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Abstract

In this paper we consider the entry and exit of �rms in a dynamic general
equilibrium model with capital and a �xed labour supply. At the �rm level,
there is a �xed cost combined with increasing marginal cost, which gives a
standard U-shaped cost curve with optimal �rm size. At the aggregate level
the production function displays constant returns to scale. Entry is determined
by a free entry condition such that the costs of entry are equal to the present
value of incumbent �rms. As short run pro�ts are a decreasing function of
the number of �rms, we add a new stability mechanism in addition to the
diminishing returns to capital. Then equilibrium is saddle-point stable and the
stable manifold is two- dimensional. Transitional dynamics can, under certain
circumstances, be non-monotonic. We study the e¤ects of productivity and
�xed cost shocks on the aggregate activity, the number and the size of �rms.
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1 Introduction

The Marshallian approach to perfect competition focusses on a world where �rms have
U-shaped average cost curves and where the long-run competitive equilibrium was one
in which all �rms were producing at e¢ cient scale. As pointed out by Novshek and
Sonnenschein (1987), this contrasts with the Arrow-Debreu setting where �rms pro-
duction sets are convex, so that both average and marginal costs are non-decreasing1.
Furthermore, the number of �rms is taken as given in general equilibrium analysis
(Smith (1974)). Turning to explicitly dynamic macroeconomic models, the �rm
is often ignored unless there is imperfect competition. Where the number of �rms
is endogenous, although entry and exit are essentially dynamic phenomena, macro-
economists have made them into non-intertemporal phenomena. One approach is to
have instantaneous free entry, so that the number of �rms is that which ensures zero
actual pro�ts (see for example Devereux et al. (1996), Heijdra (1988), Coto-Martinez
and Dixon (2003))2 or zero expected pro�ts (Hopenhayn (1992)). An alternative is
to treat the number of �rms as �xed over time determined by a non-dynamic long-run
zero pro�t condition (Hornstein (1993)).
What this paper does is to introduce a rigorous treatment of the entry process

and number of �rms in a perfectly competitive dynamic general equilibrium economy
and traces through the production process from the �rm level to the aggregate This
model is a generalization of the classic Ramsey model in which the �rm level is not
modelled and the representative household chooses consumption as a control variable
and capital is the state variable. Here, there is an additional state-variable (the
number of �rms) and control (entry). This results in a four dimensional dynamic
system, with a two-dimensional stable manifold. As we shall see, the Ramsey model
implicitly adopts two approaches: either there is a �xed number of �rms, or else the
number of �rms adjusts instantaneously to the level of capital. However, these are
too extreme: we allow for the case where the �ow of entry is determined endogenously
by an equilibrium entry model developed by Datta and Dixon (2002). The process
of entry and the accumulation of capital interact in an explicitly dynamic setting.
The entry model assumes that entry has a price at each instant in time, and this is
increasing in the �ow of entry and is zero when there is no entry (this is a special
case of endogenous entry costs introduced by Das and Das (1996)). The dynamic
equilibrium which results is one in which the cost of entry at each instant equals the
net present value of an incumbent �rm: as a consequence �rms have no incentive to

1McKenzie (1959) took a quasi-Marshallian approach by assuming that an aggregate production
function existed so that production sets are convex cones, this imposing the long-run constant returns
of the Marshallian view point by the argument that the possibility of division and replication implies
that the aggregate production function will have constant returns.

2This assumption is also made in the theory of Contestable markets, (see Baumol et al. (1982)).
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delay or bring forward the time of entry/exit. In steady-state, there is zero entry
and �rms earn zero pro�ts and we have the Marshallian long-run where average and
marginal cost are equated. On trajectories towards steady-state, the �ow of pro�ts
may be positive or negative and output per �rm will di¤er from the e¢ cient scale of
production.
From the perspective of the representative household and the social planner, there

are two ways of accumulating wealth: one is to set up new �rms, the other is to
accumulate capital. At all times, there is an arbitrage condition which ensures
that the two assets have the same return. In steady-state the �rms are at one level
worthless, since they earn zero pro�ts and have a zero marginal product. However, on
another they are highly valuable: they enable the e¢ cient organization of production
in steady-state, where labour and capital are combined so that production occurs at
the e¢ cient scale and marginal cost equals average cost. Even though �rms earn no
pro�ts in steady-state, �rms will be set up (or closed down) on the way to steady-state
equilibrium.
One of the most interesting �ndings of the paper is that for a wide range of initial

conditions we can have a non-monotonic trajectory in one of the state-variables (but
not both, because the roots are all real) 3 . This happens because of the interactions
between the two state-variables: the number of �rms in�uences the marginal product
of capital, and the stock of capital in�uences the pro�tability of �rms. For example,
even if the number of �rms is above its steady-state value, if there is a large capital
stock this will boost �rm pro�tability and lead to entry on the initial part of the
trajectory. Likewise, a large number of �rms boosts the marginal product of capital
which may lead to initial capital being accumulation even though in the long-run
capital is decumulated.
We study two types of technology shocks: one is a productivity variable that

alters the marginal product of labour and capital; the other is the �ow �xed costs per
�rm. We prove that productivity shocks will expand the economy by generating an
increase in the number of �rms while the �rm-size will be asymptotically invariant.
An increase in the �xed cost will imply an increase in �rm size and a reduction in
the number of �rms asymptotically. An increase in both size and the number of
�rms occurs if the two shocks are positively correlated. We derive critical values for
the correlation of shocks that result in non-monotonic trajectories in capital or the
number of �rms.
Existing papers that adopt a genuine dynamic entry model have assumed that

there is only one state variable by removing capital. Thus Aloi and Dixon (2002)
adopt the same entry model as this paper, but assume imperfect competition and

3This complements �ndings in a non-general equilibrium context with non-monotonic entry dy-
namics Gort and Klepper (1982) and Das and Das (1996).
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labour as the only input. Bilbiie et al (2005) assume that there is an exogenous �xed
entry cost and that the entrant evaluates the expected net present value of an incum-
bent. Free entry means that in equilibrium the net present value of an incumbent is
equal to the entry cost. Again, this model assumes imperfect competition and no
capital. Smith (1974) develops a genuine dynamic model of entry in a perfectly
competitive economy. What determines the �ow of entry in Smith�s model is the
opportunity cost of current consumption, since setting up a �rm requires a one-o¤
�xed labour input. Hence, if more �rms are set up (or dismantled), then there is less
labour available to provide for current consumption.
The paper is organized as follows: in section 2 the model is presented, section 3

studies the dynamics and section 4 reports the comparative dynamics for productivity
and �xed costs shocks (uncorrelated and correlated).

2 The model

There is an in�nitely lived household and at any time t a continuum of �rms i 2
[0; n(t)]. Households o¤er a �xed labour supply to �rms and invest in their equity.
Firms produce a single �nal product which is used for consumption and investment.
Firms and households are price-takers in all markets. We now turn to the optimization
programmes of �rms and households in more detail.

2.1 Household

Households consume and collect income from investments in �nancial assets (equity)
and labour income. They choose the trajectory of consumption fC(t); t � 0g to
maximize lifetime utility U :

U =

Z 1

0

u(C(t))e��tdt

where u0 > 0 > u00, u0(0) = +1; lim
C!+1

u0(c) = 0. The accumulation equation for

�nancial assets is the instantaneous budget constraint

_V = r(t)V (t) + w(t)� C(t): (1)

where r and w are the real rate of return on equity and the real wage rate, respectively,
and the labour supply is normalized to unity. The initial level of wealth V (0) is given
and the no-Ponzi-game condition limt!1 e

�
R t
0 r(s)dsV (t) = 0 holds.
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In the set of the admissible consumption and wealth accumulation strategies, the
optimal path of (C(t); V (t)) satis�es the Euler equation

_C =
C

�(C)
(r(t)� �) (2)

where � � �u00(C)C=u0(C), and the transversality condition which is

lim
t!1

e��tu
0
(C(t))V (t) = 0: (3)

2.2 Firms

There is a continuum of �rms, i 2 [0; n(t)], where n(t) is the measure of �rms operating
at instant t. Firms are price takers in all the markets in which they participate: they
hire labour and capital to produce output which they sell to households.
At every moment in time there is entry. That is, at instant t consider that the

number of �rms will pass in the interval between t to t + � from n(t) to n(t + �). If
n(t) < n(t + �) there is entry and if n(t) > n(t + �) there is exit. The rate of entry
is n(t+�)�n(t)

�
. If the interval shrinks to zero, then the instantaneous rate of entry is

_n(t) = lim�!0
n(t+�)�n(t)

�
. We de�ne:

e(t) = _n: (4)

Conceptually, we can divide the decisions made by �rms into two parts. First,
there is the intra-temporal decision about how much output to produce and corre-
spondingly how much labour and capital to employ. This decision is made by all the
n(t) incumbent �rms at time t. This will depend only on the output and input prices
prevailing at instant t. Second, there is the inherently dynamic entry decision. At
any instant t, non-incumbent �rms have to decide whether to enter now or later (or
never); incumbent �rms have to decide whether to exit now or later (or never). We
will look at these two decisions in turn.

2.2.1 Production.

We start with the problem for incumbent �rms i 2 [0; n(t)] in instant t. Each �rm
employs capital and labour according to the following technology:

y(i; t) = AF (k(i; t); l(i; t))� �; (5)

where A > 0 is a productivity variable and � > 0 represents a �xed overhead in terms
of �nal output. F is strictly concave, homogeneous of degree � < 1 in capital and
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labour4. The Inada conditions hold for the marginal products of capital and labour.
Since the function F is homogenous, the dual cost-function corresponding to (5) can
be written as

B(w; r; y) = b(w; r):

�
y + �

A

�1=�
; (6)

where w and r are the rental cost of labour and capital respectively and b(w; r) is
an increasing convex function of (w; r). The average cost function corresponding
to (5) is of the standard U�shaped variety: marginal cost is increasing since � < 1,
average cost is initially decreasing and then increasing because of the overhead element
(� > 0). This implies that there is an optimal scale to the �rm, where average cost
is minimized. From (6), for any (w; r) >> 0 average cost AC is minimized at the
e¢ cient �rm size ye

ye =
��

1� � : (7)

Figure 1

The optimal capital and labour corresponding this can then be obtained using Shep-
herd�s Lemma (ke = Br(w; r; ye); le = Bw(w; r; ye)). It is useful to note that A does
not a¤ect the e¢ cient scale, although it does reduce optimal factor inputs. A de-
crease in � reduces both e¢ cient scale and factor inputs. As �rms have the same
technology, from now on we set k(i; t) = k(t), l(i; t) = l(t) and y(i; t) = y(t) for any
i 2 [0; n(t)]. We de�ne �rm size by output y(t).
We can de�ne the supernormal pro�t of the �rm � as the surplus when each factor

is priced at its marginal product:

�(t) = y(t)� (Fkk(t) + Fll(t)) = (1� �)AF � �: (8)

The zero-pro�t condition is thus:

AF (k(t); l(t)) =
�

1� � : (9)

Note that this condition is equivalent to (7): hence the zero pro�t condition implies
technical e¢ ciency when factors are priced at their marginal products (hence P =
MC = AC). If output is above ye pro�ts are strictly positive (since P =MC > AC)
and negative if below ye.

4Recall that homogeneity of degree � for F implies the following relationships between F (x; y)

and its derivatives: Fxx+ Fyy = �F , (x; y) � @
2F (x;y)
@(x;y)2 � (x; y) = �(� � 1)F , xFxx + yFxy = (� � 1)Fx

and xFxy + yFyy = (� � 1)Fy.
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2.2.2 Entry and exit

The model of entry is based on Datta and Dixon (2002). Potential entrants (and
quitters) evaluate the net present value NPV of incumbency,

NPV (t) =

Z 1

t

�(s)e�
R s
t r(�)d�ds: (10)

We assume that there is a congestion e¤ect which makes the cost of entry (exit) q rise
with the �ow of entry (and exit): in particular we assume that they are proportional:

q(t) =


2
e(t); (11)

which implies a total cost of entry in terms of output used to set up (dismantle) �rms
is

Z(t) = q(t):e(t) = 
e(t)2

2
(12)

where  is a parameter measuring the dynamic barriers to entry (DBE). The con-
gestion e¤ect might arise from the setting up of �rms at the same instant of time
stretching some �nite resource: the technology for the setting up of new �rms has
diminishing returns.
The free entry condition means that the �ow of entry equates the cost of entry q

to the net present value of incumbency:

q(t) =

Z 1

t

�(s)e�
R s
t r(�)d�ds (13)

If we time-di¤erentiate equation (13) we obtain

_q = ��(t) + r(t)q(t) (14)

Re-arranging (14), we can see that this is an arbitrage equation, equating the rate of
returns on capital with setting up a new �rm:

r(t) =
�(t)

q(t)
+
_q(t)

q(t)
: (15)

There are two elements to the RHS of (15): the pro�t earned by entering now and
the change in the cost of entry. If entry costs are rising (falling) it means that there
is an incentive to bring forward (delay) the moment of entry. Substituting (11) into
(14) we obtain the dynamic equation for entry:

_e = r(t)e(t)� �(t)=: (16)
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The entry decision is inherently intertemporal. The entrant looks over the future
and decides whether or not to pay the entry cost now. An important implication
of equation (10) is that entry can be non-zero when current pro�ts are zero. Since
it is the NPV of pro�ts that matters, the entrant evaluates the �ow of pro�ts along
the entire trajectory: thus for example, �rms may enter even when current pro�ts
are negative if pro�ts eventually become positive. As we shall see, this is exactly
what happens along some equilibrium trajectories in this economy. This contrasts
with the dynamic entry model of Howrey and Quandt (1968) where the �ow of entry
is related solely to the instantaneous pro�ts5. Bilbiie et al (2005) present a genuine
dynamic model of entry in which the entrant evaluates the expected net present value
of being an incumbent: however, the model is not solved analytically and there is an
exogenous �xed entry cost which means that there is not a unique steady state which
makes it inconsistent with the long-run competitive equilibrium (in our paper, the
entry cost is zero in steady-state).
In equilibrium the entrant is indi¤erent between entering and not entering. Since

this holds at each point in time, the potential entrant is also indi¤erent as to the
timing of entry. For example, if the �rm delays entering when the cost of entry is
falling, it will �nd that the lower entry cost is exactly o¤set by the lower NPV of
pro�ts when it �nally enters. This dynamic model of entry yields a dynamic zero-
pro�t condition. The presence of entry costs means that the incumbents can earn
strictly non-zero pro�ts (losses) on the path to steady-state: the �ow of entry adjusts
so that the entry (exit) cost just balances the NPV of pro�ts (losses) to be made. In
the long-run steady-state, the cost of entry is zero and both the NPV of incumbents
and the �ow of pro�ts � are zero.

2.3 Aggregation

Let us denote the aggregate capital and labour available at time t as K(t) and L(t).
For a given number of �rms, the optimal allocation across �rms is to have equal
capital and labour in each �rm. This follows from the fact that marginal cost is
everywhere increasing at the �rm level. This is the outcome of decentralized factor
markets where all �rms face the same factor prices. Hence

K(t) =

Z n(t)

0

k(i; t)di =

Z n(t)

0

k(t)di = n(t)k(t);

L(t) =

Z n(t)

0

l(i; t)di =

Z n(t)

0

l(t)di = n(t)l(t):

5See also Meyers and Weintraub (1971) and Okuguchi (1972).
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For simplicity, we assume that L(t) = 1, so that l(t) = 1=n(t) and the �rm size and
pro�ts are:

y(t) = AF (K(t)=n(t); 1=n(t))� �; (17)

�(t) = (1� �)AF (K(t)=n(t); 1=n(t))� �:

Hence aggregate output in the economy is:

Y (t) =

Z n(t)

0

y(t)di = n(t)y(t);

to yield the aggregate output as a function of (K;n)

Y (K;n;A; �) = n

�
AF

�
K

n
;
1

n

�
� �
�
:

For analyzing the dynamics of the system, it is best to represent the aggregate pro-
duction technology Y (K;n) in terms of the marginal product of K and n; the two
state variables. Hence, the aggregate and the �rm level marginal productivity of
capital are equal

YK = AFk > 0;

and there are decreasing returns at the aggregate level

YKK =
A

n
Fkk < 0:

The derivative of aggregate output with respect to the number of �rms is equal
to the pro�t per �rm,

Yn = �A
�
Fk
K

n
+ Fl

1

n

�
+ AF � � = (1� �)AF � � = �: (18)

Hence, a zero pro�t equilibrium maximizes output Yn = 0 if � = 0. Also, entry
boosts the marginal product of labour and capital:

YKn = �
A

n

�
Fkk

K

n
+ Fkl

1

n

�
=
A

n
(1� �)Fk > 0;

more �rms means less inputs per �rm so that the marginal products increase. Al-
though there are diminishing returns at the �rm level, the aggregate production
function Y (K;L; n) is homogeneous of degree 1 in (K;L; n) : Hence, if you double
capital and labour and also double the number of �rms, productivity and output at
the �rm level are una¤ected, so that aggregate output also doubles.
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The real interest rate is de�ned as the real rate of return on capital:

r(K;n;A; �) = YK(K;n;A; �);

which is decreasing in the stock of capital and is increasing in the number of �rms and
the productivity parameter: rK = YKK < 0 and rn = YKn > 0, rA = YKA > 0; r� = 0:
From (18) we can write pro�ts per �rm as a function of aggregate variables:

� (K;n;A; �) = Yn(K;n;A; �);

� is increasing in the stock of capital and the productivity and is decreasing in the
number of �rms and in the �xed cost: �K = YKn > 0, �n = Ynn = ��(1��)AF=n < 0.
Total operating pro�ts in the economy are �(k; n;A; �) = n�.
We have described a general �rm level technology in which there is a clearly de�ned

optimal scale of production for �rms which depends on the underlying technology
and �rms have the text-book cost curves with rising marginal costs and a U�shaped
average cost curve. The role of �rms is to de�ne the way factor inputs are divided
up, and hence how e¢ ciently they are combined. More �rms means that capital and
labour are divided up into smaller units, with the e¤ect that their marginal products
will increase but the additional �xed overheads may reduce or increase total output.

2.4 General Equilibrium.

The balance sheet for households equates the value of equity holdings to the total
value of �rms in terms of their assets (capital) plus the NPV of future pro�ts:

V (t) =

Z n(t)

0

[k(t) + q(t)] di = K(t) + n(t)q(t):

Hence we can characterize the change in the value of equity as

_V = _K + n(t) _q + _nq(t)� Z(t);

where _nq(t)� Z(t) re�ects the impact of entry/exit on total equity value. Hence
_K = _V � n(t) _q � _nq(t) + Z(t): (19)

From equations (1), (14), (4), (12), we have

_K = rK + w + n� � 
2
e2 � C;

Hence the aggregate accumulation equation for capital is:

_K = n

�
AF

�
K

n
;
1

n

�
� �
�
� C �  e

2

2
; (20)
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which is equivalent to the product market equilibrium equation

Y (t) = C(t) + I(t) + Z(t);

where I(t) = _K. That is, output is equal to consumption plus investment in capital
plus "investment" Z(t) in setting up or dismantling �rms.
The household�s transversality condition (3) can be related to (K(t); n(t)) by

noting that as t ! 1; lim q(t) = 0. Since (K(t); n(t)) are strictly positive we
therefore have

lim
t!1

e��tU 0 (C(t))n(t)q(t) = lim
t!1

e��tU 0 (C(t))K(t) = 0: (21)

De�nition: Equilibrium. . The general equilibrium is de�ned by the aggregate
variables (C(t); K(t); Y (t); V (t)), factor prices (r(t); w(t)), and the number and
rate of change of �rms (n(t); e(t)), for 0 � t <1 such that:

1. households determine C(t) and V (t) by maximizing lifetime utility subject to
(1; 3) given the factor prices;

2. incumbent �rms choose fk(t); l(t); y(t)g by maximizing pro�ts, given factor
prices;

3. the �ow of entry (exit) e(t) = _n(t) equates the cost of entry (exit) with the NPV
of an incumbent �rm;

4. Trajectories (K(t); n(t)) satisfy the transversality condition (21)

5. the factor prices ensure markets clear.

The aggregate variables (C(t); K(t); e(t); n(t)) are determined jointly from the
four ODE�s (2), (16), (20) and (4), the initial conditions K(0) and n(0) and the
transversality conditions. from these we can determine �rm level variables k(t) and
l(t), and �rm size y(t).
The general equilibrium model is equivalent to a centralized economy model in

which a social planner maximizes the intertemporal utility function by choosing the
path of aggregate consumption and entry (C; e) subject to the economy wide con-
straints, equations (20) and (4). The social planner�s problem is described in Ap-
pendix 1.
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2.5 Steady-State Equilibrium.

If we restrict the equilibria to the set of positive levels for the capital stock and the
number of �rms, K and n, there will be a unique stationary equilibrium point such
that the transversality conditions holds. The aggregate capital stock and the number
of �rms, (K�; n�), will be determined by equating the marginal product of capital to
the discount rate and setting pro�ts equal to zero:

� = r(K�; n�; A); (22)

0 = �(K�; n�; A; �): (23)

Hence, there will be no entry
e� = 0: (24)

and aggregate consumption C� will be equal to aggregate output

C� = Y � = n�y�: (25)

Since pro�ts are zero, �rm size will be equal to the e¢ cient level y� = ye, with the
corresponding levels of inputs.
The steady state has intuitively simple properties. Since consumption is constant,

the real rate of interest is equal to the consumers�rate of time preference (22); long
run pro�ts and the entry �ow are zero (23,24) which implies that �rms are producing
at minimum average-cost; consumption is constant and equal to aggregate output
(25). Given the Inada property of the production function the steady state exists
and, given global concavity, is unique.
Observe that the steady state depends on the technology parameters (A; �), the

rate of time preference � but not on the elasticity of intertemporal substitution (�) and
DBE (). Changes in the last two parameters only in�uence the adjustment dynamics
since they determine intertemporal arbitrages (postponement of consumption and of
entry).

Figure 2

To solve for the steady state in levels, note that the equations are recursive. The
�rst two equations can be solved for (K;n), which then determines consumption by
(25). We can make a geometrical projection of the phase diagram into (K;n)-space
as in �gure 2. The two steady-state equilibrium conditions (22; 23)are invariant to
the control variables (C; e) and the parameter . Their slopes are

dn

dK

����
r=�

= �rK
rn
> 0;

dn

dK

����
�=0

= ��K
�n

> 0; (26)
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hence:
dn

dK

����
�=0

� dn

dK

����
r=�

=
�nrK � �Krn

rn�n
< 0:

That is, they are both upward sloping but the r = � line is steeper 6 . These two
curves act as �xed reference points to which we can relate the elements de�ning the
trajectories projected in (K;n). They are also coincident with the projections of the
isoclines _C = 0 and _e = 0 if all the variables are at their steady state levels 7.
In �gure 2, to the left of the r = � line r > � and hence _C > 0 to the right r < �

and _C < 0. Also, above the � = 0 line we have � < 0 and below it � > 0. Recall,
from (10) we cannot infer the �ow of entry from the instantaneous �ow of pro�ts �,
since entry/exit is determined by the NPV for the subsequent trajectory.

3 Aggregate dynamics

Next, we will characterize qualitatively the local dynamics properties in a neighbour-
hood of the steady state, by studying the solution of the linearized system0BB@

_C
_e
_K
_n

1CCA =

0BB@
0 0 CrK=� Crn=�
0 � �K= �n=
�1 0 � 0
0 1 0 0

1CCA
0BB@
C(t)� C�
e(t)

K(t)�K�

n(t)� n�

1CCA (27)

given the initial conditions (n0;K0) and the transversality conditions (21), where the
Jacobian matrix is denoted by J .

3.1 The stable manifold.

Our �rst step is to determine the eigenvalues.
Proposition 1 The eigenvalues of the Jacobian matrix of system (27) are given

by

�j1 =
�

2
�
���
2

�2
� 1
2

�
CrK
�

+
�n


�
� 1
2
�

1
2

� 1
2

j = s; u (28)

�j2 =
�

2
�
���
2

�2
� 1
2

�
CrK
�

+
�n


�
+
1

2
�

1
2

� 1
2

j = s; u (29)

6Observe that �nrK��Krnrn�n
= � FkkFll�F 2

kl

�(1��)2FFk .
7These isoclines will �slide�in (K;n) space when variables deviate from their steady-state values.
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where the discriminant is � =
�
CrK
�
� �n



�2
+ 4Crn

�
�K

> 0, and the superscripts u; s

refer to stable and unstable eigenvalues. Hence we have:

�s2 < �
s
1 < 0 < �

u
1 < �

u
2 ; (30)

All proofs are in Appendix 2. Note that �s1 + �
u
1 = �

s
2 + �

u
2 = �. It is sometimes

useful to deal with the products of the eigenvalues: let li � �si�ui for i = 1; 2, then

l1 =
1

2

�
CrK
�

+
�n

+�

1
2

�
; l2 =

1

2

�
CrK
�

+
�n

�� 1

2

�
; (31)

then 0 > l1 > l2, l1 + l2 = CrK
�
+ �n


< 0 and l1l2 = det(J) > 0.

We have four distinct real eigenvalues: the two negative eigenvalues �s2 < �
s
1 < 0

will determine the dynamics for the transversality condition to hold. In our model
though the dynamics are saddle-path stable, the stable manifold is two-dimensional.
Since the dimension of the stable manifold equals the number of the predetermined
variables the equilibrium is determinate.
The meaning of a two-dimensional stable manifold is that there are two indepen-

dent sources of stability. If we look at the terms in the formula for the eigenvalues,
we see parameters (�; �) which re�ect consumer time preference,  which relates the
�ow of entry to the cost of entry, and (rK ; rn; �n) the e¤ect of the state variables
on the marginal products (which depend only on technological parameters). The
diminishing marginal returns of capital and decreasing pro�ts to entry are the main
forces for stability in this economy. It should be noted that they also interact: an
increase in the number of �rms increases the marginal productivity of capital; more
�rms means less capital per �rm and hence a higher marginal product since � < 1.
An increase in the capital stock makes �rms more pro�table which a¤ects entry. As
we shall see, these interactions can lead to non-monotonic trajectories.
For subsequent analysis, it is useful to examine what happens to the negative

eigenvalues as the dynamic barriers to entry (DBE)  vary:
Corollary 1 �s2 and �

s
1 are increasing functions of the dynamic barriers to entry,

 : for �s1 we have the limits

lim
!0

�s1 =
1

2

"
��

�
�2 + 4

C

�

�
rn�k � rK�n

�n

��1=2#
< 0 < lim

!1
�s1 = 0;

and for �s2

lim
!0

�s2 = �1 < Lim
!1

�s2 =
1

2

"
��

�
�2 � 4CrK

�

�1=2#
< 0:
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In terms of li we have

lim
!0

l1 =
C

�

�
rn�k � rK�n

�n

�
< 0 < Lim

!1
l1 = 0;

lim
!0

l2 = �1 < Lim
!1

l2 =
CrK
�

< 0:

In the limiting cases of no entry ( =1) and costless entry ( = 0) the dimension
of the stable manifold collapses to 1, since the ratio of eigenvalues is unbounded. The
speed of convergence is decreasing in  for 0 <  <1.

3.2 The Phase Diagram in (K;n)

The fact that the system is 4-dimensional and the fact that there are no zero roots
poses some challenges to a qualitative understanding of the dynamics of transition.
However, we can understand it intuitively by concentrating on the projection onto the
state-space (K;n), although there are insights to be gained by looking at the more
familiar "Ramsey" projection (C;K).
In the Appendix 2, Lemma A2, we show that the dynamics of the system along

the linearized stable manifold take the form:0BB@
C(t)� C�
e(t)� 0
K(t)�K�

n(t)� n�

1CCA = P s1w
s
1e
�s1t + P s2w

s
2e
�s2t (32)

where wsi are the weights (determined by the initial conditions for the state variables,
K(0) and n(0)), and P si are the eigenvectors corresponding to the negative eigenvalues,
�si .
We denote by Es1 and E

s
2 the lines in the four dimensional space (C; e;K; n) which

have the slope given by P s1 and P
s
2 , respectively and pass through the equilibrium

point. The eigenvectors P s1 and P
s
2 , or equivalently, the lines E

s
1 and E

s
2 span the

space which is tangent to the stable manifold at the steady state equilibrium.
In order to determine Es1 (E

s
2) we set w

s
2 = 0 (ws1 = 0) which implies that the

dynamics is solely driven by �s1 (�
s
2). Hence:

Es1 := f(C; e;K; n) :
�u1 � Crn
�l1 � CrK

(C � C�) + �s1e+
Crn

�l1 � CrK
(K �K�) = n� n�g;

and

Es2 := f(C; e;K; n) :
�u2 � Crn
�l2 � CrK

(C � C�) + �s2e+
Crn

�l2 � CrK
(K �K�) = n� n�g;
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evaluated in a neighborhood of the steady state. The dynamics of the system are
driven by these two lines. When the system is close to the steady-state, the equilib-
rium trajectories are asymptotically tanget to Es1 and when further away the trajec-
tories are parallel to Es2. This corresponds to the intuitive notion that the dynamics
are driven at �rst more by the negative eigenvalue which is larger in absolute value,
but that since this dies away more quickly the smaller eigenvalue predominates as
you approach steady state.

Proposition 2 Qualitative characterization of the orbits belonging to the stable man-
ifold. Consider an initial non-steady-state point (C (0) ; e (0) ; n (0) ; K (0)).
The transition dynamics along the the stable manifold will be as follows :

(a) If the initial position of the two state variables lies on Esi i = 1; 2, then the control
values jump to the corresponding values on Esi and the economy proceeds along
Esi with maximum speed to the steady-state.

(b) If the initial position of the two state variables does not lie on either Esi , then the
economy will move in the direction of Es1 intially tangent to E

s
2. Asymptotically

it will approach steady-state along Es1.

Figure 3 here

We can now describe the two projections of Esi ; i = 1; 2; in (K;n) and how they
relate to our two reference curves (see �gure 3):

Proposition 3 The projections of Es1 and E
s
2 in (K;n):

(a) The projections have the opposite slopes:

dn

dk

����
Es2

=
�l1 � CrK

crn
> 0;

dn

dk

����
Es1

=
�l2 � Crk
crn

< 0:

(b) In general for  2 (0;1)

dn

dk

����
Es1

< 0 <
dn

dk

����
�=0

<
dn

dk

����
Es2

<
dn

dk

����
r=�

:

(c) if  ! 0 then

�1 =
dn

dk

����
Es1

< 0 <
dn

dk

����
�=0

=
dn

dk

����
Es2

<
dn

dk

����
r=�

:
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(d) if  !1 then

dn

dk

����
Es1

= 0 <
dn

dk

����
�=0

<
dn

dk

����
Es2

=
dn

dk

����
r=�

:

That is, in general the projection ofEs2 lies in between the two curves (r = �; � = 0),
and the projection of Es1 is negatively sloped. For  = 0 (instantaneous free
entry) Es1 is vertical and E

s
2 corresponds with the zero pro�t line. For  = 1

(�xed number of �rms), Es2 is coincident with the r = � curve and E
s
1 is horizontal.

Along with Proposition 2, Proposition 3 gives us the following simple dynamics
for the two limiting cases. When  = 0 (costless free entry), the number of �rms n
"jumps" down vertically (following Es1) to the � = 0 curve, and then (K;n) converge
together along the � = 0 curve. With an eigenvalue of �s2 = �1 there is in�nite speed
in the adjustment of n, which in e¤ect collapses the manifold to the one dimension
of � = 0. When  = +1, the number of �rms does not change: Thus we move
horizontally along with K (the slope of Es1) accumulating or decumulating as in the
standard Ramsey story until we reach r = �. There is a zero eigenvalue here, so there
are multiple equilibria: each point on r = � is a possible equilibrium, which has as a
basin of attraction the horizontal line passing through it. For a given n, there is a
uniqueK such that r = � : capital is accumulated or decumulated to reach that point,
with consumption moving up (down) with capital as in the Ramsey story. Again,
for each equilibrium there is a one dimensional saddlepath in (C; n) and (C;K).
We now focus on the general case where  2 (0;1). To describe the dynamics

in full, we need to introduce two new lines. These are the isoclines _K = 0 and _n = 0
linearized around the steady state. In general, these isoclines will depend upon (C; e)
and will not be invariant in (K;n). However, close to steady state these depend only
on (K;n) and hence can be used to characterize the equilibrium trajectories of the
linearized system. Note that along the _n = 0 line q = 0. This is because _n = e = 0
if and only if q = 0 (the net present value of incumbency is zero).

Proposition 4 The tangents to the isoclines passing through the steady-state are

dn

dk

����
_n=0

=
�k

�s1�
s
2 � �n

> 0;

dn

dk

����
_k=0

=
��s1�

s
2 � Crk
Crk

> 0:

Figure 4 here

Figure 5 here
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It is worth noting a few points about these isoclines. First, the _n = 0 has a
positive slope that is less than the zero-pro�t isocline. The _K = 0 is positive in slope,
and steeper than the r = � line. The reason for this is that entry (exit) a¤ects
capital accumulation. The further South from steady state we are, the higher the
�ow of entry. From (20), higher entry means less is available for investment and
consumption, leading to less investment. Hence capital accumulation may stop even
though the marginal product of capital is above �. The converse happens North of
the steady state. The _n = q = 0 line is �atter than the � = 0 line. This is because
the NPV depends on the whole path of trajectories, not just the current �ow of
pro�t. As we will see, entry can occur even when � < 0; because the �rm anticipates
future pro�ts. Exit can also occur when current pro�ts are strictly positive, because
�rms get out now to avoid future losses.
Now we have the isoclines, we can divide up the (k; n) projection of the stable-

manifold into regions depending on the types of trajectories (see �gs 4 and 5). We
can see that any trajectory which cuts the _K = 0 isocline must be vertical: any
trajectory that cuts the _n = 0 must be horizontal. Any trajectory to the left of
the _K = 0 must have capital increasing; any to the right decreasing. Any trajectory
above the _n = 0 must have the number of �rms decreasing and any below must have
the number increasing. This enables us to intuitively draw the phase diagram in
(K;n).
If we start in a region inbetween the iso-clines, then we have monotonic dynamics

in both variables. In region A we are to the right of the _K = 0 and above _n = 0, so
that both variables are declining. In region B, we are to the left of the _K = 0 and
below _n = 0; so that both variables are increasing. As the trajectories get close to
the steady-state, their slope will converge to that of Es1. We can treat the isoclines
themselves as part of A and B, since trajectories starting from the isoclines also share
the monotonicity.
In the regions outside A or B, we will in general get non-monotonic behaviour in

one variable: since the eigenvalues are real, we cannot have non-monotonic behaviour
in both variables along the same trajectory. If we are outside A and B, the only
instance in which both variables are monotonic is when the initial position lies on
Es2 : in this case the trajectory travels straight down E

s
2 to the steady state, and

the two state variables move in di¤erent directions (depending on whether they start
above or below steady-state). These two cases correspond to trajectories in which
only the larger negative eigenvalue 2 is active.
If we start from the regions strictly between _K = 0 and Es2, we will observe non-

monotonic behaviour in K. North West of the steady state we have the region Nk,
there are initially too many �rms n > n�, and capital may be above or below steady-
state. However, even if capital is above steady-state, the large number of �rms boosts
the marginal product of capital and encourages capital accumulation. This continues
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until the trajectory hits the _K = 0 isocline, and thenceforth enters region A and both
variables decline towards steady-state. In the region Sk, South/South-West the same
story happens, but we have too few �rms: capital will initially fall since the marginal
product is low, until the _K = 0 is reached and the trajectory enters region B and
both state-variables increase to their steady state. Note that the regions Nk and Sk
are both open sets: they do not include their boundaries Es2 and _K = 0:
If we start from the region between Es2 and q = _n = 0, we will observe non-

monotonic behaviour in entry and hence n. To the west of steady state Wn, there
is too little capital. This means that �rms have negative NPV (we are above the
q = 0 line), so that there will be exit until the the q = 0 line is reached and then both
variables enter region B and increase to steady-state. To the right of steady-state
En, there is too much capital: this boosts �rms NPV and induces entry, until the
q = 0 line is met and the trajectory enters region A and both variables decline to the
steady-state.
Since the steady-state is almost always approached along Es1, almost all trajecto-

ries must either approach through region A or B where both are increasing/decreasing.
The only exception is where the initial position happens to lie on Es2. Hence, if the
initial position lies outside A [ B, the trajectory will move towards A [ B with one
variable decreasing and one increasing: once it enters A [ B the dynamics become
monotonic.
We can now see why the q = 0 line is �atter than the � = 0. When the

trajectory reaches the q = 0 line on the edge of A and there is too much capital,
NPV = 0 despite � > 0 since the trajectory will cross the � = 0 line and subsequently
earn strictly negative pro�ts until steady-state is reached. Along the q = 0 line, the
pro�ts prior to reaching � = 0 are exactly o¤set by the subsequent losses. The
opposite holds true when the there is too little capital: the q = 0 line on the border
of B is reached even though � < 0. This is because the trajectory will cross the
� = 0 line and subsequently earn pro�ts.
We can now formally summarise the above insights which we prove in the appen-

dix:

Proposition 5 Monotonous and non-monotonous transitional dynamics: Consider
the following two sub-sets

Nk �
�
(K;n) : n > n� and

Crn
�l2 � CrK

<
K �K�

n� n� <
Crn

��s1�
s
2 � CrK

�
;(33)

Sk �
�
(K;n) : n < n� and

Crn
�l2 � CrK

>
K �K�

n� n� >
Crn

��s1�
s
2 � CrK

�
;(34)
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and

Wn �
�
(K;n) : K < K� and

�K
�s1�

s
2 � �n

<
n� n�
K �K� <

�l2 � CrK
Crn

�
;(35)

En �
�
(K;n) : K > K� and

�K
�s1�

s
2 � �n

>
n� n�
K �K� >

�l2 � CrK
Crn

�
:(36)

Then,

1. if (K(0); n(0)) 2 Nk [ Sk, then K(t) will adjust non-monotonically: it will
increase and then decrease if starting in Nk; it will decrease an then increase if
starting in Sk;

2. if (K(0); n(0)) 2 Wn [ Rn, then n(t) will adjust monotonically; if starting in
Wn it will increase and then decrease; if starting in Rn it will increase and then
decrease;

3. if (K(0); n(0)) =2 Nk [ Sk [Wn [ Rn then both state variables have monotonic
trajectories.

3.3 Dynamics in (C;K) and (e; n)

Whilst the most intuition is gained by projecting the 4 dimensional phase space onto
(K;n), it is also illuminating to take a look at the conventional "Ramsey" projection
onto (C;K) and also (q;K).

Proposition 6 Projections of Esi onto (C;K) and (n; e) spaces.

(a) in (K;C)
dC

dK

����
Es2

= �u2 > �
u
1 =

dC

dK

����
Es1

> 0:

(b) in (e; n)
de

dn

����
Es2

= �s2 < �
s
1 =

de

dn

����
Es1

< 0:

F igure 6
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In (C;K) for  2 (0;1), both Esi are upward sloping, so that consumption and
capital move together. From Corollary 1, in the limiting cases of  = 0, the slope of
Es2 becomes vertical and the slope of E

s
1 equals �. In (e; n), for  2 (0;1) the slopes

are negative, with entry slowing as steady-state is approached. In the limiting case
of  =1, Es1 becomes vertical and the slope of Es2 negative. In this case the number
of �rms is �xed: n remains constant and e = 0 so there is no dynamics in (e; n) to
see. In the case of  = 0, Es2 is vertical and E

s
1 is negatively sloped. This means that

the number of �rms jumps to the zero-pro�t line given K, and then n moves towards
steady-state.

Figure 7 here.

It is interesting to see what the dynamics of the non-monotonic trajectories look
like in terms of (C;K) space. The positive slopes of Esi mean that in general consump-
tion and capital move together. Hence, in the case of a trajectory in which capital
is non-monotonic, the trajectory of consumption will also be non-monotonic. Let us
take the case where the initial capital stock is at its steady-state value, but �rms are
well above steady-state. This will induce the capital stock to increase initially, and
then decrease. Consumption will initially jump to a level below steady-state: this
re�ects the fact that it has level of total assets below steady-state (in terms of capital
and �rms the initial value is V (0) = qn(0) + K(0) with q < 0) and the household
wants to reduce the number of �rms which it has. However, there is initially an in-
crease in capital: the large number of �rms causes the marginal product of capital to
be high which leads to capital accumulation. Consumption and capital move together
with slope Es2. Eventually capital accumulation stops: this is when the trajectory in
(K;n) reaches the _K = 0 isocline. However, consumption continues to increase even
whilst capital is falling (this represents the part of the trajectory in (K;n) between
the _K = 0 isocline and the r = � line). Eventually capital and consumption both
fall together along a pth tangent to Es1. The non-monotonic trajectories with too
many �rms will all share this pattern: consumption starts low and initially increases
with capital; there is a period when consumption continues to increase whilst capital
falls; �nally both consumption and capital fall back down to steady-state. In the case
where there are too few �rms, the opposite happens. Since q > 0, consumption jumps
above steady state. Initially it declines with capital tangentially to Es2; capital turns
around and starts to increase, for a period consumption continues to decline until
both approach the steady-state from below along Es1.

Figure 8 here

The projection on (e; n) is negatively sloped: the �ow of entry is less when the
number of �rms is larger. The slope of Es2 is �

s
2 which is larger than E

s
1 which is

associated with the smaller eigenvalue. The standard monotone dynamic is for e to
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jump and then decline rapidly at �rst tangent to Es2 and then more slowly converge
along Es1 to the steady-state. The interesting story in (e; n) is what happens when the
trajectory of n is non-monotonic. Let us suppose that the number of �rms starts o¤
in steady-state, but there is too much capital. This boosts the pro�tability of �rms
and encourages entry: e jumps and the number of �rms increases. The trajectory
from the initial point is parallel to Es2: Eventually, due to the decline in capital stock
and the e¤ect of entry, q falls to zero and entry stops. Entry turns to exit and initially
the �ow of exit increases, but then entry declines so that the trajectory approaches
steady-state along Es1.

3.4 Firm size dynamics.

Firm size dynamics can be derived from the �rm size equation, (17) if we substitute
the dynamics for the aggregate capital stock and the number of �rms (32). In the
neighborhood of the stationary equilibrium, the local dynamics for the �rm size is
given as

y(t)� y� = 1

1� � (�K(K(t)�K
�) + �n(n(t)� n�)) :

Therefore, the loci in the diagram (K;n) such that the size of �rms is invariant, i.e.,
y(t) = y� is given by

dn

dK
= ��K

�n
;

which is coincident with the the zero-pro�t line �(K;n) = 0 (see �gures 2 to 5).
Above that line we will have � < 0 and y(t) < y� and below the line � > 0 and
y(t) > y� bellow. Thus the current �ow of pro�ts perfectly captures the size of the
�rm.
Using our previous analysis on the dynamics for the aggregate variables K and

n we also can describe in which situations the dynamics of �rm size can be non-
monotonic. First, we de�ne some extra subsets on the space (K;n):

Wy �
�
(K;n) : K < K� and � �K

�n
<
n� n�
K �K� <

�K
�s1�

s
2 � �n

�
(37)

Ey �
�
(K;n) : K > K� and � �K

�n
>
n� n�
K �K� >

�K
�s1�

s
2 � �n

�
(38)

Proposition 7 Monotonous and non-monotonous transitional dynamics for the �rm
size:

(a) if (K(0); n(0)) 2 Wn [Wy [En [Ey then y(t) will adjust non-monotonically: it
will increase and then decrease if starting in Wn[Wy; it will decrease and then
increase if starting in En [ Ey:
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(b) if (K(0); n(0)) =2 Wn [Wy [ En [ Ey then y(t) will adjust monotonically.

Note that for 0 <  < 1 the non-monotonous adjustment of n is a su¢ cient
(but not necessary) condition for the non-monotonous adjustment of �rm size. If
(K;n) belongs toWy (Ey) the transition path will cross line � = 0 in its way to being
tangent to Es1. This means that, though all the other variables vary monotonically,
the variation in the size of �rms shifts direction from being (decreasing) increasing
to being decreasing (increasing). The dynamics for the size of �rms will be similar
when (K;n) belongs toWn (En). But in this case the number of �rms will also adjust
non-monotonically.

4 Application: Productivity and Fixed cost shocks.

In this section we derive the comparative dynamics results for an unanticipated per-
manent shock in productivity or in the �xed costs. In general, a technology shock
would be a simultaneous shock to both parameters. However, we shall �rst consider
each parameter on its own.

4.1 Shock to A

A positive shock to A has two e¤ects: it boosts the marginal productivity of capital
and labour, and it raises the pro�tability of �rms (and hence increases the marginal
product of an additional �rm). In terms of Figure 1, an increase in A shifts both the
average and marginal cost downwards, but leaves their point of intersection the same
(as A does not a¤ect ye),

Proposition 8 Long-Run Multipliers for A. If there is a constant, permanent and
unanticipated increase in productivity:

dC�

dA
> 0;

dK�

dA
> 0;

dn�

dA
> 0

At the �rm level we have

dl�

dA
< 0 =

dy�

dA
<
dk�

dA

In the long-run, a positive productivity shock in A leads to an increase in capital,
the number of �rms and consumption. Entry is zero in steady-state by de�nition.
We can explore the long-run multiplier in terms of (K;n) space. An increase in A
a¤ects both the marginal product of capital and the pro�tability of �rms. However,
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from (26) and the expressions for rK and rn, we can see that the slope of r = � is
una¤ected, so that there is a parallel shift to the right. Turning to the � = 0 locus,
from (26) and the expressions for �K and �n the schedule � = 0 has a parallel shift
upwards. This is intuitive: the slopes of the two curves depend on the ratios of
marginal e¤ects of (n;K) on (r; �): all these marginal e¤ects are proportional to A so
the e¤ects cancel out. That leaves just the direct e¤ect of A on the marginal product
of capital and pro�ts resulting in the intuitive shifts in the loci.
The new steady state involves a di¤erent ratio of K to n. The increase in the

number of �rms implies that given the inelastic labour force, the employment per
�rm decreases. Since the e¢ cient output ye does not change (9), an increase in A
implies an increase in the steady-state capital per �rm k = K=n. Graphically, the
steady-state after the increase in A lies on a ray from the origin that is steeper: indeed
as we vary A from 0 to 1, the zero-pro�t capital per �rm varies from 1 to zero.
These two equations are every powerful: they are independent of the dynamics of
the system but tie down the steady-state. The initial steady state must lie to the
left of the new r = � line and below the � = 0 line, hence it is in the region of
monotonic trajectories: both capital and the number of �rms will increase towards
the new steady state.
Next, for the case of the two control variables, we can consider the di¤erence

between the impact e¤ect and the long-run e¤ect and the transition dynamics. For
consumption, we need to de�ne critical values for the parameter pair (; �) according
to the function:

z(; �) � �u1�u2(� (�u1 + �u2)� � (� + �)) > 0:

Note that from Proposition 1 z is increasing in both � and  : furthermore, for both
 and �, as they tend to zero so does z; as they tend to in�nity so does z. Hence,
for any 	 2 R++, we can de�ne the upper-countour set

Q (	) = f(; �) : z (; �) � 	g

The upper-contour sets are closed and strictly convex in (; �).

Proposition 9 Impact-Multipliers on the two controls (C; e).

(a)
dc�

dA
>
dc(0)

dA
=

n�

(1� �) ��u1�u2(�u1 + �u2 � �)

�
z (; �)� ���

n

�
(b)

sgn

�
dC(0)

dA

�
= sgn

�
z (; �)� ���

n

�
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(c)
de(0)

dA
> 0

e(t) > 0 for all t and tends to zero monotonically.

The result (a) means that given the values ���n�1, we can partition (; �) into
three sets in which consumption jumps up, jumps down or stays the same. Intuitively
there are two things going on behind this result. First, there is the trajectory of r��
over time: the bigger this gap is, the more the household will want to tilt consumption
to sacri�ce current for future consumption (from 2). This e¤ect is smaller when � is
larger. Secondly, there is entry (exit) which in�uences how quickly r changes. If 
is larger, then entry is slower and r will converge to �more quickly (due to the e¤ect
of n on r). Hence, if  and/or � are large, the household has less incentive to tilt
consumption away from the present and so consumption will increase on impact.
When viewed in (C;K) space, the e¤ect of entry is to shift up the projection of

the production-function Y (K;n;A) : Thus on impact there is an initial shift in the
production function, as in the Ramsey model. But, in our model, the impact increase
in aggregate output is a result of the increase in the size of �rms, y(0), for a given
number of �rms. However, this one-o¤productivity shock also triggers a �ow of entry
resulting in subsequent upward shifts in the projection of Y (K;n;A) as n converges
to its new steady state value. For a given time-path of K, the marginal product
of capital declines more slowly as the number of �rms increases alongside it. At the
�rm level, there is a reduction in size and a change in the factor composition, with
an increase in the average capital stock and a reduction in the average labour input.

4.2 Shock to �

Next we turn to a shock to the overhead �. This operates in a very di¤erent way to
A, since it does not a¤ect marginal productivity and MC at all, but operates only
on average productivity and cost. An increase in � causes the average cost curve to
shift upwards, and hence raises the e¢ cient scale of production (see (7)). This means
that for a given capital stock, there will be fewer �rms if each produces at e¢ cient
scale. In terms of (n;K), the change in � has no e¤ect on the r = � locus, since it
has no direct e¤ect on the marginal product of capital. An increase in � leads to a
downwards shift in the � = 0 line: for a given K, pro�ts per-�rm decline and so the
zero-pro�ts occurs with fewer �rms.
An increase in � causes a long run increase in the size of �rms, because both

capital and employment per �rm will increase. However, there is no e¤ect on �rm
size on impact (since k; l cannot vary).
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Proposition 10 Long-Run Multipliers for �. If there is a constant, permanent and
unanticipated increase in the overhead �xed cost:

(a)
dC�

d�
< 0;

dK�

d�
< 0;

dn�

d�
< 0:

(b) At the �rm level we have
dy�

d�
;
dk�

d�
;
dl

d�
> 0:

Proposition 11 The impact multipliers for �.

(a)
dC(0)

d�
=

n

z(; �)

�
C(1� �)�

n2
� z(; �)

�
>
dC�

d�
:

(b)

sgn

�
dC(0)

dA

�
= sgn

�
z (; �)� C(1� �)�

n2

�
:

(c)
de(0)

d�
< 0 :

The fact that an increase in � can cause an ambiguous impact on consumption
deserves some comment. Less output is produced (more is used up in overheads)
which tends to reduce consumption. However, the household also wants to decumulate
capital which boosts consumption: if � is low enough there will be an increase in
consumption. The household also wants to dismantle �rms: this uses up resources
and tends to reduce consumption possibiltities. If  is high (it is going to cost a lot
to dismantle the �rms) then consumption will tend to fall; if  is small enough then
it will boost consumption.

4.3 Correlated shocks in (A; �).

If we assume that the two technology parameters as uncorrelated, each one taken
on its own leads to a monotonic response of capital and the number of �rms (the
resulting dynamics belonging to the regions A or B). However, if we take the two
parameters together, they span the whole space: given an initial steady-state, we can
create a new steady state in any direction by choosing an appropriate combination of
changes to (�;A). Hence the whole range of dynamic responses is possible, including
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the cases where one of the variables (K;n) is non-monotonic. It is thus possible for
two technological shocks which on their own provide for monotonic dynamics when
combined will give rise to non-monotonous behaviour. In this section we show that
if the two parameters are correlated (as in Rotemberg and Woodford (1991)) we can
determine when we get monotonic and non-monotinic dynamics.
Assume that the shocks to � are proportional to the shocks in A, such that d� =

�dA8. The long run multipliers for the stock of capital and the number of �rms are:

dK�

dA
=

@K�

@A
+ �

@K�

@�
=
�n�

��

�
�

A(1� �) � �
�
;

dn�

dA
=

@n�

@A
+ �

@n�

@�
=
n�

�

�
1

A
� � (1� �)

�

�
:

Let us concentrate on the cases in which both A and � su¤er shocks with the same
sign: � > 0. From Propositions 8 and 10, the long-run multipliers have opposite
signs:@K

�

@A
> 0, @n

�

@A
> 0, @K

�

@�
< 0 and @n�

@�
< 0. Then, dK

�

dA
and dn�

dA
are ambiguous and

depend on the magnitude of �
We assign K� and n� to the steady state after the shock and K(0) and n(0) the

steady state before the shock and set dK = K� �K(0) and dn = n� � n(0); next we
compute

dn

dK
(�) =

dn�=dA

dK�=dA
(39)

and draw upon our study on local dynamics to determine critical values of � and
relate them to the projection of the phase diagram in the space (K;n).
From the values of � we can infer both the value of the long run multipliers and

the type of transitional dynamics. We can get lots of results, but the following seems
to be the most pertinent:

Proposition 12 There are values for �, �0 < � < �n such that there will be
an increase in the aggregate capital, in the number of �rms and in the size of �rms.
Within this interval, y will adjust non-monotonically, and n will adjust monotonically
(non-monotonically) if �0 < � < �1 (if �1 < � < �n).

Example In order to illustrate this and other cases we consider particular func-
tions: a Cobb-Douglas production function F (k; l) = F (K=n; 1=n) = (K=n)�(1=n)�

where � = �+� and 0 < � < 1, and a CRRA utility function u(C) = C1���1
1�� where � >

0. In this case, the equilibrium number of �rms is n� = L (A(�=�)�(�=(1� �))��1)1=�

8The case for which � = 0 corresponds to the uncorrelated shocks in A and � which were studied
in the previous section.
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and we �nd that �0 =
�
A
, �1 =

�
A

�
n��s1�

s
2+��

n��s1�
s
2(1��)+��

�
, �n =

�
A(1��) , �2 =

�
A(1��)

�
�2��+��l2

��l2

�
, �K =

�
A(1��) , and �3 =

�
A

�
���s1�

s
2+�

2��

���s1�
s
2(1��)

�
.

Figures 9-13 here

Figures 9 to 13 display the trajectories for C, e, K and n that were built with the
following benchmark parameter values: L = 1, � = 0:4, � = 0:5, � = 0:03, � = 2,
A = 1,  = 1 and an initial value for � = 0:03. We consider a 10% change in
productivity and then we get the following critical values for �0 = 0:03, �1 � :0375,
�n = :05, �2 � :1345, �K = :3 and �3 � :9866.

5 Conclusion

In this paper, we extend the Ramsey model and generalize existing approaches to
entry by allowing for an explicit and fully transparent treatment of both the number
and output per �rm at the micro level along with the behaviour of aggregate output,
consumption and investment. We do this by allowing for an explicit treatment of
two state variables: capital and the number of �rms. This contrasts with existing
models which try to keep the number of state variables to one: either by allowing for
the number of �rms to vary but with no capital, or having instantaneous free entry,
or a �xed number of �rms. The reward for this additional complexity is that we can
have a richer dynamic behavior. In particular, we can get non-monotonic behavior
in either one of the state variables (but not both since we have only real eigenvalues)
resulting form the interaction of the state variables on each others�marginal prod-
uct. We consider the dynamics induced by two types of technology shocks in this
model (productivity and �xed cost) and show how they can generate non-monotonic
responses if they are correlated.
We believe that entry and exit have long been the Cinderella of dynamic general

equilibrium analysis. This has largely been due to the technical di¢ culty of making
the number of �rms endogenous in a non-trivial way. We show how by adopting the
dynamic entry model of Datta and Dixon (2002), it is possible to develop an intuitive
and tractable dynamic general equilibrium model with the two state variables. Fur-
thermore, although the model is inherently a four dimensional system, the model can
be represented graphically in two dimensions by projecting it onto the 2-dimensional
subspace of the state variables.
There are several ways to develop the model in this paper. Most obviously, we can

allow for imperfect competition, so that the long-run equilibrium is no longer optimal:
in steady state the zero pro�t condition will imply that average cost is greater than
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marginal cost, so that we have the standard Chamberlin-Robinson excess capacity
result.
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6 Appendix 1: The Social Planner�s Problem.

The social planner�s problem is to choose f(c(t); e(t)); t 2 [0;1) to solve

max
fC;eg

Z +1

0

U(C)e��tdt (40)

subject to

_K = n

�
AF (

K

n
;
1

n
)� �

�
� C �  e

2

2
(41)

_n = e (42)

As both the utility function and the constraints of the problem are concave functions
of the controls, then (if the transversality conditions hold) the Pontriyagin maximum
principle will give us necessary and su¢ cient conditions for optimality. The current
value Hamiltonian is,

H � U(C) + p1
�
n

�
AF (

K

n
;
1

n
)� �

�
� C �  e

2

2

�
+ p2e

which is maximized by the optimal values for consumption and entry (Ĉ, ê), such
that

Hc = U 0(Ĉ)� p1 = 0 (43)

He = �êp1 + p2 = 0: (44)

Then the optimal policy functions are

Ĉ = C(p1); C 0 < 0

ê =
p2
p1

:

The canonical equations are

_p1 = �p1 �HK = p1(�� AFK) (45)

_p2 = �p2 �Hn = p2�� p1 [AF (1� �)� �] : (46)

If we time-di¤erentiate (43), using (45), and time-di¤erentiate the log of equation
(44), we obtain an equivalent modi�ed Hamiltonian dynamic system (after dropping
the hats for notational simplicity):
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_C = � C

�(C)
(�� r(K;n;A)) (47)

_e = er(K;n;A)� �(K;n;A; �)


(48)

_K = n

�
AF (

K

n
;
1

n
)� �

�
� C �  e

2

2
(49)

_n = e (50)

given K(0) = K0, n(0) = n0 and the transversality conditions. These equations are
exactly the same as the decentralised equilibrium outlined in the text. The only non-
obvious translation is for NPV of �rms: de�ne q � p2

p1
(from 44), hence (48) becomes

(14).

7 Appendix 2: Proofs.

7.1 Proof of Proposition 1

The characteristic polynomial of the jacobian matrix is c(�) = �4 � 2��3 +M2�
2 �

�(M2 � �2)� + M4, where M2 and M4 are the sum of the principal minors of or-
der 2 and 4 of the jacobian J , where M2 = �2 + CrK

�
+ �n


and M4 = det(J) =

C
�
(rK�n � rn�K). The characteristic polynomial can be equivalently written as

c(�) =
�
�
2

�4
(w2 + a1w + a0), where

w �
�
�� �

2

�2 ��
2

��2
; (51)

and a1 �
�
�
2

��2
(M2��2)�2 and a0 � �a1+

�
�
2

��4
M4�1. Then c(�) = 0 if and only if

w2+a1w+a0 = 0. The roots of this polynomial on w are w1;2 = �a1
2
�
��

a1
2

�2 � a0� 1
2
.

If we substitute the expressions for the coe¢ cients a1 and a0 we get

��
2

�
w1;2 =

��
2

�2
� 1
2

�
CrK
�

+
�n


�
� 1
2

"�
CrK
�

� �n


�2
+ 4

Crn
�

�K


# 1
2

:

Then, solving equation (51) for � we get the eigenvalues as
�
�� �

2

�s;u
1;2
= �

��
�
2

�
w1;2

� 1
2

which is equivalent to equations (28)-(29).
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Next we demonstrate that the eigenvalues are real and satisfy (30). Recall that
rK < 0, rn > 0, �n < 0 and �K > 0. Then CrK

�
+�m


< 0. The determinant of the Jaco-

bian J , which is equal to the sum of the principal minors of order 4,M4; is positive, as
det(J) = c

�
(�nrK � �Krn) = C

�

�
A
n

�2 �FKKFLL�F 2KL
n2

�
> 0. Additionally the discrimi-

nant is positive, as� =
�
CrK
�
+ �m



�2
�4 det(J) =

�
CrK
�
� �n



�2
+4 cC

�
�Krn > 0, which

implies that �
1
2 is real and positive. It also implies that 1

2

�
crK
�
+ �n



�
+ 1
2
�

1
2 < 0 and

that
�
�
2

�2 � 1
2

�
crK
�
+ �n



�
� 1

2
�

1
2 >

�
�
2

�2
> 0. Then

h�
�
2

�2 � 1
2

�
crK
�
+ �n



�
� 1

2
�

1
2

i 1
2

is positive and real and larger than �
2
. Therefore the eigenvalues, given in equations

(28)-(29), are real and verify equation (30). QED.

7.2 Proof of Proposition 2.

This proof starts with two Lemmas, A1 and A2.

Lemma A1 The (transposed) eigenvectors associated to matrix J have the generic
form

P ji =

"
(�� �ji )Crn�
li � CrK

�

; �ji ;
Crn
�

li � CrK
�

; 1

#T
; j = s; u; i = 1; 2 (52)

where l1 � CrK
�
> 0 and l2 � CrK

�
< 0, for any value of the parameters.

Proof Eigenvector P ji in equation (52) is obtained in the usual way, as the non-
zero solution of the homogeneous system (J � �jiI4)P

j
i = 0 for j = s; u and i = 1; 2.

As

l1 �
CrK
�

= �1
2

0@CrK
�

� �n

�
"�
CrK
�

� �n


�2
+ 4

C

�
�Krn

# 1
2

1A
> �1

2

0@CrK
�

� �n

�
"�
CrK
�

� �n


�2# 1
2

1A
= �1

2

�
CrK
�

� �n

�
����CrK� � �n



�����
=

(
0 if 0 > CrK

�
> �n


�n

� CrK

�
� 0 if 0 > �n


� CrK

�

;
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and

l2 �
CrK
�

= �1
2

0@CrK
�

� �n

+

"�
CrK
�

� �n


�2
+ 4

C

�
�Krn

# 1
2

1A
< �1

2

0@CrK
�

� �n

+

"�
CrK
�

� �n


�2# 1
2

1A
= �1

2

�
CrK
�

� �n

+

����CrK� � �n


�����
=

(
�n

� CrK

�
� 0 if 0 > CrK

�
� �n



0 if 0 > �n

> CrK

�

;

then l1 � CrK
�
> 0 and l2 � CrK

�
< 0.

QED

Lemma A2 The orbits, belonging to the space tangent to the stable manifold, are
determined from: 0BB@

C(t)� C�
e(t)� 0
K(t)�K�

n(t)� n�

1CCA = P s1w
s
1e
�s1t + P s2w

s
2e
�s2t (53)

where

ws1 =
l1 � CrK

�

l2 � l1

" 
l2 � CrK

�
Crn
�

!
(K(0)�K�)� (n(0)� n�)

#
; (54)

ws2 =
l2 � CrK

�

l2 � l1

"
�
 
l1 � CrK

�
Crn
�

!
(K(0)�K�) + (n(0)� n�)

#
: (55)

Proof. Let x = (x1(t); x2(t); x3(t); x4(t))T � (C(t) � C�; e(t); K(t) � K�; n(t) �
n�)T . Then, from the Hartman-Grobman theorem, (Guckenheimer and Holmes, 1990,
p. 13), the local dynamics is topologically equivalent to the solution of the linear
system _x(t) = Jx(t). The eigenvalues and the eigenvector matrix associated to J
where already determined. Let P = [P u2 P

u
1 P

s
1P

s
2 ] where

P s1 =

�
�u1Crn

�l1 � CrK
; �s1;

Crn
�l1 � CrK

; 1

�T
;
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and

P s2 =

�
�u2Crn

�l2 � CrK
; �s2;

Crn
�l2 � CrK

; 1

�T
:

Consider the vector q = (qu2 ; q
u
1 ; q

s
1; q

2
2) such that x = Pq. It is well know that, if we

take the time derivatives of w and substitute _x we get the product system _q(t) = �q(t),
where � = P�1JP is the Jordan matrix of J . Therefore, � = diag(�u2 ; �

u
1 ; �

s
1; �

s
2).

This system has the solution qui (t) = w
u
i e
�ui t, qsi (t) = w

s
i e
�si t for i = 1; 2, where wsi and

wui are arbitrary constants. There is conditional convergence towards the steady state,
if we set wu1 = wu2 = 0. If we perform the inverse transformation (which is always
possible because the eigenvector matrix is non singular) we get the trajectories along
the saddle, given by equation (53).
To determine wsi , for i = 1; 2, we use the information about the initial values of

the state variables: x3(0) = K(0)�K� and x4(0) = n(0)�n�. Then solving equation
(53) for t = 0 we get

ws1 =
P s2 (4)x3(0)� P s2 (3)x4(0)
P s1 (3)P

s
2 (4)� P s1 (4)P s2 (3)

ws2 =
�P s1 (4)x3(0) + P s1 (3)x4(0)
P s1 (3)P

s
2 (4)� P s1 (4)P s2 (3)

;

or equivalently equations (54) and (55). QED.

Proof of proposition 2 In order to characterize the transition trajectory go back
to the proof of Lemma A2 and observe that we have a sink in the space (qs1; q

s
2). Recall

the properties of this phase diagram adapted to our case (see (Hirsch and Smale, 1974,
p.93)): First, the isocline associated with the negative eigenvalue which is larger in
absolute value, �s2; is _q

s
2 = 0 and is coincident with the line q

s
2 = 0 (that is with the

qs1 axis) and the isocline associated with the negative eigenvalue smaller in absolute
value, �s1; is _q

s
1 = 0 which is coincident with the line q

s
1 = 0 (that is with the q

s
2 axis).

Second, the equilibrium point is (qs�1 ; q
s�
2 ) = (0; 0), and is associated with a stationary

trajectory. Third, if we consider a non-equilibrium equilibrium point, qs1(0) = w
s
1 = 0,

qs2(0) = w
s
2 = 0 the following non-stationary but convergent types of trajectories will

unfold: (a) if ws1 = 0 and ws2 6= 0 then the trajectories will be attracted to the
equilibrium point with maximum speed, along the isocline _qs1 = 0, that is, along the
line ws1 = 0 ; (b) if w

s
1 6= 0 and ws2 = 0 then the trajectories will be attracted to the

equilibrium point with minimum speed, along the isocline _qs1 = 0, that is, along the
line ws2 = 0; (c) if w

s
1 6= 0 and ws2 6= 0 then the trajectories will �rst be attracted to

_qs2 = 0, which is parallel to the isocline _qs1 = 0 and has the same slope as ws1 = 0,
and will be asymptotically tangent to the isocline _qs2 = 0, which is coincident with
the line ws2 = 0. This last result occurs because the eigenvector matrix associated
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to � is the identity matrix. This implies that the eigenvector associated with each
variable have the same slope of the isocline associated to the other variable: that is,
the eigenvector associated with qs1 has the slope of the isocline _q

s
2 = 0 and eigenvector

associated with qs2 has the slope of the isocline _q
s
1 = 0. QED.

7.3 Proof of Proposition 3.

From Proposition 2, we can use the de�nition of the schedules ws1 = 0 and ws2 = 0
to characterize the dynamics in the space (C; e;K; n) relative to the lines Es1 and E

s
2.

From Lemma A2, we get

dn

@K

����
Es2

=
n(0)� n�
K(0)�K�

����
ws1=0

=
P s2 (3)

P s2 (4)
=
�l2 � CrK
Crn

< 0

and
dn�

dK

����
Es1

=
n(0)� n�
K(0)�K�

����
ws2=0

=
P s1 (3)

P s1 (4)
=
�l1 � CrK
Crn

> 0:

As Es1 is associated with w
s
2 = 0 and E

s
2 with w

s
1 = 0 two further consequences result.

First the projections in the other spaces associated with ws1 = 0 are

dC

dK

����
Es2

=
P s2 (1)

P s2 (3)
;
@e

@n

����
Es2

=
P s2 (2)

P s2 (4)

second the projections in the other spaces associated with ws2 = 0 are

dC

dK

����
Es1

=
P s1 (1)

P s1 (3)
;
@e

@n

����
Es1

=
P s1 (2)

P s1 (4)
:

QED

7.4 Proof of Proposition 4

If we consider equations (20) and (16) we see that the isoclines _K = 0 and _n = 0
depend on the control variables C and e, which depend on the K and n, and therefore
their projections in (K;n) are always shifting. But, we can determine loci in the
space (K;n) which are analogous to the isoclines in a two-dimensional model: we
can determine the loci where the trajectory belonging to the approximation to the
stable manifold change direction, that is the slope of (n � n�)=(K � K�) such that
d(K(t)�K�)=dt = 0 and the slope of (n�n�)=(K�K�) such that d(n(t)�n�)=dt = 0.
Consider equation (53): then d(n(t)� n�)=t = 0 if and only if

�s1w
s
1e
�s1t + �s2w

s
2e
�s2t = 0:
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As e�
s
1t � 0 and e�

s
2t � 0 for any 0 � t < 1, then a necessary condition is that

sign(ws1) 6= sign(ws2). Then e(�
s
2��s1)t = ��s1w

s
1

�s2w
s
2
or, equivalently, we can �nd a critical

time tn = 1
�s2��s1

ln
�
��s1w

s
1

�s2w
s
2

�
. If we substitute one of these expressions in equations

(53) we get

n(t)� n� =

�
�s2 � �1s
�s2

�
ws1e

�s1t;

K(t)�K� =
Crnw

s
1

��s2

 
�s2

l1 � Crn
�

�
!
e�

s
1t;

Substituting in equations (54) and (55) and determining the ratio we get

n(t)� n�
K(t)�K� = �

(�s2 � �s1)(l1 � Crn=�)(l2 � Crn=�)
Crn
�
(�s2(l1 � Crn=�)� �s1(l2 � Crn=�))

:

As (l1 �Crn=�)(l2 �Crn=�) = �Crn�K=� and �s2(l1 �Crn=�)� �s1(l2 �Crn=�) =
(�s1 � �s2)(�n= � �s1�s2) then we get equation (a).

We proceed in an analogous way to determine equation (b). From equation (53):
then d(K(t)�K�)=dt = 0 if and only if

�s1w
s
1

�
Crn=�

l1 � CrK=�

�
e�

s
1t + �s2w

s
2

�
Crn=�

l2 � CrK=�

�
e�

s
2t = 0:

Then e(�
s
2��s1)t = ��s1w

s
1(l2�CrK=�)

�s2w
s
2(l1�CrK=�)

, so that

n(t)� n�
K(t)�K� =

1

�s2 � �s1

�
�s2(l1 � CrK=�)

Crn=�
� �

s
1(l2 � CrK=�)
Crn=�

�
;

which, after some algebra leads to the result stated. QED

7.5 Proof of Proposition 5.

(1) Consider Lemma A2: as e�
s
1t � 0 and e�

s
2t � 0 for any t 2 R+, if sign(ws1) =

sign(ws2) then n(t) will converge monotonically towards the steady state n
�. If they

are positive (negative) n(t) will decrease (increase). If sign(ws1) 6= sign(ws2) then
n(t)�n� may change sign along the transition and, therefore, have a non-monotonous
behavior. If this is the case then there will be a combination of parameters, of the
initial data such that @(n(t)�n�)

@t
= 0 for a particular time tn. If this is the case then
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e(�
s
2��s1)t = ��s1w

s
1

�s2w
s
2
or, equivalently t = 1

�s2��s1
ln
�
��s1w

s
1

�s2w
s
2

�
. If there are conditions under

which t � 0 then we denote it by tn. As �
s
2 � �s1 < 0 then a critical time exists if

�s1w
s
1

�s2w
s
2
� �1, which is equivalent to�

�s1w
s
1 + �

s
2w

s
2 > 0 and ws2 < 0; w

s
1 > 0

�s1w
s
1 + �

s
2w

s
2 < 0 and ws2 > 0; w

s
1 < 0

:

After some algebra we get the equivalent condition(
n(0)�n�
K(0)�K� <

�K
�s1�

s
2��n

and ws2 < 0; w
s
1 > 0

n(0)�n�
K(0)�K� >

�K
�s1�

s
2��n

and ws2 > 0; w
s
1 < 0:

: (56)

This gives only a necessary condition. That is, if the conditions in equation (56) hold
then there is a critical time

tn =
1

�s2 � �s1
ln

�
��

s
1w

s
1

�s2w
s
2

�
� 0;

such that d
dt
(n(t)� n�)

��
t=tK

= 0. If not, then d
dt
(n(t)� n�) 6= 0 for any 0 � t <1.

At time t = tn � 0 we get the values of the state variables as

n(tn)� n� =

�
�s2 � �s1
�s2

�
ws1e

�s1tc

K(tn)�K� =

�
�s1�

s
2 � �n
�K

��
�s2 � �s1
�s2

�
ws1e

�s1tc

by substituting e(�
s
2��s1)t = ��s1w

s
1

�s2w
s
2
into equations (??) and (??). In the (K;n)-space

the locus where d
dt
(n(t)� n�) = 0, is then given by

n� n�
K �K� =

n(tn)� n�
K(tn)�K� =

�K
�s1�

s
2 � �n

> 0 (57)

Which is of course the _n = 0 isocline de�ned in Proposition 4.
Therefore, if ws1 < 0, if w

s
2 > 0 (i.e., in theWn) and if

n(0)�n�
K(0)�K� >

�K
�s1�

s
2��n

then the

number of �rms will fall until t = tn, where it crosses the d
dt
(n(t)� n�) = 0 line and

increases afterwards. It will �cut�with a positive slope curve �(K;n) = 0 and will be
asymptotically tangent to the Es1 projection. If w

s
1 < 0, if w

s
2 > 0 (that is, in the same

quadrant) but if n(0)�n�
K(0)�K� <

�K
�s1�

s
2��n

then (n(t) � n�) < 0, d
dt
(n(t) � n�) > 0 for any

value of 0 � t < 1 and limt!1
d
dt
(n(t) � n�) = 0 and n will monotonously increase

towards n�. We can make the same reasoning as regarding the quadrant En: (a) If
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ws1 > 0, if w
s
2 < 0 and

n(0)�n�
K(0)�K� <

�K
�s1�

s
2��n

then the number of �rms will increase until

t = tn, where it crosses the d
dt
(n(t)� n�) = 0 line and decreases afterwards, crossing

with a positive slope the curve �(K;n) = 0 and becoming tangent asymptotically to
the Es1 projection. If w

s
1 > 0, if w

s
2 < 0 but if

n(0)�n�
K(0)�K� >

�K
�s1�

s
2��n

then (n(t)�n�) > 0,
d
dt
(n(t) � n�) < 0 for any value of 0 � t < 1 limt!1

@
@t
(n(t) � n�) = 0 and n will

monotonously decrease towards n�.
(2). Consider equation (??): as e�

s
1t � 0 and e�

s
2t � 0 for any t 2 R+, and

as Crn
�l1�CrK > 0 and Crn

�l2�CrK < 0 then sign(ws1) = sign(ws2) then K(t) will converge
monotonically towards the steady stateK�. If ws1 > 0 and w

s
2 < 0 (w

s
1 < 0 and w

s
2 > 0)

thenK(t) will decrease (increase) monotonically towardsK�. This is what happens in
quadrants Wn and En. If we are in quadrants Nk or Sk, where sign(ws1) = sign(w

s
2),

then K(t) � K� may change sign along the transition and, therefore, have a non-
monotonous behavior. In order to determine the conditions and the loci in which we
may have d

dt
(K(t)�K�) = 0, we follow the same procedure as in the previous case.

If 8><>:
n(0)�n�
K(0)�K� <

��s1�
s
2�CrK
Crn

and ws1 < 0; w
s
2 < 0

n(0)�n�
K(0)�K� >

��s1�
s
2�CrK
Crn

and ws1 > 0; w
s
2 > 0 ; (58)

then there is a critical time

tK =
1

�s2 � �s1
ln

�
��

s
1w

s
1(�l2 � CrK)

�s2w
s
2(�l1 � CrK)

�
� 0;

such that d
dt
(K(t)�K�)

��
t=tK

= 0, and substituting the critical time in equations
(54,55) we get the set of values for (K;n) such that this condition holds,

n� n�
K �K� =

n(tK)� n�
K(tK)�K� =

��s1�
s
2 � CrK
Crn

: (59)

We can make the same reasoning as for the case of n to see that, if the initial
and steady state values for the state variables (K(0); n(0)) and (K�; n�) verify the
conditions given by equation (58) then the saddle path will cut the line given by
equation (59) at time tK , changing the direction of evolution of the K variable, after
a while it will cross line r(K;n) = � and will converge asymptotically to (K�; n�).
If conditions given by equation (58) do not hold, then d

dt
(K(t) � K�) 6= 0 for any

0 � t < 1 and the adjustment of K will be monotonic. Those conditions hold in
the areas Nk and Sk given analytically in equations (??) and (34): in the �rst case
K will decrease until it reaches the _K = 0 line and increases afterwards, and in the
second case it has the opposite evolution. QED
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7.6 Proofs of Propositions 6-9

Proof of proposition 6 If ws1 = 0, then from (54) and Lemma�s A1-A2 the projec-
tions of Es2 are:

@C

@K

����
Es2

=
P s2 (1)

P s2 (3)
;
@e

@n

����
Es2

=
P s2 (2)

P s2 (4)
;

yielding the values reported. Likewise for Es1. QED

Proof of Proposition 7. Analagous to Proposition 5.

Proof of Proposition 8

The long run multipliers, with all the variables evaluated at the steady state values
are

@K�

@A
= �C(rA�n � �Arn)

� det(J)
=

�C�

�nA det(J)
> 0;

@n�

@A
=

C(rA�K � �ArK)
� det(J)

= �C(1� �)A(FFkk � (Fk)
2)

�n det(J)
> 0;

@C�

@A
= �

@K�

@A
+ nF =

�2C�

�nA det(J)
+

n�

A(1� �) > 0:

As l = 1=n then @l=@A < 0 and as y� = ye = ��=(1 � �) then @y=@A = 0, which
means that @k=@A > 0. QED

Proof of Proposition 9

We have

@C(t)

@A
=
@C�

@A
+

�u1
�l1 � Crk

!s1;Ae
�s1t +

�u2
�l2 � Crk

!s2;Ae
�s2t

for any t � 0 where

!s1;A =
@!s1
@A

=
�K

(l2 � l1)

�
@K�

@A
� Crn
�l2 � CrK

@n�

@A

�
< 0 (60)

!s2;A =
@!s2
@A

=
�K

(l2 � l1)

�
@K�

@A
� Crn
�l1 � CrK

@n�

@A

�
: (61)

Fot time t = 0 we have

@C(0)

@A
=

@C�

@A
+

�u1
�l1 � CrK

!s1;A +
�u2

�l2 � CrK
!s2;A =

=
@C�

@A
+
�u2 � �u1
l2 � l1

�
�u1�

u
2

@K�

@A
+
C

�
rA

�
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using equation (60,61) and the fact that (�l1�CrK)(�l2�CrK) = ��Crn�K=. The
sign of the expression is ambiguous but as the second term is negative, we readily
conclude that @C(0)

@A
< @C(1)

@A
= @C�

@A
. In order to sign @C(0)

@A
we further substitute @C�

@A

to get

@C(0)

@A
=

1

x(�; )A

�
�u1�

u
2

�
��C + (�u1 + �u2 � �)

��n

1� �

�
� C��

n

�
=

=
n�

(1� �)x(�; )A

�
z(�; )� ���

n

�
where

z(; �) � �u1�u2 (�(�u1 + �u2)� �(� + �)) : (62)

As ���
n
> 0 and as lim!0 z = 0 and lim!1 z =1 for any �nite and positive �, then

there is a critical value of , call it A, depending on � such that x(A; �) =
���
n
> 0.

In this case we have @c(0)
@A

= 0 The same reasoning can be made as regards �.
For the case of entry,

@e(t)

@A
= �s1!

s
1;Ae

�s1t + �s2!
s
2;Ae

�s2t

=
�K

(l2 � l1)

�
�s1

�
@K�

@A
� Crn
�l2 � CrK

@n�

@A

�
e�

s
1t � �s2

�
@K�

@A
� Crn
�l1 � CrK

@n�

@A

�
e�

s
2t

�
;

which is ambiguous for all t 2 [0;1) and @e(1)
@�

= @e�

@�
= 0. Evaluating at time t = 0,

we get

@e(0)

@A
=

�K
(l2 � l1)

�
�s1

�
@K�

@A
� Crn
�l2 � CrK

@n�

@A

�
� �s2

�
@K�

@A
� Crn
�l1 � CrK

@n�

@A

��
=

=
�s2 � �1s
l2 � l1

�
�A

+ �1s�

2
s

@n�

@A

�
> 0:

As this result is equivalent to �s1!
s
1;A > �

s
2!

s
2;A and as e

�s1t > e�
s
2t for 0 < t <1 then

e(t) > 0 for 0 � t <1. QED

7.7 Proof of Proposition 10

(a) The long run multipliers, with all the variables evaluated at the steady state
values, for the state variables are:

@K�

@�
=

Crn��
� det(J)

= ��C(1� �)�
�n det(J)

< 0 (63)
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and
@n�

@�
= �rK

rn

@K�

@�
< 0:

For consumption we get
@C�

@�
= �

@K�

@�
� n < 0 (64)

(b) Note that y� = ye de�ned in (7) which is increasing in �. Capital per �rm
can be derived from part (a).

QED

7.8 Proof of Proposition 11

For consumption we have

@C(t)

@�
=
@C�

@�
+

�u1
�l1 � CrK

!s1;�e
�s1t +

�u2
�l2 � CrK

!s2;�e
�s2t

with an ambiguous sign because the �rst and third are negative and the second is
positive, as

!s1;� =
��K l2

(l2 � l1)(�l2 � CrK)
@K�

@�
> 0 (65)

!s2;� = � ��K l1
(l2 � l1)(�l1 � CrK)

@K�

@�
> 0 (66)

where @K�

@�
< 0. For time t = 0 we get, substituting the expressions from equations

equations (65) and (66) and after some algebra

@C(0)

@�
=
@C�

@�
+

�u1�
u
2

�� �u1 � �u2
@K�

@�

which is ambiguous as the �rst term is negative and the second is positive. We may
immediately conclude that @C(0)

@�
> @C�

@�
. In order to determine the sign for the shock

in C(0), we use equations (64) and (63) and the expression for rn to get

@C(0)

@�
=

n

z(; �)

�
C(1� �)�

n2
� z(; �)

�
(67)

where z (; �) is de�ned in (62). Observe that while �u1 and �
u
2 depend on � and ,

all the other elements entering in equation (67) do not depend on those parameters.
Also, if we assume that � has a positive and �nite value, as lim!0 z(; :) = 0 and
lim!1 z(; :) = 1, there is at least one critical value c, such that z(c; �) =
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C(1��)�
n2

> 0. In this case we have @C(0)
@�

= 0 The same reasoning can be made as
regards �.
From equations (65) and (66) it is clear that

@e(t)

@�
= �s1!

s
1;�e

�s1t + �s2!
s
2;�e

�s2t =

=
��K

(l2 � l1)

�
�s1l2

�l2 � CrK
e�

s
1t � �s2l1

�l1 � CrK
e�

s
2t

�
@K�

@�
� 0;

for all t 2 [0;1) and @e(1)
@�

= @e�

@�
= 0. Therefore, e(t) is negative at time t = 0 and

increases monotonously (through negative values) towards zero. QED

7.9 Proof of Proposition 12.

We establish an initial Lemma, and then the Proposition itself.

lemma A3. Critical values for �. Consider only the case in which there is a positive
correlation between � and A and the case in which there are positive shocks to
those parameters. Then there is a sequence of values for �,

0 < �0 < �1 < �n < �2 < �K < �3

such that immediately after the shock the initial values for (K;n) will be located:
at the new �(K;n) line if � = �0; at the new _n = 0 line if � = �1; at the new
Es2 line if � = �2; at the new _K = 0 line if � = �3; for � = �n and � = �K it
will be located at the horizontal and vertical lines passing through the new steady
state so that (respectively) dn�=dA = 0 and dK�=dA = 0.

Proof If we equate equation (39) with the expressions for the projections of curves
�(K;n) = 0, _n = 0, Es2 and _K = 0 and solve for �, we �nd, respectively

�0 = �
@n�

@A
+ �K

�n
@K�

@A
@n�

@�
+ �K

�n
@K�

@�

�1 = �
@n�

@A
� �K

�s1�
s
2��n

@K�

@A

@n�

@�
� �K

�s1�
s
2��n

@K�

@�

�2 � �
@n�

@A
� �l2�CrK

Crn
@K�

@A

@n�

@�
� �l2�CrK

Crn
@K�

@�

�3 � �
@n�

@A
� ��s1�

s
2�CrK
Crn

@K�

@A

@n�

@�
� ��s1�

s
2�CrK
Crn

@K�

@�
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For values belonging to the interval �1 < � < �2 there is a value for � such that
dn�=dA = 0, �n = �@n�

@A
=@n

�

@�
. Also, in the interval �2 < � < �3 there is a value

for � such that dK�=dA = 0, �K = �@K�

@A
=@K

�

@�
. QED

Proof of Proposition 12. This is straightforward consequence of Lemma A3 and
of Propositions 5 and 7.

44



y*=ye

AC

MC

Output

Cost

Fig 1: Efficient production with zero-profits.
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ė = 0
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