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A UNIQUE ORTHOGONAL VARIANCE DECOMPOSITION 

 

ABSTRACT 

Let e and Σ  be respectively the vector of shocks and its variance covariance matrix in a 

linear system of equations in reduced form. This article shows that a unique orthogonal 

variance decomposition can be obtained if we impose a restriction that maximizes the 

trace of A, a positive definite matrix such that eAz =  where z is vector of uncorrelated 

shocks with unit variance. Such a restriction is meaningful in that it associates the largest 

possible weight for each element in e with its corresponding element in z. It turns out that 

2/1Σ=A , the square root of Σ . 

 

KEYWORDS: Variance decomposition, Cholesky decomposition, unique orthogonal 

decomposition and square root matrix. 

 

JEL Classification: C01 

 

1. INTRODUCTION 

VARIANCE DECOMPOSITION IS OFTEN CARRIED OUT in an econometric analysis. For 

example, Shorrocks (1982) considers the issue of inequality decomposition by factor 

components. In a structural VAR system, economic theory is often employed in order to 

construct the structural shocks that are uncorrelated with each other; see, for instance, 

Sims (1986), Bernanke (1986) and Blanchard and Quah (1989). However, it is well 

known that the variance decomposition for a single equation system is not unique. In the 

case of a structural VAR analysis, the selection of ordering in Cholesky decomposition is 

generally ad hoc, and convincing identifying assumptions are hard to come by.
1
 This 

article proposes a unique orthogonal variance decomposition that can be applied to both 

single as well as multiple equation system.  

                                                 
1
 This is evidenced from the remark by Hamilton (1994, p. 335) that “if there were compelling identifying 

assumptions for such a system, the fierce debates among macroeconomists would have been settled long 

ago!” 



Let e and Σ  be respectively the vector of shocks and its variance covariance matrix in 

the equation system in reduced form. Let A be a decomposition matrix such that Σ=′AA  

and eAz =  where z is vector of uncorrelated shocks with unit variance. It is shown that if 

we restrict A to be positive definite and its trace be maximized, a unique decomposition 

matrix given by 2/1Σ=A  is obtained. While A being positive definite is a very general 

condition, the maximization of its trace is intuitively appealing. For the sake of argument, 

let’s consider z as the underlying structural shock.
2
 Then, the higher is the trace of A, the 

less is, say the i-th component shock in e, can be linearly explained by the other 

components of structural shocks in z. In this sense, the trace of A measures the extent for 

each individual component of e, which may be regarded as observable, to be explained by 

its own corresponding structural shock component. This is particularly meaningful if 

there is no economic theory available to identify the system.  

This paper is organized as follows. Section 2 provides the motivation and proof of a 

unique orthogonal decomposition for a simple two-variable system. Section 3 generalizes 

the result to the n-variable case. Numerical examples are given in the Section 4 and 

Section 5 concludes with some remarks.  

 

2. THE TWO-VARIABLE CASE 

2.1 Motivation 

Without loss of generality, let us consider the following simple case: 21 eey += , 

where )( 21
′= eee  is observable, serially uncorrelated with

3
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In a structural VAR analysis, e may be regarded as driven by underlying uncorrelated 

structural shocks )( 21
′= εεε  in the following manner 

(1)  2121111 εγεγ +=e , 

(2)  2221212 εγεγ +=e . 

                                                 
2
 If we are interested in determining the contribution of a component towards the total variation, then the 

variance of the corresponding structural shock can be arbitrarily set to one; see Remark 3. 
3
 If e is not observable, they are normally estimated as the residuals of a VAR in reduced form. 



One general interest is to find out the contribution of, say 1ε , in the variation of y. From 

the above system of equations, the required variance contribution is )var()( 1

2

2111 εγγ + . 

But ε  is unobservable and γ ’s are unknown. In the absence of economic theory, this 

paper proposes to decompose the variation in 21 eey +=  by considering a positive 

definite decomposition matrix  
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such that Aze = , which can be written as 

(3)  2121111 zazae += , 

(4)  2221212 zazae += . 

)( 21
′= zzz  is a serially uncorrelated random vector with identity covariance matrix. We 

may regard the random variable 1z  as unit structural shocks associated with 1ε . The 

variance contribution of interest can then be regarded as the variation contributed by 1z , 

which is 2

2111 )( aa + . Now to obtain A, we make use of the fact that Σ=′AA , which 

implies  

(5)  11

2

12

2

11 σ=+ aa , 

(6)  22

2

21

2

22 σ=+ aa , 

(7)  1212222111 σ=+ aaaa . 

Since there are only three equations available to solve for four unknowns in A, the 

decomposition matrix is not unique, which is a well known fact. One approach is to apply 

the Cholesky decomposition, for which we may choose to restrict 12a  to be zero, 

assuming that 2z  does not contribute towards 1e  in (3). Since A is positive definite, both 

11a  and 22a  are positive. Then restricting 012 =a  implies that 11a  attains its largest 

possible value, the standard deviation of 1e , and 1z  contributes to the variation in y by 

2

2111 )( aa + . Alternatively, one could vary 12a  so that 021 =a . This is equivalent to using 

the other ordering choice in the Cholesky decomposition, resulting in the assumption that 

1z  does not contribute towards 2e  at all. We have the opposite effect in this case: the 



variance contribution of 1z  is simply 2

11a  with the magnitude of 11a  reduced, and 22a  

attains its maximum value, which is the standard deviation of 2e . 

The above example illustrates why the selection of ordering in the Cholesky 

decomposition could affect the outcome drastically. However, it does offer hints on how 

we could decompose a variance if there is no economic theory available to identify the 

system. First, changes in an element of A, say 12a , causes corresponding changes in all 

other elements of A so that the relationship, Σ=′AA , is maintained. Second, in the 

absence of economic theory, it is meaningful to choose a value of 12a  such that the trace 

of A, 2211 aa + , are maximized. Doing so is equivalent to the system being identified with 

each ie  associated with maximum weight given to its corresponding iz ; the largest  

possible association between each ie  and its underlying structural shock. Indeed, this 

paper shows that when the choice of elements of A is restricted to maximizing the trace of 

the matrix, A is uniquely determined to be 2/1Σ . 

 

2.2 Orthogonal Decomposition for the 22 ×  Case 

We shall now proceed to obtain the unique orthogonal variance decomposition for the 

two variable system considered above. First, we assume that the decomposition matrix A 

is positive definite. Then setting the derivative of tr(A), the trace of A, to zero leads us to 

2/1Σ=A . The proof is completed by showing that the second derivative of tr(A) at the 

turning point is negative.  

Now, since 2211)( aaAtr += , differentiating tr(A) with respect to 12a  gives  

(8)  2211)( dadaAtrd += . 

Since Σ  is constant, differentiate (5) – (7) with respect to 12a  yields 

(9)  022 121111 =+⋅ adaa                

(10)  022 21212222 =⋅+⋅ daadaa          

(11)  022122221112111 =⋅++⋅+⋅ daaaadadaa       

From (9), we have 

(12)  12

1

1111 aada −−= .   



From (10), the derivative of 22a  can be written as  

(13)  2121

1

2222 daaada ⋅−= − .  

Note that A is positive definite, so 11a  and 22a  are positive. Substitute the results of (12) 

and (13) into (11), we have  

(14)  22

1

11

21122211

1

22

22112112
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−

−

−

−=
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−
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since, by virtue of positive definiteness of A, 021122211 >− aaaa . The result in (14) above 

enables us to obtain 22da  in (13) in terms of 11a  and 21a , which is  

 (15)  21

1

1122 aada −= .  

Now substituting (12) and (15) into (8), we have at a turning point when 0)( =Atrd ,  

  021

1

1112

1

11 =+− −− aaaa ,  

which implies 2112 aa = . That is, Σ==′ 2AAA . Since both A and Σ  are real, symmetric 

and positive definite, 2/1Σ=A  is unique. 

To prove that 2/1Σ=A  is a maximum turning point, we need to show that  

22

2

11

22 )( adadAtrd +=      

is negative when 2112 aa = . First differentiate (12) with respect to 12a , we have 

02

12

3

11

1

111112

2

11

1

1111

2 <−−=⋅+−= −−−− aaadaaaaad . 

Since 1221 aa = , differentiate (13) with respect to 12a  yields 

02

12

3

22

1

222212

2

22

1

2222

2 <−−=⋅+−= −−−− aaadaaaaad . 

 

REMARK 1: Maximizing the trace of A leads us to the symmetrical restriction, which is the 

required additional equation to identify the four unknowns in (5) – (7). 

 

REMARK 2: The symmetrical restriction 1221 aa =  is not the same as restricting the 12γ  

and 21γ  in (1) and (2) to be the same. If we assume that )var()var( ii e=ε , then the 

structural decomposition can be expressed as e=ΛΣ − ε2/12/1 , where Λ  is a diagonal 

matrix with i-th diagonal entry equals to )var( ie .  

 



REMARK 3: In measuring the variance contribution of each component, it makes no 

difference which form of decomposition, ez =Σ 2/1
 or e=⋅ΛΣ − ε2/12/1 , is used. 

 

3 THE GENERAL n-VARIABLE CASE 

3.1 Orthogonal Decomposition for the nn ×  Case 

The results in the above two-variable case can be generalized into the general 

multivariate n-vector case. Generally speaking, since Σ  is symmetric, it has 2/)( 2 nn +  

distinct elements. However, A has 2
n  unknown parameters to be identified. To determine 

the system, it is thus necessary to impose 2/)( 2 nn −  restrictions. Similar to the two-

variable case, maximizing the trace of an nn ×  positive definite matrix A leads us to the 

same symmetrical restriction for A, which provides the additional 2/)( 2 nn −  restrictions. 

We shall now formally state the results in Theorem 1 below. 

 

THEOREM 1: Let e  be a serially uncorrelated random n-vector with Σ=)var(e , which 

is symmetrical and positive definite. Let A be a positive definite matrix such that eAz = , 

Σ=′AA  and Iz =)var( . Then maximizing the trace of A lead us to 2/1Σ=A , which is the 

unique positive definite square root of Σ . 

 

PROOF: The proof comprises three steps. First, we demonstrate that a symmetrical A 

gives rise to a zero derivative of tr(A). It is then shown that the second derivative of tr(A) 

is negative when A is symmetrical. Finally, we prove that 2/1Σ=A  is the global maximum 

point. Throughout the proof, the identity of Σ=′AA  is repeatedly used.  

To prove that symmetry of A implies a zero derivative of tr(A), we differentiate 

Σ=′AA  and obtain 

(16)  0=′⋅+′⋅ AdAAdA . 

Since A is positive definite, 1−A  exists. Left multiply (16) by 1−A  and take trace,  

(17)  )()( 1 AdAAtrAdtr ′⋅⋅−=′ − . 

Since )()( AdtrdAtr ′=  and )()( BAtrABtr = , (17) can be rewritten as 

(18)  )()( 1−′⋅−= AAdAtrdAtr . 



Now AA ′=  , so IAA =′ −1 . Therefore (18) can hold only when 0)()( == dAtrAtrd .  

To show that it is a maximum turning point, we need to prove that 0)(2 <Atrd  when 

A is symmetrical. The second order differential of Σ=2A  can be written as 

(19)  0)(2 222 =+⋅+⋅ dAAAdAdA . 

Left multiply (19) by 1−A  and take trace,  

(20)  ( ) 0)(2)()( 21212 =+⋅⋅+ −− dAAtrAAdAtrAdtr . 

Because )()( 221 AdtrAAdAtr =⋅⋅−  and positive definiteness of A implies that 2/1−A  

exists, we can write (20) as 

( ) )()()()( 2/12/12122 dAAAdAtrdAAtrAdtrAtrd ⋅⋅−=−== −−− , 

which, unless A is a null matrix, is negative. 

We have demonstrated in the above that 2/1Σ=A  is a maximum turning point. To 

verify that it is a global maximum, let DA +Σ= 2/1  where D is any arbitrary matrix. The 

condition Σ=′AA  implies that 

(21)  02/12/1 =′+Σ+′Σ DDDD . 

Left multiply (21) by 2/1−Σ  and take trace, 

(22)  0)()(2 2/1 =′Σ+ − DDtrDtr . 

But 0)()( 4/14/12/1 ≥Σ⋅Σ′=′Σ −−− DDtrDDtr  with equality if and only if 0=D , in which 

case, 2/1Σ=A . For the other case of 0)( 2/1 >′Σ− DDtr , (22) implies that 0)( <Dtr . Since 

DA +Σ= 2/1 , we have ).()( 2/1 Atrtr >Σ  

Q.E.D. 

 

3.2 Asymptotic Distribution of 2/1Σ̂  

Here we derive the asymptotic distribution of 2/1Σ̂  when it is estimated from a real-

valued, n-vector sample of ),,( 1 Tee K . We assume that te  is distributed IID ),0( ΣN , 

where Σ  is a positive definite symmetric matrix. 2/1Σ̂  is estimated by taking square root 

of Σ̂ , which is given by =Σ̂  ∑ =

− ′−−
T

t tt eeeeT
1

1 ))((  where e  is the sample mean of te . 



By the Central Limit Theorem, it is established that Σ̂  has an asymptotic normal 

distribution given by 

(23)  ( ) ),0(vechˆvech VNT
d→Σ−Σ , 

where vech is an operator that stacks distinct elements of a symmetric matrix into a 

vector (the stacking rules given by Magnus and Neudecker (1999, p. 49) are adopted 

here). Let nD  be the duplication matrix such that )vec()vech( Σ=ΣnD , and +

nD  be the 

Moore-Penrose inverse of nD  that reverses the operation, that is, )vech()vec( Σ=Σ+

nD . 

The variance covariance matrix in (23) can be written as 

(24)  ))((2 ′Σ⊗Σ= ++

nn DDV . 

Now, we state the second result of this article and provide its proof below. 

 

THEOREM 2: Given a real-valued, n-vector IID Gaussian sample of ),,( 1 Tee K  with 

zero mean and Σ=)var( te , a positive definite symmetric matrix. The estimator of 2/1Σ  

obtained by taking square root of the maximum likelihood estimator, Σ̂ , is asymptotically 

distributed as  

(25)  ( ) ),0(vechˆvech 2/1

2/12/1
VNT

d→Σ−Σ , 

where  

(26)  ( ) ( ) 12/112/11

2/1 )()()(2
−−− Σ⊗′Σ⊗Σ′Σ⊗′= nnnnnn DIDDDDIDV . 

 

PROOF:  Since 2/1Σ  is a continuous matrix function of Σ , applying the delta method to 

(23)  yields the result of (25). So we just need to prove (26); derive the Jacobian matrix of 

2/1Σ , and obtain the required variance covariance matrix. We begin this by considering 

the differential of Σ=Σ⋅Σ 2/12/1 , which is given by 

(27)  Σ=Σ⋅Σ+Σ⋅Σ ddd
2/12/12/12/1 . 

Applying the vec operator to (27), we have   

(28)  )vec()vec()()vec()( 2/12/12/12/1 Σ=Σ⋅⊗Σ+Σ⋅Σ⊗ ddIdI . 



Let nnK  be the permutation matrix such the term I⊗Σ 2/1  in (28) can be written as 

nnnn KIK )( 2/1Σ⊗ . Due to symmetry of 2/1Σ , 2/12/1 vec)vec( Σ=Σ ddK nn . Thus we have 

from (28),  

(29)  Σ=Σ⋅Σ⊗+ vecvec))(( 2/12/1
ddIKI nn . 

Now, +=+ nnnn DDKI 2 , where the Moore-Penrose inverse is =+

nD  nnn DDD ′′ −1)(  . Left 

multiply (29) by nD′  and simplify the duplication matrices, 

(30)  Σ⋅′=Σ⋅Σ⊗′ vechvech)(2 2/12/1
dDDdDID nnnn . 

Note that the dimension of nD  is 2/)1(2 +× nnn  and has full column rank, so the inverse 

of ))(( 2/1

nn DID Σ⊗′  exists. Therefore, the required differential, 2/1vechΣd , in (30) can be 

expressed as 

  ( ) Σ⋅′Σ⊗′=Σ
−− vech)(2vech

12/112/1
dDDDIDd nnnn , 

which, by the identification theorem for matrix functions (Magnus and Neudecker (1999, 

p. 96)), yields the required Jacobian matrix 

(31)  ( ) nnnn DDDID ′Σ⊗′=Σ∇
−− 12/112/1 )(2 . 

By the delta method, )( 2/12/1

2/1
′Σ∇⋅⋅Σ∇= VV . Substituting (31) for the Jacobian matrix 

and simplifying the duplication matrices, we arrive at (26) in Theorem 2. 

Q.E.D. 

 

REMARK 4: Theorem 2 also holds if te  is non-Gaussian but distributed ),0(IID Σ  with 

zero fourth order cumulants. 

 

4. NUMERICAL EXAMPLES 

In this section, we provide three numerical examples based on the work of Campbell 

and Ammer (1993). They use a VAR model to decompose the excess stock return ( 1+te ), 

excess 10-year bond return ( 1+tb ), and unexpected yield spread innovation ( 1+ts ) into 

changes in expectations of future stock dividend, inflation, short-term real interest rate, 



and changes in expectations of future excess stock and bond returns. The three variables 

of interest can be written as 

  1,1,1,1 ++++ −−= txtrtdt eeee , 

  1,1,1,1 ++++ −−−= txtrtt bbbb π , 

  1,1,1,1 ++++ ++= txtrtt ssss π , 

where the subscripts d, r, π  and x stand for dividend, real interest rate, inflation and 

excess return respectively. So, for instance, 1, +tde  can be interpreted as the news about 

future dividend for the unexpected excess stock return, 1, +txb  refers to the news on future 

excess bond return, whereas 1, +tsπ  is the news about future inflation for the unexpected 

yield spread innovation.  

As different orderings in the Cholesky decomposition yield vastly different results, 

Campbell and Ammer report all 6 variance-covariance terms (which are standardized to 

sum to equal one) and 2R  statistics from simple regressions of the variable of interest on 

each of their corresponding components. These statistics are provided in Table I, II and 

III. In each table, we also provide the square root decomposition matrix ( 2/1Σ ), the 

associated variance contributions (vc), the Chi-squared statistics for testing equality of 

variance contributions, as well as the variance contributions obtained using different 

ordering choices in the Cholesky decomposition.  

The Chi-squared tests are constructed as follows. First, let jc  be the sum of the j-th 

column elements of 2/1Σ . Since the variance of variable of interest is standardized, the 

orthogonal variance contribution from component j is simply given by 2

jj cvc = . To carry 

out the hypothesis testing of kj vcvc = , kj ≠ , we make use of the fact that equality 

implies kj cc ±=  and calculate  

(32)  






<⋅++

≥⋅−−
=

.0 if    )var()(

,0 if    )var()(
2

2

kjkjkj

kjkjkj

cccccc

cccccc
Csq  



The variance terms in (32) are calculated using (26) in Theorem 2 with T = 442.
4
 Under 

the null hypothesis that the two variance contributions are equal, Csq is distributed as 

Chi-squared with one degree of freedom.  

< Insert Table I > 

From Table I, we can see that correlations between the three components that explain 

excess stock return are low. As a result, raw variances in Σ  , 2R  statistics and variance 

contributions (vc) are of consistent magnitudes. Except for the first and third selections of 

ordering, Cholesky method yields relatively similar results too. Tests on equality of 

square root variance contributions reveal that they are significantly different from each 

other. 

< Insert Table II > 

Next, we look at the variance decomposition for excess bond return given in Table II. 

It can be seen that both the inflation ( πb ) and excess return ( xb ) components have large 

variances, and that correlations between the three components are fairly high. Except for 

the Cholesky decomposition, the first three measures of variance contributions are 

consistent with each other. Though vc suggests xb  has the largest variance contribution 

whereas the raw variance in Σ  suggests πb  contributes the most, the Chi-squared test 

reveals that the difference is insignificant. The test, however, confirms that the real 

interest component ( rb ) has the least contribution to the variation in excess bond return. 

For the Cholesky decomposition, variation in the measures of contribution is huge for 

different orderings. For example, selecting the second ordering yields 0.207 and 0.775 for 

πb  and xb  respectively, whereas the fourth selection choice yields hugely contrasting 

results of 0.754 and 0.174 for πb  and xb  respectively.  

< Insert Table III > 

Table III provides the variance decomposition for unexpected yield spread innovation. 

First, it is noticeable that both the inflation ( πs ) and real interest rate ( rs ) components 

have large variances and are highly negatively correlated (correlation equals -0.929). 

Despite their large variances, simple regressions of unexpected yield spread innovation 

                                                 
4
 Campbell and Ammer (1993) use monthly data from January 1952 to February 1987, a total of 442 

months. 



on each of both components yield very low 2R  statistics of 0.072 and 0.003. Square root 

decomposition reveals that the contributions of πs , rs  and xs  to the total variation are 

0.434, 0.277 and 0.289 respectively. While these figures are more sensible than the 2R  

statistics, one point merits further discussions. That is, in spite of the fact that 

)var()var( πssr ≈  and that )var( rs  is much larger than )var( xs , rvc  ( vc  of rs ) is the 

smallest at 0.277. However, a more careful analysis reveals that it is a plausible outcome. 

First, as noted above, correlation between rs  and πs  is highly negative. Second, 

),cov( xr ss  is negative whereas ),cov( xssπ  is positive. The resulting 2/1Σ  implies that 

while the associated unit-variance uncorrelated structural shock, rz , ‘innovates’ rs  with 

an impact coefficient as high as 1.778, this effect is greatly reduced by its opposite effect 

on πs  with a negative impact coefficient of -1.225. Moreover, negative ),cov( xr ss  

implies that the variance contribution by rs  is further reduced, albeit by a small negative 

impact coefficient of -0.027 on xs .  

Though )var( xs  is low, less than 3% of )var()var( rss +π , its variance contribution 

according to the square root method is relatively high. This can be explained by the high 

negative correlation between πs  and xs , which implies that their shocks are in opposite 

directions and the net effect becomes much smaller. Also, it is noted that the correlations 

between xs  and the other two components are small. Indeed, 289.0=xvc  is consistent 

with the corresponding relatively high 2R  statistic of 0.325. The Chi-squared tests lend 

further credibility to the square root decomposition approach. Though πvc  seems 

considerably larger than rvc , the test reveals an insignificant difference, an outcome 

consistent with their similar-size variances and large correlation. The test between πvc  

and xvc , however, confirms that πs explains variation in the yield spread innovation 

significantly more than xs .  

Unlike the results in Table I, the Cholesky method generates vastly different figures 

of variance contributions if different selections of ordering are used. This is due to the 

fact that the components in Table I are relatively uncorrelated. Finally, we remark that 

because the numerical examples considered have only three variables, above analyses 



based on variance covariance matrix are feasible. However, in practice, we often have 

more than three variables to analyze. Indeed, n variables imply that there are 2/)1( +nn  

variance covariance terms to consider. Worse still, for the Cholesky decomposition, there 

are n! selections of ordering.  

 

4. CONCLUSION WITH SOME REMARKS 

This article proposes an orthogonal variance decomposition that maximizes the trace 

of a positive definite decomposition matrix. When there is no economic theory one can 

rely upon to decompose the shocks, the trace of A has meaningful interpretation: a larger 

trace means a higher association between observable shocks and their corresponding 

structural shocks. It turns out that such a decomposition matrix is unique and equals to 

the square root of the variance covariance matrix. Limiting distribution of the estimator 

of square root decomposition matrix is derived, and numerical examples are provided to 

illustrate its usefulness. 

Though this article considers the simple IID real-valued n-vector case, its results can 

be readily extended to, for example, the VARMA case of Mittnik and Zadrozny (1993). 

From the numerical examples, we can see that a different selection of ordering in the 

Cholesky method could yield a vastly different outcome. Therefore, the square root 

decomposition is a useful alternative for comparison. In particular, when there are many 

variables in the system, the proposed method is able to provide a concise analysis. Finally, 

since multiple regression and VAR models are ubiquitous in most social science studies, 

this article proposes a simple means of variance decomposition that is intuitive and 

requires no prior information.  
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TABLE I 

VARIANCE DECOMPOSITION FOR EXCESS STOCK RETURNS 

 

 

 de  
re−  xe−  

      

Panel A 

 
de  0.146 -0.007 0.036 

 
re−  -0.172 0.013 0.040 

Σ  

 
xe−  0.112 0.413 0.705 

      

Simple regression  2R  0.209 0.160 0.864 

      

Panel B 

 
de  0.380 -0.018 0.030 

 
re−  195.12 0.104 0.043 

2/1Σ  

 
xe−  251.48 577.29 0.838 

      
2/1Σ  decomposition  vc  0.154 0.017 0.829 

      

Panel C 

 xrd →→  0.209 0.231 0.561 

 rxd →→  0.209 0.010 0.781 

 xdr →→  0.284 0.156 0.561 

 dxr →→  0.136 0.156 0.708 

 rdx →→  0.126 0.010 0.864 

Variance  

decomposition  

using  

Cholesky  

Method 

 drx →→  0.136 0.000 0.864 

      

Excess stock returns are decomposed into de , re−  and xe− , which are respectively 

news about future dividends, real interest rates and excess stock returns. Data in Panel A 

is obtained from Campbell and Ammer (1993, Table III). The figures are variance 

covariance matrix (correlations in bold italic fonts), and 2R  statistics obtained from 

simple regressions of excess stock returns on each component. In Panel B, 2/1Σ  is the 

square root decomposition matrix, vc is variance contribution, and test statistics for 

equality of vc’s are in bold italic fonts. Under the null hypothesis, the test statistic is 

distributed as Chi-squared with 1 degree of freedom; 3.841 and 6.635 are critical values 

at 5% and 1% significance levels respectively. Panel C provides the variance 

contributions using Cholesky method with different orderings.   



TABLE II 

VARIANCE DECOMPOSITION FOR EXCESS BOND RETURNS 

 

 

 πb−  
rb−  xb−  

      

Panel A 

 
πb−  1.084 -0.058 -0.552 

 
rb−  -0.367 0.023 0.075 

Σ  

 
xb−  -0.541 0.508 0.962 

      

Simple regression  2R  0.207 0.072 0.245 

      

Panel B 

 
πb−  1.001 -0.036 -0.284 

 
rb−  261.56 0.134 0.061 

2/1Σ  

 
xb−  0.443 298.81 0.937 

      
2/1Σ  decomposition  vc  0.464 0.025 0.510 

      

Panel C 

 xr →→π  0.207 0.218 0.574 

 rx →→π  0.207 0.017 0.775 

 xr →→ π  0.353 0.071 0.574 

 π→→ xr  0.754 0.071 0.174 

 rx →→ π  0.738 0.017 0.245 

Variance decomposition 

using  

Cholesky  

Method 

 π→→ rx  0.754 0.000 0.245 

      

Excess bond returns are decomposed into πb− , rb−  and xb− , which are respectively 

news about future inflation, real interest rates and excess bond returns. Data from Panel A 

is obtained from Campbell and Ammer (1993, Table IV). Descriptions for figures in 

Panel A, B and C are similar to Table I. The 5% and 1% critical values of Chi-squared 

statistics under null hypothesis are 3.841 and 6.635 respectively. 

 



TABLE III 

VARIANCE DECOMPOSITION FOR YIELD SPREAD INNOVATIONS 

 

 

 πs  
rs  xs  

      

Panel A 

 
πs  4.864 -4.426 0.152 

 
rs  -0.929 4.664 -0.124 

Σ  

 
xs  0.133 -0.111 0.267 

      

Simple regression  2R  0.072 0.003 0.325 

      

Panel B 

 
πs  1.833 -1.225 0.051 

 
rs  1.570 1.778 -0.027 

2/1Σ  

 
xs  9.744 0.074 0.514 

      
2/1Σ  decomposition  vc  0.434 0.277 0.289 

      

Panel C 

 xr →→π  0.072 0.666 0.262 

 rx →→π  0.072 0.637 0.292 

 xr →→ π  0.735 0.003 0.262 

 π→→ xr  0.660 0.003 0.337 

 rx →→ π  0.037 0.637 0.326 

Variance decomposition 

using  

Cholesky  

method 

 π→→ rx  0.660 0.014 0.326 

      

Excess bond returns are decomposed into πs , rs  and xs , which are respectively news 

about future inflation, real interest rates and excess bond returns. Data from Panel A is 

obtained from Campbell and Ammer (1993, Table VIII). Descriptions for figures in Panel 

A, B and C are similar to Table I. The 5% and 1% critical values of Chi-squared statistics 

under null hypothesis are 3.841 and 6.635 respectively. 

 


