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Abstract 
Using an overlapping generations model in which the young save for old age using indexed 
and nominal government bonds, this paper investigates how optimal indexation is influenced 
by monetary policy. In order to do so, two monetary policies with markedly different long 
run implications are examined: inflation targeting and price-level targeting. Optimal 
indexation differs significantly under the two regimes. Under inflation targeting, long-term 
inflation uncertainty is substantial due to base-level drift in the price level. Nominal bonds 
are thus a poor store of value and optimal indexation is relatively high (76 per cent). With 
price-level targeting, by contrast, long-term inflation uncertainty is minimal because the price 
level is trend-stationary. This makes nominal bonds a better store of value compared to 
indexed bonds, reducing optimal indexation somewhat (26 per cent). Importantly for these 
results, the model captures two imperfections of indexation (indexation bias and lagged 
indexation) that are calibrated to the UK case. 
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1.  Introduction 
 
This paper investigates the link between optimal indexation and monetary policy. The 
motivation for studying this issue can be traced back to the seminal papers on optimal 
indexation by Fisher (1975) and Gray (1976). Gray investigated indexation of wage contracts 
in the face of real and nominal shocks. She showed that optimal indexation depends on the 
variances of real and nominal disturbances, increasing with the nominal-to-real volatility ratio. 
Therefore, indexation of wages should fall under monetary policy regimes that reduce 
nominal volatility – a prediction that appears to be borne out by the data (Holland, 1986; 
Amano, Ambler and Ireland, 2007).2 The impact of monetary policy on optimal indexation of 
wages has been investigated more recently by Minford, Nowell and Webb (2003) and Amano, 
Ambler and Ireland (2007). These authors study optimal indexation under inflation targeting 
(IT) and price-level targeting (PLT), motivated by the theoretical finding that PLT reduces 
nominal volatility substantially at medium- and long-term horizons. Consistent with Gray 
(1976), they find that optimal indexation is lower under PLT than IT because nominal 
volatility is reduced over the wage-contracting horizon. 
 
Fischer (1975) uses a portfolio approach to study the demand for price-level-indexed bonds. 
In his model, households receive income from human capital and choose an optimal portfolio 
consisting of equity, nominal bonds and indexed bonds. Fischer shows that if the real return 
on human capital is uncorrelated with inflation, then consumers will strictly prefer indexed 
bonds over nominal bonds, because the former are a perfect store of purchasing power. 
However, this dominance results breaks down if inflation is correlated with the real return on 
human capital (or, more generally, with other sources of income), since households can 
diversify consumption risk by holding at least some nominal bonds. Moreover, the optimal 
demands for indexed and nominal bonds depend on the extent of inflation risk, thus positing a 
link between optimal indexation and monetary policy as in the case of wage indexation.  
 
A second important finding from a portfolio approach to indexed bonds is that full indexation 
is not optimal if indexation is imperfect, because nominal bonds will diversify consumption 
risk if the correlation between inflation and the ‘indexation error’ is sufficiently small. The 
importance of modelling imperfect indexation to the price level has recently been emphasised 
in the context of private debt by Meh, Quadrini and Terajima (2009). They develop a model 
in which financial contracts are imperfectly indexed to inflation because nominal prices are 
observed with delay, as in Jovanovic and Ueda (1997). Contracting results from 
entrepreneurs entering into debt contracts with financial intermediaries in order to finance 
investment, and the extent of indexation is determined endogenously as part of an optimal 
incentive-compatible contract. Since indexation is imperfect, only partial indexation to prices 
is optimal, and the optimal degree of indexation increases with the magnitude of price-level 
uncertainty. 
                                                 
2 For example, Ambler, Amano and Ireland report that the proportion of wage settlements with cost-of-living 
clauses in Canada fell from 22 per cent between 1978 and 1989 to around 10 per cent between 1995 and 1999. 
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One criticism that can be levelled at the portfolio approach to indexed bonds is that it ignores 
the necessity that the government explicitly finance issuance of debt,3 thus failing to provide 
an equilibrium solution to the optimal indexation problem. When the government must 
finance bond issuance subject to its budget constraint, nominal bonds are useful if the 
government is required to balance its budget in each period (Levhari and Liviatan, 1976), or 
if inflation is correlated with the tax burden (Bohn, 1988). This literature, however, focuses 
only upon necessary conditions for partial indexation to be optimal. In the current paper, the 
optimal share of indexed government debt is computed directly.  Moreover, the model relaxes 
the oft-made but implausible assumptions that (i) indexed bonds are perfectly indexed, and (ii) 
bond risk-premia are equal to zero.4 
 
The key feature of the model is that optimal indexation of government debt is determined 
endogenously in response to monetary policy. Since the government takes into account 
consumers’ first-order optimality conditions when choosing the optimal level of indexation, it 
effectively solves an optimal commitment Ramsey problem (see Ljungqvist and Sargent, 
2000). Motivated by recent literature in the area of optimal wage indexation, the alternative 
monetary policies considered in this paper are IT and PLT. Indexation in the model is subject 
to two distinct imperfections – indexation bias and lagged indexation. The presence of 
imperfect indexation in the model is crucial. Indeed, as optimal indexation in the model 
minimises consumption volatility across old generations, issuing nominal bonds is desirable 
only if indexed bonds are a risky asset.  
 
The model consists of overlapping generations of consumers and a long-lived government. 
Consumers hold money balances, productive capital and indexed and nominal government 
bonds.5  Each period in the model lasts 30 years and consumers live for two periods, namely, 
youth and old age. Monetary policy is implemented by the government through IT and PLT 
money supply rules, and aggregate uncertainty is introduced into the model via real shocks to 
productivity and various nominal disturbances, including money supply shocks. The 
government is the monopoly supplier of both bonds and money, and meets an exogenous 
long run government spending target by taxing young consumers.  
 
The main finding from the model is that optimal indexation is significantly lower under PLT 
than IT (26 per cent vs. 76 per cent). The reasoning is as follows. Long-term inflation 
uncertainty is substantial under IT because of base-level drift: even if the central bank misses 
its inflation target by only a small percentage in each year, these misses can accumulate and 
become quite large after 30 years. Consequently, nominal bonds are a poor store of value 
compared to indexed bonds and optimal indexation is relatively high. Under PLT, by contrast, 

                                                 
3 Campbell and Shiller (1996) provide a useful discussion of the impact of introducing indexed bonds on 
government financing costs (within the context of the US economy).  
4 Bond risk-premia are zero in linear or log-linearised models. Alternatively, it sometimes assumed that 
marginal utility is linear so that consumers are risk-neutral (e.g. Bohn, op. cit.). 
5 Productive capital was first introduced into the overlapping generations model by Diamond (1965), who 
extended the standard life-cycle model (see Samuelson, 1958) from partial to general equilibrium. 
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the price level is returned to its target path following inflationary shocks. Past deviations 
from the inflation target therefore do not accumulate over the long-term, reducing inflation 
volatility by an order of magnitude and making nominal bonds a somewhat better store of 
value compared to indexed bonds.  
 
In order to investigate the source of the reduction in optimal indexation under PLT, the 
indexation differential is decomposed into ‘indexation bias’ and ‘indexation lag’ components. 
This decomposition reveals that around nine-tenths of the reduction in indexation under PLT 
is due to the indexation lag. The substantive reduction due to the indexation lag arises 
because its contribution to real return volatility is the same under IT and PLT, as the 
indexation lag length is invariant to a change in monetary policy regime. Hence, when 
inflation risk is reduced under PLT, real return volatility falls more sharply on nominal bonds 
than on indexed bonds, providing an incentive for substitution towards nominal bonds. The 
long-term contracting horizon in the model (30 years) is crucial for this result because 
inflation volatility is reduced markedly under PLT at a long horizon (Dittmar, Gavin and 
Kydland, 1999; Bordo, Dittmar and Gavin, 2007).  
 
On the other hand, indexation bias plays a relatively small role in reducing optimal 
indexation by ensuring that, even in the absence of an indexation lag, it is optimal for some 
nominal bonds to be issued. Conditional on the presence of nominal bonds in consumer 
portfolios, PLT reduces optimal indexation relative to IT because it dilutes the positive 
correlation between the real return on nominal bonds and the real return on money balances, 
thus reducing consumption covariance risk associated with holding nominal bonds. The real 
return correlation falls under PLT because expected inflation varies over time. The reasoning 
is that whilst a nominal bond compensates consumers for anticipated inflation fluctuations, 
money balances do not – so that there is a wedge between the co-movement in returns. This 
contrasts with the IT case where a nominal bond is effectively money plus a constant ‘mark-
up’ for expected inflation, so that the real return correlation is perfect (i.e. +1).   
 
The result that optimal indexation of government bonds can vary substantially across 
monetary policy regimes has potentially important policy implications. Firstly, models that 
do not endogenise the extent of indexation in response to monetary policy are vulnerable to 
the Lucas critique (Lucas, 1976) and may give rise to seriously misleading results in policy 
analyses or forecasting exercises. Secondly, as the optimal indexation results in this paper 
arise from comparing IT and PLT policies, they have important implications for central banks 
like the Bank of Canada that are considering switching from IT to PLT and are interested in 
evaluating the performance of these two regimes in simulated models of the economy.6  
Finally, the willingness of governments to issue indexed bonds may be influenced 
considerably by monetary policy, highlighting a potentially important interaction between 
fiscal policy and monetary policy. Whilst the results in this paper provide intuition for why 
                                                 
6 The Bank of Canada is currently conducting a review of price-level targeting in anticipation of its next policy 
agreement with the Government in 2011. The review was announced in Bank of Canada (2006).   
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governments might issue both indexed and nominal government bonds, they cannot explain 
fully the prevalence of low levels of indexation in developed economies.    
 
The paper proceeds as follows. Section 2 sets out the model, including the monetary policy 
rules under IT and PLT; Section 3 discusses model calibration and the simulation 
methodology employed; Section 4 discusses the optimal indexation problem; and Section 5 
presents simulation results. Finally, Section 6 concludes and discusses policy implications.  
 

2. The Model       

The model is an overlapping generations (OLG) model of life-cycle saving in which 
consumers hold money balances, capital, and indexed and nominal government bonds. 
Consumers have homogenous preferences and live for two periods of 30 years: in the first 
they are ‘young’ and receive an exogenous endowment income; in the second they are the 
retired ‘old’ who receive the proceeds from their savings in youth. Population growth is set 
equal to zero for simplicity7 and, without loss of generality, each generation is assumed to 
have a constant size of one.8 
 
Aggregate uncertainty is introduced into the model via real productivity shocks and various 
nominal disturbances, including money supply shocks. Although ‘fiat money’ is a popular 
way of justifying money holdings in OLG models (see e.g. McCandless and Wallace, 1991), 
this approach is not theoretically convincing because fiat money must offer the same return as 
non-monetary assets to have value, implying deflation if these assets offer real returns. 
Money is instead introduced by a cash-in-advance constraint, an approach taken by a number 
of recent contributions that investigate optimal monetary policy in OLG economies (e.g. 
Michel and Wigniolle, 2005; Gahvari, 2007). Monetary policy takes the form of IT and PLT 
money supply rules. In response to monetary policy, young consumers demand indexed and 
nominal bonds, money balances and capital. Capital is used to produce output that is 
consumed in old age. As such, capital is a hedge against inflation – a view long held by 
theoretical economists and an implication of the Fisher equation (see Bodie, 1976).  
 
The government is responsible for implementing monetary policy and sets the total bond 
supply and the mix between indexed and nominal bonds (through individual bond supplies). 
The total bond supply is set to ensure optimal consumption smoothing (in expected terms) for 
each generation – along the lines of the standard OLG model where government bonds are 
‘net wealth’ (see Barro, 1974; Minford and Peel, 2002). The mix between indexed and 
nominal bonds is chosen to maximise social welfare, subject to consumers’ first-order 
                                                 
7 Constant population growth would introduce an additional parameter (the population growth rate) but would 
not change model dynamics or, therefore, the optimal indexation results. 
8 There is no loss of generality because the focus throughout is on per-capita values. All model equations would 
be left unchanged if generations had a constant size greater than one and were populated by homogenous 
consumers.  The only difference is that per-capita values would need to be multiplied by the constant generation 
size in order to get economy-wide aggregates.  
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conditions for saving, the money supply rule in place, and a long run government spending 
target. 9 Since indexed and nominal bonds are priced to rule out arbitrage via consumers’ 
first-order conditions, all indexation shares in the range [0,1] are feasible equilibria. In effect, 
the government’s problem is to select the equilibrium from this feasible set that maximises 
social welfare (under IT and PLT). 
 
The model is solved using a second-order approximation in Dynare++ (Julliard, 2001). This 
point is crucial since a linear approximation would eliminate risk-premia in the returns on 
indexed and nominal bonds. More generally, it is well-known that linear approximation can 
lead to an inaccurate social welfare ranking of alternative policies (in this case, alternative 
indexation shares) because it ignores the impact of uncertainty on the stochastic means of 
endogenous variables in the model (Kim and Kim, 2003; Schmitt-Grohé and Uribe, 2004).  
 
2.1 The consumer problem 
 
Consumers live for two periods of 30 years and have constant relative risk aversion (CRRA) 
preferences over consumption: 
 

          )()( ,1,1,, OtOttYtYtt cuEcuu +++=                    (1) 

 

where )1/()( 1
,,, δδ −≡ −
YtYtYt ccu  is utility in youth and )1/()( 1

,1,1,1 δδ −≡ −
+++ OtOtOt ccu  is utility in 

old age. Consumption in period t when young is denoted Ytc ,  and consumption in period 1+t  

when old is denoted Otc ,1+ .10  
 
The budget constraint of young agents can be expressed in real terms as follows: 
 

)1(,,
,

j
t

d
t

dn
t

di
tYt kmbbc τϖ −=++++                      (2) 

 

where ϖ  is a young consumer’s constant real endowment income; 11 t
di

t
di

t PBb /,, ≡  is real 
demand for indexed bonds; t

dn
t

dn
t PBb /,, ≡   is real demand for nominal bonds; and 

t
d
t

d
t PMm /≡  is real demand for money balances. Note that uppercase values are nominal 

and tP   is the aggregate price level. Capital in real terms is given by tk , and jτ  for 
),( PLTITj∈  is the constant rate of income tax. 

  

                                                 
9 Government spending is used up in projects that have no direct effect on consumption or utility. 
10 Consumers do not discount consumption in old age, as is often assumed in models with overlapping 
generations. Examples from the literature that use this assumption include Champ and Freeman (1990) and 
Brazier, Harrison, King and Yates (2006).    
11 A constant endowment is specified for simplicity. Including endowment shocks will not affect the optimal 
indexation results so long as such shocks are orthogonal. 
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Following Artus (1995), consumers’ demand for money arises from a cash-in-advance (CIA) 
constraint which states that real monetary savings are a fraction 10 << θ  of consumption 
when young: 12 

   Yt
d
t cm ,×≥ θ                      (3) 

 
As shown in Appendix A, the CIA constraint will bind with strict equality if the monetary 
return on nominal bonds exceeds one. Intuitively, since money is a perfect store of nominal 
value, an optimising consumer will not hold monetary savings in excess of the proportion θ  
required by the CIA constraint if nominal bonds pay a higher return. The CIA constraint is 

taken to be strictly binding, i.e. Yt
d
t cm ,θ= .13  

 
Capital is used to produce output in old age via a production function that exhibits 
diminishing returns. The depreciation rate on capital is 100 per cent; hence capital lasts for 
only one period.14 Since the amount of output produced using capital depends on productivity, 
capital is a claim to an uncertain amount of real output in old age.  
 
Output in old age is given by the following production function: 

            α
ttOt kAy 1,1 ++ =   10 <<α                (4) 

where α  is the elasticity of output with respect to capital. 

Productivity tA  follows an AR(1) process in logs: 

                                          ttmeant eAAA ++−= −1lnln)1(ln ρρ        10 << ρ                        (5) 

where the productivity innovation te  is an IID-Normal random variable with mean zero and 

variance 2
eσ . 

 
Consumption in old age consists of output produced using capital and savings income from 
holding money and bonds. Real consumption by the old is therefore given by 
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where d
t

di
t bba /,≡  is the share of indexed bonds in consumers’ bond portfolios; 
dn

t
di

t
d
t bbb ,, +≡  is total demand for government bonds in real terms; )1/(1 11 ++ +≡ t

m
tr π  is the 

                                                 
12 Cited by Crettez, Michel and Wigniolle (1999). This constraint is interpreted as a ‘cash-in-advance’ 
specification in the OLG literature.   
13 Note that the nominal (or money) return on nominal bonds was greater than one in all simulations. 
14 Given that each period lasts 30 years, the assumption of full depreciation is empirically plausible. See Nadiri 
and Prucha (1996) and studies cited therein.  
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gross real return on money balances held from youth to old age; and )1/( 1 −≡ −ttt PPπ  is the 
rate of inflation in period t. The real returns on indexed bonds and nominal bonds, i

tr 1+  and 
n
tr 1+  respectively, are explained in detail below. 
. 
Indexed bonds pay an ex ante riskless gross real return tr  that is endogenously determined.15 

However, due to indexation bias and lagged indexation, the ex post real return on an indexed 
bond will in general differ from this riskless return. In particular, the ex post real return on an 
indexed bond held from period t  to period 1+t  is given by 
 

                            







+

+
+

×= +
+

+
+ 1

1

1
1 )1(

)1(
t

t

ind
t

t
i
t vrr

π
π

                  (7) 

 

where ind
tπ   is the biased rate of inflation to which indexed bonds are linked, tπ  is the true 

rate of inflation, and tv  is a Gaussian ‘white noise’ innovation whose variance 2
vσ  is based 

on the indexation lag length.  
 
The first term in square brackets reflects indexation bias: its value will deviate from one if 
‘true’ and ‘biased’ inflation are not equal. Indexation is biased because the price index used 
for indexation differs from the true one that defines consumers’ standard of living. In the UK, 
for example, index-linked gilts are indexed to the Retail Prices Index (RPI), whereas the 
Retail Prices Index excluding mortgage interest payments (RPIX) may better reflect the 
inflation rate faced by the majority of pensioners (i.e. ‘old generations’) who do not make 
mortgage repayments (Leceister, O’Dea and Oldfield, 2008). The extent of indexation bias 
depends on the relative variances of true and biased inflation and the correlation between the 
two inflation rates.    
 
The second term in square brackets captures the impact of lagged indexation on the ex post 
real return received on indexed bonds. The indexation lag is motivated by the presence of 
data publication and collection lags, which are responsible for indexation occurring with a lag 
in practice. The magnitude of the indexation lag on government bonds differs across 
countries. For example, the large majority of outstanding index-linked gilts in the UK are 
indexed to the RPI with an 8-month lag (DMO, 2010), whereas indexed bonds in the US and 
Canada are linked to the Consumer Prices Index (CPI) with a 3-month lag. The indexation lag 
is modelled by a white noise innovation because this provides a simple way to capture 
volatility arising from lagged indexation when the indexation lag length is small relative to 
the holding period. The innovation tv  is exogenous and invariant to monetary policy, 

reflecting the assumption that the indexation lag on indexed bonds is not affected by a shift in 
monetary policy regime.  
 
                                                 
15 The return tr  ensures that the market for indexed bonds clears. 
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Nominal bonds pay a riskless nominal return tR . The ex post real return on nominal bonds is 

certain but for inflation risk and is given by 
 

                                                     m
tttt

n
t rRRr 111 )1/( +++ ×=+= π        (8) 

 
where the nominal return tR  is endogenously determined.16  

 
Finally, the initial old are endowed with 0m  units of real money balances, an initial stock of 

government debt ni bbb 000 += , and capital 0k ; their corresponding level of consumption is 

Oc ,1 . In model simulations, these initial values are set equal to the deterministic steady-state 
values. Trivially, the utility of the initial old is given by 
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2.2 Consumers’ first-order conditions 
 
Consider the following Lagrangian: 
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where Yt ,λ ( Ot ,1+λ ) is the Lagrange multiplier on young (old) consumers’ budget constraints, 

and tµ  is the Lagrange multiplier on the CIA constraint.  

First-order conditions are as follows: 

                                      tYtYtYt cc θµλδ +=−
,,, :                              (11) 

              δλ −
+++ = OtOtOt cc ,1,1,1 :                              (12) 

              ( )i
tOttYt

di
t rEb 1,1,
, : ++= λλ                              (13) 

                                                  ( )n
tOttYt

dn
t rEb 1,1,
, : ++= λλ                                        (14)  

                                                 ( ) t
m
tOttYt

d
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( )11,1,: −
++= ααλλ ttOttYtt kAEk      (16) 

 

                                                 
16 In particular, tR  ensures that the market for nominal bonds clears. 
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Substituting out the Lagrange multipliers on budget constraints when young and old gives the 
following consumption Euler equations for indexed bonds, nominal bonds, and capital 
respectively: 

                            t
i
tOttYt rcEc θµδδ += +

−
+

− )( 1,1,                                                     (17) 

                                                    t
n
tOttYt rcEc θµδδ += +

−
+

− )( 1,1,                             (18) 

        t
k
tOttYt rcEc θµδδ += +

−
+

− )( 1,1,                  (19) 

  

where 1
11

−
++ ≡ αα tt

k
t kAr  is the real return on capital.  

 
The Lagrange multiplier on the cash-in-advance constraint is given by 
 

                    ( ) ( ) ( ))()()( 11,111,111,1
m
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k
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m
t

n
tOtt

m
t

i
tOttt rrcErrcErrcE ++

−
+++

−
+++

−
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where the multiple equalities follow from the absence of arbitrage opportunities across assets. 
Intuitively, Equation (20) states that, absent uncertainty, a sufficient condition for the CIA 
constraint to be strictly binding (i.e. 0>tµ  t∀ )17 is that money be rate of return dominated 

by other assets.     
 
Substituting out for the Lagrange multiplier, the consumption Euler equations can be written 
in the following form: 
 

                     ( )( )m
t

i
tOttYt rrcEc 11,1, )1( ++

−
+

− −+= θθδδ                             (21) 

                      ( )( )m
t

n
tOttYt rrcEc 11,1, )1( ++

−
+

− −+= θθδδ                                                 (22) 

       ( )( )m
t

k
tOttYt rrcEc 11,1, )1( ++

−
+

− −+= θθδδ                                        (23) 

 
Equations (21) to (23) show that the CIA constraint gives rise to an additional 

term )( 11
m
t

h
t rr ++ −θ , for { }knih ,,∈ , on the right hand side of the consumption Euler equations 

for asset holdings. The intuition behind this additional term is that reducing consumption 
when young by one unit has a knock-on effect via the CIA constraint of reducing money 
holdings by θ  units, because money holdings are proportional to consumption. This 
reduction in money holdings makes available an extra θ  units of endowment income for 
purchases of indexed bonds, nominal bonds, or capital (young consumers are indifferent 
between all three at the margin). Consequently, consumers receive an additional return 

h
tr 1+×θ  in old age whilst losing m

tr 1+×θ  from the reduction in money balances.  

 

                                                 
17 See Hodrick, Kocherlakota and Lucas (1991).  
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2.3 Government  
 
The government finances real spending tg  by taxing young consumers, printing money and 

issuing indexed and nominal government bonds. The government budget constraint is thus 
given by 

                                   sn
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n
t
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si
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i
t
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t

s
t

m
t

s
t

j
t brbbrbmrmg ,

1
,,
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−−− −+−+−+= ϖτ                           (24) 

 

where ϖτ j  is revenue from taxing young consumers’ endowment incomes,   s, itb ( sn
tb
, ) is the 

real supply of indexed (nominal) bonds issued by the government in period t, and s
tm  is the 

real money supply in circulation in period t.  
 

The government sets the income tax rate on young consumers’ endowment incomes jτ  
(where ),( PLTITj∈ ) in order to achieve a long run target level of real government 

spending of *)( ggE t =  and controls the money supply in the economy via money supply 

rules.18 The total bond supply sn
t

si
t

s
t bbb ,, +≡  is set to ensure that the marginal utility of 

consumption in youth is equated with the expected marginal utility of consumption in old age, 

or )( ,1,
δδ −
+

− = OttYt cEc . This policy ensures perfect consumption-smoothing in expected terms for 

each generation, thereby increasing lifetime utility as in the standard OLG model in which 
government bonds are ‘net wealth’ (Barro, 1974). 19 20  Individual bond supplies are 

constrained to be non-negative, so that 0, ≥si
tb  and 0, ≥sn

tb  for all t.  

 
The division of the total bond supply between indexed and nominal bonds, as defined by the 
indexation share ]1 ,0[∈a , is chosen by the government to maximise social welfare, taking 

into account consumers’ first-order conditions, the money supply rule in place, and the 
necessity of meeting the long run government spending target. The optimal indexation 
problem is dealt with formally in Section 4. 
 
2.4 Monetary Policy 
  
The major difference between IT and PLT is that the former implies base-level drift in the 
price level, whilst the latter prevents base-level drift. To allow for this difference, the 30-year 
(i.e. one period) money supply rules under IT and PLT are derived from a yearly horizon. 
With this approach, equilibrium inflation in the model reflects the presence of base-level drift 

                                                 
18 Hence the government has risk-neutral preferences over government spending. 
19 The ‘net wealth’ result was first demonstrated formally by Barro, but he argues against government bonds 
being net wealth because introducing a bequest motive into the OLG model resurrects the Ricardian equivalence 
proposition.   
20 In a model without uncertainty, the government can set the total bond supply so that all generations enjoy 
perfect consumption smoothing ex post, thereby maximising lifetime utility for all generations. See Minford and 
Peel (2002) for a simple example. 
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under IT, and its absence under PLT. Since the derivation of 30-year money supply rules 
from yearly ones is long-winded, the details are presented in Appendix B.   
 
Given the 30-year horizon embedded in the model, monetary policy does not respond directly 
to output or productivity. Furthermore, since the government can commit to money supply 
rules, no time-inconsistency or credibility issues arise in relation to monetary policy. The 
money supply rules given below are stated in terms of the nominal money supply (which is 
non-stationary), but the money supply is converted back into real terms in order to solve the 
model in Dynare++.  
 
The IT money supply rule 
 
The nominal money supply rule under IT takes the following form:  

       ∑
=

−− ++×=
30

1
,1,,

,
1

, )/ln(  30)/ln(
i

YtYtti
ITs

t
ITs

t ccMM επ                     (25) 

 
where π  is the annual inflation target and the ti,ε s are Gaussian white noise money supply 

innovations in year i of period t with variance 2σ .  
 
Notice that the 30-year money supply innovation is simply the sum of the yearly money 
supply innovations that accumulate in each period due to base-level drift. In the absence of 
money supply innovations, Equation (25) implies perfect stabilisation of inflation at the 
inflation target.   
 

Money market equilibrium (i.e. s
t

d
t MM = , where d

tt
d
t mPM = ) implies that inflation under 

IT is given by21              

        ∑
−

+×=
30

1
,30

i
ti

IT
t εππ                                              (26) 

 
Therefore, expected inflation is equal to the 30-year inflation target, and the inflation 
variance is thirty times the yearly money supply innovation variance: 
 

        ππ ×=+ 301
IT
ttE                             (27) 

        230)var( σπ =IT
t                                        (28) 

  
Intuitively, expected inflation is equal to the inflation target because the government makes a 
fully credible commitment to an IT money supply rule. The inflation variance is thirty times 
the yearly innovation variance because of base-level drift: money supply innovations cause 

                                                 
21 To arrive at this expression, take the first difference of the natural log of (nominal) money demand and use the 
approximation 1lnln −−≈ ttt PPπ . Then set money demand equal to money supply and solve for inflation. 
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inflation to deviate from target in each year, and over 30 years these innovations accumulate, 
with each one adding to long-term inflation uncertainty.       
 
The PLT money supply rule 
 
The nominal money supply rule under PLT is given by  
 

                )/ln( )/ln()/ln( ,1,1,30,30
*
1

*,
1

,
YtYttttt

PLTs
t

PLTs
t ccPPMM −−−− +−+= εε               (29) 

  

where *
tP  is the target price level and t,30ε  is the money supply innovation in year 30 of 

period t. 
 
In the absence of money supply innovations, Equation (29) implies perfect stabilisation of the 
price level at target. However, the price level will deviate from its target value when there are 
money supply innovations. The presence of a lagged money supply innovation in Equation 
(29) reflects the response of the PLT money supply rule to the price-level deviation in the 
previous period – a response that is necessary to return the price level to its target path.  
 
It assumed that the target log price level under PLT increases at the target rate of inflation 
under IT: 22 

    tpPt )30(ln 0
* π×+=                             (30) 

 
where 0p  is the initial target price level.  

 
The money supply rule in Equation (30) can therefore be written as follows:  
 

        )/ln( 30)/ln( ,1,1,30,30
,
1

,
YtYttt

PLTs
t

PLTs
t ccMM −−− +−+×= εεπ                   (31) 

 
In contrast to the IT case, the 30-year money supply rule contains only two yearly money 
supply innovations, and these are spaced apart by 30 years. The reasoning is as follows: 
innovations that occur in years 1-29 are offset in the following year in order to bring the price 
level back to its target path. For instance, a shock in year 29 will be offset in year 30, the last 
year of the current period. However, the innovation in year 30 of each period cannot be offset 
until year 1 of the next period. Hence the innovations t,30ε  and 1,30 −tε  enter the money supply 

rule. The first is the innovation in year 30 of the current period, and the second is the 
innovation from year 30 of the previous period (which is then offset in year 1 of the current 
period). 

                                                 
22 The rate of inflation implied by the target price path is assumed to be equal to the inflation target to ensure 
direct comparability of IT and PLT. With this assumption, IT and PLT are identical in the absence of money 
supply innovations and PLT can be interpreted as ‘average inflation targeting’. 
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Money market equilibrium implies that inflation under PLT is given by 
 

    1,30,3030 −−+×= tt
PLT
t εεππ                 (32) 

 
Hence expected inflation is state-contingent, and the 30-year inflation variance is two times 
the yearly innovation variance: 
 

     1,301 30 −+ −×= t
PLT
ttE εππ                  (33) 

             22)var( σπ =PLT
t                                                   (34) 

 
Both of these results have been discussed in the PLT literature (e.g. Svensson, 1999; Minford, 
2004). First, expected inflation varies because past deviations from the target price path are 
subsequently offset, and rational agents take this into account when forming their inflation 
expectations. Second, the 30-year inflation variance is 15 times lower under PLT since 
inflation depends on only 2 yearly money supply innovations, compared to 30 under IT. The 
reason is that yearly deviations from the inflation target are offset and hence do not 
accumulate to increase long-term inflation uncertainty.  
 
In order to make the differences between IT and PLT concrete, Panels (a) and (b) of Figure 1 
report impulse responses of inflation to a period-t money supply innovation. As the yearly 
money supply innovation variance has not yet been calibrated, the innovation was normalised 
to one in the IT case and scaled accordingly in the PLT case. The differences between IT and 
PLT are clear: the initial impact is somewhat smaller under PLT because of the lower (30-
year) money supply innovation variance; and the inflationary shock is reversed in the 
following period under PLT but is treated as a bygone under IT. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
        (a) IT              (b) PLT 
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Fig. 1 – Inflation impulse responses to a money supply innovation 
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Finally, the biased inflation rate to which indexed bonds are linked is given by an exogenous 
process that has the same functional form as true inflation. In particular, the long run mean is  
set equal to the 30-year inflation target, and inflation responds only to current innovations 
under IT but to current and past innovations under PLT. As a result, the 30-year variance for 
biased inflation is also 15 times lower under PLT than IT.  
 
The biased inflation rate used for indexation is given by  
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                                 (35) 

 

where ( )2
,  ,0~ ind
ind
ti N σε , and 2

indσ  is the yearly innovation variance to biased inflation.  

 

The ind
ti,ε s are assumed to be serially-uncorrelated. They are, however, contemporaneously 

cross-correlated with innovations to true inflation, with the strength of the correlation 
reflecting the extent of indexation bias. Both the cross-correlation between innovations and 
the innovation variances for true and biased inflation are estimated using UK data (see 
Section 3). 
  
2.5 Social welfare 
 
The government maximises the unconditional expectation of social welfare – that is, the 
average across all possible histories of shocks (see Damjanovic, Damjanovic and Nolan, 
2008). The unconditional welfare criterion was first proposed by Taylor (1979) and has been 
used in numerous papers in the monetary policy literature since, including Rotemberg and 
Woodford (1998), Clarida, Gali and Gertler (1999), and Schmitt-Grohé and Uribe (2007).23   
 
Given consumers’ lifetime utility function (see Equation (1)) and the utility of the initial old, 
average lifetime utility across T generations is given by 
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23 Examples of OLG models in which monetary policy is evaluated using an unconditional social welfare 
criterion include Brazier, Harrison, King and Yates (2006) and Kryvtsov, Shukayev and Ueberfeldt (2007). 
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Social welfare is defined as the unconditional expectation of this expression, or 
 

                                 [ ] ( )
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1

                             (37) 

 
2.6 Steady state and market-clearing conditions 
 
The model’s deterministic steady state and market-clearing conditions are presented in 
Appendix C, and Appendix D gives a full model listing. 
 
3. Model calibration 
 
3.1 Money supply rules and biased inflation 
 
In order to make the money supply rules operational, the yearly inflation target and money 
supply innovation variance were estimated using UK inflation over the IT period. The 
stochastic process for biased inflation was calibrated in the same way. The Retail Prices 
Index excluding mortgage interest payments (RPIX) was chosen as the measure of ‘true’ 
inflation and the Retail Prices Index (RPI) as the ‘biased’ measure, with the sample period 
running from 1997Q3 to 2010Q2.24 The RPIX was chosen as the measure of true inflation 
because it excludes mortgage interest payments, which are not faced by the majority of 
pensioners in the UK (Leicester, O’Dea and Oldfield, 2008). It also includes council tax and 
housing costs, both of which are relatively more important costs for pensioners that are 
excluded from the Consumer Prices Index (CPI). Given that indexed bonds in the UK are 
linked to the Retail Prices Index (RPI), the stochastic process for biased inflation was 
calibrated using the RPI. 
 
Although the inflation target in the UK was changed from 2.5 per cent for the RPIX to a 2 per 
cent target for the CPI in December 2003, the adjustment was based on historical experience 
with the intention of ensuring that there was no material change in monetary policy strategy 
(King, 2004).25 As such, this event was not treated as a structural break in the sample. In 
concordance with this treatment, the Quandt-Andrews and Chow breakpoint tests were 
unable to reject the null hypothesis of no breakpoint. Figure 2 shows quarterly RPI and RPIX 
inflation over the sample period. The RPI and RPIX track each other well, but there are some 
non-trivial deviations in the first half of the sample period and also in the last eight quarters. 
   

                                                 
24 The Bank of England was assigned an inflation target soon after ‘Black Wednesday’ in 1992, but was not 
given full operational independence until May 1997. 
25 The main argument cited in favour of the shift to the CPI was international comparability.   
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Fig. 2 – RPI and RPIX over the sample period 

 
The following regression was estimated at a quarterly frequency q:   
                        

    l
q

l
q c επ +=                           (38) 

 
where l

qπ , { }RPIRPIXl ,∈ , is inflation in quarter q and l
qε  is the regression residual to 

inflation.   
 
The estimation results from this regression and test statistics are shown in Table 1. The 
estimate for constant term c  gives the mean quarterly rate of inflation over the sample period. 
The value of 0.007 for both the RPIX and RPI implies mean annual inflation of 0.028 
( 007.04×= ), or 2.8 per cent, which is close to the annual RPIX target of 2.5 per cent that 
was the focus of UK monetary policy from March 1997 to December 2003. The difference 
between mean quarterly inflation and the quarterly rate implied by the annual target of 2.5 per 
cent was not statistically significant at the 5 per cent level, so the yearly inflation target was 
set at 025.0=π , or 2.5 per cent per year.  

 
The variances of yearly innovations to the money supply and biased inflation were estimated 
using the regression residuals. In particular, based on the estimated quarterly innovation 
variances, yearly innovation variances were calculated under the assumption that there is a 
unit root in the price level – as is implied Dickey-Fuller unit root tests on the RPIX and RPI 
(see Table 1).26 27 These yearly variances were used to calibrate the money supply rules and 
the stochastic processes for biased inflation, as shown in Table 2. Notably, the null 
hypothesis that the RPIX innovation is normally distributed could not be rejected by the 
Jarque-Bera test (see penultimate row of Table 1). However, normality of the RPI innovation 
was rejected.  
                                                 
26 An intercept and trend were included in the test regression.  
27 PLT is assumed to offset inflationary shocks at a yearly horizon. Hence, the quarterly (but not yearly) price 
level should follow a random walk. 
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Table 1 – RPIX and RPI regression results, 1997Q3-2010Q2 
Parameter/test RPIX RPI 
c  
(s.e.) 

0.007  
(0.001) 

0.007  
(0.001) 

Quarterly inflation standard deviation, )( l
qsd ε  0.0060 0.0073 

Implied yearly standard deviation 
 

0.012 
( )0.006 4 ×  

0.015 
( )0.0073 4 ×  

Dickey-Fuller unit-root test on log price index 
(prob. value) 

-1.706 
(0.73) 

-1.380 
(0.85) 

Jarque-Bera test on l
qε   

 (prob. value) 

1.837  
(0.40) 

30.58 
(0.00) 

RPI-RPIX inflation correlation, i.e. 
),(),( RPIX

q
RPI
q

RPIX
q

RPI
q corrcorr εεππ =  

 
0.89 

 
RPI and RPIX inflation are strongly positively correlated, with a correlation coefficient of 
0.89. This correlation was taken as the contemporaneous correlation between innovations to 
true inflation and biased inflation, and was therefore used as a basis for calibrating the 
covariance between innovations to actual and biased inflation (see the final row of Table 2).28 
Overall, the results suggest a relatively small indexation bias: innovations to RPIX and RPI 
inflation are closely correlated and their variances are similar. For completeness, Table 2 lists 
calibrated values in the money supply rules and the stochastic processes for biased inflation. 
 

Table 2 – Calibrated values in money supply rules and biased inflation 
Model 

parameter 
Role in the model Calibrated value 

π×30  Inflation target over 30 
years 

0.75 

)var( ,tiε  Yearly money supply 
 innovation variance 

41044.1 −×  

)var( ,
ind
tiε  Yearly biased inflation  

innovation variance  
41013.2 −×  

),cov( ,,
ind
titi εε  Yearly covariance  

between innovations 
41056.1 −×  

( ))()(89.0 ,,
ind
titi sdsd εε ××=  

 
 
3.2 Calibrating stochastic productivity 
 
When calibrating the stochastic process for productivity, it is important to take into account 
the 30-year horizon of the OLG model. In order to do so, a typical quarterly calibration from 
the real business cycle (RBC) literature is extended over a 30-year horizon.  
 

                                                 
28 Note that for correlated random variables X and Y, )()(),(),cov( YsdXsdYXcorrYX ××= . 



 19

Consider an AR(1) process for log productivity at a quarterly horizon q: 
 
         qqqmeanqqq eAAA ++−= −1, lnln)1(ln ρρ    10 << qρ                              (39) 

 

where qe  is an IID-Normal productivity innovation with mean zero and variance 2
qσ .  

 
By substituting repeatedly for lagged productivity terms, productivity over a 30-year (i.e. 
120-quarter) horizon can be obtained as follows: 

                           ∑
=

−− ++−=
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0
120

120
,

120 lnln)1(ln
j

jq
j
qqqmeanqqq eAAA ρρρ                            (40) 

Therefore, productivity in any given period t is given by 
 
        ttmeant eAAA ++−= −1lnln)1(ln ρρ                         (41) 

where )1/(ln)1(ln ,
120 ρρ −−≡ meanqqmean AA ,  120

qρρ ≡  and ∑
=

−≡
119

0j
jq

j
qt ee ρ . 

 
Equation (41) is used as basis for calibrating the stochastic productivity process in the OLG 
model. Many papers in the RBC literature (e.g. King and Rebelo, 2000) use quarterly 
calibrations of productivity in which the autoregressive parameter is slightly below one and 
the innovation standard deviation is less than 0.008. Gavin, Keen and Pakko (2009) set the 
innovation standard deviation at 0.005, consistent with the lower volatility of output in the 
‘Great Moderation’ period. The calibration here uses the same standard deviation as their 
paper (i.e. 005.0=qσ ), and an autocorrelation coefficient of 996.0=qρ  that is consistent 

with the bulk of the RBC literature. Consequently, the calibrated 30-year productivity process 
has a first-order autocorrelation of 0.618 and an innovation standard deviation of 0.04398.29 
Finally, steady-state productivity was set equal to 0.75. The calibration of the productivity 
process is summarised in Table 3. 
 

Table 3 – Calibration of stochastic productivity 
Model 

parameter 
Role in the model Calibrated 

value 
ρ  Persistence in productivity at a  

30-year horizon 
0.618 

eσ  Productivity innovation standard 
deviation (at a 30-year horizon) 

0.04398 

meanA  Steady-state level of productivity  0.75 

 
 
                                                 
29 In particular, 005.0)996.01)(996.01( 12240 ×−−= −

eσ .  This expression uses the fact that 

)1/()1()...1()var( 22240223842
qqqqqqqte ρσρσρρρ −−=++++= . 
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3.3 Calibrating the indexation lag 
 
The random innovation tv  is used to proxy for the impact of an indexation lag on the ex post 

real return on indexed bonds. In order to calibrate its standard deviation, a number of points 
should be considered. First, given the specification of the real return on indexed bonds, it 

should have the same units as the term )1/()1( t
ind
t ππ ++ which it appears in brackets 

alongside. Hence tv  is interpreted as the impact of the indexation lag, in percentage points, 

on the inflation-indexed component of an indexed bond. Second, the variance of tv  should 

reflect the volatility of the inflation rate to which indexed bonds are linked, measured over a 
horizon defined by the length of the indexation lag. Given that the indexation lag on the 
majority of outstanding index-linked gilts in the UK is 8 months, this variance was estimated 
using the rate of RPI inflation measured over a three-quarter horizon.30 
 
The following regression was estimated: 
 

         3:3: −− +=∆ qqqq c επ                                                (42) 
 

where 3: −∆ qqπ  is the differential between RPI inflation in quarter q and RPI inflation in 

quarter q-3, and 3: −qqε  is the regression residual (and the empirical counterpart to tv ).     
 

Table 4 – RPI indexation lag regression results 
Parameter/test Result 

c  
(s.e.) 

0.0002 
(0.0017) 

Standard deviation of the 
residual, i.e. )( 3: −qqsd ε  

0.0121 

Jarque-Bera test on 3: −qqε   
 (prob. value) 

10.80 
(0.005) 

 
 
Table 4 shows the regression results. The constant term is insignificant – offering support to 
the assumption that tv  is mean zero – but the Jarque-Bera test marginally rejects the 

assumption that the residual is normally-distributed at the 1 per cent significance level. The 
regression residual standard deviation is equal to 0.0121, or 1.2 per cent. The variance for tv  

was therefore calibrated at 000146.00121.0 22 ==vσ .  

 

                                                 
30 Using 3 quarters (9 months) meant that the same quarterly RPI data could be used in estimation throughout 
the paper. 
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3.4 Model parameter calibration 
 
Table 5 summarises the calibration of the remaining parameters in the model. The CIA 
coefficient θ , the share of money holdings in consumption when young, was calibrated to 
roughly match UK data. In particular, notes and coins in circulation amount to 3 to 4 per cent 
of annual UK GDP over the past decade (ONS Financial Statistics, 2010), with total 
household consumption accounting for around 65 per cent of GDP (ONS Blue Book, 2010). 
On this basis, θ  was set equal to 0.10.  
 
The coefficient of relative risk aversion was set equal to 3. This value lies in the mid-range of 
calibrated values considered plausible in the literature. It is higher than a standard RBC 
calibration of unity, but somewhat lower than values typically used in the open-economy 
literature that attempts to match exchange rate volatility and persistence (e.g. Chari, Kehoe 
and McGrattan, 2002; Kocherlakota and Pistaferri, 2007), or the literature that attempts to 
resolve asset-pricing puzzles by appealing to relatively levels of high risk aversion (e.g. 
Bansal and Yaron, 2004). The value of 3 is close to the estimate of 3.5 reached by Tödter 
(2008) using US stock return data from 1926 to 2002. 
 
The long run target level of government spending was set equal to 20 per cent of steady-state 
GDP. This long run target is similar to the level of UK government expenditure as a 
percentage of GDP (ONS Blue Book, 2010). The parameter α , the elasticity of output with 
respect to capital, was set at 375.0 , which lies in the mid-range of calibrated values in the 
RBC literature.31 Young consumers’ endowment income was set so that steady-state GDP (or 
aggregate income) was equal to 2. As a result, consumption levels, government spending and 
asset holdings can be interpreted as proportions of GDP after division by 2. 

 
Table 5 –Calibration of model parameters 

Model 
parameter 

Role in the model Calibrated value 

θ  Proportion of consumption when young 
held as money balances 

0.10 

δ  Coefficient of relative risk aversion 3 
ϖ  Endowment income of young consumers 1.641 
 *g  Long run government spending target 0.40 
α  Elasticity of output produced in old age 

with respect to capital 
0.375 

 
 

                                                 
31 Papers in the RBC literature typically combine capital and labour in a Cobb-Douglas production function, so 
that α  is the share of capital income in output. Many papers in this literature set 3/1≈α , but some papers 
use somewhat higher calibrations (e.g. Perli and Sakelleris, 1998; King, Plosser and Rebelo, 1988). 
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3.5 Deterministic steady-state  
 
The deterministic steady-state values of key variables under the baseline calibration are 
reported in Table 6. 32  

Table 6 – Key variables at steady-state 
Model variable Steady-state value 

Ytc ,  0.730 

Otc ,  0.730 

)( s
t

d
t bb =  0.343 

   )( s
t

d
t mm =  0.073 

tk  0.140 

tπ  0.75 
                                           Note: Steady-state GDP is equal to 2 

 
Aggregate consumption accounts for 73 per cent of steady-state GDP (which approximately 
matches developed economies) and is split equally between consumption by young and old 
generations. Money holdings are 3.7 per cent of GDP (i.e. 0.073/2), which is similar to the 
UK share of notes and coins in GDP over the past decade. Steady-state inflation is equal to 
the 30-year inflation target of 0.75, or a 75 per cent increase in prices over a 30-year horizon. 
Since there is full depreciation of capital, investment is given by the level of capital holdings. 
Steady-state investment is thus 7 per cent of GDP, with the remaining 20 per cent of GDP 
accounted for by government spending. Steady-state capital holdings are 41 per cent of bond 
holdings, which is similar to the average ratio of investment to government bonds in the UK 
over the past decade (ONS Blue Book, 2010; ONS Financial Statistics, 2010). 
 
3.6 Solving the model 
 
The model is solved using second-order approximation in Dynare++ (Julliard, 2001). It is 
important to use non-linear approximation methods for two reasons. First, linearizing the 
model would remove covariance risk, thus eliminating risk-premia in the returns on indexed 
and nominal bonds. Second, when comparing social welfare across alternative monetary 
policy regimes, linear approximation can easily lead to an inaccurate ranking of policies 
because it neglects the impact of second-order terms on the stochastic means of endogenous 
variables in the model. For instance, Kim and Kim (2003) present a simple two-agent 
economy in which linearization leads to the spurious conclusion that autarky delivers higher 
social welfare than full risk sharing. In the model at hand, spurious conclusions regarding 
optimal indexation could be drawn if linear approximation methods were employed.  
 

                                                 
32 Since steady-state returns are equalised across indexed and nominal bonds, the deterministic steady-state is 
invariant to the indexation share a.   
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In order to solve for the optimal indexation shares under IT and PLT, a method akin to grid 
search was employed. The model was first simulated for indexation shares from 0 to 1, with 
social welfare recorded for each simulation. Based on preliminary analysis, the searchable 
range was then narrowed down in order to identify the optimal indexation shares exactly. For 
each indexation share, social welfare was calculated using 1000 simulations of 5000 periods 
each, with the simulation seed randomly chosen in each simulation.   
 
4. Optimal indexation 
 
The government chooses the mix of indexed and nominal bonds to maximise social welfare 
subject to its budget constraint, its long run target for government spending, consumers’ first-
order conditions for optimal saving, the money supply rule, and the model’s other 
equilibrium conditions. Consequently, the policy being studied is a Ramsey policy: the 
government can commit and takes into account the optimal reactions of consumers when 
making its optimal indexation choice.  
 
Social welfare is given by Equation (37), but that expression is cumbersome to work with 
analytically. Hence consider the following equation: 
 

                 ( ))()( ,, OtYt
society cucuEU +=                                               (43) 

 
This expression arises if the utility of the initial old is excluded from social welfare (or if the 
limit of Equation (37) is taken as the number of generations T tends to infinity). The reason is 
that all generations, except the initial old, are ex ante homogenous and hence have the same 
long run average level of utility. Given that the model is solved using a second-order 
perturbation method, the optimal indexation problem faced by the government can then be 
formulated using a second-order Taylor expansion of Equation (43) around unconditional 
mean consumption levels.  
 
In particular, the optimal indexation problem can be stated as follows: 
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the IT or PLT money supply rule; and the other model equations listed in Appendix D; 
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welfare function with respect to Ytc ,  ( Otc , ), evaluated at YtEc ,  ( OtEc , ). 
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In order to gain some intuition for the factors driving optimal indexation, consider a first-
order Taylor expansion of the first term on the right hand side of Equation (44) around the 
deterministic steady-state.33  
 
Using this approximation results in the following social welfare criterion: 
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where OtYt EcEc ,, +  , the average level of aggregate consumption, is approximately invariant 

to the indexation share. 
 
The invariance of the average level of aggregate consumption to the indexation share can be 
seen by summing the budget constraints of young and old generations to arrive at the goods 

market-clearing condition, or αϖ 1,, −+=+++ ttttOtYt kAgkcc .  Taking the unconditional 

expectations operator through this condition gives ( )tttOtYt kkAEgEcEc −+−=+ −
αϖ 1,, * , 

which is approximately invariant to the indexation share a since capital is a pure real asset 
whose return is uncorrelated with real bond returns. The key to the invariance result is that 
the government must meet its long run government spending target of g*, so that the long run 
average level of government spending tEg  is independent of the indexation share.  

 
For instance, supposing that nominal bonds have a higher risk premium than indexed bonds 
(as is the case under the baseline calibration), a marginal reduction in indexation will, ceteris 
paribus, increase average consumption by old generations. However, a marginal reduction in 
indexation will reduce average government spending (by exactly the same amount), because 
the average cost of issuing government debt has risen. Therefore, in order to meet the long 
run government spending target g*, the tax rate on young generations would need to increase. 
The consequent reduction in average consumption by young generations will offset the 
increase that accrues to old generations, so that the average level of aggregate consumption is 
unchanged.34   
 
Given that the first term on the right hand side of Equation (45) is invariant to the indexation 
share, the government is effectively minimising a loss function in consumption volatility – 
that is, optimal indexation is driven by a consumption insurance motive.  

                                                 
33 This approximation is employed only to provide intuition for the results that follow. When the model was 
simulated the full expression for social welfare was evaluated. 
34 Of course, a similar argument applies for an increase in indexation.  
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Thus, using notation employed by Woodford (2003), the optimal indexation problem can be 
expressed as follows:                     
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where  t.i.p. stands for ‘terms independent of policy’. 
 

The key term in Equation (46) is given by )var()2/1( ,Ot
society
cc cU
OO

. The reasoning is as follows. 

First, the consumption variance across young generations is somewhat smaller than the 
consumption variance across old generations, since consumption volatility for the young 
arises only indirectly through small portfolio substitution effects due to fluctuations in assets’ 
expected returns, whilst consumption by the old is impacted directly by ex post shocks to 
asset returns. Second, consumption volatility across old generations depends directly on the 
indexation share, whilst the indexation share has only a small indirect impact on consumption 
volatility across young generations.35  
 
In Appendix E it is shown that under reasonably general conditions (which are satisfied by 

the baseline calibration), the driving term )var()2/1( ,Ot
society
cc cU
OO

will be minimised by 

choosing the indexation share so that the consumption variance across old generations is 
(approximately) minimised, or 
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Equation (47) can therefore be used to derive an approximate expression for the optimal 
indexation share. 
 
The key terms in the consumption variance across old generations are given by36 
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where α
1, −≡ ttOt kAy  is output produced by old generations and n

t
i
tt raarr )1( −+≡  is the 

overall bond portfolio return.  
 

                                                 
35 In fact, consumption volatility across young generations is independent of the indexation share under IT 
because expected inflation is constant. Under PLT, however, expected inflation is time-varying, so the young 
undertake substitution between money and non-monetary assets. As a result, consumption volatility across 
young generations is not independent of the indexation share, though numerically the impact of the indexation 
share on volatility is trivial.     
36 Note that since capital is a claim to real output, its real return is uncorrelated with indexed and nominal bond 
returns, and the real return on money balances.  
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Differentiating Equation (48) with respect to the indexation share and setting the result equal 
to zero gives an approximate expression for the optimal indexation share a*.  
 
Appendix F shows that this expression is as follows: 
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Intuitively, the optimal indexation share is (i) increasing in the return variance on nominal 
bonds, (ii) decreasing in the return variance on indexed bonds, and (iii) increasing 
(decreasing) in the extent to which the real returns on nominal (indexed) bonds and money 
covary. Notice also that full indexation will not, in general, be optimal (unless real returns on 
indexed and nominal bonds are themselves strongly positively correlated), since holding 
nominal bonds will diversity consumption risk in old age. All four of these predictions are 
confirmed by the simulation results in the next section. 
     
5. Simulation results 
 
Panel (a) of Figure 3 shows how social welfare varies with the indexation share under IT, and 
Panel (b) shows the corresponding variation in consumption volatility across old generations. 
An indexation share of 76 per cent maximises social welfare. As expected, the optimal 
indexation share is driven by consumption volatility across old generations. A relatively high 
indexation share is optimal under IT because long-term inflation volatility is substantial, so 
that nominal bonds are a relatively poor store of value compared to indexed bonds. Indeed, 
the simulated real return variance on nominal bonds is almost two-and-a-half times as high as 
on indexed bonds (see Table 8).  
 
Despite this substantial return volatility differential, it is optimal for consumers to hold some 
nominal bonds in their portfolios for diversification reasons, as there is only a weak 
correlation between real returns on indexed and nominal bonds.37 The result that optimal 
indexation is relatively high under IT is consistent with the findings of Minford, Nowell and 
Webb (2003) and Amano, Ambler and Ireland (2007) in the context of optimal wage 
indexation. 
 

                                                 
37 In fact, there is a slightly negative correlation between bond returns. The reason is that unanticipated inflation 
will tend to reduce the real return on nominal bonds but increase the real return on indexed bonds, since biased 
inflation will typically ‘overshoot’ true inflation due to its higher variance. 
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Fig. 3 – Optimal indexation under IT 

 
Figure 4 shows the impact of the indexation share on social welfare and consumption 
volatility under PLT. Optimal indexation is somewhat lower than under IT at 26 per cent (see 
Panel (a)), indicating that it is optimal for almost three-quarters of bond holdings to be in the 
form of nominal bonds. The reasoning for this result can be seen from Panel (b), which shows 
that consumption volatility across old generations is minimised at an indexation share close 
to 26 per cent. Hence nominal bonds become a relatively better store of value than in the IT 
case, enabling old generations’ real consumption risk to be reduced by substitution towards 
nominal bonds and away from indexed bonds.  
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Fig. 4 – Optimal indexation under PLT 
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The IT and PLT optimal indexation results are summarised in Table 7, which reports the 
indexation shares that maximise social welfare and also the indexation shares at which 
consumption volatility across old generations is minimised. The optimal indexation shares do 
not coincide exactly with the ones that minimise consumption volatility because the result 
that minimising consumption volatility maximises social welfare holds only as an 
approximation (which was invoked analytically to provide intuition). These simulation results 
suggest, however, that the approximation is a reasonably good one. 
 

Table 7 – Optimal indexation shares under IT and PLT 
Monetary 

policy 
Optimal indexation 

share 
Indexation share at which 

)var( ,Otc  is minimised 

IT 76% 77% 
PLT 26% 27% 

 
There are two factors driving the substantial reduction in optimal indexation under PLT. First, 
the reduction in (long-term) inflation uncertainty under PLT benefits holders of nominal 
bonds disproportionately, because real return volatility on nominal bonds is driven purely by 
inflation risk, whereas indexed bonds are also impacted by the indexation lag – a  source of 
real return volatility that remains unchanged under PLT. As a result, real return volatility falls 
more sharply on nominal bonds than indexed bonds, giving consumers a consumption-
insurance incentive to substitute towards nominal bonds. The approximate formula for the 
indexation share in Equation (49) confirms that a reduction in the nominal-to-indexed return 
variance ratio will reduce optimal indexation.38 The marked reduction in this ratio under PLT 
can be seen clearly from Table 8. The standard deviation on indexed bonds is approximately 
halved from 230 basis points under IT to 120 under PLT, but the standard deviation of the 
return on nominal bonds falls to less than one-fifth of its IT value, from 360 to 70 basis points.  
 

Table 8 – Real return standard deviations 
Monetary 

policy 
Indexed 
Bonds 

Nominal 
bonds 

IT 230 360 
PLT 120 70 

           Notes: Figures are in basis points and are rounded 
 
Second, the lower indexation share under PLT is driven by indexation bias. The reasoning is 
as follows. With consumers holding both indexed and nominal bonds in their portfolios for 
diversification reasons, covariance risk between bond returns and the real return on money 
affects consumption volatility in old age, and hence optimal indexation. Nominal bonds 
perform relatively better under PLT in terms of this covariance risk, because the real return 

                                                 
38 The easiest way to obtain this result is to divide the numerator and denominator of Equation (49) by 

)var( 1
s
t

n
t br −  and then solve for the optimal share of nominal bonds, *1 a− . 
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on nominal bonds is strongly positively correlated with the real return on money balances 
under IT, but only weakly so under PLT. There is thus an additional diversification motive 
for holding nominal bonds under PLT: nominal bonds will tend to pay a relatively low return 
when the real return on money is high, therefore stabilising consumption in old age.  
 

Table 9 – Real return correlations between assets 
Correlation ni rr ,  mi rr ,  ki rr ,  kn rr ,  mn rr ,  

IT -0.11 -0.11 0 0 1.00 
PLT -0.03 -0.04 0 0 0.08 

                   Note: Figures are rounded to two decimal places 
 
Table 9 shows that the nominal bonds-money real return correlation falls substantially from a 
perfect positive correlation of 1 under IT to only 0.08 under PLT, whilst other return 
correlations are largely unchanged.39  That a lower correlation between the real return on 
nominal bonds and the real return on money will reduce optimal indexation can be seen 
formally from the approximate expression in Equation (49). The lower correlation under PLT 
can be explained by the fact that expected inflation becomes time-varying. This has the effect 
of ‘diluting’ the positive correlation between the real return on nominal bonds and the real 
return on money balances, because nominal bonds provide insurance against anticipated 
fluctuations in inflation, whilst money balances do not.40  
 
In order to investigate the source of the reduction in optimal indexation under PLT, the 
indexation differential was decomposed into indexation bias and indexation lag components: 
 

                
44344214434421

diff. bias Indexation

                 
diff. lag Indexation

lag nolag no
PLTITPLTITPLTIT aaaaaa −+∆−∆=−                (50) 

where, for ),( PLTITj∈ , ja  is the fully optimal indexation share; ja lag no  is the optimal 

indexation share in the absence of lagged indexation; and jjj aaa lag no−≡∆  is the differential 
in optimal indexation due solely to the presence of an indexation lag. 
 
Table 10 reports the results from the decomposition of IT-PLT indexation differential. 
 

                                                 
39 There is a perfect positive correlation under IT because expected inflation is constant, so that a nominal bond 
is equivalent to money plus a constant nominal ‘mark-up’ for expected inflation.   
40 Under PLT, a nominal bond is equivalent to money plus a time-varying nominal ‘mark-up’ that captures 
fluctuations in expected inflation. Since innovations to inflation are serially-uncorrelated, expected inflation 
need not be strongly correlated with actual inflation – hence explaining the relatively weak positive correlation.    
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Table 10 – Decomposition of the indexation differential 
Indexation share/differential IT PLT 

Optimal indexation share, ja  76 26 

IT-PLT differential, PLTIT aa −  50 

Optimal with biased indexation only, ja lag no  82 76 

IT-PLT indexation bias differential 6 
IT-PLT indexation lag differential 44  

   

 
Only 6 per cent of the indexation differential between IT and PLT is due to indexation bias, 
with the remaining 44 per cent due to lagged indexation. The impact of the indexation lag is 
substantial because long-term inflation risk is reduced by an order of magnitude under PLT. 
This has the effect of reducing return volatility on nominal bonds disproportionately because 
real return risk on nominal bonds results solely from inflation risk, whilst indexed bonds are 
also subject to risk resulting from the indexation lag (which is unchanged under PLT). On the 
other hand, the role played by indexation bias in the IT-PLT indexation differential is 
relatively small. Intuitively, as money holdings are small, the reduced correlation between 
nominal bond returns and the return on money balances has relatively little impact on 
consumption volatility, or, therefore, on the optimal indexation share. Moreover, the extent of 
indexation bias captured in the model is relatively small since true and biased inflation are 
strongly positively correlated and have similar variances.  
 
6. Conclusions and policy implications 
 
An important finding from past literature is that optimal indexation of wage and debt 
contracts depends crucially on the extent of nominal volatility over the contracting horizon.  
Motivated by this literature, this paper investigated the link between optimal indexation of 
government bonds and monetary policy, with a particular focus on long-term nominal 
volatility. In order to do so, the paper set out an overlapping generations model in which each 
period lasts 30 years and young consumers save for old age using indexed and nominal 
government bonds whose real payoffs are vulnerable to long-term inflation risk. Consumers 
also hold money and productive capital in their portfolios. The key feature of the model is 
that indexation of government bonds is determined endogenously in response to monetary 
policy as part of an optimal commitment Ramsey policy implemented by the government.  
 
In terms of monetary policy, two policies with drastically different long-term implications 
were considered: inflation targeting and price-level targeting. Monetary policy is 
characterised by a large degree of long-term nominal uncertainty under inflation targeting due 
to base level drift, but nominal uncertainty is minimal under price-level targeting, because the 
price level is trend-stationary. Past literature has reached the conclusion that optimal 
indexation increases with nominal volatility (e.g. Gray, 1976; Meh, Quadrini and Terajima, 
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2009). This literature therefore predicts that optimal indexation will be lower under price-
level targeting than inflation targeting, as found in the context of wage indexation by Minford, 
Nowell and Webb (2003) and Amano, Ambler and Ireland (2007). The primary aim of this 
paper was determine whether this same conclusion holds with respect to optimal indexation 
of government debt. Crucially, and in contrast to past literature, the model set out in this 
paper requires that the government explicitly finance issuance of bonds when (i) indexed 
bonds are imperfectly linked to inflation, and (ii) bond risk-premia arise endogenously in 
response to monetary policy. 
 
The main finding from the model was that optimal bond indexation is substantially lower 
under price-level targeting. The reasoning runs as follows. Long-term inflation uncertainty is 
substantial under inflation targeting because of base-level drift: even if the central bank 
misses its inflation target by only a small percentage in each year, these misses can 
accumulate and become large after 30 years. Consequently, nominal bonds are a relatively 
poor store of value as compared to indexed bonds. Optimal indexation is therefore relatively 
high under inflation targeting at 76 per cent. Under price-level targeting, by contrast, past 
deviations from the inflation target do not accumulate over time, so that long-term inflation 
volatility falls by an order of magnitude. Nominal bonds therefore become a relatively better 
store of value as compared to indexed bonds, enabling consumption risk in old age to be 
reduced via substitution towards nominal bonds and away from indexed bonds. Given the 
substantial reduction in inflation risk, optimal indexation falls rather sharply to 26 per cent. 
Crucially for these results, the model captures two imperfections in indexation that are 
calibrated to the UK case, viz. indexation bias and lagged indexation.  
 
In order to investigate the source of the reduction in optimal indexation under price-level 
targeting, the indexation differential was decomposed into ‘indexation bias’ and ‘indexation 
lag’ components. This decomposition revealed that most of the reduction in optimal 
indexation under price-level targeting was due to the indexation lag, and only around one-
tenth due to indexation bias. The substantial reduction due to the indexation lag arises 
because its impact on indexed bonds’ real return volatility is common to both monetary 
policy regimes; hence, when inflation risk is reduced under price-level targeting, real return 
volatility on nominal bonds falls disproportionately compared to indexed bonds, giving 
consumers an incentive to substitute from indexed bonds to nominal bonds. The reduction 
due to the indexation lag is substantial because inflation volatility falls markedly under price-
level targeting as a consequence of the 30-year contracting horizon captured by the model.  
 
Indexation bias plays only a small role in reducing optimal indexation. Indeed, the impact 
from indexation bias arises only indirectly through money – the other nominal asset in 
consumers’ portfolios. Specifically, price-level targeting dilutes the positive correlation 
between the real return on nominal bonds and the real return on money because, in contrast to 
inflation targeting, expected inflation fluctuates in response to past shocks, and nominal 
bonds protect consumers’ savings from anticipated inflation fluctuations whilst money does 
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not. As a result, consumption risk in old age is reduced when consumers hold a higher 
proportion of nominal bonds in their portfolios. The small reduction in optimal indexation 
due to indexation bias can be explained by the fact that consumers’ holdings of money 
balances are relatively low, so that fluctuations in the real return on money are not a major 
source of consumption risk.  
 
The result that optimal indexation of government bonds can vary substantially with monetary 
policy has a number of important policy implications. Firstly, models that do not endogenise 
indexation of government debt in response to monetary policy are vulnerable to the Lucas 
critique and may give rise to seriously misleading results. As such, endogenising indexation 
in a microfounded way is an important task for future research (Ambler, 2009). Secondly, as 
the results in this paper arise from comparing inflation targeting and price-level targeting 
policies, there are potential implications for central banks like the Bank of Canada that are 
considering switching from inflation targeting to price-level targeting in the future. Most 
notably, endogenising indexation in quantitative models used for policy analysis may make 
price-level targeting more or less desirable vis-à-vis inflation targeting. Lastly, the extent to 
which governments are prepared to issue indexed bonds may be influenced considerably by 
monetary policy. The model in this paper can explain why it might be optimal for 
governments to issue both indexed and nominal government debt, but cannot explain fully the 
current low levels of indexation in developed economies. 
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Appendix A – Proof that the CIA constraint binds with strict equality when 1>tR  
 
In this appendix it is shown that the CIA constraint is strictly binding if the gross monetary 
return on a nominal bond exceeds the gross return on money of one. The Lagrangian from the 
main text can be used to derive this result, with allowance made for the possibility that the 
CIA constraint may not hold with strict equality. Consequently, the Lagrangian will 
additionally give rise to Kuhn-Tucker conditions relating to the Lagrange multiplier on the 
CIA constraint.  
 
Proposition: The CIA constraint binds with strict equality when 1>tR  
 
Proof.  
From the main text the first-order conditions for indexed bonds, nominal bonds and money 
holdings are as follows: 
                                                   ( ) t

i
tOttYt rcEc θµδδ += +

−
+

−
1,1,                 (A1) 

   ( ) t
n
tOttYt rcEc θµδδ += +

−
+

−
1,1,                            (A2) 

            ( ) t
m
tOttYt rcEc µθδδ )1(1,1, ++= +

−
+

−                            (A3) 
 
where tµ  is the Lagrange multiplier on the CIA constraint.  
 
The Kuhn-Tucker conditions associated with tµ  are summarised in the following equation: 
 
            { }0)(      and      0 , =−≥ Ytttt cm θµµ                                         (A4) 

   
where the second equation, the complementary slackness condition, implies that the CIA 
constraint will be strictly binding if 0>tµ  for all t.  
 
Using Equations (A2) and (A3), the Lagrange multiplier tµ  will strictly positive iff  
 
                  ( ) ( )m

tOtt
n
tOtt rcErcE 1,11,1 +

−
++

−
+ > δδ   t∀    (A5) 

 
Substitution of the real return on nominal bonds into Equation (A5) gives 
 

        ( ) ( )m
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m
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Dividing Inequality (A6) by ( )m

tOtt rcE 1,1 +
−
+
δ  yields the following necessary condition for the 

nominal interest rate: 
     1>tR ,  t∀                            (A7)
  
Finally, notice that ( ) ( )i

tOtt
n
tOtt rcErcE 1,11,1 +

−
++

−
+ = δδ , such that Inequality (A7) ensures that holding 

indexed bonds is also strictly preferred to holding money, i.e. 
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−
+ > δδ ,     t∀     iff  1>tR                Q.E.D.            (A8) 
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Appendix B – Derivations of the IT and PLT money supply rules from a yearly horizon 
 
Inflation targeting 
 
Consider the following yearly IT money supply rule that aims at a constant inflation target 
and is subject to exogenous monetary innovations in each year i:   
 

         YiYii
ITs

i
ITs

i ccMM ,1,
,
1

, lnlnlnln −− −+++= επ                                      (B1) 
 
where π  is the yearly inflation target and iε  is an IID-normal money supply innovation with 

mean zero and variance 2σ .  
 
To derive a 30-year money supply rule from this yearly specification, substitute repeatedly 
for the lagged money supply term on the right-hand side of Equation (B1) until the following 
30-year money supply rule is reached: 
 

       YiYi
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ji
ITs

i
ITs

i ccMM ,30,
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,
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, lnln30lnln −
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−− −++×+= ∑επ                    (B2) 

 
This equation states that the 30-year growth rate of the nominal money supply has three 
components: a 30-year inflation target π×30 ; the sum-total of 30 separate yearly money 
supply innovations; and the 30-year rate of growth of consumption by the young.  
 
Given that each period t lasts 30 years, Equation (B2) implies that the money supply rule in 
any period t can be represented in the following form:  

 

                                ∑
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ITs

t
ITs

t ccMM επ                           (B3) 

 
where, for ease of exposition, the Gaussian white noise money supply innovations have been 
re-indexed from years 1 to 30, and the time subscript indicates that all 30 innovations belong 
to period t. 
 
Price-level targeting 
 
Consider the following yearly PLT money supply rule that aims at a target yearly (log) price 
level of ipPi ×+= π0

*ln  in each year i: 
 

        YiYiii
PLTs

i
PLTs

i ccMM ,1,1
,
1

, lnlnlnln −−− −+−++= εεπ                            (B4) 
 

where π  is the constant yearly inflation target that is consistent with the target price path, and 

iε  is an IID-Normal innovation with mean zero and variance 2σ  (exactly as in the IT case). 
 



 39

To derive the implied money supply rule over a 30-year horizon, substitute for the lagged 
money supply term on the right hand side of Equation (B4) until the following expression is 
reached:        

     YiYiii
PLTs

i
PLTs

i ccMM ,30,30
,
30

, lnln30lnln −−− −+−+×+= εεπ              (B5) 
 
Given that each period t lasts 30 years, Equation (B5) implies a period t money supply rule of 
the form  
                                YtYttt

ITs
t

ITs
t ccMM ,1,1,30,30

,
1

, lnln 30ln −−− −+−+×=− εεπ                     (B6) 
 
where again the money supply innovations have been indexed to reflect the year in which 
they occur, and the t subscript indicates the period to which the innovations belong. 
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Appendix C: Deterministic steady-state and market-clearing conditions  
 
Deterministic steady state41 
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(from bond supply rule, δδ −− = OY cc  in SS) 
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in rrAk ==−1αα    (from the Euler equations for capital and bonds)                (C17) 
 

meanAA =                                (C18) 

                                                 
41 ssπ denotes the steady-state rate of inflation.  
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Market-clearing conditions 
 
A monetary equilibrium in the OLG economy is a set of allocations 
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=+  solve the maximisation problem of a young 

consumer born at time t; 
 
(2) The goods, money and bond markets clear:  
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(3) The government’s budget constraint and long run government spending target are 
satisfied: 
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Appendix D: Model listing 
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Appendix E – An approximate first-order condition for the optimal indexation problem   
 
In the main text it is argued that the indexation share a will be chosen to approximately solve 

the following problem: 
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 is the absolute value of the second derivative of the social 

welfare function with respect to Otc ,  (evaluated at its unconditional mean)  and  ... pit  stands 
for ‘terms independent of policy’. 
 
The first-order condition for this problem is given by 
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Hence the optimal indexation share will satisfy the following equation: 
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Rearranging Equation (E3) for ac Ot ∂∂ /)var( , yields 
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Hence iff 0/)var( ,, ≈OtOt Ecc , the first-order condition for the optimal indexation share can 
be approximated by42 
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Thus, if the variance of consumption is small relative to its mean, the optimal indexation 
share will approximately minimise consumption volatility across old generations. 
 

                                                 
42 Note that ])[(/ 1,
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n
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i
tOt brrEaEc −−=∂∂  will be close to zero given that indexed and nominal bonds are 

priced to give equivalent expected utility.   
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Appendix F – Deriving an approximate expression for the optimal indexation share 
 
In this appendix, an approximate expression for the optimal indexation share is derived by 
minimising the consumption variance across old generations. As noted in the main text, the 
key terms in this variance are given by 
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where α
1, −≡ ttOt kAy is output produced by old generations and n
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overall return on old generations’  bond portfolios.  
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follows: 
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Minimising Equation (F2) with respect to the indexation share a gives following first-order 
condition: 
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Solving Equation (F3) for the optimal indexation share a* gives the expression reported in 
the main text, i.e. 
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