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1. Introduction   

  

In this paper our aim is to uncover the principles according to which the Board of 

Governors of the US Federal Reserve System (the Fed) conducted monetary policy 

since the early 1980s. We do so in a novel way by asking which such principles can, 

when combined with a widely-accepted macro model, replicate the dynamic 

behaviour of the US economy during the sample period. By ‘principles’ we mean 

either an explicit rule the Fed follows (such as an interest-rate setting rule) or some 

other economic relationship that it aims to ensure occurs (such as a fixed exchange 

rate or as here an optimality condition).  

 

The main context for this work is the influential paper by Taylor (1993), who- 

building on earlier work by Henderson and McKibbin (1993a, 1993b) which argued 

for the efficacy of interest rate rules- suggested that the Fed actually had been for 

some time systematically pursuing a particular interest rate rule, reacting directly to 

two ‘gaps’, one between inflation and its target rate, the other between output and its 

natural rate. Such a ‘Taylor rule’ was subsequently adopted widely in New Keynesian 

models to represent the behaviour of monetary policy (e.g., Rotemberg and Woodford 

(1997, 1998), Clarida, Gali and Gertler (1999, 2000), Rudebusch (2002), English, 

Nelson and Sack (2002)).  

 

However, Minford, Perugini and Srinivasan (2001, 2002) and Cochrane (2007) have 

shown that a Taylor rule is not identified. Estimates of such a ‘rule’ may emerge from 

the data when the Fed is following quite other monetary policies; this is because a 

variety of relationships within the economy can imply a relationship between interest 
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rate, inflation and output (gap) which mimics a Taylor rule. In the presence of such an 

identification problem, direct estimation of Taylor rules on the data does not establish 

whether the Fed was actually pursuing them or not. Some other way of testing 

hypotheses about monetary policy must be found. The one proposed here is to set up 

competing structural models which differ solely according to the monetary policies 

being followed, and to distinguish between these models according to the ability to 

replicate the dynamic behaviour of the data. Thus for example if one were to accept 

just one of these models and reject the rest, it would be reasonable to argue that this 

model succeeds because in it not only the rest of the economy but also monetary 

policy is well-specified. Of course other less decisive empirical outcomes of the tests 

are entirely possible.  

 

The rest of this paper is organised as follows: section 2 reviews the work estimating 

monetary policy rules and the critique of it in terms of identification; section 3 

outlines the simple micro-founded New Keynesian model with the hypothetical rules 

to be tested; section 4 explains the test methodology and reveals the results; section 5 

discusses how the ‘true’ policy/model can explain the apparent existence of Taylor 

rules in the data; section 6 concludes. 

 

 

2. Taylor Rules, Estimation and Identification  

 

Taylor (1993) suggested that, at least for the post-1982 periods during which Alan 

Greenspan was chairman of the Fed, the Federal funds rate could be well described by 

the simple equation (with quarterly data) as: 
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                               t
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A

t xi   02.0)02.0(5.05.0                   [2.1] 

where 
tx  is for the percentage deviation of real GDP from trend, A

t  is the annual 

averaged rate of inflation over four quarters, with both the target of inflation and 

growth rate of the real GDP (with trend) set at 2 percents.   

 

Equation [2.1] is the original ‘Taylor rule’. However, a number of variants have also 

been proposed; for example, a Taylor rule where policy inertia is assumed could take 

the form as in Clarida, Gali and Gertler (1999) as: 

 t

A

ttX

A

t

A

t ixi    



1])()[1(              [2.2] 

with   showing the degree of ‘interest rate smoothing’. Others have involved lagging 

or leading the inflation and output gap terms- Rotemberg and Woodford (1997, 1998), 

Clarida, Gali and Gertler (1999, 2000), Rudebusch (2002), English, Nelson and Sack 

(2002). 

 

Rules of these types are generally found to fit the actual data well in regression 

analysis, either via single-equation regression by GLS as in Rotemberg and Woodford 

(1997, 1998), Clarida, Gali and Gertler (1999, 2000) and Giannoni and Woodford 

(2005), or via full-model estimation by Maximum Likelihood as in Rotemberg and 

Woodford (1997, 1998), Smets and Wouters (2003), as well as Ireland (2007). 

However, besides the usual difficulties encountered in applied work (e.g., Carare and 

Tchaidze (2005) and Castelnuovo (2003)), these estimates face an identification 

problem pointed out in Minford, Perugini and Srinivasan (2001, 2002) and Cochrane 

(2007)- see also Minford (2008) which we use in what follows. 
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Lack of identification occurs when an equation could be confused with a linear 

combination of other equations in the model. Thus DSGE models give rise to the 

same correlations between interest rate and inflation as the Taylor rule, even if the 

Fed is doing something quite different, such as targeting the money supply. For 

example, Minford, Perugini and Srinivasan (2001, 2002) show this in a DSGE model 

with Fischer wage contracts (see also Gillman, Le and Minford (2007)).  

 

In effect, unless the econometrician knows from other sources of information that the 

central bank is pursuing a Taylor rule, he cannot be sure he is estimating a Taylor rule 

when he specifies a Taylor rule equation because under other possible monetary 

policy rules a similar relationship to the Taylor rule is implied. Of course by 

specifying a Taylor rule he will successfully retrieve the coefficients of the ‘rule’; but 

he cannot know that these describe the true rule the central bank is following. 

 

To illustrate the point, we may consider a popular DSGE model but with a money 

supply rule instead of a Taylor rule: 

 (IS curve): ttttt vryEy    11   

(Phillips curve): tttttt uEyy  



111 )1()(    

(Money supply target): tt mm    

(Money demand): tttttt RyEpm    2111   

(Fisher identity): 11  tttt ErR    

This model implies a Taylor-type relationship that looks like: 

,)()( 1

1

1

tttt wyyrR     
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where  12  , and the error term, w t , is both correlated with inflation and 

output and autocorrelated; it contains the current money supply/demand and aggregate 

demand shocks and also various lagged values (the change in lagged expected future 

inflation, interest rate, the output gap, the money demand shock, and the aggregate 

demand shock). This particular Taylor-type relation was created with a combination 

of equations—the solution of the money demand and supply curves for interest rate, 

the Fisher identity, and the IS curve for expected future output
1
. But other Taylor-type 

relationships could be created with combinations of other equations, including the 

solution equations, generated by the model. They will all exhibit autocorrelation and 

contemporaneous correlation with output and inflation, clearly of different sorts 

depending on the combinations used. 

    

All the above applies to identifying a single equation being estimated; thus one cannot 

distinguish a Taylor rule equation from the equations implied by the model and 

alternative rules when one just estimates that equation. One could attempt to apply 

further restrictions- e.g., on the error process- but such are hard to justify- e.g., the 

error in a Taylor rule (‘monetary judgement’ based on extraneous factors) can be 

autocorrelated (because those factors may be persistent).  

 

                                                 
1

 From the money demand and money supply equation, 

tttttt yEmR    1112
. Substitute for 

11  tt yE  from the IS curve 

and then inside that for real interest rates from the Fisher identity giving 

ttttttttt vyERmR 


  })(){( 11
1

12
; then, rearrange this as 

tttttttt vyyEmRR 















 



 1111 )()()()( 112
, where the constants R  and 

y  have been subtracted from 
tR  and 

ty  respectively, exploiting the fact that when 

differenced they disappear. Finally,  
},)(){()()( 111

11

1

111

1

11

1

1

1

tttttttttt vyyERRyyrR  











   

where we have used the steady state property that   rR  and  m . 
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However, when a ‘monetary rule’ is chosen for inclusion in a complete DSGE model, 

then the model imposes over-identifying restrictions through the rational expectations 

terms which involve in principle all the model’s parameters. Thus a model with a 

particular rule is in general over-identified so that estimation by full information 

methods of that particular model as specified is possible (as in Rotemberg and 

Woodford (1997, 1998), Smets and Wouters (2003), Ontaski and Williams (2004) and 

Ireland (2007)). One way of putting this is that there are more structural parameters 

than reduced form parameters. Another is to note that the reduced form will change if 

the structural description of monetary policy changes- a point first made by Lucas 

(1976) in his ‘critique’ of conventional optimal policy optimization at that time, and 

some illustrations of how reduced forms will change for a model like the one in this 

paper (see Meenagh et al. (2009)). So if the econometrician posits a Taylor rule then 

he will retrieve its coefficients and those of the rest of the model under the assumption 

that it is the true structural monetary rule. He could then compare the coefficients for 

a model where he assumes some other rule. He can distinguish between the two 

models via their different reduced forms and hence their different fits to the data. 

Thus it is possible to identify the different rules of monetary policy behavior via full 

information estimation. 

 

However, the identification problem does not go away, even when a model is over-

identified in this way. The problem is that the decision to include the Taylor rule in 

such a model is justified by the fact that it fits the data in single equation estimation; 

but as we have seen such a choice could be the victim of identification failure as the 

rule could be mimicking the joint behaviour of the rest of the model and some other 

(true) monetary rule. If so, including it in the model will produce a mis-specified 
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model whose behaviour will not fit the data as well as the properly-specified model 

with the true monetary policy equation. To detect this and also to find the true model 

we need not only to test this model but also to test possible well-specified alternatives. 

Thus we need to check whether there is a better model which with its over-identifying 

restrictions may fit the data more precisely. 

   

This points the way forward. One may specify a complete DSGE model with 

alternative monetary rules and use the over-identifying restrictions to determine their 

differing behaviour. One may then test which of them is accepted by the data. This is 

the approach taken here. 

 

 

3. A Simple New Keynesian Model for Inflation, Output Gap and Nominal 

Interest Rate Determinations 

 

We follow a common practice among New Keynesian authors of setting up a full 

DSGE model with representative agents and reduce it to a three-equation framework 

consisting of an ‘IS’ curve, a Phillips curve and a monetary policy rule (Clarida, Gali 

and Gertler (1999, 2000), Rotemberg and Woodford (1997, 1998), Walsh (2000)).  

 

Under rational expectations the ‘IS’ curve derived from the household’s optimization 

problem and the Phillips curve derived from the firm’s optimal price-setting 

behaviour given Calvo (1983) contract can be shown as: 

                                     ttttttt vEixEx   )
~

)(
1

( 11 


                 [3.1] 

                                    
w

ttttt uxE   1                                 [3.2] 



 8 

where tx  is the output gap, ti
~

 is the deviation of interest rate from its steady-state 

value, t  is the price inflation, and tv  and w

tu  are interpreted as ‘demand’ disturbance 

and ‘supply disturbance’, respectively
2
. 

 

We consider three popular regime versions usually suggested for the US economy. 

These are the optimal timeless policy when the Fed commits to minimize a typical 

social welfare loss function, the original Taylor rule [2.1], and its ‘interest rate 

smoothed’ version [2.2].   

 

In particular, the optimal timeless policy is derived following the idea of Woodford 

(1999) by ignoring the initial conditions confronting the Fed at the regime’s inception. 

It requires keeping inflation equal to a fixed fraction of the first difference of output 

gap in each period such that 

                                                )( 1 ttt xx



                        

with   indicating the relative weight the Fed puts on loss from output variations 

against inflation variations
3
. We assume implementing such a rule is subject to ‘policy 

disturbance’—which would arise as well when alternatives are being pursued—due to 

‘trembling hand’; so the stochastic version of if will read: 

                                                 
2
 Note that   and  are functions of other structural parameters and some steady-state 

relationships (See table 4.2 for calibrations in next section). Full derivations of 

equation [3.1] and [3.2] are shown in the Supporting Annex available on the Cardiff 

Business School working paper webpage at:  

http://www.cf.ac.uk/carbs/faculty/minfordp/E2009_19Annex.pdf. 
3
 See also Clarida, Gali and Gertler (1999, pp.1681) and McCallum and Nelson (2004, 

pp.45). Note this implication is based on defining social welfare loss as ‘the loss in 

units of consumption as a percentage of steady-state output’ as in Rotemberg and 

Woodford (1998) and Nistico (2007); it is also conditional on assuming a particular 

utility function and zero-inflation steady state—See Supporting Annex at: 

http://www.cf.ac.uk/carbs/faculty/minfordp/E2009_19Annex.pdf for more details. 

http://www.cf.ac.uk/carbs/faculty/minfordp/E2009_19Annex.pdf
http://www.cf.ac.uk/carbs/faculty/minfordp/E2009_19Annex.pdf
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           tttt xx 



   )( 1                         [3.3] 

with the ‘disturbance’ being captured by t  (as those in the Taylor rules). 

 

We can now construct three pseudo economies where different policies are pursued. 

These are summarised in table 3.1 as follows
4
: 

 
                                                 Table 3.1: Models to be tested 

 

Model one                              (‘IS’+PP+ optimal timeless rule ) 

‘IS’ curve                        
ttttttt vEixEx   )

~
)(

1
( 11 


                 v

ttvt vv   1
 

 

PP curve                             
w

ttttt uxE   1                     
w

w

u

t

w

tu

w

t uu   1
 

 

Policy rule                             
tttt xx 




   )( 1

                       

  ttt  1
 

 

  Model two                       (‘IS’+PP+ the original Taylor rule) 

‘IS’ curve                          
ttttttt vEixEx   )

~
)(

1
( 11 


            v

ttvt vv   1
 

 

PP curve                              
w

ttttt uxE   1                  
w

w

u

t

w

tu

w

t uu   1
 

 

Policy rule                 
t

A

tt

A

t

A

t xi   02.0)02.0(5.05.0  

 
The transformed  

policy rule                                '125.05.1
~

tttt xi                        

  ttt  

'

1

'  

 
 

  Model three                   (‘IS’+PP+ Taylor rule with ‘interest rate smoothing’) 

‘IS’ curve                          
ttttttt vEixEx   )

~
)(

1
( 11 


               v

ttvt vv   1
 

 

                                                 
4
 Note we have assumed an AR(1) process for all disturbances to the structural 

equations to capture possible omitted variables. We also transform the Taylor rules to 

quarterly versions so that the frequency of interest rate and inflation is consistent with 

other variables in the model—note we have dropped the constants as we will use 

demeaned, detrended data (See section 4.2 in what follows) and we have assumed 

)1
1

(
~




ttt iiii  in zero-inflation steady state.      
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PP curve                               
w

ttttt uxE   1                    
w

w

u

t

w

tu

w

t uu   1
 

 

Policy rule                 
t

A

ttX

A

t

A

t ixi    



1])()[1(  

 

The transformed                    

policy rule                         '

1

' ~
])[1(

~
tttxtt ixi    
          

  ttt  

'

1

'  

 

 

Note that these models differ only in their policies being implemented. Hence by 

comparing their capacity to fit the real data, one should be able to tell which rule, 

when included in a simple New Keynesian model, provides the best explanation for 

the ‘reality’ and therefore the most appropriate description of the underlying policy. 

We perform this in section 4 in what follows. 

 

 

4. Identification of Monetary Policy Rules with Tests  

  

4.1. Methodology—testing the models using the method of indirect inference 

 

We evaluate the models’ performance in fitting the real data using the method of 

indirect inference proposed in Minford, Theodoridis and Meenagh (2009)
5
. Such an 

approach employs an auxiliary model that is completely independent of the theoretical 

one to produce descriptors of the data against which the performance of the theory is 

evaluated indirectly. Such descriptors can be either the estimated parameters of the 

auxiliary model or functions of these. While these are treated as the ‘reality’, the 

theoretical model being evaluated is simulated to find its implied values for them. 

                                                 
5
 See Meenagh, Minford and Wickens (2009) and Le, et al. (2009, 2010) for more 

applications of this approach.  
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Indirect inference has been widely used in the estimation of structural models (e.g., 

Smith (1993), Gregory and Smith (1991, 1993), Gourieroux et al. (1993), Gourieroux 

and Monfort (1996) and Canova (2005)). Here we make a different use of indirect 

inference as our aim is to evaluate an already estimated or calibrated structural model. 

The common element is the use of an auxiliary time series model. In estimation the 

parameters of the structural model are chosen such that when this model is simulated 

it generates estimates of the auxiliary model similar to those obtained from the actual 

data. The optimal choices of parameters for the structural model are those that 

minimise the distance between a given function of the two sets of estimated 

coefficients of the auxiliary model. Common choices of this function are the actual 

coefficients, the scores or the impulse response functions. In model evaluation the 

parameters of the structural model are taken as given. The aim is to compare the 

performance of the auxiliary model estimated on simulated data derived from the 

given estimates of a structural model - which is taken as a true model of the economy, 

the null hypothesis - with the performance of the auxiliary model when estimated 

from the actual data. If the structural model is correct then its predictions about the 

impulse responses, moments and time series properties of the data should statistically 

match those based on the actual data. The comparison is based on the distributions of 

the two sets of parameter estimates of the auxiliary model, or of functions of these 

estimates. 

 

In other words, the testing procedure involves first constructing the errors derived 

from the previously estimated structural model and the actual data. These errors are 

then bootstrapped and used to generate for each bootstrap new data based on the 
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structural model. An auxiliary time series model is then fitted to each set of data and 

the sampling distribution of the coefficients of the auxiliary time series model is 

obtained from these estimates of the auxiliary model. A Wald statistic is computed to 

determine whether functions of the parameters of the time series model estimated on 

the actual data lie in some confidence interval implied by this sampling distribution. 

 

Following Minford, Theodoridis and Meenagh (2009), this paper takes a VAR(1) for 

the three macro variables (interest rate, output gap and inflation) as the appropriate 

auxiliary model and treats as the descriptors of the data the VAR coefficients and the 

variances of the three variables. The Wald statistic is computed from these
6
. This tests 

whether the observed dynamics and volatility of the chosen variables are explained by 

the simulated joint distribution of the corresponding parameters at a given confidence 

level. The Wald statistic is given by: 

                                                  )()'(
1

)( 



                                   [4.1] 

where   is the vector of VAR estimates of the concerned parameters yielded in each 

simulation, with  and )(  representing the corresponding sample means and 

variance-covariance matrix of these estimates calculated across simulations, 

respectively. The whole test procedure can be illustrated diagrammatically in Figure 

4.1 as follows: 

 

 

 

 

 

 

 

                                                 
6
 Note that the VAR impulse response functions, the co-variances, as well as the 

auto/cross correlations of the left-hand-side variables will all be implicitly examined 

when the VAR coefficient matrix is considered, since the formers are functions of the 

latter. 
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                           Figure 4.1: The Principle of Testing using Indirect Inference  

                               

                                                                        Panel A:  
                                                                                                    Model(s) to be tested     

                                                                                                ↓         (Bootstrap simulations) 

                        Actual data                                                         Simulated data 

                              ↓                                                                           ↓  

                  VAR representation                                              VAR representation 

                                    ↓                                                                           ↓ 

                The VAR inference (the ‘reality’)          vs.         Distribution(s) of the VAR inference                     
        

                                                           
                                                                   Wald statistic 

                                                                        

 

 

 

                                                                      Panel B: 

      

 

 

While the first panel in Figure 4.1 summarises the main steps of the methodology 

described in the past two paragraphs, the ‘mountain-shaped’ diagram replicated from 

Meenagh, Minford and Wickens (2009) in panel B gives an example of how the 

‘reality’ is compared to model predictions using the Wald test when only two 

parameters of the auxiliary model are concerned: let either of the spots in panel B 
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indicate the real-data-based estimates of the two concerned parameters and the 

‘mountain’ represent their corresponding joint distribution generated from model 

simulations; when the real-data-based estimates are given at point A, the theoretical 

model in hand will fail to provide a sensible explanation for the real world, since what 

the model predicts is too ‘far away’ from what the ‘reality’ suggests; by contrast, if 

the real-data-based estimates are given at point B, which, according to the diagram, 

means the ‘reality’ is captured by the model-implied joint distribution of the 

corresponding parameters, the hypothesis that ‘the real data are generated by the 

model under discussion’ will be completely possible, although how likely that will be 

the case is dependent on what is reported for the Wald-statistic
7
. 

 

The simulated joint distribution of the VAR parameters mentioned above is a 

bootstrapped distribution. This is generated from bootstrapping the innovations 

implied by the data and the theoretical model and is therefore an estimate of the small 

sample distribution
8
. Such a distribution is generally more accurate for small samples 

than the asymptotic distribution and is shown to be consistent by Le, et al. (2010) 

given that the Wald statistic is ‘asymptotically pivotal’; it also has quite good 

accuracy in small sample Montecarlo experiments according to Le, et al. (2010)
9
.       

 

                                                 
7
 Note that in this particular example, only two parameters are considered and they are 

both assumed to be normally-distributed. Yet, the principle of the Wald test would not 

be changed for more general cases, where more parameters, which may follow 

various kinds of distribution, are concerned. 
8
 Note that by bootstrapping the innovations to the Taylor rules, we mean those from 

the transformed equations. Also, the bootstraps in our tests are all drawn as time 

vectors so that any contemporaneous correlation between the innovations will be 

preserved. 
9 

Specifically, they found that the bias due to bootstrapping was just over 2% at the 

95% confidence level and 0.6% at the 99% level. They suggested possible further 

refinements in the bootstrapping procedure which could increase the accuracy further; 

however, we do not feel it necessary to pursue these here. 
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4.2. Data and calibration 

 

Data 

 

For testing the prevailing monetary policy in the US, this paper employs the quarterly 

data published by the Federal Reserve Bank of St. Louis from 1982Q2 to 2007Q4, 

when most of the period are covered by the ‘Greenspan era’, during which the US 

economy is thought to have been governed by one identical monetary regime and 

most discussions about the Fed’s behaviour are concerned
10

.  

 

Regarding the three endogenous variables involved, ti
~

is measured as the deviation of 

current Fed rate from the steady-state value, output gap tx  is approximated by the 

percentage deviation of real GDP from its HP trend, whereas t  indicates the 

quarterly inflation rate defined as the log difference between the current CPI and the 

one captured in the last quarter
11

. For simplicity, the tests use data that are in 

deviations from means
12

. In particular, a linear trend is taken out of the interest rate 

series such that stationarity is ensured. Figure 4.2 to figure 4.4 below plot each of 

these series in deviation forms; the relevant unit root test results are also presented in 

table 4.1. 

 

                                                 
10

 Data base of Federal Bank of St. Louis: http://research.stlouisfed.org/fred2/ 
11

 Notice that the annual Fed rates proposed by the Fred are purposely adjusted into 

quarterly rates such that the frequencies of all the time series are kept consistently on 

quarterly basis. 
12

 Nevertheless, the time series of output gap used is in level, as its sample mean is 

not significantly different from zero. 
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       Figure 4.2: ti
~

                             Figure 4.3: tx                               Figure 4.4: t   

          
 

 

 
Table 4.1 Unit Root Tests for Stationarity 

 

      Time series            5% critical value                 ADF test statistics                p-values* 

       ti
~

                                   -1.94                                           -2.81                                     0.0053 

              tx
                                   -1.94                                           -2.95                                     0.0035 

              t                                   -1.94                                           -3.60                                     0.0004 

  Note: ‘*’ denotes the Mackinnon (1996) one-sided p-values at 5% level of significance; H0: the time series has a  
  unit root. 

  

Note that since all the data used are in deviation from mean, a VAR(1) representation 

of them would contain no constant but only nine parameters in the autoregressive 

coefficient matrix. Also, the use of such data requires dropping the constants in any 

equation of the models as well. This explains why the two transformed Taylor rules 

involved in model two and three have no constant at all. 

 

Calibration 

 

The values of parameters chosen for the tests are those commonly calibrated and 

accepted for the US economy in literature. These parameters and their values are 

listed in table 4.2 as follows:  

 

 

 



 17 

 

Table 4.2 Calibration of Parameters 

 

  Parameters               Definitions                                                            Calibrated values 


                time discount factor                                                                              0.99 

                 inverse of elasticity of intertemporal consumption                              2 


                 inverse of elasticity of labour                                                               3 

                 Calvo contract price non-adjusting probability                                    0.53 

    YG               steady-state government expenditure to output ratio                            0.23 

CY                steady-state output to consumption ratio                                             1/0.77              (implied) 

                 




)1)(1( 


                                                                              0.42                 (implied) 


                

)(
C

Y
 

                                                                                    2.36                 (implied) 

                  price elasticity of demand                                                                    6 

 
1 

      parameter driving the optimal timeless policy
13

                                   1/6                   (implied) 

 


               degree of interest rate smoothness                                                        0.76 

               interest rate response to inflation                                                         1.44 

'

x               interest rate response to output gap                                                      0.14 

       v              autoregressive coefficient of demand disturbance                                0.91     (sample estimate) 

wu


            autoregressive coefficient of supply disturbance                                 0.82     (sample estimate) 

                autoregressive coefficient of policy disturbance: model one               0.35     (sample estimate) 

                autoregressive coefficient of policy disturbance: model two               0.37     (sample estimate) 

                autoregressive coefficient of policy disturbance: model three            0.31     (sample estimate) 

 

 

As table 4.2 shows, the quarterly time discount rate is calibrated as 0.99, implying an 

approximately 1% quarterly (or equivalently 4% annual) rate of interest in steady state. 

 and   are set to as high as 2 and 3 respectively as in Carlstrom and Fuerst (2008), 

                                                 
13

 Nistico (2007) showed the relative weight   is equal to the ratio of the slope of the 

Phillips curve to the price elasticity of demand, namely,   . 
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who emphasized on the values’ consistency with the inelasticity of both intertemporal 

consumption decision and labour supply shown by the US data. The Calvo price 

stickiness of 0.53 and the price elasticity of demand of 6 are both taken from Kuester, 

Muller and Stolting (2009). Note that these values accordingly imply a contract length 

of more than three quarters
14

, while the constant mark-up of price to nominal marginal 

cost is 1.2. The implied steady-state output-consumption ratio of 1/0.77 is calculated 

based on the steady-state ratio of government expenditure over output of 0.23 

calibrated in Foley and Taylor (2004). Regarding the Taylor rule tested in model three, 

again, calibration follows those in Carlstrom and Fuerst (2008), where the interest 

rate’s response to a unit change in inflation and output gap are 1.44 and 0.14 

respectively, with the degree of ‘smoothness’ of 0.76. The last five lines in table 4.2 

also report the autoregressive coefficients of the structural disturbances implied by the 

models, which are all sample estimates based on the real data
15

. Notice that both of 

the demand and supply shocks are shown to be highly persistent, in contrast to the 

policy shocks reflected in all the three models.  

 

4.3. Evaluating the models’ performance—the test results 

 

The test results and the corresponding evaluations for the three models proposed are 

presented in turn in this subsection, where the simulated 95% lower bounds and upper 

bounds for the concerned parameters, their real-data-based counterparts, as well as the 

relevant Wald statistics, are considered
16

. Since there are three endogenous variables, 

                                                 
14

 To be accurate, 26.312 1  . 
15

 These estimates are all significant at 5% significance level. 
16

 We have also produced diagrams for VAR impulse response functions and cross-

correlations between variables with lower and upper bounds plotted in the Supporting 

Annex at: http://www.cf.ac.uk/carbs/faculty/minfordp/E2009_19Annex.pdf . 

http://www.cf.ac.uk/carbs/faculty/minfordp/E2009_19Annex.pdf
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namely, interest rate, output gap, and the rate of inflation, in the VAR(1) 

representation, twelve components are involved in calculation of the Wald statistics; 

these are the nine VAR coefficients and the three variances of the L.H.S. variables
17

. 

The detailed results for each model are as follows: 

 

Model one (‘IS’+PP+ optimal timeless policy) 

 

Table 4.3 below summarises the test results regarding the dynamic properties of 

model one: 

  

                 Table 4.3:   Individual VAR Coefficients and the ‘Directed’ Wald Statistic 
 

 VAR(1)                       95%                        95%                          Values estimated                     In/Out 
   Coefficients          lower bound          upper bound                    with real data 

11
                      0.6454                    0.9420                                0.8017                               In 

12
                    - 0.0844                   0.0439                                 0.0834                              Out 

13
                    - 0.1774                   0.0991                                  0.0112                              In 

21
                    - 0.2589                  0.2578                               - 0.2711                              Out 

22
                     0.6685                   0.9105                                 0.9009                               In 

23
                   - 0.4037                   0.1871                               - 0.1090                              In 

31
                   - 0.1821                   0.1595                                -0.0187                               In 

32
                   - 0.0434                   0.1361                                0.1428                              Out 

33
                     0.1010                   0.4976                                 0.2552                               In 

            ‘Directed’ Wald  statistic                                                                                         98.2%  
                   (for dynamics) 

 

 

                                                 
17

 Note that the VAR(1) representation is assumed to take the form: 
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According to table 4.3, three out of the nine real-data-based estimates of the VAR 

coefficients that reflect the actual dynamics are found to lie outside their 

corresponding 95% bounds implied by the theoretical model. Specifically, the 

response of interest rate to the lagged output gap and the response of output gap to the 

lagged interest rate, as well as the response of inflation to the lagged output gap, are 

all shown to be more aggressive than what the theoretical model would predict. In 

particular, the interest rate’s response to the lagged output gap in reality is more than 

twice as great as what could be generated from model simulations. Overall, the 

‘directed’ Wald statistic is reported as 98.2%; this indicates the model’s success in 

capturing the actual dynamics at the 99% confidence level, although it clearly fails at 

the more conventional 95% level. Clearly, all the DSGE models here have problems 

fitting the data closely; our main purpose is to rank them and to see if one of them 

stands out as relatively acceptable. 

 

Turing to the other aspect of the concerned ‘stylized facts’, table 4.4 below shows the 

extent to which the observed volatilities of real data are explained by the theoretical 

model: 

 
         Table 4.4:  Volatilities of the Endogenous Variables and the ‘Directed’ Wald Statistic 

 

      Volatilities of the                      95%                      95%                     Values calculated                 In/Out 
  endogenous variables         lower bound      upper bound                  with real data 

            
)

~
var(i

                             0.0102                 0.0450                              0.0171                              In 

            
)var(x

                             0.0411                 0.1601                               0.0951                              In 

            
)var(

                             0.0094                 0.0206                               0.0153                              In 

     ‘Directed’ Wald  statistic                                                                                             10.4%  
           (for volatilities) 

Note: Values reported in table 4.4 are magnified by 1000 times as their original values. 
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As table 4.4 shows, while the variances of the three considered endogenous variables 

calculated with the real data are all within the model-implied 95% bounds, the 

‘directed’ Wald statistic is reported as 10.4%. That is, at the confidence level of 95%, 

the observed volatilities are not only individually, but also jointly explained by the 

theoretical model- with such a low Wald statistic, they are very close to the joint 

means of the variances.  

 

Note that, by using the ‘directed’ Wald, we have been examining the theoretical 

model’s partial capacities in explaining either the dynamics or the volatilities of the 

actual data.  To evaluate the model’s overall fitness to the real world, we consider 

both the dynamics and the volatilities simultaneously, for which we use the ‘full’ 

Wald statistic. This is reported in table 4.5 as 96.5%; hence the null hypothesis that 

the theoretical model explains both the actual dynamics and volatilities is easily 

accepted at the 99% confidence level and only marginally rejected at 95%.  

                                        

                                                Table 4.5: The ‘Full’ Wald Statistic 

    The concerned model properties                                                           ‘Full’ Wald statistic 

     Dynamics + Volatilities                                                                                  96.5% 

 

 

To summarise, model one does not only provide a rough explanation for the actual 

dynamics, but also precisely captures the volatilities shown by the real data; its overall 

fitness in explaining the data is fairly good, as DSGE models go and we may consider 

as a reasonable approximation to the real-world economy. 

  

Model two (‘IS’+PP+the original Taylor rule) 
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Leaving the economic environment (i.e., the ‘IS’ curve and the Phillips curve) 

unchanged, model two replaces the optimal timeless rule assumed in model one with 

the original Taylor rule, widely regarded as a good description of the Fed’s monetary 

policy from 1982 to at least the early 1990s. The test results for the dynamic 

behaviour of the model are reported in table 4.6 as follow: 

 

Table 4.6:   Individual VAR Coefficients and the ‘Directed’ Wald Statistic 
 

VAR(1)                        95%                       95%                       Values estimated                    In/Out 
Coefficients            lower bound        upper bound                  with real data   

   11
                        0.6139                   1.1165                             0.8017                                 In 

   12
                      - 0.0743                   0.2385                             0.0834                                 In 

   13
                      - 0.3098                  0.2977                             0.0112                                 In 

   21
                      - 0.1571                  0.3175                           - 0.2711                               Out 

   22
                       0.6112                   0.8960                             0.9009                               Out 

  23
                      - 0.4316                  0.1654                            - 0.1090                                In 

  31
                      - 0.1055                   0.6202                            -0.0187                                In 

  32
                     - 0.1457                   0.1983                             0.1428                                 In 

            33
                        -0.0043                  0.6596                             0.2552                                 In 

                ‘Directed’ Wald statistic                                                                                           100%  
                      (for dynamics) 

 

 

As revealed in table 4.6, while most of the real-data-based estimates of the VAR 

coefficients are individually captured by the 95% bounds implied by model 

simulations, the output gap’s responses to the lagged interest rate and to its own 

lagged value are found to exceed their corresponding lower bound and upper bound, 

respectively. Overall, the ‘directed’ Wald statistic is reported as 100%, which means 

there is no hope at all for the theoretical model to generate a joint distribution of the 

VAR coefficients that simultaneously explains the ones observed in reality. The 
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theoretical model thus is totally rejected by the Wald test for the dynamics. 

  

Yet the model can still explain most of the data volatilities, as shown in table 4.7. It 

generates excessive interest rate variance, but reasonably matches series the variances 

of the output gap and inflation. The ‘directed’ Wald statistic for the variances is 

91.5%, comfortably accepted therefore at 95%.  

 

         Table 4.7:  Volatilities of the Endogenous Variables and the ‘Directed’ Wald Statistic 
 

       Volatilities of the                          95%                        95%                     Values calculated               In/Out 
   endogenous variables            lower bound        upper bound                  with real data 

              
)

~
var(i

                                0.0604                   0.2790                              0.0171                         Out 

              
)var(x

                                0.0400                   0.1527                              0.0951                          In 

              
)var(

                               0.0475                   0.1672                              0.0153                          In 

                  ‘Directed’ Wald statistic                                                                                                91.5%  
                        (for volatilities)  

Note: Values reported in table 4.7 are magnified by 1000 times as their original values. 

 

 

Lastly, table 4.8 shows the ‘full’ Wald statistic as 100%. This is hardly surprising 

since it fails so badly to capture the dynamics in the data. 

 

        Table 4.8: The ‘Full’ Wald Statistic 

   The concerned model properties                                                        ‘Full’ Wald statistic 

     Dynamics + Volatilities                                                                               100% 

 

 

So far, it is clear that model two, where the original Taylor rule is set as the 

fundamental monetary policy, has only partially captured the characteristics shown by 

the actual data; unless the discussions are focused exclusively on the ‘size’ of the 

economy’s fluctuations, such a model is not to be taken as a realistic description of 

the prevailing economic reality. 
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Model three (‘IS’+PP+Taylor rule with ‘interest rate smoothing’) 

 

In this last model, a calibrated Taylor type rule whose specification reflects the feature 

of ‘interest rate smoothing’ is assumed to be the underlying policy reaction function. 

In effect, the rate of interest implied by such a rule is a weighted average of what was 

set in the last period and what would be required had the original Taylor rule been put 

in place, with the weights being the degree of ‘policy inertia’ and its complement, 

respectively. While Taylor-type rules in which interest rates are ‘smoothed’ are 

commonly claimed to be supported by empirical evidence as the prevailing monetary 

policies (e.g., Clarida, Gali and Gertler (1999, 2000), Rotemberg and Woodford (1997, 

1998)), the test results regarding model three’s performance are revealed as follows: 

 

                    Table 4.9:   Individual VAR Coefficients and the ‘Directed’ Wald Statistic 
 

VAR(1)                         95%                         95%                      Values estimated                  In/Out 
        Coefficients              lower bound          upper bound                with real data 

    11
                        0.7228                    0.9470                            0.8017                                  In 

    12
                      - 0.0168                   0.1287                            0.0834                                  In 

    13
                      - 0.0029                   0.1553                            0.0112                                  In 

   21
                       - 0.1424                   0.2095                          - 0.2711                                Out 

   22
                        0.6551                    0.8971                            0.9009                                Out 

   23
                      - 0.2840                  -0.0046                          - 0.1090                                 In 

   31
                      - 0.1668                    0.4706                           -0.0187                                 In 

   32
                      - 0.1260                   0.2655                             0.1428                                 In 

              33
                        0.0830                    0.5427                            0.2552                                  In 

              ‘Directed’ Wald  statistic                                                                                             99.9%  
                    (for dynamics) 
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Table 4.9 above summarises how the actual dynamics are explained by the theoretical 

model. Again, except for the output gap’s responses to the lagged interest rate and to 

its own lagged value, all dynamic relationships shown by the real data are individually 

captured by the simulated 95% bounds. Yet, the ‘directed’ Wald statistic reported is 

as high as 99.9%, indicating the theoretical model can hardly be used for explaining 

the observed dynamics, as the set of real-data-based estimates of the VAR coefficients 

is not captured by the corresponding joint distribution generated from model 

simulations, even at a 99% confidence level
18

. 

 

Turning to the volatilities of the endogenous variables, table 4.10 shows the 

theoretical model has merely correctly mimicked the performance of the output gap, 

but evoked too much variance for both the interest rate and inflation; the ‘directed’ 

Wald statistic is reported as 99.4%, which implies the model in hand is not a proper 

explanation for the observed volatilities, either. 

  

         Table 4.10: Volatilities of the Endogenous Variables and the ‘Directed’ Wald Statistic 
 

         Volatilities of the                       95%                        95%                      Values calculated               In/Out 
    endogenous variables            lower bound         upper bound                 with real data 

            
)

~
var(i

                                 0.0229                   0.1174                              0.0171                          Out 

 
)var(x

                                  0.0380                   0.1430                              0.0951                           In 

 
)var(

                                  0.0532                   0.1158                              0.0153                          Out 

                  ‘Directed’ Wald statistic                                                                                         99.4%  
                         (for volatilities) 

Note: Values reported in table 4.10 are magnified by 1000 times as their original values. 

 

 

In fact, the poor explanatory power of model three is not only detected by the 

‘directed’ Wald, but also captured by the ‘full’ Wald when the model’s overall fitness 

                                                 
18

 Note that the test results in this case are rather similar to their counterparts 

suggested for model two. 
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is considered: note that the ‘full’ Wald statistic reported in table 4.11 is 99.9%, which 

is another way of saying it is hardly possible for the model to have generated data that 

simultaneously fit the dynamics and volatilities observed in reality. 

 

 

                                      Table 4.11: The ‘Full’ Wald Statistic 

   The concerned model properties                                                        ‘Full’ Wald statistic 

     Dynamics + Volatilities                                                                               99.9% 

 

 

Thus model three, where a Taylor rule with ‘interest rate smoothing’ is in operation,  

cannot be considered to be a good proxy for the real-world economy. 

 

 

5. Reconsidering the Prevailing Monetary Policy Rule in the Light of the Test 

Results 

 

5.1  The best-fitting monetary policy rule in the US 

 

While the performances of the three hypothetical NK models are evaluated in the last 

section, recall that these models only differ in the ways in which monetary policies 

are set. Hence, by ranking the models in terms of their ‘closeness’ to the real world, 

one will in effect be considering whether the observed data are more likely to have 

been generated with the optimal timeless policy or the original Taylor rule, or with a 
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Taylor rule where the interest rate is ‘smoothed’
19

. For ranking the models’ 

performances, the test results revealed in section 4.3 are summarised as follows: 

    
                                     Table 5.1: Summary of the Test Results 
 

            NK models                   ‘Directed’ Wald statistics         ‘Directed’ Wald statistics           ‘ Full ‘ Wald statistics 
                                                (for dynamics)                           (for volatilities) 

 
            Model  one                                  98.2%                                          10.4%                                       96.5%        

             
            Model  two                                  100%                                           91.5%                                       100% 

           
           Model  three                                99.9%                                          99.4%                                       99.9% 

 

 

Given the test results reproduced in table 5.1, comparison by columns immediately 

shows the first model, which is combined with the optimal timeless rule, is generally 

superior to its rivals in fitting US data, as it consistently yields the lowest Wald 

statistics. More importantly, this model is the only one capable of explaining the 

dynamics and volatility of the data not only separately but also jointly. By contrast, in 

the cases where Taylor rules are incorporated into exactly the same economic 

environments, model two is only able to capture the scale of the economy’s volatility, 

whereas model three is completely rejected by the data in all dimensions.  

 

 

5.2 Taylor rules as statistical relationships 

 

The above suggests that the widespread success reported in single-equation 

regressions of Taylor rules on US data could simply represent some sort of statistical 

relationship emerging from the model with the optimal timeless policy. To examine 

this possibility, we treat the optimal timeless rule model again as the true model, the 

                                                 
19

 That is, the ‘true’ monetary policy rule is identified as a part of the ‘true’ model in a 

relative sense. 
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null hypothesis and ask whether the existence of empirical Taylor rules would be 

consistent with it. 

  

Suppose an arbitrarily specified Taylor-type regression is estimated to infer the 

potential ‘Taylor rule’ of the US economy. For simplicity, let the Taylor-type 

regression take the form:  

                                           
tttxtt ixi   1

~~
                                [5.1] 

where variables have their usual meanings. Equation [5.1] can be estimated either 

using OLS if we assume the basic requirements for an OLS estimator are fulfilled, or 

via the IV approach to allow for possible correlations between the explanatory 

variables and the error term. The OLS and IV estimates based on the US data from 

1982Q2 to 2007Q4 are summarised in table 5.2 below
20

: 

 

                  Table 5.2: Estimates of Taylor-type Regression [5.1] 

                                                                                           x                                                       Adjusted 
2R  

          
           OLS estimates                      0.0453                       0.0922                       0.8233                             0.92       
 
            IV estimates                        0.0376                       0.1003                       0.8017                             0.90                                                                                  

 

 

 

Now, use the technique of ‘indirect inference’ to test if the observed ‘Taylor rule’ can 

be explained by model one based on the data simulated for the same periods
21

. The 

test results are revealed as follows: 

                                                 
20

 For the IV approach, here we take the lagged inflation and lagged output gap as 

instruments for their corresponding current values, respectively. 
21

 Note: a) While one may expect the estimates of   reported in table 5.2 be greater 

than one such that the ‘Taylor principle’ would be found, note that most existing 

literature has treated the interest rate series that is I(1) as a stationary series (See 

Carare and Tchaidze (2005), pp.17, footnote 17), whereas stationarity is obtained here 

by de-trending the data; Indeed, the ‘Taylor principle’ could be retrieved if the 
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             Table 5.3: Individual Taylor Rule Coefficients and the ‘Directed’ Wald Statistic 

 
                                                     Panel A: Test for the OLS Estimates 
 

           Taylor rule                         95%                        95%                       Values calculated                  In/Out 
          coefficients                lower bound         upper bound                  with real data 

                                             0.0514                     0.3436                            0.0453                              Out 

             

           x                   -0.0702              0.0650                            0.0922                               Out 

           
                                     0.6330                     0.9198                            0.8233                                In 

                  ‘Directed’ Wald statistic                                                                                          97.1%  
               (for Taylor rule coefficients) 

 

 

                                                      Panel B: Test for the IV Estimates 
 

           Taylor rule                         95%                        95%                       Values calculated                  In/Out 
          coefficients                lower bound         upper bound                  with real data 

                                            -0.8867                     0.3062                            0.0376                               In 

             

           x                   -0.1072              0.0514                             0.1003                             Out 

           
                                     0.6454                     0.9420                            0.8017                               In 

                  ‘Directed’ Wald statistic                                                                                         97.8%  
               (for Taylor rule coefficients) 

 

According to table 5.3, although the real-data-based estimates of the ‘Taylor rule’ 

coefficients are not all individually captured by the model-implied 95% bounds, they 

are indeed explained as a set by the joint distribution of their simulation-based 

counterparts at the 99% confidence level, since the ‘directed’ Wald statistics are 

reported as 97.1% and 97.8% in panel A and panel B, respectively, indicating that it is 

statistically possible for model one to imply the ‘Taylor rules’ observed from both 

OLS and IV estimations as shown in table 5.2.  

 

                                                                                                                                            

original I(1) interest rate series were used for estimation. b) In terms of the 

methodology, the Taylor-type regression [5.1] is now taken as the auxiliary model and 

the real-data-based estimates reported in table 5.2 are seen as the ‘reality’ in this case.  
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These results illustrate the identification problem with which we began this paper: a 

Taylor-type relation that has a good fit to the data may well be generated by a model 

where there is no structural Taylor rule at all
22

. Hence, any estimated or calibrated 

Taylor rule, no matter how well it might predict the actual movements of the nominal 

interest rate, is not by itself evidence that monetary policy follows this rule. 

  

Note that table 5.4 below also summarises the Wald statistics when the optimal 

timeless rule model is used to explain several popular variants of the Taylor rule 

estimated with OLS. According to the reported Wald statistics, the real-data-based 

estimates of these Taylor rules are all well captured by the model. The model is thus 

robust in generating essentially the whole range of Taylor rules that have been 

estimated on US data.  

 

                    Table 5.4: Model One in Explaining Different Taylor Rules (by OLS) 

       Taylor-type  regressions                       Adjusted 
2R                       ‘Directed’ Wald statistic   

                                                                                                             (for Taylor rule coefficients) 

       
ttxtt xi  

~
  

                
ttt    1
                                    0.89                                            92.9%     

         

   
ttxtt xi     11

~
                           0.40                                            87.0% 

 

       
ttxttt xii     111

~~
              0.90                                            97.9% 

 

 

5.3 The ‘interest rate smoothing’ illusion: an implication 

 

Another issue on which the test results in this paper and the analysis from the 

previous subsection sheds light is related to ‘interest rate smoothing’. In an early 
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 Note that the adjusted 2R ’s reported in table 5.2 are as high as 0.92 for the OLS 

estimates and 0.90 for the IV estimates. 
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paper Clarida, Gali and Gertler (1999) claimed that a ‘puzzle’ regarding the central 

banks’ behaviour was yet to be solved, as the timeless rule generally derived from a 

standard NK model as optimal policy response to changes of macro variables would 

imply once-and-for-all adjustments of the nominal interest rate, whereas empirical 

‘evidence’ from typical Taylor-type regressions estimated with the real data usually 

displayed a high degree of ‘interest rate smoothing’, in which case the sluggishness of 

interest rate variations could not be rationalized in terms of optimal behaviours.  

 

While various authors explain such a discrepancy either at a theoretical level (e.g., 

Rotemberg and Woodford (1997, 1998), Woodford (1999, 2003a, 2003b)) or at an 

empirical level (e.g., Sack and Wieland (2000), Rudebusch (2002)), the tests in this 

paper support the optimal timeless rule but reject the Taylor rule with ‘interest rate 

smoothing’- implying the Fed has been responding to economic changes optimally 

without deliberately smoothing the interest rate. It is the persistence in the shocks 

themselves that induced the appearance of inertia in interest rate setting. Furthermore 

we show that one would find regressions of ‘interest-smoothing Taylor rules’ 

successfully fit the data even though this was being produced by the optimal timeless 

rule model. Hence we would argue that these optimal responses by policymakers have 

been incorrectly interpreted as ‘policy inertia’ due to these misleading regressions.  

 

 

6. Conclusion 

 

In this paper we have attempted to identify the principles governing US monetary 

policy since the early 1980s. The ‘Taylor rule’ is widely regarded as a good 
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description of these principles. Yet there is an identification problem plaguing efforts 

to estimate it: other relationships implied by the DSGE model in which it is embedded 

could imply a relationship that mimicked a Taylor rule. To get around this problem 

we have set up three models, each with the same New Keynesian structure but 

differing only in their monetary rules. The three different rules are an optimal timeless 

rule, a standard Taylor rule and another with ‘interest rate smoothing’. We show, 

using statistical inference based on the method of indirect inference, that only the 

optimal timeless rule can replicate both the dynamics and the volatilities of the data. 

We also show that if the optimal timeless rule model was operating it would have 

produced data in which regressions of an interest-rate-smoothed Taylor rule would 

have been found. In short, the policy of the Fed in this period appears to have been 

approximately optimal and the fact that its behaviour looks like a Taylor rule with 

interest-rate smoothing is a statistical artefact. 
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