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Abstract

This Paper describes a procedure for constructing theory restricted

prior distributions for BVAR models. The Bayes Factor, which is ob-

tained without any additional computational effort, can be used to assess

the plausibility of the restrictions imposed on the VAR parameter vector

by competing DSGE models. In other words, it is possible to rank the

amount of abstraction implied by each DSGE model from the historical

data.
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Keywords: BVAR, DSGE Model Evaluation, Gibbs Sampling, Bayes Fac-

tor

1 Introduction

Bayesian inference relies on the properties of the posterior distribution, p(θ/Yt, T ),
where θ ∈ Θ1 is the parameter vector of the econometric model, T , and
Yt ≡ {y1, y2, ..., yT } denotes the historical data2. This is proportional to the
product of the Likelihood of θ, L (θ/Yt), and the prior distribution of θ, p (θ)
(p(θ, Yt/T ) ∝ L (θ/Yt) p (θ)). The well-known weak point of the Bayesian method-
ology is the specification of the prior distribution regarding θ because such se-
lection is essentially arbitrary3. In addition although the posterior distribution
coincides asymptotically with the likelihood the influence of the prior can be
substantial in small samples or when the likelihood is flat. In other words the
inference about θ can be dominated by the selection of p (θ) in a manner which
is difficult to interpret.

In the DSGE framework prior distribution selection for VAR models can be
theoretically founded. Ingram & Whiteman (1994) were the first to construct

∗Cardiff Business School, Cardiff University
†Corresponding Author: Cardiff Business School, Colum Drive, Cardiff, CF10 3EU, Tel:

+44 (0)29 2087 0558, E-mail:Theodoridisk2@cardiff.ac.uk
1Θ is a compact subset of the R

dθ where R is the real line and da denotes the dimension
of vector a.

2yt ∈ R
dy .

3See, Canova (2005, Chapter 9) for a detailed discussion and alternative methods of se-
lecting priors.
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theoretical priors for a BVAR using the basic neoclassical model (King et al.,
1988). In order to see this notice that the state-space format of a solved DSGE
model, linearized around a nonstochastic steady state, M, is

yt = A (γ) ξt (1)

ξt = B (γ) ξt−1 + Γ (γ) εt (2)

Equation (2) describes the evolution of the state vector, ξt
4, of the model,

while (1) gives the relation between the state vector of the model and the
observable variables. Finally, εt is normally distributed with mean zero and
Idy

5 covariance matrix, N (0, Idy). Obviously, the elements of the matrices
A (γ), B (γ), and Γ (γ) are nonlinear functions of the structural parameter
vector γ. The key element in Ingram & Whiteman’s analysis is that the di-
mension of the observable vector exceeds the dimension of the state vector,
implying that the matrix A (γ) has a full column rank. Through the use of
the Generalized Inverse6 the above system can be rewritten as VAR(1), yt =

A (γ)B (γ)
[

(

A (γ)
′
A (γ)

)−1
A (γ)

′
]

yt−1+A (γ) Γ (γ) εt. Clearly, θ is a function

of γ, say θ = φ (γ), and, given that γ is normally distributed with µγ mean and
Σγ covariance matrix, then the prior distribution of θ is again normal with a

mean and variance given by µθ = φ
(

µγ

)

and Σθ = ∇γφ
(

µγ

)

Σγ∇γφ
(

µγ

)′7,
respectively, N (µθ, Σθ).

This structural VAR (SVAR) representation, which holds under the condi-
tion that the number of the observable variables exceed those in the state vector,
can provide information only for the first lag of a VAR(p). At this point Ingram
& Whiteman (1994) make the assumption that the rest (p − 1) blocks of autore-
gressive parameters are normally distributed with mean zero and a covariance
matrix that is proportional to the covariance matrix of the first lag with the
proportion parameter being an inverse function of the number of lags.

Recently, Del Negro & Schorfheide (2004) have suggested an alternative
methodology of producing theoretically founded priors. They assume implic-
itly that the condition of the Proposition 2.1 of Christiano et al. (2006) hold8,
implying that the structural model described by equations (1) and (2) can be
written as a SVAR of infinite order

yt = ∆1 (γ) yt−1 + ∆2 (γ) yt−2 + ... + Ψ (γ) εt (3)

where
∆j (γ) = A (γ)B (γ)M (γ)

j−1
Γ(γ) (A(γ)Γ(γ))

−1
(4)

for j = 1, 2, ..., Ψ (γ) = A(γ)Γ(γ), M (γ) =
[

Idx − Γ(γ)Ψ (γ)
−1

A(γ)
]

B(γ).

Since historical data is finite, however, the above time series process must be
approximated by finite one, e.g. a SVAR(p) such as yt = ∆1 (γ) yt−1 + ... +

4ξt ∈ R
dξ

5Ida denotes the identity (da × da) matrix.
6See, for example Magnus & Neudecker (2002) for a detailed discussion.
7∇αR (α) denotes the diffrentiation of the vector function R (·) with respect to the vector

α.
8These conditions are: (i) the number of the structural shocks in M equals to the num-

ber of the observable variable, and, (ii) the maximum eigenvalue of the matrix M (γ) =
[

Idx − Γ(γ) (A(γ)Γ(γ))−1 A(γ)
]

B(γ) is less than one in absolute terms.
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∆p (γ) yt−p+Ψ (γ) εt. Therefore, the structural model M implies certain restric-
tions on the VAR(p) process, yt = Φ1yt−1+...+Φp (γ) yt−p+vt, which are taken
seriously by Del Negro & Schorfheide (2004), however, they are not, “dogmati-
cally” imposed as in the Ingram & Whiteman’s analysis. In this case the prior

distribution of the VAR parameters, (β =
(

θ′ = vec (Φ1, ..., Φp)
′ , vech (Σv)

′)′9,
where Σv is the covariance matrix of vt), which is assumed to have a typical
Normal-Wishart format, is obtained by fitting the VAR(p) on data simulated
from the structural model, whose length is equal to a fraction, λ, of the length of
the actual data. The beauty of this methodology is that posterior distribution
of β has a closed form format and λ, which is a data driven hyperparameter, is
as a measure of fit that could be used for the evaluation of the structural model;
it shows how much the data likes the restrictions implied by M10.

2 The Proposed Method

This paper suggests a way of constructing priors for a VAR(p), which combines
the above two procedures. Similar to Del Negro & Schorfheide (2004), the con-
ditions that allow the structural model to be expressed as an infinite SVAR(p)
(Equation 3), hold here as well. However, the restrictions implied by the struc-
tural model M are imposed in a manner similar to Ingram & Whiteman (1994).
Therefore, under the assumption that γ is normally distributed with mean and
variance equal to µγ and Σγ , respectively, θ is also normally distributed with a

mean and variance given by µθ = φ
(

µγ

)

and Σθ = ∇γφ
(

µγ

)

Σγ∇γφ
(

µγ

)′
, re-

spectively. However, the additional assumptions posed here are that Σθ is block
diagonal (its block is given by Σj

θ = ∇γvec
[

∆j

(

µγ

)]

Σγ∇γvec
[

∆j

(

µγ

)]′
, i.e.

Σθ = diag
(

Σ1
θ, ..., Σ

p
θ

)

), and, the dimension of γ is greater equal to the square
of the number of the observable variables, dy2. These two assumptions ensure
that the distribution of θ is non-degenerate.

From Proposition 2.1 of Christiano et al. (2006) it is known that Σv =
Ψ (γ)Ψ (γ)

′
. Given that Ψ (γ) is normally distributed, it can also be concluded

that Σ−1
v follows the Wishart distribution with a scale matrix given by Π =

Ψ
(

µγ

)

Ψ
(

µγ

)′
and degrees of freedom equal to η, W (Π, η). The priors in this

case regarding θ and Σ−1
v conditional on the structural model M are, therefore,

given by

p (θ/M) ∝ |Σθ|
−0.5dθ

exp
{

−0.5
[

Σ−0.5
θ (θ − µθ)

]′ [
Σ−0.5

θ (θ − µθ)
]

}

(5)

and
p

(

Σ−1
v /M

)

∝ |Π|0.5η |Σv|
−0.5(η+dy−1) exp

{

−0.5tr
(

Σ−1
v Π

)}

(6)

Proposition 2.1 Given expressions (5) and (6) the posterior distribution of θ
and Σ−1

v , p
(

θ, Σ−1
v /Yt, T

)

, can be written as the product of the conditional densi-

ties, p
(

θ/Σ−1
v , Yt, T ,M

)

= N
(

θ̃, Σ̃θ

)

and p
(

Σ−1
v /θ, Yt, T ,M

)

= W
(

Π̃, T + η
)

,

9The vec and vech operators transform a matrix with dimensions m × m, respectively,
into an m2 × 1 vector by stacking the columns and to m(m + 1)/2 × 1 vector by stacking the
elements of and below the main diagonal.

10Actually, the most attractive element of this methodology, which is not related to the
analysis undertaken here, is that it leads to a posterior estimate of γ for which the distance
between the SVAR(p) and VAR(p) is small enough.
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where θ̃ =
[

Σ−1
θ +

(

Σ−1
v ⊗ X ′X

)]−1
[

Σ−1
θ µθ +

(

Σ−1
v ⊗ X

)′
y
]

, Σ̃θ =
[

Σ−1
θ +

(

Σ−1
v ⊗ X ′X

)]−1

, and Π̃ =
[

Π + (Yt − Xθ)′ (Yt − Xθ)
]

. �

The benefit of the above Proposition is twofold. Firstly, the Gibbs sampler11

allows us to approximate the posterior distribution of θ and Σ−1
v , p

(

θ, Σ−1
v /Yt, T

)

.
Given the current state of PCs this technique is only marginally computationally
more demanding than the one introduced by Del Negro & Schorfheide. However,
in contrast to their method, the one suggested here offers a measure of fit re-
garding the DSGE model M, without any additional computational effort. This
convenience arises from the work of Chib (1995) who shows that a marginal like-
lihood of the time series model T , L(Yt/T ,M) =

∫

L (Yt/β, T ) p (β/M)dβ, can
be obtained from the output of the above Markov Chain Monte Carlo (MCMC)
resampling scheme.

Given the marginal likelihood, the Bayes Factor, Bij=
L(Yt/T ,Mi)
L(Yt/T ,Mj)

, of com-

paring κ time series models (Tj , where j 6= i = 1, ..., κ), is readily calculated.
In the present framework the time series model remains the same and the like-
lihood does not change. However, the priors about θ and Σv, p(θ/Mj) and
p(Σ−1

v /Mj) where j = 1, ..., κ, are derived from κ different competing DSGE
models and therefore this methodology provides us with a way of assesing the
plausibility of the various restrictions implied by different economic theories
to the historical data. This process provides substantial computational advan-
tages, as mentioned, and it has a very good intuition, which is explained in the
next paragraph.

DSGE models have been developed to explain certain economic phenomena
and not all the features of the historical data. This implies that they are par-
simonious, and, by construction, misspecified. The natural way to assess their
performance is, therefore, based on these phenomena, which are summarized
by the restrictions imposed on the time series parameter vector β. This is the
logic behind the proposed evaluation process and it coincides with the one sug-
gested by Del Negro & Schorfheide, whose measure of fit evaluates the extent to
which these restrictions could be relaxed to make the time series model (again
with priors coming from the structural model, however, as it has been discussed
above, they are derived differently) to fit well in the historical data.

3 Conclusion

This Paper describes an alternative methodology of obtaining prior distributions
for BVAR models, which can be applied when the number of the structural shock
coincides with the number of the observable variables, and, the eigenvalues of
the matrix M(γ) are less than one in absolute terms. It is shown that the
posterior distribution of the time series parameter vector can be written as the
product of a conditional Normal and a conditional Wishart density, implying
that the former distribution can be approximated through the use of the Gibbs
sampler. Existing results in the MCMC literature show that the marginal like-
lihood and consequently the Bayes Factor, can be obtained from the output of
the above sampling scheme. In other words, there is no additional computa-

11For a detailed discussion see Gilks et al. (1996); Robert & Casella (2004); Canova (2005).
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tional cost of getting these values, which can be used to rank competing DSGE
models.
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A Appendix

Proof: of Proposition 2.1

p
(

θ, Σ−1
v /Yt, T

)

= p (θ/M) p
(

Σ−1
v /M

)

L
(

Yt/θ, Σ−1
v , T

)

∝ |Σθ|
−0.5dθ

exp
{

−0.5
[

Σ
−0.5
θ (θ − µθ)

]

′
[

Σ
−0.5
θ (θ − µθ)

]}

× |Π|
0.5η

|Σv |
−0.5(η+dy−1)

exp
{

−0.5tr
(

Σ
−1
v Π

)}

× |Σv |
−0.5T exp

{

−0.5
[(

Σ−0.5
v ⊗ IT

)

y−
(

Σ−0.5
v ⊗ X

)

θ
]

′

[(

Σ−0.5
v ⊗ IT

)

y−
(

Σ−0.5
v ⊗ X

)

θ
]

}

= |Σθ|
−0.5dθ |Π|0.5η |Σv |

−0.5(T+η+dy−1) exp
{

−0.5tr
(

Σ−1
v Π

)}

exp











−0.5







[(

Σ−0.5
v ⊗ IT

)

y−
(

Σ−0.5
v ⊗ X

)

θ
]

′

[(

Σ−0.5
v ⊗ IT

)

y−
(

Σ−0.5
v ⊗ X

)

θ
]

+
[

Σ−0.5
θ

(θ − µθ)
]

′
[

Σ−0.5
θ

(θ − µθ)
]

















(7)

Similar to Canova (2005, Chapter 10, page: 354) let Y ≡
[

Σ−0.5
θ

µθ

(

Σ−0.5
v ⊗ IT

)

y

]

′

and

X ≡
[

Σ−0.5
θ

(

Σ−0.5
v ⊗ X

)
]

′

, then (7) becomes

p
(

θ, Σ−1
v /Yt, T

)

∝ |Σθ|
−0.5dθ |Π|0.5η |Σv |

−0.5(η+dy−1) exp
{

−0.5tr
(

Σ−1
v Π

)}

× |Σv |
−0.5T exp

{

−0.5 (Y − Xθ)′ (Y − Xθ)
}

= |Σθ|
−0.5dθ |Π|0.5η |Σv |

−0.5(η+dy−1) exp
{

−0.5tr
(

Σ−1
v Π

)}

× |Σv |
−0.5T exp







−0.5
[(

Y − X θ̃
)

− X
(

θ − θ̃
)]

′

[(

Y − X θ̃
)

− X
(

θ − θ̃
)]







= |Σθ|
−0.5dθ |Π|0.5η |Σv |

−0.5(η+dy−1) exp
{

−0.5tr
(

Σ−1
v Π

)}

(8)

× |Σv |
−0.5T exp































−0.5

















(

Y − X θ̃
)

′
(

Y − X θ̃
)

−
(

Y − X θ̃
)

′

X
(

θ − θ̃
)

−
(

θ − θ̃
)

′

X ′

(

Y − X θ̃
)

+
(

θ − θ̃
)

′

X ′X
(

θ − θ̃
)















































by setting θ̃ =
(

X ′X
)

−1 X ′Y =
[

Σ−1
θ

+
(

Σ−1
v ⊗ X′X

)

]

−1 [

Σ−1
θ

µθ +
(

Σ−1
v ⊗ X

)

′

y

]

, (8) reduces

to

p
(

θ, Σ−1
v /Yt, T

)

∝ |Σθ|
−0.5dθ |Π|0.5η |Σv |

−0.5(η+dy−1) exp
{

−0.5tr
(

Σ−1
v Π

)}

(9)

|Σv |
−0.5T

exp
{

−0.5
[(

Y − X θ̃
)

′
(

Y − X θ̃
)

+
(

θ − θ̃
)

′

X
′

X
(

θ − θ̃
)]}

From (9), conditioning on Σv , p
(

θ/Σ−1
v , Yt, T

)

∝ |Σθ|
−0.5dθ exp

{

−0.5
(

θ − θ̃
)

′

X ′X
(

θ − θ̃
)}

is a

normal distribution with mean and variance equal to θ̃ and
[

Σ−1
θ

+
(

Σ−1
v ⊗ X′X

)

]

−1
, respectively.

While from equation (7) it is clear that, conditioning on θ, p
(

Σ−1
v /θ, Yt, T

)

∝ |Π|0.5η |Σv |
−0.5(T+η+dy−1)

exp
{

−0.5tr
(

Σ−1
v

[

Π + (Yt − Xθ)′ (Yt − Xθ)
])}

, which is the Wishart distribution with a scale ma-

trix given by
[

Π + (Yt − Xθ)′ (Yt − Xθ)
]

and with T + η degrees of freedom. �
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