable upper bound to (p, x) 7→ q (∂µp ∂νxP

−s(p)P−s(x)F (p, x)). This allows us to carry
out the limit ε → 0 in (3.18). Namely, applying Leibniz’ rule, we see that all terms in (3.18) which
contain derivatives of χ, and hence factors of ε, converge to zero as ε→ 0 because the derivatives of
F and the damping factors are bounded in each seminorm q. Only the term with no derivatives on χ
remains, and as this has an integrable upper bound, and χ(0, 0) = 1, we obtain the claimed formula
(3.17) for I(F ) = limε→0 I0(χεF ). �

If V is a Banach space and Q consists of just its norm, then (3.16) is clearly satisfied for any
order m, and any admissible type −1 < ρ ≤ 1. So in this case, the oscillatory integrals can always be
reformulated as improper Riemann integrals. But if Q is infinite, and m unbounded, this is no longer
the case. Nonetheless, also in this general situation, oscillatory integrals exhibit many of the familiar
properties of Riemann integrals. In particular, they are compatible with continuous linear maps, and
the usual rules of substitution and integration by parts still apply, as we now show in the following
lemmas and propositions.
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Lemma 3.5 Let V,U be sequentially complete locally convex spaces, A : V −→ U a continuous linear
map, and F ∈ S(❘2n, V ). Then AF : (p, x) 7→ AF (p, x) is a symbol in S(❘2n, U), and

AIV (F ) = IU (AF ) . (3.19)

Proof: First we note that the equation holds for compactly supported F . But then the usual
continuity and approximation argument shows that the equation also holds for arbitrary F . �

Remark 3.6 If we consider an antilinear continuous map C : V → U instead, the only difference
to the above described situation is that the oscillating factor ei〈p,x〉 has to be conjugated. This
conjugation can be compensated by a variable substitution p → −p in the integrals. So in this case,
we have, F ∈ S(❘2n, V ),

CIV (F ) = IU (C F−) with F−(p, x) := F (−p, x) . (3.20)

Lemma 3.7 Let q, y ∈ ❘n, A ∈ GL(n,❘), and denote by AT the transpose of A with respect to the
chosen inner product on ❘n. Then, for any F ∈ S(❘2n, V ), the functions

Fq,y,A(p, x) := e−i〈p,y〉F (Ap+ q, x) and F q,y,A(p, x) := e−i〈q,x〉F (p,ATx+ y), (3.21)

are elements of S(❘2n, V ) as well, and

I(Fq,y,A) = I(F q,y,A) . (3.22)

Proof: For F ∈ S(❘2n, V ), an application of Lemma 2.20 and Lemma 2.21 shows that the functions
Fq,0,A and F 0,y,A without the oscillating factors lie in S(❘2n, V ). But (p, x) 7→ e−i〈p,y〉 and (p, x) 7→
e−i〈q,x〉 are scalar symbols of type 0 and order 0, as is easily verified by differentiation. Hence
Corollary 2.8 yields Fq,y,A, F

q,y,A ∈ S(❘2n, V ). To compare the oscillatory integrals of these functions,
we pick χ ∈ C∞

0 (❘2n,❘) as in Proposition 3.4, and compute according to (3.15)

(2π)nI(Fq,y,A) = lim
ε→0

∫

❘2n

dp dx ei〈p,x〉e−i〈p,y〉 χ(εp, εx)F (Ap+ q, x)

= lim
ε→0

| detA|−1

∫

❘2n

dp dx ei〈A−1(p−q),x〉 χ
(

εA−1p, ε(x+ y)
)

F (p, x+ y)

= lim
ε→0

∫

❘2n

dp dx ei〈p,x〉 χ
(

εA−1p, ε(ATx+ y)
)

e−i〈q,x〉F (p,ATx+ y) .

Since also (p, x) 7→ χ(A−1p,ATx) is a smooth, compactly supported function which is equal to 1 on
an open neighborhood of the origin, we can use Proposition 3.4 again to conclude that the last line
coincides with (2π)nI(F q,y,A). �

For the next statement, we represent the bilinear form used in the oscillating factor as 〈p, x〉 =
(p,Mx) with some M ∈ GL(n,❘), | detM | = 1, and the standard Euclidean inner product ( · , · ) on
❘n. The transpose of M with respect to this inner product will be denote MT .

Proposition 3.8 Let F ∈ S(❘2n, V ) and µ ∈ ◆n
0 . Then ∂µpF , ∂µxF , (Mx)µF , (MT p)µF lie in

S(❘2n, V ), and

I(∂µpF ) = (−i)|µ|I((Mx)µF ) as well as I(∂µxF ) = (−i)|µ|I((MT p)µF ) . (3.23)
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Proof: For F ∈ C∞
0 (❘2n, V ), the claimed equations amount to an integration by parts against the

oscillating factor ei〈p,x〉 = ei(p,Mx), since

∂µp e
i(p,Mx) = i|µ| (Mx)µ ei(p,Mx) and ∂µxe

i(p,Mx) = i|µ| (MT p)µ ei(p,Mx) .

Thus we only have to show that the functions on the left and right hand side in (3.23) are symbols
in S(❘2n, V ), and can be approximated by compactly supported symbols. So let F ∈ Sm,ρ(❘2n, V )
for some order m and type −1 < ρ ≤ 1 for a defining system of seminorms Q for V , and pick a
sequence Fn ∈ C∞

0 (❘2n, V ) converging to F in the Sm
′,ρ′

-topology for some m′ > m, −1 < ρ′ ≤ ρ.
Then, according to Proposition 2.4, ∂µpFn → ∂µpF in the Sm

′−ρ
′|µ|,ρ′

-topology. But as ρ′ > −1, we
can apply Proposition 2.3, iv.) to see that this sequence also converges in the Sm

′+|µ|,ρ′
-topology.

Hence, by definition of I, we have I(∂µpF ) = limn I0(∂
µ
pFn). Concerning the right hand side in (3.23),

note that (Mx)µ is a scalar symbol of order |µ| and type 1. Hence, using Corollary 2.8 and ρ ≤ 1,
we see that (Mx)µF is a symbol of order m + |µ| and type ρ, and thus an element of S(❘2n, V ).
Moreover, (Mx)µFn → (Mx)µF in the Sm

′+|µ|,ρ′
-topology. Thus I((Mx)µF ) = limn I0((Mx)µFn),

and the first identity in (3.23) follows. The proof of the second identity is completely analogous. �

We next compute the oscillatory integrals of symbols (p, x) 7→ F (p, x) which are constant in either
x or p. The following result also explains our choice of normalization factor (2π)−n in the definition
(3.1) of the oscillatory integral.

Proposition 3.9 Let F ∈ S(❘2n, V ) satisfy F (p, x) = F (0, x) or F (p, x) = F (p, 0) for all p, x ∈ ❘n.
Then

I(F ) = F (0) . (3.24)

In particular, constant symbols v : (p, x) 7→ v, v ∈ V , have oscillatory integral I(v) = v.

Proof: We present only the proof for the claims about a symbol F ∈ S(❘2n, V ) satisfying F (p, x) =
F (0, x); the arguments for the other case are analogous. To evaluate the oscillatory integral of F , let
χ ∈ C∞

0 (❘n,❘), with χ(x) = 1 for |x| ≤ 1, and let χ̃(x) := (2π)−n/2
∫

❘2n dp e
i〈p,x〉χ(p) denote the

Fourier transform of χ with respect to the chosen inner product. Then Proposition 3.4 can be applied
with the product cutoff function (p, x) 7→ χ(p)χ(x), and we obtain

I(F ) = lim
ε→0

(2π)−n/2

∫

❘n

dx χ̃(x)χ(ε2x)F (0, εx) .

To show that this limit coincides with F (0), let Q be a defining system of seminorms on V , with order
m and type −1 < ρ ≤ 1, such that F ∈ Sm,ρ(❘2n, V ). For any q ∈ Q, we have the estimate

q

(∫

❘n

dx χ̃(x)χ(ε2x)F (0, εx)−
∫

❘n

dx χ̃(x)F (0)

)

≤
∫

❘n

dx |χ̃(x)| q
(

χ(ε2x)F (0, εx)− F (0)
)

.

As the Fourier transform of a smooth, compactly supported function, χ̃ is an element of S (❘n,❈),
and since F ∈ Sm,ρ(❘2n, V ), and χ is bounded, we easily find a scalar integrable function g such that
|χ̃(x)| q

(

χ(ε2x)F (εx)− F (0)
)

≤ g(x) for all ε ≤ 1. Hence the limit ε → 0 of the right hand side of
the above estimate can be evaluated by dominated convergence, and since χ(0) = 1, this limit is zero.
As q was arbitrary, we have in the topology of V

I(F ) = lim
ε→0

(2π)−n/2

∫

❘n

dx χ̃(x)χ(ε2x)F (0, εx) = (2π)−n/2

∫

❘n

dx χ̃(x)F (0) .
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But in view of our normalization of the inner product 〈 · , · 〉, the inverse Fourier transform gives
(2π)−n/2

∫

dx χ̃(x) = χ(0) = 1. So we arrive at the claimed identity I(F ) = χ(0)F (0) = F (0). The
statement about constant symbols follows by choosing F constant. �

As the last property of oscillatory integrals needed in our applications, we discuss a Fubini type
theorem for multiple oscillatory integrals. To this end, we consider symbols F ∈ S(❘2n1 ⊕❘2n2 , V )
depending on two pairs of variables (p1, x1), (p2, x2), with pj , xj ∈ ❘nj , j = 1, 2. Our discussion of
multiple oscillatory integrals is greatly facilitated by Proposition 2.28, stating that for F ∈ S(❘2n1 ⊕
❘2n2 , V ), the maps

F1 : ❘
2n1 −→ S(❘2n2 , V ) and F2 : ❘

2n2 −→ S(❘2n1 , V ), (3.25)

given by

F1(p1, x1) : (p2, x2) 7→ F (p1, x1; p2, x2) and F2(p2, x2) : (p1, x1) 7→ F (p1, x1; p2, x2),

respectively, are symbols in their own right.
Subsequently we have to distinguish different kinds of oscillatory integrals. On ❘2n1 ⊕❘2n2 we

use the induced pairing

〈p1 ⊕ p2, x1 ⊕ x2〉 = 〈p1, x1〉+ 〈p2, x2〉 . (3.26)

Hence the oscillatory integrals over symbols F ∈ S(❘2n1 ⊕❘2n2 , V ) will be carried out with respect
to the oscillating factor ei〈p1,x1〉ei〈p2,x2〉, and denoted by I as before. On the other hand, oscillatory
integrals over the symbols (3.25) which are defined on ❘2n1 (respectively ❘2n2), and take values in
some other symbol space Sm,ρ(❘2n2 , V ) (respectively Sm,ρ(❘2n1 , V )), will be carried out with respect
to the oscillating factors ei〈p1,x1〉 (respectively ei〈p2,x2〉), and denoted Î1 (respectively Î2). This way,
we get the following version of Fubini’s Theorem for oscillatory integrals.

Proposition 3.10 (Fubini) Let V be a sequentially complete locally convex space. For any F ∈
S(❘2n1 ⊕❘2n2 , V ), we have Î1(F1) ∈ S(❘2n2 , V ), Î2(F2) ∈ S(❘2n1 , V ), with

I2(Î1(F1)) = I1(Î2(F2)) = I(F ) . (3.27)

Proof: Let Q be a defining system of seminorms for V , and m, −1 < ρ ≤ 1 an order and a type for Q
such that F ∈ Sm,ρ(❘2n1⊕❘2n2 , V ). According to Proposition 2.28, F1 ∈ Sm̂,ρ̂(❘2n1 , Sm,ρ(❘2n2 , V )),
F2 ∈ Sm̂,ρ̂(❘2n2 , Sm,ρ(❘2n1 , V )) with the order m̂ and type ρ̂ defined in (2.60). Note that since −1 <
ρ̂ ≤ 1, the oscillatory integrals Î1(F1) ∈ Sm,ρ(❘2n2 , V ) ⊂ S(❘2n2 , V ) and Î2(F2) ∈ Sm,ρ(❘2n1 , V ) ⊂
S(❘2n1 , V ) exist. Hence all integrals in (3.27) are well-defined. To show that they coincide, we can
argue with the usual continuity and approximation techniques: for compactly supported symbols the
integrals coincide by the Fubini theorem for Riemann integrals. Then the continuity statements of
Proposition 2.28 and Theorem 3.2 give the equality for all symbols. �

4 Rieffel deformations for polynomially bounded ❘n-actions

4.1 Deformations of algebras and modules

We now apply the symbol calculus developed so far to extend Rieffel’s deformation of Fréchet algebras
with isometric ❘n-actions [27] to a more general setting. As before, we will consider functions taking
values in locally convex sequentially complete vector spaces V . We will in this chapter always assume
a filtrating defining system Q of seminorms for V . The symbols we are interested in will be generated
with the help of suitable ❘n-actions, and we introduce some standard notation first.
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For an ❘n-action α : ❘n × V −→ V , we consider the functions

α(v) : ❘n −→ V, x 7→ αx(v) (4.1)

for v ∈ V . The action will be called strongly smooth if α(v) ∈ C∞(❘n, V ) for all v ∈ V . Its
derivatives at x = 0 are denoted by

Xµ : V −→ V , Xµv := ∂µxαx(v)|x=0 , (4.2)

where µ ∈ ◆n
0 as usual. All actions will be assumed to act by linear maps αx : V −→ V . If α is

strongly smooth and the αx are continuous for all x ∈ ❘n, then one has ∂µxαx(v) = Xµαxv = αxX
µv.

Definition 4.1 Let V be a sequentially complete locally convex space with defining system of semi-
norms Q, and let m be an order for Q. A smooth polynomially bounded ❘n-action (of order m) is
an action α : ❘n × V −→ V such that

i.) α(v) ∈ Sm,0(❘n, V ) for each v ∈ V ,

ii.) V ∋ v 7→ α(v) ∈ Sm,0(❘n, V ) is continuous, i.e. for any q ∈ Q, µ ∈ ◆n
0 , there exists q′ ∈ Q,

such that

‖α(v)‖m,0
q,µ ≤ q′(v) (4.3)

for all v ∈ V .

Smooth polynomially bounded actions can equivalently be characterized as follows.

Lemma 4.2 Let α be a strongly smooth action on V . Then α is polynomially bounded of order m in
the sense of Definition 4.1 if and only if the following two conditions are satisfied:

i.) For each q ∈ Q, there exists q′ ∈ Q such that

q(αx(v)) ≤ (1 + ‖x‖2) 1
2
m(q) q′(v) (4.4)

for all x ∈ ❘n, v ∈ V .

ii.) The derivatives Xµ : V −→ V are continuous.

If V is a Fréchet space and Q is chosen countable then α is polynomially bounded of order m if and
only if just the first condition is satisfied.

Proof: Let α be a smooth polynomially bounded action of order m. Then its defining properties
imply that for any q ∈ Q there exists q′ ∈ Q such that for all x ∈ ❘n, v ∈ V ,

q(αx(v)) ≤ (1 + ‖x‖2) 1
2
m(q)‖α(v)‖m,0

q,0 ≤ (1 + ‖x‖2) 1
2
m(q)q′(v) ,

i.e. (4.4) holds. Furthermore, given q ∈ Q, µ ∈ ◆n
0 , there exists q′ ∈ Q such that

q(Xµv) = q(∂µxαx(v)|x=0) ≤ sup
x∈❘n

q(∂µxαx(v))

(1 + ‖x‖2) 1
2
m(q)

= ‖α(v)‖m,0
q,µ ≤ q′(v)

for all v ∈ V . Hence Xµ : V −→ V is continuous. Now assume that α is a strongly smooth action
satisfying the two conditions listed in this lemma. Then to any q ∈ Q, µ ∈ ◆n

0 , there exist q′, q′′ ∈ Q

such that

q(∂µxαx(v)) = q(αx(X
µv)) ≤ (1 + ‖x‖2) 1

2
m(q)q′(Xµv) ≤ (1 + ‖x‖2) 1

2
m(q)q′′(v)
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for all x ∈ ❘n, v ∈ V . This shows both, α(v) ∈ Sm,0(V ), and the continuity of v 7→ α(v). Hence
Definition 4.1 and the two conditions in this lemma are equivalent. We now consider the special but
important case that V is a Fréchet space. Thus assume that Q is countable. When equipped with the
family of seminorms Q∞ := {qµ := q◦Xµ | q ∈ Q, µ ∈ ◆n

0}, this space will be called V∞. Also V∞ is a
Fréchet space. As linear spaces, V = V∞, and clearly, the identity id : V∞ −→ V is linear, continuous
and bijective. Hence we can apply the open mapping theorem for Fréchet spaces to conclude that
id : V −→ V∞ is continuous as well, i.e. V = V∞ as Fréchet spaces. But this is equivalent to the
derivatives Xµ : V −→ V being continuous, i.e. condition ii.) is automatically satisfied. �

Remark 4.3 i.) A polynomially bounded action α acts by continuous maps αx, as can be read off
from (4.4).

ii.) The arguments in the above lemma also explain why we consider only actions of type ρ = 0
here. For if α(v) ∈ Sm,ρ(V ) and the derivatives Xµ are continuous, we can argue as above to
show that α(v) is actually of type 0.

In Rieffel’s original approach, V is taken to be a Fréchet algebra with a strongly continuous
❘n-action α by automorphisms αx which are isometric for all q ∈ Q. On the subspace V∞ of all
smooth vectors for α, the α(v) are then symbols of order 0 and type 0, see [27]. Using the symbol
calculus of the preceding sections, we will now extend many of the results of Rieffel to the case where
α(v) ∈ Sm,0(❘n, V ) for an arbitrary order m. In Section 5, we will then provide various examples of
smooth polynomially bounded ❘n-actions.

In comparison to [27], we will take here also a somewhat more general point of view concerning
the algebraic structure, which involves three sequentially complete locally convex spaces V,W,U with
filtrating defining systems of seminorms QV ,QW ,QU . Each of these spaces is equipped with a smooth
polynomially bounded❘n-action αV , αW , αU of order mV , mW , mU , respectively, and the derivatives
with respect to these actions will be denoted Xµ

U , Xµ
V , Xµ

W .
In this setting, we consider a bilinear map

µ : V ×W −→ U (4.5)

which is required to be covariant in the sense that

αU
x µ(v, w) = µ

(

αV
x v, α

W
x w

)

, v ∈ V, w ∈W, x ∈ ❘n . (4.6)

In many applications µ will be jointly continuous, but in some cases we also need to work with a
bilinear map µ which is only separately continuous. In the following we will therefore always only
assume that µ is separately continuous, and explicitly point out when we consider the special case
that µ is jointly continuous.

This setting includes the case where A := V =W = U is an algebra with (separately) continuous
product µ, and α := αV = αW = αU acts by automorphisms. But the more general formulation
allows, for example, to also consider covariant modules, where A := V is taken to be an algebra
and E := W = U is a left A-module with a smooth ❘n-action β := αW = αU , and (separately)
continuous module structure µ : A × E −→ E satisfying (4.6). This setup will therefore be suitable
for the discussion of deformations of algebras and their covariant modules. In the following, we will
always assume without further mentioning that spaces V,W,U , actions αV , αW , αU , and a bilinear
map µ with the specified properties are given.

Following Rieffel, we now consider a real (n × n)-matrix θ as our deformation parameter, and
introduce the functions, v ∈ V , w ∈W ,

µθvw : ❘n ×❘n −→ U, µθvw(p, x) := µ
(

αV
θpv, α

W
x w

)

. (4.7)
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As αV , αW are smooth and polynomially bounded, it follows from Proposition 2.5, ii.), that these
functions are symbols in S(❘2n, U) if µ is jointly continuous. If µ is however only separately contin-
uous, more work is needed to arrive at this conclusion. We begin with the following lemma.

Lemma 4.4 Let α be a smooth polynomially bounded action on V . Moreover, let F ∈ C∞(❘n, V ).
Then

Fα : ❘n ×❘n −→ V , Fα(p, x) := αp(F (x))

is smooth.

Proof: First we show that Fα is continuous. To this end, we make use of the differentiability of α,
which implies that for any q ∈ Q, there exists q′ ∈ Q and a continuous function f : ❘n ×❘n −→ ❘+

such that for all p, p′ ∈ ❘n, v ∈ V

q(αp(v)− αp′(v)) ≤ ‖p− p′‖ f(p, p′) q′(v) .

The proof of this estimate can be carried out along the same lines as in Lemma 2.24. With this bound
we find, p, p′, x, x′ ∈ ❘n,

q
(

Fα(p, x)− Fα(p′, x′)
)

≤ q(αp(F (x))− αp′(F (x))) + q(αp′(F (x))− αp′(F (x
′)))

≤ ‖p− p′‖ f(p, p′) q′(F (x)) + (1 + ‖p′‖2) 1
2
m(q)q′′(F (x)− F (x′)) ,

with some q′, q′′ ∈ Q. The continuity of Fα is then clear. Furthermore, (p, x) 7→ Fα(p, x) is separately
smooth in p and x (in x because the αp are linear and continuous), with partial derivatives

∂νpF
α(p, x) = αpX

νF (x) , ∂νxF
α(p, x) = αp∂

ν
xF (x) .

According to Lemma 4.2, the derivatives Xν : V −→ V are continuous. Thus x 7→ XνF (x) is smooth,
and clearly, x 7→ ∂νxF (x) is smooth as well. Hence the partial derivatives of Fα are of the same form
as Fα, and thus in particular continuous. This implies that Fα is smooth. �

Lemma 4.5 Let v ∈ V , w ∈W and consider Fvw, Gvw : ❘n ×❘n −→ U defined by

Fvw(p, x) := αU
p

(

µ
(

v, αW
x (w)

))

and Gvw(p, x) := αU
x

(

µ
(

αV
p (v), w

))

. (4.8)

Then there exists an order m̂ on QU such that Fvw, Gvw ∈ Sm̂,0(❘2n, U), and for fixed v0 ∈ V ,
w0 ∈W , the mappings

W ∋ w 7→ Fv0w ∈ Sm̂,0(❘2n, U) and V ∋ v 7→ Gvw0 ∈ Sm̂,0(❘2n, U)

are linear and continuous.

Proof: We will only prove the statements about Fvw as the discussion of Gvw is completely analo-
gous. In view of the separate continuity of µ, the map w 7→ µ(v, w) is continuous for fixed v, and as
αW is a smooth action, we see that Fvw is of the form considered in the previous lemma and hence
smooth. Its partial derivatives are ∂νp∂

κ
xFvw(p, x) = αU

p

(

Xν
Uµ
(

v, αW
x (Xκ

Ww)
))

, where ν, κ ∈ ◆n
0 . To

estimate these derivatives, let q ∈ QU . Then there exists q′ ∈ QU such that

q(∂νp∂
κ
xFvw(p, x)) ≤ (1 + ‖p‖2) 1

2
m

U (q)q′(Xν
Uµ(v, α

W
x X

κ
Ww)) .
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As w 7→ µ(v, w) is continuous and U = U∞, W = W∞ as locally convex spaces, we now find
q′′, q′′′, q′′′′ ∈ QW , σ ∈ ◆n

0 , and constants c, Cv > 0 such that

q(∂νp∂
κ
xFvw(p, x)) ≤ (1 + ‖p‖2) 1

2
m

U (q)Cv q
′′(Xσ

WX
κ
Wα

W
x w)

≤ Cv (1 + ‖p‖2) 1
2
m

U (q)(1 + ‖x‖2) 1
2
m

W (q′′)q′′′(Xσ
WX

κ
Ww)

≤ Cv c (1 + ‖p‖2 + ‖x‖2) 1
2
(|mU (q)|+|mW (q′′)|)q′′′′(w)

for all p, x ∈ ❘n, w ∈ W . Here c depends on κ, ν, q, but not on v, w, p, x. This estimate shows that
Fvw is a symbol in Sm̂,0(❘2n, U), with m̂(q) := |mU (q)|+ |mW (q′′)| (cf. Proposition 2.5). Moreover,

‖Fvw‖m̂,0
q,ν⊕κ ≤ Cv c q

′′′′(w), that is, w 7→ Fvw is continuous for fixed v. �

After these preparations we can derive the following basic statement about the deformation of µ.

Proposition 4.6 Let v ∈ V , w ∈W , and θ ∈ ❘n×n.

i.) The functions µθvw (4.7) are symbols in S(❘2n, U).

ii.) The maps defined by their oscillatory integrals

V ×W ∋ (v, w) 7→ µθ(v, w) := IU (µ
θ
vw) ∈ U (4.9)

are bilinear and (separately) continuous if µ is (separately) continuous.

iii.) µθ satisfies the covariance property (4.6).

Proof: Let v ∈ V , w ∈W and θ be fixed. Thanks to the covariance of µ (4.6), we have

µθvw(p, x) = Fvw(θp, x− θp) = Gvw(x, θp− x) .

As Fvw, Gvw ∈ S(❘2n, U), an application of Lemma 3.7 shows µθvw ∈ S(❘2n, U) and hence the first
part. By the preceding lemma, we see that

V ×W ∋ (v, w) 7→ µθvw ∈ Sm̂,0(❘2n, U)

is separately continuous for some order m̂ on QU . Hence the oscillatory integral IU (µ
θ
vw) exists

and depends separately continuous on v, w. The bilinearity of µθ is clear. In case µ is jointly
continuous, note that by assumption, αV

θ (v) ∈ Sm
V ,0(❘n, V ) and αW (w) ∈ Sm

W ,0(❘n,W ) with orders
mV ,mW for QV , QW . The maps v 7→ αV

θ (v) and w 7→ αW (w) are continuous from V (respectively

W ) to Sm
V ,0(❘n, V ) (respectively Sm

W ,0(❘n,W )) by Definition 4.1, ii.). Furthermore, according

to Proposition 2.5, ii.), αV
θ (v), α

W (w) 7→ µ(αV
θ (v), α

W (w)) maps Sm
V ,0(❘n, V ) × Sm

W ,0(❘n,W )
continuously into Sm

′,0(❘2n, U), with some order m′ for QU . Finally, the oscillatory integral maps
µθvw 7→ µθ(v, w) continuously from Sm

′,0(❘2n, U) to U by Theorem 3.2. As a composition of these
continuous maps, µθ : V ×W → U is therefore continuous, too. This completes the second part. To
check the covariance property (4.6), note that since αU

x is continuous for each x ∈ ❘n by Remark 4.3
i.), it can be pulled inside the oscillatory integral defining µθ according to Lemma 3.5. Since (4.6)
holds for µ, and αV , αW are ❘n-actions, it follows that µθ satisfies (4.6) as well:

αU
x µθ(v, w) = (2π)−n

∫

❘2n

dp dy ei〈p,y〉 αU
x µ
(

αV
θq(v), α

W
y (w)

)

= (2π)−n

∫

❘2n

dp dy ei〈p,y〉 µ
(

αV
θq+x(v), α

W
y+x(w)

)

= µθ
(

αV
x (v), α

W
x (w)

)

. �
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Depending on the context, µθ from (4.9) will be referred to as the deformed product, deformed
module structure, or just deformed bilinear map.

In the next proposition we justify these names by demonstrating the most basic feature of a
deformation, namely that it reduces to the identity for vanishing deformation parameter.

Proposition 4.7 Let θ, θ′ ∈ ❘n×n.

i.) For θ = 0, we have µ0 = µ.

ii.) (µθ)θ′ = µθ+θ′ .

Proof: Let v ∈ V,w ∈ W . For θ = 0, the symbol (p, x) 7→ µ(αV
θpv, α

W
x w) (4.7) is independent

of p. Hence Proposition 3.9 applies, and we have µ0(v, w) = µθ(α
V
0 (v), α

W
0 (w)) = µ(v, w), showing

the first part. For the second part, by Proposition 4.6, µθ has the same properties as µ, so (µθ)θ′

is well-defined. Using successively the definition of µθ, the substitution x → x − x′ according to
Lemma 3.7 and Fubini’s theorem in form of Proposition 3.10, we compute

(µθ)θ′(v, w)

= (2π)−n

∫

❘2n

dp′ dx′ ei〈p
′,x′〉 µθ

(

αV
θ′p′(v), α

W
x′ (w)

)

= (2π)−n

∫

❘2n

dp′ dx′ ei〈p
′,x′〉

(

(2π)−n

∫

❘2n

dp dx ei〈p,x〉 µ
(

αV
θp+θ′p′(v), α

W
x+x′(w)

)

)

= (2π)−n

∫

❘2n

dp′ dx′ ei〈p
′,x′〉

(

(2π)−n

∫

❘2n

dp dx ei〈p,x〉e−i〈p,x′〉 µ
(

αV
θp+θ′p′(v), α

W
x (w)

)

)

= (2π)−n

∫

❘2n

dp dx ei〈p,x〉
(

(2π)−n

∫

❘2n

dp′ dx′ ei〈p
′,x′〉 e−i〈p,x′〉µ

(

αV
θ′p′+θp(v), α

W
x (w)

)

)

.

Making use of Lemma 3.7 and Proposition 3.9, we see that the inner oscillatory integral has the value
µ(αV

(θ+θ′)p(v), α
W
x (w)). Plugging this result into the above computation gives the desired answer

(µθ)θ′(v, w) = µθ+θ′(v, w) by definition of µθ. �

The following lemma shows two further invariance properties of the deformation which are helpful
in many situations.

Lemma 4.8 i.) Let v ∈ V and w ∈ W . If either v is αV -invariant or w is αW -invariant, then
µθ(v, w) = µ(v, w).

ii.) Let Y be another sequentially complete locally convex vector space, and T : U −→ Y linear and
continuous. If θ ∈ ❘n×n is skew-symmetric and T is αU -invariant, i.e. T ◦ αU

x = T for all
x ∈ ❘n, then

Tµθ(v, w) = Tµ(v, w) . (4.10)

Proof: For part i.), note that under the specified circumstances, (p, x) 7→ µ(αV
θp(v), α

W
x (w)) de-

pends only on one of its two variables p, x. Hence Proposition 3.9 applies, and we have µθ(v, w) =
µ(αV

0 (v), α
W
0 (w)) = µ(v, w). For part ii.), let v ∈ V , w ∈W . Using the continuity and linearity of T

as in Lemma 3.5, as well as the covariance (4.6) and the invariance of T gives

(2π)n Tµθ(v, w) =

∫

❘2n

dp dx ei〈p,x〉 Tµ
(

αV
θp(v), α

W
x (w)

)

=

∫

❘2n

dp dx ei〈p,x〉 Tµ
(

αV
θp−x(v), w

)

.
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Now we use Lemma 3.7 to carry out the substitution x→ x+θp. As θ is skew-symmetric, 〈p, θp〉 = 0,
and we get

Tµθ(v, w) = (2π)−n

∫

❘2n

dp dx ei〈p,x〉 Tµ
(

αV
θp(v), w

)

.

This is again an oscillatory integral over a symbol which is constant in one variable, and by Proposi-
tion 3.9, we arrive at Tµθ(v, w) = Tµ(αV

0 (v), w) = Tµ(v, w). �

We now consider the deformation of algebras and modules. Let A := V be an algebra with
separately continuous product µ : A×A −→ A, and assume that the (smooth, polynomially bounded)
❘n-action α acts by automorphisms. Furthermore, let E :=W = U be a left A-module with separately
continuous module map µ̃ : A×E −→ E and a (smooth, polynomially bounded) ❘n-action β satisfying
(4.6) with V = A, W = U = E, αV = α, and αW = αU = β. In this situation, we can deform the
product µ according to

µθ(a, b) := a×θ b := (2π)−n

∫

❘2n

dp dx ei〈p,x〉 µ̃(αθp(a), αx(b)) , a, b ∈ A, (4.11)

and the module structure µ̃ according to

µ̃θ(a, ψ) := aθψ := (2π)−n

∫

❘2n

dp dx ei〈p,x〉 µ̃(αθp(a), βx(ψ)) , a ∈ A, ψ ∈ E , (4.12)

with the same deformation parameter θ ∈ ❘n×n. We will write Aθ for the algebra given by the linear
space A and the product ×θ.

Theorem 4.9 Let A be a sequentially complete locally convex algebra with separately continuous
product µ, and let E be a sequentially complete locally convex left A-module with separately continuous
module structure µ̃. Let α be a smooth polynomially bounded ❘n-action by automorphisms on A, and
β a smooth polynomially bounded ❘n-action on E such that

βx(µ̃(a, ψ)) = µ̃(αx(a), βx(ψ)) , a ∈ A, ψ ∈ E, x ∈ ❘n . (4.13)

i.) In this case (E, µ̃θ) is a left Aθ-module, i.e.

(a×θ b)θψ = aθbθψ , a, b ∈ A, ψ ∈ E . (4.14)

ii.) If the product µ in A is associative, then so is the deformed product µθ (4.11).

Proof: Let a, b ∈ A, ψ ∈ E, and θ ∈ ❘n×n. By applying repeatedly the arguments from Lemma 4.5,
one sees that

❘
4n ∋ (p, x, p′, x′) 7−→ µ̃

(

αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ))
)

is a symbol in S(❘4n,E). Its oscillatory integral can be written with the help of Fubini’s theorem,
the module property µ̃(µ(a, b), ψ) = µ̃(a, µ̃(b, ψ)), the separate continuity of µ̃, and (4.6) as

(2π)−2n

∫

❘4n

dp dx dp′ dx′ ei〈p,x〉+i〈p′,x′〉 µ̃
(

αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ))
)

= (2π)−2n

∫

❘2n

dp dx ei〈p,x〉
(∫

❘2n

dp′ dx′ ei〈p
′,x′〉 µ̃

(

αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ))
)

)
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= (2π)−2n

∫

❘2n

dp dx ei〈p,x〉
(∫

❘2n

dp′ dx′ ei〈p
′,x′〉 µ̃

(

µ(αθp′+θp(a), αθp+x′(b)), βx(ψ)
)

)

= (2π)−2n

∫

❘2n

dp dx ei〈p,x〉 µ̃

(

αθp

∫

❘2n

dp′ dx′ ei〈p
′,x′〉 µ(αθp′(a), αx′(b)), βx(ψ)

)

= (2π)−n

∫

❘2n

dp dx ei〈p,x〉 µ̃ (αθp(µθ(a, b)), βx(ψ))

= µ̃θ(µθ(a, b), ψ) .

On the other hand, we can use Lemma 3.7 to carry out the substitutions p′ → p′ − p and x→ x+ x′

in the first oscillatory integral. This gives

µ̃θ(µθ(a, b), ψ)

= (2π)−2n

∫

❘4n

dp dx dp′ dx′ ei〈p,x〉+i〈p′,x′〉 µ̃
(

αθp′+θp(a), µ̃(αθp+x′(b), βx(ψ))
)

= (2π)−2n

∫

❘4n

dp dx dp′ dx′ ei〈p,x+x′〉+i〈p′−p,x′〉 µ̃
(

αθp′(a), µ̃(αθp+x′(b), βx+x′(ψ))
)

.

Notice that the exponential appearing here equals ei〈p,x〉+i〈p′,x′〉 because the term 〈p, x′〉 drops out. So
we can again use the covariance and separate continuity of µ̃, and split the double oscillatory integral
into two single oscillatory integrals, to arrive at the desired result,

µ̃θ(µθ(a, b), ψ)

= (2π)−2n

∫

❘4n

dp dx dp′ dx′ ei〈p,x〉+i〈p′,x′〉 µ̃
(

αθp′(a), βx′ (µ̃(αθp(b), βx(ψ)))
)

= (2π)−2n

∫

❘2n

dp′ dx′ ei〈p
′,x′〉 µ̃

(

αθp′(a), βx′

(∫

❘2n

dp dx ei〈p,x〉µ̃(αθp(b), βx(ψ))

))

= (2π)−n

∫

❘2n

dp′ dx′ ei〈p
′,x′〉 µ̃

(

αθp′(a), βx′ (µ̃θ(b, ψ))
)

= µ̃θ(a, µ̃θ(b, ψ)) .

Rewriting µθ and µ̃θ according to (4.11) and (4.12) yields (4.14). The second part follows by consid-
ering the special case E = A, µ̃ = µ, β = α. �

For isometric actions on Fréchet algebras, the associativity of the deformed product is known from
Rieffel’s work [27]. The deformation of the module structure can also be viewed as an alternative
deformation of an algebra A represented on E, which changes the elements a ∈ A according to a 7→ aθ,
but keeps the product unchanged. This deformation has been introduced under the name of warped
convolution in the context of C∗-algebras [9, 10], it is equivalent to the deformation of the product
according to (4.14).

Sticking to the setting of an algebra A with product µ and a left A-module with module structure
µ̃, and actions α, β satisfying the assumptions of Theorem 4.9, we next show how identities and star
involutions behave under the deformation.

Proposition 4.10 Let A be a locally convex sequentially complete algebra with separately continuous
associative product, and α : ❘n × A −→ A a smooth, polynomially bounded ❘n-action by automor-
phisms.
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i.) If A has an identity 1, this is also an identity for the deformed product (4.11).

ii.) If A is a ∗-algebra with continuous ∗-involution and θ is skew-symmetric with respect to the inner
product used in the oscillatory integrals defining the deformed product, then a 7→ a∗ is also a star
involution for the deformed product, i.e.,

(a×θ b)
∗ = b∗ ×θ a

∗ , a, b ∈ A . (4.15)

Proof: The first part is clear: since α acts by automorphisms, we have αx(1) = 1 for all x ∈ ❘n.
Hence, by Lemma 4.8, i.), we have a ×θ 1 = a1 = a and 1 ×θ a = 1a = a for any a ∈ A. For the
second part, we note that as the involution a 7→ a∗ is antilinear and continuous, we can use (3.20)
and Lemma 3.7 to compute for a, b ∈ A

(a×θ b)
∗ = (2π)−n

∫

❘2n

dp dx ei〈p,x〉 (α−θpaαxb)
∗

= (2π)−n

∫

❘2n

dp dx ei〈p,x〉 αxb
∗ α−θpa

∗

= (2π)−n

∫

❘2n

dp dx ei〈p,x〉 α−θT xb
∗ αpa

∗

= b∗ ×−θT a
∗ .

In case θ is skew-symmetric, i.e., θT = −θ, (4.15) follows. �

Again, these statements are well-known in Rieffel’s setting [27]. Analogous to the preceding propo-
sition, there exist two closely related properties in the module deformation setting of Theorem 4.9:
First, if a vector ψ ∈ E is β-invariant, then we have aθψ = aψ. This is again a straightforward
consequence of Lemma 4.8, i.).

Second, in the case of a covariant Hilbert space representation of a ∗-algebra A, we have a com-
patibility between the ∗-operation and the deformation similar to Proposition 4.10, ii.). To describe
this, consider a locally convex sequentially complete ∗-algebra A with a smooth polynomially bounded
❘n-action αA by ∗-automorphisms. Let furthermore H be a Hilbert space carrying a strongly con-
tinuous unitary representation u of ❘n, and let E ⊂ H denote the subspace of smooth vectors for u.
We consider a covariant representation of A, i.e. a ∗-representation π of A by (closable) operators
defined on E such that π(αA

x (a))ψ = u(x)π(a)u(x)−1ψ for all a ∈ A, x ∈ ❘n, ψ ∈ E.
Then we can apply our deformation formula to the module map µ(a, ψ) := π(a)ψ. In case

of a skew-symmetric deformation parameter θ, the map πθ defined by the deformed module map,
πθ(a)ψ := µθ(a, ψ), then gives a ∗-representation of Aθ on E, i.e.

πθ(a
∗)ψ = π(a)∗ψ , a ∈ A, ψ ∈ E . (4.16)

In a C∗-framework with order 0 actions, this fact has been established in [9, Lemma 2.2]. Since the
proof is essentially the same in the present situation, we refrain from giving the details here.

4.2 Deformations of states

In this subsection we consider a ∗-algebra and investigate the positivity aspects of the deformation
presented in the preceding section. This analysis follows closely [24], where complete positivity of
Rieffel’s original deformation was established.

So let A be a locally convex sequentially complete ∗-algebra with separately continuous, asso-
ciative product µ(a, b) = ab, and let α be a smooth polynomially bounded ❘2n-action on A by
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∗-automorphisms. Furthermore, let θ be an invertible (2n × 2n)-matrix θ which is skew-symmetric
w.r.t. the standard inner product 〈·, ·〉 on ❘2n. By Proposition 4.10, ii.), we then know that Aθ, that
is the linear space A equipped with the deformed product µθ(a, b) = a ×θ b, is also an associative
∗-algebra.

However, the cones A+ ⊂ A and A
+
θ ⊂ Aθ of positive elements do in general not coincide, as they

are spanned by different squares of the form a∗a respectively a∗ ×θ a. As a consequence, a state on
A, i.e. a positive linear functional ω : A → ❈, will in general only be a linear functional on Aθ since
ω(a∗ ×θ a) might be negative.

Following [24], we will now construct an explicit map Pα
G : A → Aθ such that Pα

G(A
+) ⊂ A

+
θ ,

which can then be used to deform states on A to states on Aθ. As a preparation, we need to introduce
certain vector-valued Gauß integrals. To this end, let V be a locally convex sequentially complete
vector space with defining filtrating system Q of seminorms, and denote by 〈·, ·〉 the standard positive
definite inner product on ❘2n. Given a positive definite (2n × 2n)-matrix G > 0, we consider the
corresponding Gauß integral P 0

G : C∞
0 (❘2n, V ) −→ V defined by

P 0
G(F ) :=

√
detG

(2π)n

∫

❘2n

dy e−
1
2
〈y,Gy〉 F (y). (4.17)

By a straightforward estimate, we find for any q ∈ Q and any order m on Q a constant c > 0 such

that q(P 0
G(F )) ≤ c ‖F‖m(q),ρ(q)

q,0 holds for any F ∈ C∞
0 (❘2n, V ) and any type ρ on Q. Thus we can

extend P 0
G to all symbol spaces Sm,ρ(❘2n, V ), ρ ≤ 1, similar to the construction of the oscillatory

integral. This extension gives a continuous linear map, which will be written as

PG : Sm,ρ(❘2n, V ) → V , PG(F ) =

√
detG

(2π)n

∫

dy e−
1
2
〈y,Gy〉 F (y). (4.18)

After these remarks, we switch again to the context of a ∗-algebra A, and consider

Pα
G : A → A, Pα

G(a) := PG(α(a)). (4.19)

It is clear that Pα
G is a linear and continuous map, since both α : A → Sm,0(❘2n,A) (see Definition 4.1,

ii.)) and PG : Sm,0(❘2n,A) → A have these properties.
For Pα

G to respect positivity, we need to choose G in a manner compatible with θ, i.e. such that
G = θ−1J with a complex structure J on❘2n. Recall that given an antisymmetric and non-degenerate
θ, we can always find a complex structure J such that G := θ−1J is positive definite. Furthermore,
it is easily checked that this compatibility is equivalent to compatibility of G̃ := −(θGθ)−1 > 0 with
θ. Hence, in this situation,

(p, q) := 〈p, (G̃+ iθ−1)q〉 (4.20)

is a scalar product on the complex vector space (❘2n, J). Picking a complex orthonormal basis
{e1, . . . , en}, we introduce the complex coordinates z(p)k := 〈p, G̃ek〉 + i

〈

p, θ−1ek
〉

. The positivity
aspects of Pα

G can then be summarized as follows.

Proposition 4.11 Let G = θ−1J be compatible with θ−1, and let z(p)k, k = 1, . . . , n, denote the
complex coordinates of (❘2n, J) introduced above. For any a ∈ A and ν ∈ ◆n

0 , let

aν :=
1

(2π)n| det θ|1/2
∫

dp z(p)
ν
e−

1
2
‖z(p)‖2αp(a).

Then

Pα
G(a

∗ ×θ a) =
∑

|ν|≥0

1

|ν|!a
∗
νaν , (4.21)

with the series converging in the topology of A.
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Proof: To compute Pα
G(a

∗ ×θ a), a ∈ A, we first use that α acts by continuous ∗-automorphisms to
write this expression as

Pα
G(a

∗ ×θ a) =

√
detG

| det θ|(2π)3n
∫

dy e−
1
2
〈y,Gy〉

∫

dp dx ei〈θ−1p,x〉 αp+y(a)
∗αx+y(a).

Making use of Lemma 3.7, we can carry out the linear substitutions x→ x− y and p→ p− y. Then
we can pull the integral over y inside by the continuity of Pα

G. Taking into account the skew-symmetry
of θ, the inner integral can be evaluated with the well-known formula for the Fourier transform of a
Gaussian. Thus we arrive at the oscillatory integral

Pα
G(a

∗ ×θ a) =
1

(2π)2n| det θ|

∫

dp dx ei〈θ−1p,x〉 e〈p,G̃x〉 e− 1
2〈p,G̃p〉αp(a)

∗ e−
1
2〈x,G̃x〉αx(a),

with G̃ := −(θGθ)−1 > 0. Making use of the coordinates z(p)k introduced earlier, it is straightforward
to see that

〈p, G̃p〉 =
n
∑

k=1

|z(p)k|2 = ‖z(p)‖2 , 〈x, (G̃+ iθ−1)p〉 =
n
∑

k=1

z(x)kz(p)k = z(x)z(p) .

We now pick some χ ∈ C∞
0 (❘2n×❘2n,❘) which is identically 1 on a neighbourhood of the origin and

use Proposition 3.4 to rewrite the above oscillatory integral, with the representations of the bilinear
forms in the complex coordinates z inserted. This yields

(2π)2n| det θ|Pα
G(a

∗ ×θ a) = lim
ε→0

∫

dp dxχ(εp, εx)ez(x)z(p) e−
1
2
‖z(p)‖2αp(a)

∗ e−
1
2
‖z(x)‖2αx(a)

= lim
ε→0

∫

dp dxχ(εp, εx)
∑

|ν|≥0

z(x)
ν
z(p)ν

|ν|! e−
1
2
‖z(p)‖2αp(a)

∗ e−
1
2
‖z(x)‖2αx(a) ,

where in the last line, multiindex notation has been used. By the same standard arguments as
in [24], we can exchange the sum over ν with the integral and the limit in ε. This gives the claimed
representation (4.21) of Pα

G(a
∗ ×θ a). �

A direct consequence of this construction is the following positivity statement.

Theorem 4.12 Let G be compatible with θ−1.

i.) For every positive continuous linear functional ω on A,

ωθ : Aθ → ❈, ωθ := ω ◦ Pα
G (4.22)

is positive and continuous. If A has a unit and ω is normalized, ω(1) = 1, also ωθ is normalized.

ii.) For every a ∈ A we have

Pα
G(a

∗ ×θ a) ∈ A
+ . (4.23)

Proof: By the above construction and the continuity and positivity of ω, we have

ωθ(a
∗ ×θ a) =

∑

|ν|≥0

ω(a∗νaν)

|ν|! ≥ 0

for any a ∈ Aθ. Hence ωθ is positive. For the normalization, note that PG was normalized in such
a way that Pα

G(a) = a for α-invariant a. Thus ωθ(1) = ω(1) = 1. The second statement is just a
reformulation of the first. �
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5 Examples and Applications

In this section we present a number of explicit examples of polynomially bounded ❘n-actions comply-
ing with the conditions in Definition 4.1. In particular, we show how target spaces with unbounded
orders appear naturally when studying compactly supported ❘n-actions.

5.1 The canonical ❘n-action on symbol spaces

The first example is the action studied in Section 2.3 on the symbol spaces.

Proposition 5.1 Let V be a sequentially complete locally convex space with a defining system of
seminorms Q, and let m, ρ be an order and a type for Q, with ρ ≥ 0. Then (αxF )(y) := F (x+ y) is
a smooth polynomially bounded ❘n-action on Sm,ρ(❘n, V ) of order m̂(‖ · ‖m,ρ

q,µ ) := |m(q) − ρ(q)|µ||
and type ρ̂(‖ · ‖m,ρ

q,µ ) := 0 where q ∈ Q, µ ∈ ◆n
0 , as defined in Definition 4.1. More precisely, for any

q ∈ Q, µ ∈ ◆n
0 , there exists Cq,µ > 0 such that

‖α(F )‖m̂,0
‖·‖m,ρ

q,µ ,ν
≤ Cq,µ‖F‖m,ρ

q,µ+ν (5.1)

for all F ∈ Sm,ρ(❘n, V ), ν ∈ ◆n
0 .

Proof: It has been shown in Proposition 2.23 that α is an ❘n-action on Sm,ρ(❘n, V ), and in
Proposition 2.26 that ❘n ∋ x 7→ αx(F ) ∈ Sm,ρ(❘n, V ) is smooth for each F ∈ Sm,ρ(❘n, V ) if ρ ≥ 0.
To derive the statements about the polynomial bounds, let q ∈ Q, µ, ν ∈ ◆n

0 , and F ∈ Sm,ρ(❘n, V )
with ρ ≥ 0. The derivatives ∂νxαx(F ) = αx(∂

ν
xF ), see (2.58), satisfy according to Lemma 2.21

‖∂νxαx(F )‖m,ρ
q,µ = ‖αx(∂

ν
xF )‖m,ρ

q,µ ≤ c(x) ‖∂νxF‖m,ρ
q,µ

with a positive scalar symbol c ∈ S|m(q)−ρ(q)|µ||,1(❘n,❘). Furthermore, we have by application of
Proposition 2.4 and Proposition 2.3, iv.)

‖∂νxF‖m,ρ
q,µ = ‖F‖m+ρ|ν|,ρ

q,µ+ν ≤ ‖F‖m,ρ
q,µ+ν

since ρ ≥ 0. With these two bounds, we arrive at

‖α(F )‖m̂,0
‖·‖m,ρ

q,µ ,ν
= sup

x∈❘n

‖∂νxαx(F )‖m,ρ
q,µ

(1 + ‖x‖2) 1
2
m̂

≤ sup
x∈❘n

c(x)

(1 + ‖x‖2) 1
2
|m(q)−ρ(q)|µ||

‖F‖m,ρ
q,µ+ν ,

which establishes (5.1) with the constant Cq,µ := ‖c‖|m(q)−ρ(q)|µ||,1
0 < ∞. Hence we have α(F ) ∈

Sm̂,0(❘n, Sm,ρ(❘n, V )) and F 7→ α(F ) is continuous, as required in Definition 4.1. �

By the same arguments, one checks that (αx(F ))(y) = F (x + y) gives a smooth polynomially
bounded ❘n-action on the vector valued Schwartz space S (❘n, V ) (Definition 2.17), topologized
by the seminorms qm,µ(·) := ‖ · ‖−m,0

q,µ , with q ∈ Q, m ∈ ◆0, µ ∈ ◆n
0 (2.45). Here the order is

m̂(qm,µ) = m, and again ρ̂(qm,µ) = 0.

Remark 5.2 Remarkably, in both examples the orders m̂ of the induced action is necessarily un-
bounded, even if we started with symbols of bounded order. Only in the particular case where
m(q) = 0 = ρ(q) we get again a bounded order m̂ = 0. This was the particular case of an isometric
action as discussed by Rieffel in [27].

36



If V = A is an algebra with continuous product, we can use the action α to deform the pointwise
product in Sm,ρ(❘n,A) as in (4.11), with some deformation parameter θ ∈ ❘n×n. As the evaluation
maps Smρ(❘n,A) ∋ F 7→ F (x) ∈ A are continuous, we have the explicit formula

(F ×α
θ G)(x) = (2π)−n

∫

❘2n

dp dy ei〈p,y〉 F (y + θp)G(y + x) (5.2)

as a A-valued oscillatory integral.
In addition to α, we have on the Schwartz space also smooth polynomially bounded ❘n-actions

of the form

(βxF )(y) := ei(x,y)F (y) , (5.3)

where (·, ·) denotes a bilinear form on ❘n. Considered on a symbol space Sm,ρ(❘n, V ) of fixed
order, these actions are not smooth, but on S (❘n, V ), they comply with Definition 4.1, with order
m̂(qm,µ) = |µ| and type ρ̂(qm,µ) = 0. Taking V = A to be an algebra, the deformation of the

pointwise product in S (❘n,A) with the action (5.3) is however almost trivial; one has (F ×β
θ G)(x) =

ei(θAx,x)F (x)G(x) with a matrix A depending on the choice of inner product on ❘n.
We now explain how some deformations of algebras of scalar-valued functions discussed in the

literature fit into our framework. The first and best-known example is clearly the scalar Schwartz
space S (❘n,❈) with pointwise product. Here the deformed product (5.2) even exists pointwise as a
Riemann integral because of the decay of the integrand. It is usually referred to as Moyal product or
twisted product, see e.g. [17].

Another version of this is to consider S (❘n,❈) as an algebra with convolution (f ∗ g)(x) =
∫

❘n dy f(y)g(x− y) as product, and the multiplicative action (5.3). Taking all inner products of ❘n

as the usual Euclidean inner product, and θ to be antisymmetric, we find

(f ∗βθ g)(x) =
∫

❘n

dy ei〈x,θy〉 f(y)g(x− y) . (5.4)

This deformed product is usually referred to as a twisted convolution according to [17]. Since the
Fourier transform F : S −→ S intertwines the pointwise product and convolution as well as the
actions α and β, the twisted convolution product is equivalent to the product ×α

θ .

The deformed products ×α
θ and ∗βθ can be extended from S (❘n,❈) to spaces of distributions

[14,17]. In particular, in [14] it is explained how ×α
θ can be defined on the distribution space O′

M (❘n),
the dual of the space OM (❘n) of tempered smooth functions. Recall that OM (❘n) is defined as the
set of all smooth f : ❘n −→ ❈ such that for each multiindex µ, there exists some k ∈ ❩ such that
x 7→ (1 + ‖x‖2)k|(∂µxf)(x)| is bounded. In our notation, that is OM = ∪m,ρS

m,ρ(❘n,❈), where the
union runs over all orders and types m, ρ ∈ ❘. Similarly, the classical function space OC(❘

n) is in
our notation OC(❘

n) = ∪mSm,0(❘n,❈) = S∞,0(❘n,❈). Clearly S (❘n) ⊂ OC(❘
n) ⊂ OM (❘n) ⊂

S ′(❘n) and S (❘n) ⊂ O′
M (❘n) ⊂ O′

C(❘
n) ⊂ S ′(❘n), and the Fourier transform F on S ′(❘n)

restricts to isomorphisms OC(❘
n) −→ O′

M (❘n) and OM (❘n) −→ O′
C(❘

n). Since OC(❘
n) contains

only symbols of type ρ = 0, we can form the deformed products f ×α
θ g (5.2) for f, g ∈ OC(❘

n). (For
f, g ∈ OM (❘n), this is not possible because we need restrictions on the type for α to be smooth and
the oscillatory integrals to exist.) Making use of the Fourier transform F : OC(❘

n) −→ O′
M (❘n), this

also gives us a product on O′
M (❘n),

T × S := F(F−1T ×α
θ F

−1S) . (5.5)

As F intertwines the actions α and β, it is easy to see that (5.5) coincides with the “other twisted
convolution” constructed in [14].
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5.2 Deformations of unbounded operators

As an application of our techniques we consider in this subsection a setting that often arises in
quantum physics. We work here on a separable Hilbert space H with a strongly continuous unitary
representation U of ❘n, the selfadjoint commuting generators of which will be denoted P1, ..., Pn.
The space of smooth vectors for this action, H∞ =

⋂n
k=1

⋂

s∈◆0
domP s

k , is a Fréchet space when
equipped with either of the equivalent families of seminorms H∞ ∋ Ψ 7→ ‖R−µΨ‖, µ a multi index,
or H∞ ∋ Ψ 7→ ‖Q−mΨ‖, m ∈ ◆0, where ‖ · ‖ is the norm of H, Rµ = (i+P1)

−µ1 · · · (i+Pn)
−µn , and

Q := (1 + P 2
1 + ...+ P 2

n)
−1/2.

As U(x) is unitary for all x ∈ ❘n and commutes with the R−µ, it is clear that Ψ 7→ U(x)Ψ is
a strongly smooth ❘n-action of order 0 on H∞. In the following, we will also consider the action
A 7→ U(x)AU(x)−1 on suitable families A of operators A on H, such that also this action complies
with Definition 4.1 and A×H∞ ∋ (A,Ψ) 7→ AΨ ∈ H∞ is continuous. Note that with µ(A,Ψ) = AΨ,
the covariance requirement (4.6) is then automatically met, so that our deformation can be applied.

Deformations of operators with polynomial energy momentum bounds. We consider
densely defined linear operators A on H such that H∞ ⊂ domA, H∞ ⊂ domA∗. Using this domain
assumption and the fact that for Fréchet spaces, the separate continuity of H∞ ∋ Ψ,Φ 7→ 〈Φ, AΨ〉
implies joint continuity, one then shows that for such A there exists m ∈ ◆0 with

‖A‖m := ‖QmAQm‖ <∞,

where ‖ · ‖ denotes the norm of B(H). The space of all such operators with the norm ‖ · ‖m closes to a
Banach space, denoted Bm. As U(x) is unitary and commutes with Q, we see that A 7→ U(x)AU(x)−1

is a strongly continuous isometric action of❘n on Bm. In restriction to the smooth subspace B∞
m ⊂ Bm

(with its usual Fréchet topology), we thus find an action complying with Definition 4.1. This space
occurs in the context of quantum fields satisfying polynomial energy bounds [11], see also [1, 26]
for recent related work in a quantum mechanics context. We show that this fits into our general
framework.

Proposition 5.3 i.) Let m ∈ ◆0 and A ∈ B∞
m . Then AH∞ ⊂ H∞, and the map B∞

m×H∞ → H∞,
(A,Ψ) 7→ AΨ is jointly continuous.

ii.) For A ∈ B∞
m , Ψ ∈ H∞, the function ❘2n ∋ (p, x) 7→ U(θp)AU(−θp)U(x)Ψ is a H∞-valued

symbol of order 0 and type 0. Thus its warped convolution Aθ is well-defined, and enjoys the
properties derived in Section 4.

Proof: With Φ,Ψ ∈ H∞, A ∈ B∞
m , the function x 7→ 〈Φ, αx(A)Ψ〉 is smooth, with first partial

derivatives satisfying

〈(i+ Pk)
∗Φ, αx(A)Ψ〉 = 〈Φ, αx(A)(i+ Pk)Ψ〉 − i∂xk

〈Φ, αx(A)Ψ〉.

Iterating this equation, we obtain for any multi index µ

〈Φ, αx(A)Ψ〉 =
∑

κ≤µ

cκ,µ ∂
κ
x〈Φ, Rµαx(A)R

κ−µΨ〉 (5.6)

with numerical constants cκ,µ. From this equation we get for any s ∈ ◆ a bound of the form
|〈Q−sΦ, αx(A)Ψ〉| ≤

∑

κ≤µ |cκ,µ| ‖Q−s−m(Rµ)∗Φ‖‖∂κxQmαx(A)Q
m‖‖Rκ−µQ−mΨ‖. Choosing µ large

enough so that Q−s−m(Rµ)∗ is bounded, we first see that AΨ ∈
⋂

s domQ−s = H∞, i.e. AH∞ ⊂ H∞.
Furthermore, the estimate implies that the map B∞

m×H∞ → H∞, (A,Ψ) 7→ AΨ is jointly continuous.
The second part is now clear from the general results in Section 4. �
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We mention as an aside that one can also introduce a deformed product for operators of the
above form: The product AB of A ∈ B∞

n with B ∈ B∞
m lies in B∞

n+m, and gives rise to a jointly
continuous bilinear map B∞

n ×B∞
m → B∞

n+m. Hence our preceding analysis applies, and in particular,
this deformed product is compatible in the sense of Theorem 4.9, i.), with the deformed module map
discussed above.

5.3 Compactly supported ❘n-actions

In this subsection we construct and study a different class of smooth polynomially bounded ❘n-actions
on function spaces. The actions we are interested in here are given by pullbacks of ❘n-actions τ on
❘n which act non-trivially only in a compact set K, i.e. satisfy τx(y) = y for all y /∈ K, x ∈ ❘n. We
want to construct τ in such a way that αK

x (f) := f ◦ τx is smooth and polynomially bounded in the
sense of Definition 4.1, say on C∞(❘n,❈). For simplicity, we restrict to scalar-valued functions here.
It is clear that we cannot hope for an isometric action as required by Rieffel’s original construction
as soon as we leave the C0-framework: controlling also derivatives as needed in the C∞-topology will
necessarily lead to a non-isometric action.

To check what kind of condition on τ is necessary for this, consider a function fj which coincides
with a coordinate x 7→ xj , j = 1, . . . , n, onK. If αK(fj) ∈ Sm̂,0(❘n,C∞(❘n,❈)) for some appropriate
m̂, then the supremum

‖αK(fj)‖
m̂(pK,l),0
pK,l,µ = sup

x∈❘n

pK,l(∂
µ
xαK

x fj)

(1 + ‖x‖2) 1
2
m̂(pK,l)

= sup
x∈❘n

y∈K,|ν|≤l

|∂µx∂νy τx(y)j |
(1 + ‖x‖2) 1

2
m̂(pK,l)

(5.7)

must be finite. Hence we need bounds of the form |∂νy∂µx τx(y)j | ≤ cµl(1+‖x‖2) 1
2
bl for all ν ∈ ◆n

0 with
|ν| ≤ l. Taking into account that τ satisfies τx(K) = K for all x ∈ ❘n by its support property, that
K is compact, and that τ is an ❘n-action, it follows that we can choose b0 = 0. These observations
motivate the following definition.

Definition 5.4 Let K ⊂ ❘n be compact, and b := {bl}l∈◆0 ⊂ ❘+ a sequence starting with b0 = 0. A
smooth ❘n-action with support in K and order b is a smooth function τ : ❘n×❘n −→ ❘n such that

i.) τx(τx′(y)) = τx+x′(y) for all x, x′, y ∈ ❘n.

ii.) τx(y) = y for all x ∈ ❘n and all y ∈ ❘n\K.

iii.) For each µ ∈ ◆n
0 , l ∈ ◆0, there exists a constant clµ > 0 such that

sup
y∈K,|ν|≤l
j∈{1,...,n}

|∂νy∂µx τx(y)j | ≤ clµ(1 + ‖x‖2) 1
2
bl (5.8)

holds for all x ∈ ❘n.

We will later construct explicit examples of actions satisfying these assumptions. Postponing this
construction for a moment, we first show that such τ do indeed define smooth polynomially bounded
❘n-actions by pullback. To begin with, we note the following elementary lemma.

Lemma 5.5 Let τ be a smooth ❘n-action with support in a compact set K ⊂ ❘n, and order b. Then
for each µ ∈ ◆n

0 , l ∈ ◆0, there exists a constant Clµ > 0 such that

sup
y∈K,|ν|≤l

|∂νy∂µxf(τx(y))| ≤ Clµ (1 + ‖x‖2) 1
2
(b1+···+bl) · pK,l+|µ|(f) (5.9)

for all f ∈ C∞(❘n,❈), x ∈ ❘n. Here pK,l+|µ| denotes the usual C∞-seminorms (2.7) with q = | · |.
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Proof: We first consider the case l = 0 without derivatives with respect to y. By the chain rule, we
have

∂µxf(τx(y)) =
∑

λ≤µ

(∂λf)(τx(y)) · gλ(x, y) ,

where the gλ(x, y) are polynomials in partial derivatives of the τx(y)j with respect to the components
of x. According to (5.8) with l = 0 (and b0 = 0), these functions are uniformly bounded in x ∈ ❘n

and y ∈ K. Furthermore, we have τx(y) ∈ K for all x ∈ ❘n, since y ∈ K. Hence (5.9) follows by
straightforward estimate. We now proceed by induction and assume that (5.9) holds for some l ∈ ◆n

0 ,
and all µ ∈ ◆n

0 , f ∈ C∞(❘n,❈). Then, j ∈ {1, . . . , n}, |ν| ≤ l,

∂
ν+ej
y ∂µxf(τx(y)) = ∂νy∂

µ
x

n
∑

j′=1

∂
ej
y τx(y)j′ · (∂ej′f)(τx(y))

=

n
∑

j′=1

∑

ν′≤ν
µ′≤µ

( ν

ν ′

)

(

µ

µ′

)

(

∂
ν−ν′+ej
y ∂µ−µ′

x τx(y)j′
)(

∂ν
′

y ∂
µ′

x (∂ej′f)(τx(y))
)

.

In this sum, the derivatives of τx(y)j′ can be estimated directly with (5.8), taking into account
|ν − ν ′ + ej | ≤ l + 1. For the derivatives of f , we can use (5.9) by our induction hypothesis, since
|ν ′| ≤ |ν| ≤ l. This yields constants Cj′ν′µ′ > 0 such that

|∂ν+ej
y ∂µxf(τx(y))| ≤

∑

j′,ν′,µ′

Cj′ν′µ′(1 + ‖x‖2) 1
2
bl+1(1 + ‖x‖2) 1

2
(b1+···+bl) pK,|µ′|+|ν′|(∂

ej′f)

≤ C ′
jµν(1 + ‖x‖2) 1

2
(b1+···+bl+bl+1) · pK,l+1+|µ|(f) .

Since j was arbitrary, (5.9) follows by induction in l. �

Proposition 5.6 Let τ be a smooth ❘n-action on ❘n, with order b and support in some compact
set K ⊂ ❘n. Then its pullback (αK

x f)(y) := f(τx(y)) is a smooth polynomially bounded ❘n-action on
C∞(❘n,❈), on each symbol space Sm,ρ(❘n,❈), m, ρ ∈ ❘, and on the Schwartz space S (❘n,❈).

Proof: Let us first consider αK acting on C∞(❘n,❈). It is clear that it is an❘n-action on this space
because τ is an action and smooth. To estimate its seminorms, let J ⊂ ❘n be compact, µ, ν ∈ ◆n

0 ,
and f ∈ C∞(❘n,❈). Taking into account that τ acts trivially outside K, and using the bounds of
Lemma 5.5, we find

sup
x∈❘n

y∈J,|ν|≤l

|∂νy∂µxf(τx(y))|
(1 + ‖x‖2) 1

2
(b1+···+bl)

≤ sup
x∈❘n

y∈J\K,|ν|≤l

|∂νy∂µxf(y)|
(1 + ‖x‖2) 1

2
(b1+···+bl)

+ sup
x∈❘n

y∈J∩K,|ν|≤l

|∂νy∂µxf(τx(y))|
(1 + ‖x‖2) 1

2
(b1+···+bl)

≤ δµ,0 sup
x∈❘n

y/∈J\K,|ν|≤l

|∂νy f(y)|
(1 + ‖x‖2) 1

2
(b1+···+bl)

+ Clµ pK,l+|µ|(f)

= δµ,0 pJ\K,l(f) + Clµ pK,l+|µ|(f) ,
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where the last step relies on bl ≥ 0. This estimate shows in particular that for any x ∈ ❘n, the map
αK
x : C∞(❘n,❈) −→ C∞(❘n,❈) is continuous, a fact which is known to be true for any diffeomor-

phism. Moreover, once we have checked that x 7→ αK
x f is smooth in the topology of C∞(❘n,❈), the

estimate also shows that αK(f) is a symbol in Sm̂,0(❘n,C∞(❘n,❈)), of order m̂(pJ,l) := b1+ · · ·+bl,
and that f 7→ αK(f) is continuous. So in order to verify all conditions of Definition 4.1, it only re-
mains to establish the smoothness of αK : but this is true for arbitrary smooth Lie group actions on
smooth manifolds. We now consider αK on the symbol and Schwartz subspaces of C∞(❘n,❈). Since
τ acts non-trivially only in a compact set, it is clear that these subspaces are invariant under αK ,
and αK restricts to ❘n-actions on all these spaces. Concerning smoothness, note that the functions
αK
x (f) − f and ε−1(αK

εej (f) − f) − ∂tα
K
tej (f)|t=0 have compact support in K for all f ∈ Sm,ρ, ε > 0,

j ∈ {1, . . . , n}, x ∈ ❘n. So their symbol seminorms ‖·‖m,ρ
ν can be estimated against some pK,l(·). But

the latter seminorms converge to zero for x → 0 respectively ε → 0, by the preceding results about
αK on C∞(❘n,❈). Thus we conclude that αK is also smooth on the symbol spaces Sm,ρ(❘n,❈),
m, ρ ∈ ❘, and the Schwartz space S (❘n,❈). The symbol property of αK(f), and the continuity of
f 7→ αK(f) for these spaces can now be estimated as before, by splitting f = f0 + f1 ∈ Sm,ρ(❘n,❈)
into a compactly supported symbol f0, and a symbol f1 with support disjoint from K which is fixed
by αK . �

We now turn to the construction of examples of smooth compactly supported ❘n-actions, and
consider the one-dimensional case n = 1 first. As a starting point, we use the same idea as in [21]
and take a diffeomorphism γ : (−1, 1) −→ ❘ to define

τx(y) :=

{

γ−1(γ(y) + x) ; |y| < 1

y ; |y| ≥ 1
, x ∈ ❘ . (5.10)

It is clear that τ is an ❘-action, i.e., τx(τx′(y)) = τx+x′(y) for all x, x′, y ∈ ❘, and τ acts non-
trivially only inside the interval K := [−1, 1]. But we have to choose γ in such a way that also the
smoothness and boundedness assumptions of Definition 5.4 are satisfied. For the discussion of these
two properties, it is instructive to view τ as the flow of an autonomous ordinary differential equation
dφ/dx = L(φ(x)) with initial condition φ(0) = y. Differentiation of φ(x) = τx(y) (5.10) with respect
to x then shows that

L(x) =

{

1
γ′(x) ; |x| < 1

0 ; |x| ≥ 1
. (5.11)

It is a well-known fact that the solutions x 7→ φ(x) = τx(y) will depend smoothly on x and the
initial condition y if L is smooth. Thus smoothness of τ is guaranteed if γ′(x) diverges fast enough
as x → ±1, such that (5.11) is smooth. On the other hand, the bounds on ∂kx∂

l
yτx(y) that can be

obtained by exploiting that τ is the flow of a differential equation with compactly supported L are
only of exponential type. Therefore, we show in the following lemma that by a careful adjustment of
the diffeomorphism γ, one can achieve polynomial bounds on ∂kx∂

l
yτx(y).

Lemma 5.7 There exist smooth ❘-actions on ❘ with support in [−1, 1] and order bl = 2l+1, which
act transitively on (−1, 1).

Proof: The action will be constructed in the form (5.10) with appropriately chosen γ. It is already
clear from (5.10) that τ is an action with support in [−1, 1], acting transitively on (−1, 1). To verify
the crucial bounds (5.8),

sup
|y|≤1

|∂kx∂lyτx(y)| ≤ clk(1 + x2)
1
2
(2l+1) , x ∈ ❘ , (5.12)
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we first derive a formula for the derivatives of τx(y) = γ−1(γ(y) + x), |y| < 1, for generic diffeomor-
phisms γ. This is done with the help of two differentiation identities, the first of which states that
multiple derivatives of γ−1 have the form

∂lyγ
−1(y) =

∑

n

cn
γ′(γ−1(y))n1 · · · γ(l)(γ−1(y))nl

γ′(γ−1(y))2l−1
, (5.13)

where the sum runs over finitely many terms with numerical coefficients cn. In the above formula,
the powers nj satisfy n1 + · · ·+nl = l− 1 in each term, a fact that can easily be proven by induction
in l.

The second identity is an iterated chain rule for smooth functions f, g : ❘ −→ ❘,

∂ly(f(g(y)) =

l
∑

r=1

c′r g
′(y)s1 · · · g(l)(y)sl · f (r)(g(y)) , (5.14)

where the c′r are numerical coefficients and the powers sj satisfy s1+ · · ·+sl = r in each term. Again,
the proof by induction is straightforward.

Application of these two differentiation rules to τx(y) = γ−1(γ(y) + x), |y| < 1, yields

∂kx∂
l
yτx(y) = ∂kx

l
∑

r=1

c′rγ
′(y)s1 · · · γ(l)(y)sl · (γ−1)(r)(γ(y) + x)

=
l
∑

r=1

c′rγ
′(y)s1 · · · γ(l)(y)sl · (γ−1)(r+k)(γ(y) + x)

=

l
∑

r=1

c′r
∑

n

cn
γ′(y)s1 · · · γ(l)(y)sl · γ′(τx(y))n1 · · · γ(r+k)(τx(y))

nr+k

γ′(τx(y))2(r+k)−1
. (5.15)

To obtain useful bounds on this expression, we have to estimate the higher derivatives |γ(m)(y)| for
m = 1, . . . , l, and |γ(j)(τx(y))| for j = 1, . . . , r+ k, in terms of the first derivatives |γ′(τx(y))|. Simple
estimates of this form do apparently not exist for generic γ. We therefore choose γ of a special form,
which will allow for convenient computations.

So let γ be antisymmetric, i.e., γ(−y) = −γ(y), and choose it to be equal to e(y) := exp 1
1−y for

y ≥ 1
2 . Note that this choice already implies that τ : ❘2 −→ ❘ is smooth, since all derivatives of

L(y) := 1/γ′(y) = (1− y)2e−1/(1−y) converge to zero for y → 1. Moreover, a short calculation shows
that the tangent of γ in y = 1

2 has its zero at y = 1
4 and consequently, we can choose γ on [−1

2 ,
1
2 ] in

such a way that γ′(y) increases monotonically as |y| increases. In particular, we then have the lower
bound γ′(y) ≥ γ′(0) > 0, |y| < 1.

We now turn to estimating the derivatives |γ(j)(y)| for a diffeomorphism γ with the specified
properties. Since γ′ is bounded from below and γ(j) is continuous, there exist constants Cj < ∞
such that |γ(j)(y)/γ′(y)| ≤ Cj for all y ∈ [−1

2 ,
1
2 ]. For y > 1

2 , we can use the explicit form γ(y) =

exp 1
1−y , which implies that γ(j)(y) is the product of γ(y) and a polynomial of order 2j in 1

1−y . Hence

γ(j)(y)/γ′(y) coincides for y > 1
2 with a rational function of y which diverges polynomially as y → 1.

Because of the symmetry properties of γ′ and γ(j), the same is true for the region y < −1
2 and the

limit y → −1. But as γ′(y) has no zeros and diverges exponentially for |y| → ±1, we find for any
ε > 0 a constant Cj,ε such that

|γ(j)(y)|
γ′(y)

≤ Cj,ε γ
′(y)ε , y ∈ (−1, 1) . (5.16)
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Since τx leaves the interval (−1, 1) invariant for any x ∈ ❘, we also have

|γ(j)(τx(y))| ≤ Cj,ε γ
′(τx(y))

1+ε , x ∈ ❘, y ∈ (−1, 1) . (5.17)

Next we derive a bound on the ratios γ′(y)
γ′(τx(y))

. For this it is sufficient to consider y ∈ [0, 1) because

of the symmetry of γ′, and for fixed x ∈ ❘, we split this interval at

ξ(x) := τ2|x|(
1
2) = e−1(e(12) + 2|x|) ≥ 1

2 , (5.18)

and estimate in the two regions y ∈ [0, ξ(x)] and y ∈ (ξ(x), 1) separately. Note that e−1(y) =
1− 1/ log y and e′(y) = (1− y)−2e(y).

In the inner region [0, ξ(x)), the monotonicity of γ′ and the explicit form of our diffeomorphism
around ξ(x) ≥ 1

2 yield

γ′(y)

γ′(τx(y))
≤ γ′(ξ(x))

γ′(0)
=

e(ξ(x))

γ′(0) (1− ξ(x))2
, |y| ≤ ξ(x) ,

= γ′(0)−1
(

e(12) + 2|x|
)

· log(e(12) + 2|x|)

≤ c(1 + x2)δ , (5.19)

where the power δ > 1
2 can be chosen arbitrarily close to 1

2 (it will be fixed at the end of the proof),
and the numerical constant c depends on δ.

For the estimate in the outer region (ξ(x), 1), we use the inequalities

e(y) + x ≥ e(ξ(x))− |x| = e(12) + |x| ≥ e(12) , y ∈ [ξ(x), 1) , (5.20)

and e(y) ≥ e(ξ(x)) > 2|x|, implying e(y) − |x| ≥ 1
2e(y) > 1 for y > ξ(x). It follows from (5.20) that

τx(y) = e−1(e(y) + x) in this region. The explicit form of γ and these inequalities lead to a uniform

bound on γ′(y)
γ′(τx(y))

,

γ′(y)

γ′(τx(y))
=

1

(1− y)2 log(e(y) + x)2
e(y)

e(y) + x
, y ∈ (ξ(x), 1) ,

≤ 1

(1− y)2 log(e(y)− |x|)2
e(y)

e(y)− |x| .

≤ 2

(1− y)2( 1
1−y − log 2)2

≤ 2

(1− 1
2 log 2)

2
. (5.21)

After a possible readjustment of the constant c in (5.19) we therefore obtain

γ′(y) ≤ c(1 + x2)δ γ′(τx(y)) , x ∈ ❘ , y ∈ (−1, 1) , (5.22)

where δ > 1
2 can still be chosen. Combining this bound with (5.16), we also have

∣

∣

∣
γ(m)(y)

∣

∣

∣
=

|γ(m)(y)|
γ′(y)

· γ′(y) ≤ C ′
m,ε (1 + x2)δ(1+ε) · γ′(τx(y))1+ε . (5.23)

We can now apply (5.17) and (5.23) to estimate (5.15). Taking into account that in each term in that
sum, we have s1 + · · ·+ sl = r and n1 + · · ·+ nr+k = r + k − 1, we get after collecting all factors

|∂kx∂lyτx(y)| ≤
∑

n

l
∑

r=1

C(1 + x2)δ(1+ε)r γ′(τx(y))
ε(2r+k−1)−k , (5.24)
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where C represents all the numerical constants appearing in the various bounds, depending on
l, k,m, n and some arbitrary ε > 0, δ > 1

2 . For k ≥ 1, the exponent of γ′(τx(y)) is negative for
sufficiently small ε, and then

|∂kx∂lyτx(y)| ≤
∑

n

l
∑

r=1

C(1 + x2)δ(1+ε)r γ′(0)ε(2r+k−1)−k ≤ C ′(1 + x2)δ(1+ε)l , |y| < 1 .

For the case k = 0, note that since τ0(y) = y and l ≥ 1, we have ∂lyτ0(y) = 0 and can estimate via

|∂lyτx(y)| =
∣

∣

∣

∣

∫ x

0
dx′ ∂x′∂lyτx′(y)

∣

∣

∣

∣

≤ |x| · C ′(1 + x2)δ(1+ε)l ≤ C ′′(1 + x2)δ(1+ε)l+ 1
2 . (5.25)

Choosing δ = 2
3 and ε = 1

2 now gives the claimed bounds (5.12). �

Next we show how the above constructed ❘-action on ❘ can be promoted to suitable ❘n-action
on ❘n based on the ideas from [28, Ex. 4.5].

Lemma 5.8 Let τ1 be a smooth polynomially bounded ❘-action on ❘ with support in [−1, 1], as
constructed in Lemma 5.7. Furthermore, let ε > 0 and χ : ❘ → ❘ be a smooth function which is
equal to 1 on [−1, 1], and has support in [−1− ε, 1 + ε]. Then

τnx (y) := (τ1x1·χ(y1)···χ(yn)
(y1), . . . , τ

1
xn·χ(y1)···χ(yn)

(yn)) (5.26)

is a smooth polynomially bounded ❘n-action on ❘n, with support in [−1− ε, 1 + ε]×n.

Proof: Let I := [−1, 1] and Iε := [−1 − ε, 1 + ε]. If y /∈ I×n
ε , there exists j ∈ {1, . . . , n} such that

yj /∈ Iε, and hence χ(y1) · · ·χ(yn) = 0. Thus τnx (y) = (τ10 (y1), . . . , τ
1
0 (yn)) = y in this case, which

shows that τn has support in B. As a composition of smooth functions τn is smooth. To show that
it is an action, let x, x′, y ∈ ❘n, j ∈ {1, . . . , n}, and compute

τnx (τ
n
x′(y))j = τ1xj ·χ(τnx′ (y)1)···χ(τ

n
x′
(y)n)

(τnx′(y)j)

= τ1xj ·χ(τnx′ (y)1)···χ(τ
n
x′
(y)n)

(τ1x′
j ·χ(y1)···χ(yn)

(yj))

= τ1
xj ·χ
(

τ1
x′
1
χ(y1)···χ(yn)

(y1)
)

···χ
(

τ1
x′nχ(y1)···χ(yn)

(y1)
)

+x′
j ·χ(y1)···χ(yn)

(yj) .

This coincides with τnx+x′(y)j = τ1(xj+x′
j)χ(y1)···χ(yn)

(yj) if

χ(y1) · · ·χ(yn) = χ
(

τ1x′
1χ(y1)···χ(yn)

(y1)
)

· · ·χ
(

τ1x′
nχ(y1)···χ(yn)

(y1)
)

. (5.27)

Assume some component yk does not lie in I. Then τ1x′
kχ(y1)···χ(yn)

(yk) = yk by the support properties

of τ1. If, on the other hand, yk ∈ I, then τ1x′
kχ(y1)···χ(yn)

(yk) ∈ I as well, and since χ = 1 on I, we find

also in this case χ(yk) = χ(τ1x′
kχ(y1)···χ(yn)

(yk)). Hence (5.27) holds for all x, y, y′, and it follows that

τn is an ❘n-action.
It remains to verify the bounds (5.8), i.e. we have to estimate ∂µx∂νy τ

1
xjχ(y1)···χ(yn)

(yj). In com-

parison to ∂µx∂νy τ
1
xj
(yj), the y-derivatives produce finitely many extra factors of xj and derivatives of

χ(y1) · · ·χ(yn), and the x-derivatives produce extra factors of χ(y1) · · ·χ(yn). All y-dependence can
be uniformly estimated because of the compact support of (the derivatives of) χ. So we arrive at a
finite sum of the form

|∂µx∂νy τnx (y)j | ≤
∑

ν′≤ν,µ′≤µ

cν′µ′ |xj |s(ν
′,µ′) |(∂µ′

x ∂
ν′

y τ
1)xjχ(y1)···χ(yn)(yj)| ,
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with s(ν ′, µ′) ≤ |ν|. For yj ∈ I, the derivatives of τ1 can now be estimated with (5.12), and (1+x2j ) ≤
(1 + ‖x‖2). For yj ∈ Iε\I, we can use the invariance τt(yj) = yj , t ∈ ❘, and |yj | ≤ 1 + ε, to estimate
the derivatives of τ1. This shows that if τ1 was of order b, then τn is of order at most bl + l <∞. �

After these constructions, it is now easy to show the existence of smooth polynomially bounded
❘n-actions supported in arbitrarily small regions.

Theorem 5.9 Let K ⊂ ❘n be open. Then there exist non-trivial smooth polynomially bounded ❘n-
actions on ❘n, with support in K.

Proof: In Lemma 5.8, we have constructed a non-trivial smooth polynomially bounded ❘n-action
τn with support in a cube [−r, r]×n centered at the origin. Clearly, the polynomial estimates are at
most rescaled by affine transformations of ❘n which allows to squeeze and move the support into any
given compact subset. �
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