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Abstract We study how stock return’s predictability and model uncertainty affect a ratio-

nal buy-and-hold investor’s decision to allocate her wealth for different lengths of investment

horizons in the UK market. We consider the FTSE All-Share Index as the risky asset, and

the UK Treasury bill as the risk free asset in forming the investor’s portfolio. We identify

the most powerful predictors of the stock return by accounting for model uncertainty. We

find that though stock return predictability is weak, it can still affect the invesor’s optimal

portfolio decision over different investment horizons.
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1 Introduction

Finance advisors often tell people with long investment horizon to invest more into stocks

than bonds. Fund managers will recommend different portfolios to investors with differ-

ent investment horizons. For example, they may recommend some stock shares for long

term investment and some others just for short term. Such ideas to allocate wealth among

different financial products according to the length of investment horizon have been chal-

lenged by academics. Early work about horizon effect can be seen in Samuelson (1969) and

Merton (1969). They proved that if the return of a risky asset is unpredictable, rational

investors should choose the same portfolio regardless of the length of their investment. More

recently, Samuelson (1989) and Samuelson (1990) readdressed the irrelevance of the length

of investment horizon in portfolio management.

The absence of horizon effect primarily relies on the assumption that the return of the risky

asset is unpredictable. However, there are also studies showing that return predictability

can affect investor’s optimal portfolio decision, see, for example, Kandel and Stambaugh

(1996), Barberis (2000) and Xia (2001). To add more valuable insight into this debate, it

is important to understand the nature of stock market inefficiencies, which is closely related

to the question of whether stock return is predictable or not. Though most studies using

daily or weekly data find very little evidence of predictability in terms of low R-squares or

low p-values, many academic investigations into monthly data suggest some variables may

have the ability to explain the movements in stock expected return. Fama and French (1988)

reported that apart from dividend yields, past stock return in the US market can predict

40 percent of future return over the long run. Fama and French (1993) then identified five

common risk factors in explaining the return of stocks and bonds. Consistent with Fama and

French’s results, Kothari and Shanken (1997) also found that book-to-market ratio (B/M)

has predictive power. However, these studies have invited criticisms from other scholars.

Hodrick (1992) and Goetzmann and Jorion (1993) argued that many findings based on long-
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horizon return regressions may be inappropriate due to problems such as data snooping1,

nonrobustness of test statistics and poor small sample properties of the inference method.

Such controversy about stock return predictability can be better explained from two as-

pects. First, though there are many articles addressing the issue of stock return predictors,

there is little consensus on what the important conditioning variables are. This issue can be

regarded as model uncertainty, which here refers to the uncertainty about the true explana-

tory variables for the stock return, see, for example, Brennan and Xia (1999). Secondly,

even if one believes to have found the correct set of predictors, the predictive relationship

between stock return and the predictors cannot be estimated with certainty due to limited

sample size. In other words, it is not possible for us to identify the true values of the pa-

rameters for our model in real life application. Parameter uncertainty or estimation risk can

have an important effect on investor’s optimal portfolio choice, see Bawa et al. (1979) and

Barberis (2000). By taking into account both parameter and model uncertainty, one could

better answer the question of whether stock return is predictable or not. Cremers (2002) and

Avramov (2002) both used Bayesian model averaging (BMA) to consider such uncertainty

and found that the BMA method, which averages the estimates from all potential models

according to their posterior probabilities, can provide better forecasts of stock return than

those selected based on certain criterion. The above studies are based on the US stock mar-

ket. Relevant research on the UK market can be seen in Pesaran and Timmermann (1995),

in which they employed recursive regression method to select a best single model based on

certain information criterion to make out-of-sample forecasts. Though they acknowledged

there is uncertainty about which model best forecast stock returns over time, they did not

address this issue explicitly in their method.

In this paper we study the stock return predictability in the UK market by accounting for

both parameter and model uncertainty. We then investigate the effect of such predictability

on a rational investor’s portfolio choice given different lengths of investment horizons. We

find that the stock return predictability in the UK market is weak if we allow for model
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uncertainty. Many explanatory variables are not as strong predictors as classical results sug-

gest. Moreover, if we take account of the data generating processes (DGP) of the explanatory

variables and allow them to be correlated with that of the stock return, the predicting power

of these explanatory variables will decrease further. As for the horizon effect, we propose a

computationally convenient statistic that can be used as a reference for how a rational buy-

and-hold investor should adjust her optimal portfolio given different lengths of investment.

We find that although the return predictability is weak, it still has a considerable effect

on a rational buy-and-hold investor’s portfolio choice as evidenced by different allocation

proportion of wealth to risky asset over time given different initial information.

The paper proceeds as follows. Section 2 explains the asset allocation problem and the

computation techniques used to solve it. Section 3 investigates the horizon effect when the

risky asset’s return is unpredictable. We look into the cases with and without parameter

uncertainty and then propose a measure to capture the horizon effect. Section 4 studies

the stock return predictability in the UK market by considering model uncertainty. Section

5 then examines the horizon effect of stock return predictability and model uncertainty.

Finally Section 6 concludes.

2 The Asset Allocation Problem and the Calculation of the

Optimal Portfolio

The basic economic model of the analysis consists of a risk averse investor, who allocates

her wealth to either risk free (e.g. treasury bond) or risky asset (e.g. stock share) in order

to maximize her utility function. This model has been studied by Kandel and Stambaugh

(1996), Barberis (2000) and Avramov (2002) with a focus on the time horizon effects, i.e. how

the investor will allocate her wealth given different lengths of investment horizons. Different

from other studies, we will look into the horizon effect based on the UK data. Compared

to Avramov (2002), we will take into account not only the effects of parameter and model
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uncertainty, but also the interactions between the DGP of the return for the risky asset and

those of its explanatory variables. Moreover, we will propose a computationally convenient

statistic, which may shed some light on the behaviour of a rational investor when she has to

choose between risky and risk free asset.

The investor’s wealth preference is described by the constant relative risk-aversion power

utility function (v) with the following form.

v(W ) =


W 1−A

1−A for A > 0 and A 6= 1

lnW for A = 1
(1)

where A is commonly referred to as the investor’s coefficient of relative risk aversion and W

denotes the investor’s wealth. Without loss of generality, we assume the initial wealth of the

investor is equal to one. Let us denote the rate of return of the risk free asset by rf and the

excess return of the risky asset over the risk free by r2. For simplicity, we further assume that

rf is non-stochastic and only r is a random variable. Suppose the investor is going to hold

the portfolio of the two assets from period T till period T + T̂ . At the end of her investment

horizon, her cumulative excess return will be RT+T̂ = rT+1 + rT+2 + ... + rT+T̂ , which will

also follow a certain distribution. If we assume the returns are continuously compounded

and the investor allocates ω of her wealth to the risky asset, her total wealth at the end of

the investment will be (1− ω) exp(T̂ rf ) + ω exp(T̂ rf +RT+T̂ ). The asset allocation problem

for the investor is to solve

max
ω

∫
RT+T̂

[
(1− ω) exp(T̂ rf ) + ω exp(T̂ rf +RT+T̂ )

]
1− A

1−A

p(RT+T̂ )dRT+T̂ (2)

That is given a period of time, which is T̂ periods long, the problem facing the investor is

to choose ω to maximize her expected utility at the start of the investment, i.e. period T .

Our study will focus on the investment horizon effect, i.e. the relationship between ω and T̂ .

Note that it is generally impossible to obtain a closed form solution for (2) even if p(RT+T̂ )

is some standard density function. To solve the problem, Barberis (2000) restricted ω to
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[0, 1] and performed a grid search after simulating draws from p(RT+T̂ ) to integrate RT+T̂

out. Here we use a relatively convenient and possibly more efficient numerical method to

tackle this problem. First we use Taylor expansion to approximate the power utility function

around the mean of RT+T̂ to produce a polynomial of RT+T̂ . We can choose the order of

Taylor expansion to control the approximation accuracy. Then we obtain the moments of

RT+T̂ analytically or by simulation and insert them into the polynomial to obtain a function

of only ω. Finally we use a numerical routine to maximize the function.3 In our application

in later sections, we find that Taylor approximation with order around 10 could give us

reasonably accurate results when RT+T̂ follows a normal or t distribution.

Next we discuss the force that may drive the horizon effect. Note that the demand for

the risky asset in the investor’s portfolio clearly hinges on how we set up the maximization

problem and the constraints confronting the investor. However, it should be no surprise that

the risky asset’s return and its level of risk are the key factors. In other words, the first

and the second moments of RT+T̂ should have an important role in determining the horizon

effect. Note that the density function p(RT+T̂ ) will change with T̂ . Hence both the first

and the second moments of RT+T̂ are functions of T̂ . We may be interested in knowing how

fast the return changes relative to the change of risk. For example, if the risk of an asset

increases with time, will the asset’s expected return increase fast enough to counteract such

effect so that the asset will still remain attractive to a rational investor? Here we propose

the following expression which may help to answer this question:

MtoS =
∂µT̂
∂T̂
× σT̂

∂σT̂
∂T̂
× µT̂

, (3)

where µT̂ and σT̂ denote the mean and standard deviation of RT+T̂ respectively. The ex-

pression in (3) is no more than the ratio between the percentage rate of change of RT+T̂ ’s

mean and standard deviation. It is similar in spirit to the Sharpe ratio and could provide a

measure of the value of risk (in terms of the mean return) over time. In the following sec-
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tions, we will illustrate how expression (3) is related to the investment horizon effect under

different probability density functions of RT+T̂ .

3 When the Excess Return is Unpredictable

Samuelson (1969) and Merton (1969) show that when stock return is not predictable, the

optimal portfolio will be independent of wealth and all consumption-saving decisions in a

multi-period portfolio rebalancing model. Different from Samuelson (1969), the distribution

of the excess return will change with time in this paper. Barberis (2000) uses the US data

and shows that the optimal portfolio is insensitive to investment time horizon if RT+T̂ is

unpredictable and follows a normal distribution with mean and variance increasing linearly

with time. In our empirical study, we will use the UK 3 month treasury bill rate as rf . The

excess return of the risky asset (r) is calculated as the return difference between the FTSE

All-Share Index and rf . Our data sample is from November 1978 up to September 2003,

which includes 299 (T ) observations of the FTSE All-Share Index. The mean of the excess

rate of return (µ) of the FTSE index over T-bill in our sample is 0.4772%, while the sample

standard deviation is 4.88%(σ). We assume the excess return is unpredictable and follows a

normal distribution as below,

rt = µ+ εt, εt ∼ IIDN
(
0, σ2

)
, (4)

where µ is the mean of the stock excess return and σ2 is the variance in the normal distri-

bution. The cumulative excess return RT+T̂ will also be normal as the following,

RT+T̂ |µ, σ
2 ∼ N(µT̂ , σ2

T̂
), (5)

where µT̂ = T̂ µ, and σ2
T̂

= T̂ σ2. As pointed out by Barberis (2000), if the investor ignores

parameter uncertainty, i.e.taking the estimates of µ and σ from the past data as the true

values of these parameters, the optimal holding proportion of the risky asset (ω) will not
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change with time. It is easy to see that under such setup, MtoS defined in (3) is equal to 2

and also independent of T̂ .

In our following studies we set A = 5 and rf = 0.3%, which is the last observation of

the monthly rate of return of the 3-month T-bill. Here we study the horizon effect from

one month to 5 years. By using the numerical method described in the previous section,

the optimal holding proportion of the risky asset and the MtoS defined in (3) are shown in

the left column of Figure 1 for different investment lengths. We can see that ω is about 0.5

whileMtoS is 2. Both of them do not change with time. These results confirm the empirical

findings of Barberis (2000) using the US data. We have just added MtoS to analyze the

relative change of the return and risk over time.

[Figure 1 here]

Next we turn our attention to the case when the investor no longer treats the estimates

of µ and σ as their true values. In other words, the investor is now taking parameter

uncertainty into account as termed by Barberis (2000). To model the parameters µ and σ in

(5) as random variables, we adopt the Bayesian inference framework by assuming the joint

distribution of µ and σ2 follows a noninformative prior and hence their posterior follows a

normal-gamma distribution.

p(µ, σ2) ∝ 1
σ2 (6)

µ|σ2, D ∼ N(r̄, σ
2

T
) (7)

σ2|D ∼ IG
(
(T − 1)s2, T − 1

)
(8)

where r̄ = 1
T

T∑
1
rt = 0.4772% and s2 =

T∑
t=1

(rt−r̄)2

T−1 = 0.0023797. Equation (7) and (8) show the

posterior distributions of µ and σ2, which are conditional on the data4, denoted by D. Here

σ2 follows an inverted gamma distribution with degrees of freedom T −1. Its posterior mean
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and variance are

E(σ2|D) =

T∑
t=1

(rt − r̄)2

T − 3 = 2.40× 10−3, (9)

V ar(σ2|D) =
2
T∑
t=1

(rt − r̄)2

(T − 3)2(T − 5) = 5.51× 10−8. (10)

The conditional distribution of RT+T̂ is still given by (5) while the posterior distribution of

RT+T̂ unconditional of µ and σ2 now becomes

RT+T̂ |D ∼ t(µ̂T̂ , σ2
T̂
, T − 1), (11)

where µ̂T̂ denotes the mean parameter, which is equal to r̄T̂ and σ2
T̂
is the variance parameter

equal to s2T̂ (1+ T̂
T
). With parameter uncertainty of µ and σ2, it is equivalent as saying that

RT+T̂ in (2) has a t density function with parameters described in (11). It can be seen that

the mean and variance of RT+T̂ grow at different speeds as compared to (5). The ratio of

the percentage rate of change between them (MtoS) is now the following,

MtoS =
∂µ̂T̂
∂T̂
× σ̂T̂

∂σ̂T̂
∂T̂
× µ̂T̂

= 2− 2T̂
T + 2T̂

. (12)

Unlike the case of no parameter uncertainty, this ratio depends on T̂ and is a decreasing

function of T̂ , whose value is less than 2 unless T̂ is 0. Barberis (2000) shows that the

optimal holding proportion of the risky asset under parameter uncertainty will no longer be

insensitive to the length of investment horizon. The interpretation could be that the longer

is the investment horizon, the rational investor will become more doubtful about her initial

estimation made at period T . Therefore her expected risk of the asset will grow faster with

time than the case with no parameter uncertainty. The plots of the optimal portfolio and

MtoS are shown in the right column of Figure 1. We can see that both ω and MtoS drop

with the length of investment horizon. For ω, it falls by around 7% while Mtos drops from

1.99 to 1.71. If we look at the expression of MtoS in (12), we could find that it also involves
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T , i.e. the original sample size. We may conjecture that the optimal portfolio may also be

related to the sample size. Indeed, if we keep the values of all other parameters the same

and just change T to its one tenth, the optimal ω will fall from 46% to 23% while MtoS is

from 1.93 to 1.2. This can be due to the fact that as the investor’s estimation is based on

smaller sample size, she will have less confidence in it and will feel that the asset is more

risky in the long run. Hence the size of the drop of ω is much larger and the horizon effect is

more pronounced. The interesting point here is that the ratio between the percentage rate

of change of the excess return mean and standard deviation (MtoS) seems to be able to tell

how a rational investor will behave given different lengths of investment horizons. However,

in many applications, such as the one in the following sections, the first and second moments

of RT+T̂ may not have closed forms, needless to say MtoS. Here we propose the following

statistic, which can circumvent this problem and approximate the MtoS,

ˆMtoS =
ln(µT̂/µT̂−1)
ln(σT̂/σT̂−1)

≈MtoS, (13)

which is the ratio of the log differences between the contemporaneous expected mean and the

one of one period earlier over its standard deviation counterpart5. The statistic approximates

the instantaneous relative percentage change of expected return to that of risk. As we argued

before, theMtoS could be viewed as a measure of the economic value of risk in terms of return

over time. While the optimal holding proportion of the risky asset is hard to calculate and

depends on the setup of the maximization problem, such as what form the utility function

takes and how risk averse is the investor, the statistic defined in (13) is easy to calculate and

may provide a reference for the investor as to how attractive a particular portfolio is over

time. We will apply this statistic to the subsequent sections where the analytical forms of

the first and second moments of RT+T̂ are not available.
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4 Whether Stock Return is Predictable or Not

4.1 Data and Some Statistical Results

All our data, except the Hoare Govett Smaller Companies Index, are from DataStream,

covering the period from November 1978 to September 2003, altogether 299 observations

(T ). As before, we use r to denote the FTSE All-Share Index excess return, which is our

dependent variable. The explanatory variables along with their short forms used in the

analysis are shown in Appendix A.1. All of them are either business cycle variables or

financial market variables suggested in the literature, which may possess explanatory power

for excess return.

Consistent with the study by Pesaran and Timmermann (1995), we do not include the

observation in October 1987, which is an outlier6. Figure 2 displays the monthly excess

returns of the FTSE All-Share Index over our sample range. First sight suggests there do

not seem to be any obvious patterns, such as autocorrelation. This can be confirmed in

Figure 37. The two parallel horizontal lines indicate the 95% confidence interval. We can see

that all the autocorrelation coefficients up to twenty lags are well within the 95% confidence

lines.

[Figure 2 here]

[Figure 3 here]

A rough idea about the extent to which the excess return can be predicted using different

variables can be seen in the OLS regression results in Table 1 obtained by regressing the

excess return on all other variables. The numbers in bold indicate they are significant at

10% level of significance. Such practice by regressing the excess return on all other variables

could be subject to criticism such as data snooping and model misspecification. In the next

subsection, we will use the BMA method to look into this issue.

[Table 1 here]
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4.2 Bayesian Model Averaging in a Univariate Linear Model

The Efficient Market Hypothesis (EMH, e.g. Fama (1970)) states that in an efficient capital

market, stock return is not predictable. Numerous empirical work has shown that the capital

market is not efficient. While traditional asset pricing models, like CAPM, precludes the

use of predictors in determining return, the literature of style investment, which studies

investment return based on certain economic or accounting variables, has prospered in the

past decades. Banz (1981) documented that small-cap stocks have historically outperformed

large-cap stocks in the US by a margin that could not be explained by conventional measures

of risk. Hence the capital size of a stock may help predict its return. Later influential work

can be seen in Fama and French (1993), who documented five common risk factors in the

returns of stocks and bonds (the whole market returns, firm size, book-to-market ratio,

maturity risk and default risk). For the UK market, Pesaran and Timmermann (1995)

found that in addition to dividend yield, several business cycle variables help to predict the

excess return. Different variables can be seen in predicting returns in numerous other papers.

The variables presented in Appendix A.1 are based primarily on these studies. Though there

are many articles mentioning possible predictors, there is little consensus on what the most

important conditioning predictors are.

Here we apply BMA techniques to a linear model to identify the most important predictors

using the UK data. We assume the predictors and the dependent variable have a linear

relationship and the disturbance term has no serial correlation and heteroscedasticity:

rt = ap +B′pxt−1,p + εt,p, εt,p ∼ i.i.d.N(0, σ2
p), (14)

where r stands for the excess return, and x stands for the set of predictors used, which do

not include any lag terms of r. The subscript p is a model specific parameter, which implies

that the parameters are different for different models. There are altogether 15 (K) possible

predictors which may enter the regression to explain the excess return. The total number
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of different models with different regressors, is P = 215. Each model, Mp, is described by a

K × 1 binary vector γ = (γ1, ..., γK)′, where a one (zero) indicates the inclusion (exclusion)

of a variable. We denote the sum of all elements in γ by kp, which is the dimension of the

column vector xt−1,p. If we stack up all the observations for equation (14), then it can be

written as

r = apι+ XpBp + εp εp ∼ N(0, σ2
pI) (15)

where ι is a vector of ones, Xp = [x0,p, x1,p, x2,p, ..., xT−1,p]′, and r =[r1, r2, r3,...rT ]′.

The following analysis relies heavily on the bench mark prior developed by Fernandez

et al. (2001). To implement their approach, we first reparameterize the intercept term (ap)

in the regression such that the new intercept term (ap) is orthogonal to the slope (Bp) in the

likelihood function, i.e. ap = ap − ι′XpBp
T

. In doing so, we have changed (15) into

r = apι+HXpBp + εp, εp ∼ N(0, σ2
pI), (16)

where H = IT − ιι′

T
is the demean matrix. The bench mark prior proposed by Fernandez

et al. (2001) looks like the following.

p(ap, σ2
p) ∝

1
σ2
p

(17)

Bp|σ2
p, ap ∼ N(0, σ2

p(gX′pHXp)−1) (18)

Here we use flat prior for the equation variance and the constant. For the slope vector Bp,

we use the g prior designed by Zellner (1986). It substantially reduces the trouble of eliciting

the values for too many hyperparameters by using the explanatory variables to specify the

prior variance. The strength of the prior only depends on g. After extensive Monte Carlo
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experiments, Fernandez et al. (2001) recommended choosing

g =


1
T

if T > K2

1
K2 if T ≤ K2

(19)

where T stands for the sample size and K stands for the number of potential predictors.

Note that g appears in the prior variance of the slope vector, which controls our confidence

in the prior. The choice of g in (19) means we always prefer a more noninformative prior

such that the variances for the slopes in (18) are bigger than the alternative. It can be shown

that the posterior of Bp follows a multivariate t distribution with mean:

E(Bp|D,Mp) = B̄p = 1
g + 1(X′pHXp)−1X′pHr, (20)

and covariance matrix:

V ar(Bp|D,Mp) =
v̄s̄2

p

v̄ − 2 V̄p, (21)

where v̄ = T is the degrees of freedom and v̄s̄2
p = r′Hr− 1

1+gr
′HXp(X′pHXp)−1X′pHr. The

marginal likelihood takes the following form:

p(D|Mp) ∝ ( g

1 + g
)
kp
2
(
v̄s̄2

p

)−T−1
2 (22)

We can see that the marginal likelihood penalizes the models with a large number of re-

gressors (kp) since g
1+g is less than 1. For our case there are P = 215 models. Given this

model space, there is uncertainty about what is the correct model. Hence it makes sense to

consider the parameters unconditional of the model space. This requires us to calculate the

posterior model probability as shown in the following,

p(Mp|D) = p(D|Mp)p(Mp)
p(D) = p(D|Mp)p(Mp)

P∑
p=1
p(D|Mp)p(Mp)

. (23)

To specify the model prior, p(Mp), it is possible to use a flat prior, which gives every model

the same prior probability( 1
215 in our case). However, George (1999) notes that when many of

the regressors in the regression are highly correlated, large subsets of models are essentially
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equivalent. In other words, highly correlated regressors can be viewed as proxies for each

other and they capture the same theory. If a flat prior is adopted on the model space, then

excessive prior probability will be allocated to such similar models at the expense of some

unique models. George (2001) suggests the following dilution model prior,

p(Mp) ∝ |R|
K∏
i=1
πγi(1− π)γi (24)

where R is the correlation matrix of regressors included and π is the probability of including

a variable. Note that if π > 1
2(π <

1
2), we prefer models with more (less) regressors. Here we

set π = 1
2 . The determinant of the correlation matrix in the model prior serves to penalize

the models with redundant regressors. We can see this by noting that |R| = 1 when the

regressors are orthogonal and |R| approaches 0 when the regressors become more collinear.

Some explanatory variables exhibit high degree of correlation such as oil price, industrial

production, monetary supply, treasury bill rate and dividend yield.8

The underlying logic of the BMA technique is that we should mix our estimates from

different models based on their posterior model probabilities calculated from (23). Such

practice can well account for model uncertainty. Let β denote the parameter of interest,

such as the slope parameter or the predicted excess return. Leamer (1978) showed that

unconditional on the model space, the posterior mean and variance of β can be calculated

as:

E(βi|D) =
P∑
p=1
I(γi = 1|Mp, D)p(Mp|D)E(βi|Mp, D), (25)

V ar(βi|D) = E(β2
i |D)− E2(βi|D), (26)

where E(β2
i |D) =

P∑
p=1
I(γi = 1|Mp, D)p(Mp|D)E(β2

i |Mp, D). An investor may be interested

in knowing how important the variables are in explaining the excess return. We therefore

need to have a measure of the importance of the included regressor i unconditional of the
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model space. The following posterior inclusion probability of variable i serves this purpose.

p(γi = 1|D) =
P∑
p=1
I(γi = 1|D,Mp)p(Mp|D) (27)

Table 2 shows the estimation results for the slope parameters. For comparison, we also

report the prior inclusion probability for each regressor as implied by (24). We have put

the variables with more than 10% inclusion probabilities in bold. These are the relatively

powerful explanatory variables in our results. The variables with the highest inclusion prob-

abilities in descending order are Dy, Inf, Smb, Jan and M0. If we compare the results to

those in Table 1, we can see that only Dy, Jan and M0 are robust for both Bayesian and

classical approaches while the variables of oil price, Tb and Tbchng have relatively lower

inclusion probability in contrast to their significant results without model averaging. Hence

one should be more cautious of the significance of the latter set of explanatory variables.

[Table 2 here]

[Table 3 here]

Table 3 lists the top 10 models with the highest posterior model probabilities. The column

headed by “model” list the regressors included for the particular model. The explanation of

the variables can be found in Appendix A.1. We can see that the model with the highest

posterior probability is the one without any explanatory variables. Moreover, the top 10

models are all parsimonious models with at most 3 regressors. Their posterior probabilities

sum up to 0.49, while for the top 100 models out of 32768, the sum is 84%. All of the top 100

models have no more than 4 regressors, with 82 of them with less than 3. A point to note is

that although the model without any explanatory variables has the highest posterior model

probability, its posterior probability is not much higher than those of other top models.

All other models except the top model can be viewed as evidence supporting stock return

predictability. Their model probabilities sum up to around 87%. Another point to note is

that the variable with the highest inclusion probability (around 40%) is the dividend yield.
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This is the only regressor whose posterior inclusion probability is higher than its prior.9 The

inclusion probabilities of other variables are at most between 10% and 15%. Our inclusion

priors do not seemed to be confirmed by the data. This reveals a substantial amount of

model uncertainty. It seems that apart from dividend yield, none of the explanatory variables

are overwhelmingly strong predictors of the stock return, although the models supporting

predictability have higher posterior probability than the model supporting no predictability.

4.3 Bayesian Model Averaging in an SUR Model

The previous subsection reveals that the excess return seems to be predictable and some

explanatory variables have relatively high posterior inclusion probabilities. However, as

Holmes et al. (2001) point out, if one can incorporate the data generating processes of the

explanatory variables into estimation, the true model for the dependent variable may receive

higher posterior model probability since different DGPs can borrow strength from each other.

In this subsection, we will implement this idea in a seemingly unrelated regression (SUR)

model to investigate more closely the predictability of excess return.

We assume that the explanatory variables have their own data generating processes and

that such processes could be correlated with each other and with that of the excess return.

rt = a0p +B′0pxt−1,p + F ′0pyt,p + ε0t,p (28)

xi,t = ai +B′iwi,t−1 + εit (29)

The disturbance terms in (28) and (29) are assumed to be correlated with each other but have

no heteroscedasticity and no serial correlation. As before p is the model specific subscript.

Here we separate the explanatory variables into dummy variables y and non-dummy variables

x, which have their own generating processes described in equation (29). The regressors for

the predictor equations (w) may include the lag of the excess stock return and those of the

predictors. To ease the computational burden in estimation10, we wish to reduce the number

17



of equations and the parameters to be estimated. We only pick up the five variables with

the highest inclusion probabilities calculated in the previous subsection, which consist of one

dummy variable, Jan, two financial variables, Smb and Dy, and two business cycle variables,

Inf and M0. Therefore there are altogether 5 equations in our system. All the equations

in (29) (i = 1, 2, 3, 4) have an intercept term. Holmes et al. (2001) suggests a full search

of potential regressors for each equation under SUR framework. To make it simpler, here

we just use all possible explanatory variables11 for each predictor equation. Since our focus

is still on the excess return, for different models we assume only the regressors in equation

(28) will change and the predictor equations will stay the same for different models. The

marginal likelihood for a particular model in our case should be based on all equations. In

this sense our work differs from the previous researchers such as Avramov (2002). Unlike

the univariate case, an SUR model like ours has no closed form for the marginal likelihood.

We use Savage-Dickey density ratio (see Verdinelli and Wasserman, 1995) to calculate the

posterior model probability. Estimation details are discussed in Appendix A.2.

Table 4 lists all the models along with their posterior probabilities in descending order.

We obtain the results after 1 million draws in the Gibbs sampler. Remember we only

change the regressors of the excess return equation in (28) to form different models, while

the regressors for other equations of (29) remain the same in the BMA exercise. Different

from the univariate BMA case, the model without any regressor has much higher probability

while the posterior model probabilities of most of the other top ten models in the univariate

framework fall substantially. The sum of the model probabilities of all the models supporting

stock return predictability is now only around 30%. This indicates under the SUR model

we find less favourable evidence for stock return predictability. A point to note is that the

posterior model probability of the one with only January effect jumps from 0.02 to about

0.135, which accounts for more than one third of the posterior model probability of the

models supporting stock return predictability. It seems that if we incorporate the DGPs of

the explanatory variables for the excess return and allow such DGPs to be correlated with
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each other, we find much weaker support for stock return predictability compared with the

univariate case. Further analysis, though, needs to be carried out to see whether such weak

predictability has an impact on the investor’s portfolio strategy.

[Table 4 here]

Table 5 shows the estimation results of all the parameters for the excess return equation

(28) after model averaging, where numerical standard error (NSE) is equal to standard deviation√
number of draws ,

which is a measure of accuracy for the mean estimates. When the true posterior mean has no

closed form, the numerical method we use implies that it should lie in the region of (estimated

mean-1.96NSE, estimated mean+1.96NSE) with about 95% probability. Compared with

Table 2, the slopes of Smb, Dy and Inf have decreased in scale (in absolute value). We

can also see a huge drop in inclusion probability for most of them except the January

dummy. The estimates for the variance matrix of the disturbance terms are shown in the

lower triangle of Table 6 with standard deviations in brackets. The correlation coefficients

of different equations are in the upper triangle. Note that the correlation between the excess

return equation and other equations do exist (ranging from 1% to 14% in absolute value),

which could justify the use of the SUR model.

[Table 5 here]

[Table 6 here]

5 The Horizon Effect of Stock Return Predictability and Model

Uncertainty

Equation (28) and (29) provide us a framework to make forecasts of more than one period

ahead based on the information of current period. To simplify the illustration, we need to

write equation (28) and (29) into the form of vector autoregression (VAR). First let us define
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the following12,

zt
5×1

=



rt

x1t

...

x4t


, B
5×5

=

 0 B′0,p

B̃
4×5



A
5×1

=
[
a0p a1 a2 a3 a4

]′
, F =

 F ′0,p

0


Equation (28) and equation (29) can now be written as

zt = B · zt−1 + A+H · yt,p + εt, εt ∼ iidN(0,Σ), (30)

where H is the demean matrix resulting from reparameterizing the intercept term in the

excess return equation. Denote C = (B′0p, F ′0p, a0p, B
′
1, a1...B

′
4, a4)′. Now we can use the

following to estimate the mean and variance of zt h periods ahead conditional on a particular

model and the parameters in the excess return and the predictor equations.

E(zT+h|C,Σ, D,Mp) = Bh · zT +
h−1∑
i=0
Bi · A+

h−1∑
i=0
Bi ·H · yT+h−i,p (31)

V ar(zT+h|C,Σ, D,Mp) = Σ +BΣB′ + ...+Bh−1Σ(Bh−1)′ (32)

Note that y is the dummy variable, i.e. Jan in our case, which captures the periodic

phenomenon. In our evaluation of the moments of the cumulative excess return (i.e.RT+T̂ =

rT+1 + rT+2 + ... + rT+T̂ ), we set y = 0 since we are more interested in the relationship

between the stock excess return and the economic fundamentals over time. The cumulative

excess return RT+T̂ is the first element in the vector
T̂∑
h=1

zT+h, whose mean and variance can

be calculated as

µcum = B(BT̂ − I)(B − I)−1zT + [B(BT̂ − I)(B − I)−2 − T̂ (B − I)−1]A (33)
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V arcum =
T̂∑
h=1

δ(h)Σδ(h)′, δ(h) = (Bh − I)(B − I)−1 (34)

The predictive distribution of the cumulative excess return conditional on C, Σ and the

model is

RT+T̂ |C,Σ, D,Mp ∼ N(µ(1)
cum, V ar

(1,1)
cum ) (35)

where µ(1)
cum stands for the first element in µcum and V ar(1,1)

cum is the (1,1) element of the

variance matrix.

Note that for the models with explanatory variables other than the dummy in the ex-

cess return equation, our results are sensitive to the values of the initial variables, i.e. zT .

Predictability in the context of equation (31) and (32) means that investors use the dy-

namic model to predict the future based on the current information. The estimated mean

and variance of RT+T̂ from (35) should be viewed as the investor’s belief of the cumulative

stock excess return and risk accordingly. Another reason for incorporating the DGPs for

the explanatory variables of the excess return equation is that we want to make forecast of

excess return T̂ periods ahead. Barberis (2000) showed that when the excess return can be

predicted only by dividend yield, the optimal stock holding proportion will be very sensitive

to the initial value of dividend yield while less sensitive if the investor takes into account

parameter uncertainty13. Note that in Table 4 the top two models receiving large amount of

posterior model probabilities include no explanatory variables and only the dummy variable

respectively14. These regressors do not appear in our forecast exercise in equation (33). In

the situations like these, we are virtually saying that the stock return is fairly unpredictable.

However, our BMA results are based on the average of all the potential models. Whether

the weak predictability will lead to any conspicuous horizon effect requires further analysis.

First we will use the sample mean of all the explanatory variables concerned to form the

investor’s initial condition. The final results shown in Figure 4 are obtained after 8 million

draws. The solid line represents the forecast path of the mean and standard deviation of
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RT+T̂ over time. We can see that the mean of the excess return is positive throughout our

investment horizon and like the standard deviation, it rises in scale as the investment horizon

lengthens. In addition to our forecast, we have also included the evolution paths of the mean

and standard deviation of RT+T̂ when the excess return is unpredictable with and without

parameter uncertainty (in dashed and dotted line respectively), as indicated in (5) and (11).

We can see that RT+T̂ ’s forecast mean is not as high as the one under no predictability in the

long run, while its standard deviation is above the one without parameter uncertainty and

slightly below the one with parameter uncertainty. Given zT is the mean of the predictors,

the evolution paths of the mean and standard deviation of the excess return from the BMA

results are very similar to those under no predictability and with parameter uncertainty.

Therefore we may conjecture that the optimal holding proportion of stock should decrease

with time in the long run. This should make intuitive sense since our framework does not

only take into account parameter uncertainty but also model uncertainty. When the initial

condition for the investor is formed by taking the sample mean of the predictors, it is close

to the case with no predictability since in our sample we find little evidence supporting

predictability.

[Figure 4 here]

To confirm our guess, we can calculate the ˆMtoS statistic defined in (13) and the optimal

holding proportion of stock. We use the algorithm mentioned in Section 2 to search for

the optimal ω. Figure 5 shows the results in solid lines. Except for the initial tiny rise,

the optimal holding proportion of stock falls consistently. As for the ˆMtoS, although it

has some zigzag movements15, it clearly demonstrates a downward sloping trend over the

long run. Hence we have reason to believe that the ˆMtoS statistic captures investor’s

willingness to hold a risky asset over time to some degree. Under our initial condition, the

weak predictability and model uncertainty lead to relatively slow increase of the mean of

the excess return compared to the risk, which makes the FTSE rather unattractive in the

long run. A rational investor under our utility maximization setting hence should decrease
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her holding of the FTSE index asset over time. While it is difficult to calculate the optimal

holding proportion of the risky asset, it is very convenient to calculate the ˆMtoS statistic as

long as we can simulate draws from the predictive distribution of the excess return. Although

the statistic does not depend on how the utility maximization problem is set up, it may still

provide a reference for the investor in regard to how attractive an asset is over time.

[Figure 5 here]

Next we will turn to the question of whether the weak predictability of stock return

will induce any horizon effect. As mentioned before, predictability should imply that the

investor use the present information to predict the future. If there is no horizon effect

caused by predictability, the investor should be insensitive to different values of zT (the

initial condition). Here we try two more values in addition to the mean of the predictors:

zero and twice the mean of the predictors. The results are also shown in Figure 5. The

dashed line is obtained from the initial value zero while the dashed-star line is from twice

the predictors’ mean. We can see that three paths of ω from three initial values look quite

different, though all of them are downward sloping over time. The dashed-star line (from

twice the predictors’ mean) falls faster than the other two and its MtoS line is below those

of the other two. If we set the initial condition to a zero vector, the starting ω is much less

than the other two cases. Over time, its optimal holding proportion seems to be parallel to

the one obtained by setting zT to the mean of the predictors. We can see its MtoS line is

initially below the zT -mean line and the two get intertwined over time. To summarize, it

seems that although the stock return predictability is weak, it still has a considerable effect

on the investor’s optimal portfolio decision over time.

6 Conclusion

In this paper, we study the horizon effect of stock return predictability, that is, for different

lengths of investment horizons how a rational investor should allocate between risky and
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risk free asset. We show that the investor’s portfolio choice for different investment horizons

can be linked to the relative time variation of stock expected return and its expected risk.

We propose a computationally convenient statistic to capture such horizon effect and show

that it could be related to an investors’ optimal holding proportion of a risky asset. We also

study the stock return predictability for the UK market, i.e. what variables may be useful in

predicting stock excess return. We argue that Bayesian model averaging is more preferable

than simply focusing on a particular model in terms of picking up the variables truly useful

in predicting the return. By using BMA, we can avoid the problem of data snooping and

take into account parameter and model uncertainty. We have studied the potential useful

predictors under both univariate and multivariate frameworks. Our univariate results show

that for the UK market, the most powerful predictors are dividend yield, January effect,

monetary supply, inflation rate and company size effect. However, if we allow the data

generating processes of stock excess return to be correlated with those of its explanatory

variables, the predicting power decreases for most variables. Only January effect still remains

relatively robust. Though the evidence for stock return predictability is rather weak, it can

still lead to considerable horizon effect. In this paper, we only consider one risky asset (stock

index). In the future, we could extend our framework to consider several risky assets. With

regard to stock predictability, we have just considered the predictability in return. It could

be fruitful to study the case when the same set of explanatory variables can predict stock

volatility.
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Notes

1. It implies that such patterns in the data may happen by chance.

2. That is the difference of the rate of return between the two assets.

3. All these procedures could be easily implemented in Maple once we obtain the moments of

RT+T̂ .

4. Here the data are the observed excess returns.

5. For some situation, we may need to replace the formula by ˆMtoS = (µT̂−µ ˆT−1)/µ ˆT−1
(σT̂−σ ˆT−1)/σ ˆT−1

6. In that month, there was a stock market crash. The index dropped by around 27%.

7. The results are obtained from the MatLab routine autocor.m.

8. Any two of these variables have correlation of more than 70% in absolute value. Detailed

results are available upon request from the author.

9. In other words, our data strengthen this prior.

10. The author agrees that model uncertainty should be considered for all equations at the same

time. However, the current computation technology does not allow such practice. Moreover

we should place our focus on the first equation about the stock return.

11. The potential explanatory variables for each equation are the predictor variables of the

stock return and the stock return itself, i.e. r, Smb,Dy, Infl,M0 and Jan. All explanatory

variables except Jan enter the predictor equation in the form of one period lag.

12. Here B̃ denote the collection of the slope parameters in equation (29)

13. The marginal effect of dividend yield on stock return in most applications is positive. There-

fore given that a rational investor’s initial value of dividend yield is positive, she should have

more position in stock if she has longer investment horizon.

14. The sum of their model probabilities is around 83%.

15. Such movements could be due to the numerical error during the simulation. As the number

of draws increases in the Gibbs sampler, the range of oscillation should be reduced.
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A Appendix

A.1 The Explanatory Variables for the Excess Return Equation

1. January Dummy (Jan), which captures the January effect in the stock market

2. monthly return of the three-month Treasury bill (Tb)

3. the first difference of Treasury bill (Tbchng), which is calculated as Tb(t)− Tb(t− 1)

4. the difference of return between small market capitalization companies and big ones

(Smb), which is the difference between the total returns of Hoare Govett Smaller

Companies index (HGSC) and FTSE 100 Index

5. dividend yield, the ratio of dividend over stock price(Dy)

6. the difference between monthly returns of 20 year UK government gilt and the 3 month

T-bill (TERM)
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7. monthly industrial production (Indp)

8. money supply, seasonally adjusted (M0)

9. monthly percentage change of industrial production (Indp%ch)

10. monthly percentage change of monetary supply (M0%ch)

11. Monthly inflation (Inf)

12. monthly oil price (Oilp)

13. monthly percentage change of oil price (Oil%ch)

14. the difference between returns of high book-to-market ratio company index and low

ones (HML), which is calculated as the difference between the total returns of MSCI

value index and growth index

15. monthly change of inflation rate(Infch), which is calculated as Inf(t)− Inf(t− 1)

A.2 Estimation of the SUR Model

Let us define εt = [ε0t, ε1t, ε2t, ε3t, ε4t]′ and assume

εt ∼ N(0,Σ) and E(εjε′k) = 0 for j 6= k. (36)

We will estimate equation (28), (29) and (36) in an SUR framework. Koop (2003) illus-

trates how to estimate SUR model in a Bayesian way. Our analysis partly relies on it. First

we need to write equation (28) and (29) into matrix form by defining the following notations.

zt
(m×1)

=



rt

x1t

...

x4t


, X̃t
(m×kp)

=



x′t−1,p y′t 1 0 0 0 ... 0 0

0 0 0 w′1,t−1 1 0 ... 0 0

... ... ... ...

0 0 0 0 0 0 ... w′4,t−1 1


C

(kp×1)
=
[
B′0p F ′0p a0p B′1 a1 ... B′4 a4

]′
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So equation (28) and (29) can be rewritten as

zt = X̃tC + εt (37)

We adopt the independent Normal Wishart prior for C and Σ, which looks like

p(C,Σ) = p(C)p(Σ) = fN(C|C, V )fIW (Σ) (38)

where the prior parameters C and V denote the mean and variance in the normal distribution.

Although we have tried to limit the number of our parameters, we still end up with 49

parameters to estimate when we include all regressors into equation (28), which means the

specification of the hyperparameters could be a huge task. Here we try to be as least

subjective as possible. Koop (2003) recommends a general rule of thumb for doing BMA:

it is acceptable to use a noninformative improper prior for parameters which are common

to all models and informative proper priors for parameters changing over models. Since for

different models we only change the regressors in equation (28), only the dimension of B0p

and F0p will change across models. For these parameters, we use a proper prior. We will use

a noninformative prior for the other parameters. The prior for Σ looks like the following.

fIW (Σ) ∝ |Σ|−
1
2 (5+1) (39)

Let us denote cp =
[
B′0p F ′0p

]′
. For parameters [a0p B

′
1 a1...B

′
4 a4]′, we set their co-

variance elements in V and the diagonal elements in V −1 to zero so that the corresponding

values of the hyperparameters in C are irrelevant. We will leave the prior for cp to later

discussion. For the moment we just assume we have a proper prior for it.

The posterior distributions for C and Σ have no analytical forms since the stock return

equation and the predictor equations have different regressors. We have to use Gibbs sampler

to evaluate them.

C|D,Σ ∼ N(V̄ (V −1C +
T∑
t=2
X̃tΣ−1zt, V̄ ) (40)
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Σ|D,C ∼ IW (
T∑
t=2

(zt − X̃tC)(zt − X̃tC)′, T ) (41)

where V̄ = (V −1 +
T∑
t=2
X̃ ′tΣ−1X̃t)−1.

We first choose some arbitrary values for C and draw Σ from equation (41) and then plug

the draw of Σ into (40) to make a new draw of C. Repeating this process will give us a

chain of draws. We discard a certain number of the initial draws as burn-in and only retain

the remaining draws. The sample average of such draws can give us the estimates of the

posterior means for C and Σ.

Next we discuss the estimation details of the posterior model probability. Savage-Dickey

density ratio (see Verdinelli and Wasserman, 1995) is used to calculate the Bayes factors

of all restricted models relative to the model with all regressors included in equation (28).

We denote the model with all regressors included by subscript all. We can view different

models as fixing different parts of the elements in call, which we call η, to 0 with probability

1. Again we attach a model specific subscript p to η for all restricted models16. Then the

Savage-Dickey density ratio (Bayes factor) could be evaluated as

BFp,all = p(D|Mp)
p(D|Mall)

= p(ηp = 0|D,Mall)
p(ηp = 0|Mall)

(42)

Though it is straightforward to evaluate the denominator from the marginal prior distri-

bution, there is no direct way to evaluate the numerator since we do not know the analytical

form of the posterior distribution for ηp.What we know is the posterior distribution of ηp

conditional on Σ. We can have posterior draws of C and Σ from the Gibbs sampler. If we

denote the number of draws from the Gibbs sampler by N , we can evaluate the numerator

in (42) as

p(ηp = 0|D,Mall) = 1
N

N∑
i=1
p(ηp = 0|Σi, D,Mall) (43)
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For us to use the Savage-Dickey density ratio to calculate the Bayes factor, the following

condition must hold, see Verdinelli and Wasserman (1995).

p(cp|ηp = 0,Mall) = p(cp|Mp) (44)

To guarantee the above condition to hold, we must choose the prior for cp carefully. We first

specify the prior for call using the g prior like that in equation (18) without the term σ2
p. We

choose g as in (19). Here we use Ω to denote the variance hyperparameter for call and break

it into blocks corresponding to cp and ηp,

call =

 cp

ηp


∣∣∣∣∣∣∣∣Mall ∼ N

0,Ω =

 Ω11,p Ω12,p

Ω21,p Ω22,p


 , (45)

where Ω takes the form of a g prior in (18). It can be proved that the prior for cp should

have the following form for condition (44) to be satisfied,

p(cp|Mp) ∼ N(0,Ω11,p − Ω12,pΩ−1
22,pΩ21,p), (46)

which means for models with restriction ηp = 0, we have more confidence in cp = 0 a priori

compared to the all inclusive model.

With the Bayes factor we are able to calculate the posterior odds ratio as

POp,all = p(Mp|D)
p(Mall|D) = p(D|Mp)p(Mp)

p(D|Mall)p(Mall)
(47)

The prior model probability is calculated as before in (24) with π = 1
2 . Finally we can

calculate the posterior model probability for model p using the following,

p(Mp|D) = POp,all

P∑
p=1
POp,all

. (48)

The mean and variance estimates of C and Σ unconditional on the model space can be

obtained in a similar way as in equation (25).
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Tables

Table 1 OLS estimates from the excess return equation including all regressors
Regressors Coefficients T-statistic P-value
Intercept 0.007 0.088 0.465
Jan 0.0219 1.614 0.054
Tb -9.1271 -1.7349 0.041
Tbchng 7.45 1.3325 0.092
Smb -0.0864 -1.0134 0.156
Dy 2.265 3.1529 8.96e-4
TERM -9.998 -2.018 0.0223
Indp%ch 0.04985 0.225 0.411
M0%ch -0.106 -0.795 0.214
Inf -0.174 -1.093 0.138
Oil%ch -0.0881 -0.734 0.232
HML -0.0689 -0.746 0.228
1987Oct -0.2496 -5.33 9.9e-8
Oilp 0.00033 1.303 0.0968
Indprd -1.41e-5 -0.019 0.492
M0 -0.0031 -2.04 0.0213
Infch 0.0605 0.104 0.4588
R2 0.17778
Adjusted R2 0.12804
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Table 2 Univariate Posterior Estimates of the Slope Parameters

slope standard deviation incl prob prior incl
Jan 1.62e-3 5.455e-3 0.1257 0.498
Tb -0.01926 0.43324 5.1e-2 0.213
Tbchng 0.223 1.6047 0.06596 0.492
Smb -0.0175 0.0522 0.14752 0.491
Dy 0.311 0.489 0.391 0.254
TERM 0.0512 0.5828 0.06325 0.427
Indp%ch 2.47e-3 5.17e-2 0.05564 0.493
M0%ch -0.0289 0.1649 0.07454 0.492
Inf -0.0362 0.0998 0.1644 0.304
Oil%ch -0.0098 0.044 0.090 0.47
HML -0.0059 0.0325 0.076 0.495
Oilp -6.1e-6 3.01e-5 0.081 0.229
Indp -3.33e-5 1.56e-4 0.085 0.26
M0 -6.21e-5 2.3e-4 0.11 0.239
Infch -0.0197 0.1466 0.065 0.468
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Table 3 Univariate Posterior Model Probabilities

ranking model model prob
1 0 0.129
2 Dy 0.098
3 Dy,Inf 0.056
4 M0 0.036
5 Indp 0.028
6 Oilp 0.027
7 Smb 0.025
8 Jan 0.019
9 Smb,Dy 0.014
10 Jan,Dy 0.0137
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Table 4 Posterior model probabilities under the SUR framework
Ranking Model

Probability
Regressors in
(28)

Ranking Model
Probability

Regressors in (28)

1 0.697 0 17 7.975e-5 Smb Dy Jan
2 0.1346 Jan 18 5.59e-5 Smb M0 Jan
3 0.0981 Dy 19 4.65e-5 Inf M0 Jan
4 0.0332 M0 20 4.04e-5 Dy M0 Jan
5 0.014 Dy Jan 21 2.62e-5 Smb Infl
6 0.0076 M0 Jan 22 1.71e-5 Smb Dy Infl
7 0.0059 Smb 23 6.39e-6 Dy Infl M0
8 0.0032 Infl 24 4.47e-6 Smb Infl Jan
9 0.0029 Dy Infl 25 1.687e-6 Smb Dy Infl Jan
10 0.001 Smb Jan 26 1.68e-6 Smb Infl M0
11 6.068e-4 Infl Jan 27 1.596e-6 Smb Dy M0
12 5.996e-4 Smb Dy 28 7.2e-7 Dy Infl M0 Jan
13 3.06e-4 Dy Infl Jan 29 3.98e-7 Smb Infl M0 Jan
14 2.7e-4 Smb M0 30 2.46e-7 Smb Dy M0 Jan
15 2.56e-4 Dy M0 31 3.79e-8 Smb Dy Infl M0
16 1.77e-4 Infl M0 32 4.19e-9 Smb Dy Infl M0 Jan
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Table 5 BMA estimation results for the excess return equation under the SUR framework
return equation Smb Dy Infl M0 Jan const

slope -0.00075 0.043 -0.00079 -0.0022 0.0052 0.0038
std 0.0112 0.163 0.01611 0.01315 0.013 0.0077
NSE 3.53e-5 0.0005 5.09e-5 4.16e-5 4.14e-5 2.44e-5

incl prob 0.00683 0.0843 0.00697 0.03492 0.1527 1
prior incl 0.498 0.339 0.386 0.385 0.5 1
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Table 6 BMA estimates for the error variance matrix under the SUR framework
Equation of r Smb Dy Infl M0
r 0.0021775

(0.00018281)
-0.14287 0.013314 -0.095545 0.077462

Smb −0.00020629
(8.645e−5)

0.0009575
(7.9883e−5)

0.16883 0.090462 -0.063564

Dy 4.9834e− 7
(2.252e−6)

4.1904e− 6
(1.4901e−6)

6.4337e− 7
(5.3803e−8)

0.32002 0.16179

Infl −2.4844e− 5
(1.5398e−5)

1.5598e− 5
(1.0253e−5)

1.4303e− 6
(2.7633e−7)

3.1049e− 5
(2.5901e−6)

0.015963

M0 2.2598e− 5
(2.2496e−5)

−1.2296e− 5
(1.1387e−5)

8.1132e− 7
(2.9989e−7)

5.561e− 7
(2.048e−6)

3.9085e− 5
(3.2603e−6)
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Figure 1 Optimal holding of stock and MtoS with respect to time horizon when excess
return is unpredictable
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Figure 3 Sample autocorrelation of FTSE All-Share Index excess return
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Figure 4 The mean and standard deviation of RT+T̂ (solid line)
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Figure 5 The optimal holding proportion of stock and the MtoS statistic
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