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PURPOSE: To examine the effect of standard and accelerated corneal collagen crosslinking (CXL)
on corneal enzymatic resistance.

SETTING: School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.

DESIGN: Experimental study.

METHODS: Sixty-six enucleated porcine eyes (with corneal epithelium removed) were assigned to
6 groups. Group 1 remained untreated, group 2 received dextran eyedrops, and groups 3 to 6
received riboflavin/dextran eyedrops. Group 4 had standard CXL (3 mW/cm2 ultraviolet-A for
30 minutes), whereas groups 5 and 6 received accelerated CXL (9 mW/cm2 for 10 minutes and
18 mW/cm2 for 5 minutes, respectively). Trephined central 8.0 mm buttons from each cornea
underwent pepsin digestion. Corneal diameter was measured daily, and the dry weight of 5
samples from each group was recorded after 12 days of digestion.

RESULTS: All CXL groups (4 to 6) took longer to digest and had a greater dry weight at 12 days
(P < .0001) than the nonirradiated groups (1 to 3) (P < .0001). The time taken for complete digestion
to occur did not differ between the standard and accelerated CXL groups, but the dry weights at
12 days showed significant differences between treatments: standard CXL 3 mW > accelerated
CXL 9 mW > accelerated CXL 18 mW (P < .0001).

CONCLUSIONS: Standard and accelerated CXL both increased corneal enzymatic resistance; how-
ever, the amount of CXL might be less when accelerated CXL is used. The precise amount of CXL
needed to prevent disease progression is not yet known.

Financial Disclosure: No author has a financial or proprietary interest in any material or method
mentioned.

J Cataract Refract Surg 2015; 41:1989–1996 Q 2015 The Authors. Published by Elsevier Inc.
on behalf of ASCRS and ESCRS. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Riboflavin–ultraviolet-A (UVA) corneal collagen
crosslinking (CXL) is the first treatment modality
shown to halt the progression of keratoconus1–4 and
other corneal ectatic disorders.4–6 The standard treat-
ment protocol, which was first tested clinically by
Wollensak et al.,1 involves the debridement of the cen-
tral 7.0 mm of the cornea, followed by the application
of riboflavin and a 30-minute exposure to 370 nm
UVA at an energy of 3 mW/cm2. At this fluence, the
rs. Published by Elsevier Inc. on behalf of ASCRS and ESCRS. This
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procedure appears to be safe in terms of endothelial
toxicity, provided the stromal corneal thickness is
greater than 400 mm.7 In addition, beneficial clinical out-
comes in terms of cessation of disease progression and
improvements in visual and topographic parameters
are consistently achieved,1–6,8 with reported follow-
up of 4 to 6 years.9 However, the UVA exposure
time required to achieve the wanted clinical effect,10

coupled with the need to instill riboflavin eyedrops
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for at least 20 to 30 minutes before irradiation
(to achieve a homogeneous stromal uptake of ribo-
flavin11), results in operative times in excess of 1 hour.

Recently, in an attempt to reduce patient treatment
time, accelerated CXL protocols using higher fluences
and shorter exposure times have been postulated. The
envisaged safe and effective use of accelerated CXL is
based on the Bunsen-Roscoe law of reciprocity,12

which predicts that the same subthreshold total cyto-
toxic corneal endothelial UVA dosage can be adminis-
tered by increasing UVA fluencewhile simultaneously
reducing exposure time. At present, published clinical
studies of patients treatedwith accelerated CXL proto-
cols are few; however, they report no adverse effects
associatedwith accelerated treatment and a significant
reduction in both topographic keratometry and
corrected distance visual acuity at up to 46 months
of follow-up.13,14

Spoerl et al.15 demonstrated an increased resistance
of the corneal stroma to enzymatic digestion after stan-
dard CXL, and this has since been replicated by
others.16,17 Because increased activity of proteinase en-
zymes and reduced activity of proteinase inhibitors
have been identified in keratoconic corneas,18,19 this
increased resistance to proteinase digestion is liable
to be an important factor in the protection against
ectatic progression.15,17 Therefore, to complement
previously published studies focusing solely on the
biomechanical changes in the cornea after CXL,20,21

this study investigated the efficacy of standard and
accelerated CXL protocols in terms of their ability to
increase the resistance of the cornea against enzymatic
digestion. Our previous studies have indicated that
riboflavin–UVA causes the formation of crosslinks
not only at the collagen fibril surface but also in the
protein network surrounding the collagen.16 For this
reason, pepsin was selected for this particular study
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because it is a nonspecific endopeptidase that can break
down collagens and proteoglycan core proteins.

MATERIALS AND METHODS

Sixty-six porcine eyes with clear intact corneas were ob-
tained from a local European Community–licensed abattoir
within 6 to 8 hours postmortem. By using a single-edged ra-
zor blade, the entire corneal epithelium was carefully
removed from each eye. A detailed visual inspection was
performed to confirm that the debridement technique had
resulted in complete removal of the epithelium without
damage to the underlying stroma. The central corneal thick-
ness (CCT) of each eye was measured before and after
epithelial debridement using a Pachette2 ultrasonic pachy-
meter (DGH Technology, Inc.). The 66 eyes were randomly
and equally divided into the 6 treatment groups:

Group 1: Untreated controls receiving no eyedrops and
no UVA exposure.

Group 2: Dextran-only controls receiving 20% dextran
T500 eyedrops (Pharmacosmos A/S) every 5 minutes
for 30 minutes and no UVA exposure.

Group 3: Riboflavin-only controls receiving riboflavin
eyedrops (0.1% solution riboflavin-5-phosphate in
20% dextran T-500 solution, Mediocross D, Peschke
Meditrade GmbH) every 5 minutes for 30 minutes
and no UVA exposure.

Group 4: “Standard” 3 mW/cm2 CXL protocol (standard
CXL 3 mW) receiving riboflavin 0.1% eyedrops in 20%
dextran T-500 every 5 minutes for 30 minutes before
exposure of the central 9.0 mm region of the cornea to
UVA light with a fluence of 3 mW/cm2 for 30 minutes
(CCL-365 Vario crosslinking system, Peschke Trade
GmbH). Riboflavin eyedrops were reapplied at
5-minute intervals throughout the period of irradiation.

Group 5: Accelerated 9 mW/cm2 CXL protocol (acceler-
ated CXL 9 mW) receiving riboflavin 0.1% eyedrops
in 20% dextran T-500 every 5 minutes for 30 minutes,
followed by a 10-minute exposure of the central 9.0 mm
region to UVA light with a fluence of 9 mW/cm2 and
reapplied riboflavin eyedrops at 5-minute intervals
during the exposure.

Group 6: Accelerated 18 mW/cm2 CXL protocol (acceler-
ated CXL 18 mW) receiving riboflavin 0.1% eyedrops
in 20% dextran T-500 every 5 minutes for 30 minutes,
followed by a 5-minute exposure of the central
9.0 mm region to UVA light with a fluence of
18 mW/cm2.

Immediately after treatment, the CCT was again
measured. The cornea with a 4.0 to 5.0 mm scleral rim was
then dissected from each globe, wrapped tightly in Clingfilm
(to prevent moisture loss), and refrigerated until all treat-
ments were complete. An 8.0 mm corneal button was tre-
phined from the center of each cornea using a disposable
skin biopsy punch (ref BP-80F, Kai Europe GmbH). The
corneal buttons were weighed, then placed in individual
plastic tubes, each containing 5 mL of pepsin solution, and
incubated in a water bath (VwB6, VWR International bvba)
at a temperature of 23�C. The pepsin solution was made
of 1 g of 600 to 1200 U/mg pepsin from porcine gastric
mucosa (Sigma-Aldrich Co. LLC) in 10 mL 0.1 M hydrochlo-
ric acid at pH 1.4. Previous studies15 have shown that
changes in corneal disk thickness are not a reliable indicator
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of the rate of enzymatic digestion because of the considerable
stromal swelling that occurs in the vertical direction within
24 hours of immersion in pepsin digest solution. Because
the diameter of the anterior surface of each corneal button
is unaffected by changes in stromal hydration,15 this param-
eter was used to monitor the rate of enzymatic digestion in 6
of the corneas from each treatment group. Measurements of
anterior surface diameter were made using an electronic dig-
ital caliper (model CM145 4500360, Clarke International) at
24 hourly intervals until complete digestion had occurred.
Because the diameter was found to vary slightly between
different meridians of an individual specimen, the average
of the major axis and minor axis diameter of each corneal
button was recorded at each time point and statistically eval-
uated. The definition of complete digestion was the point
at which the specimen could no longer be distinguished
from the surrounding pepsin solution, even under micro-
scopic examination.

To further assess the effect of each treatment on enzymatic
resistance, 5 corneal disks from each group were removed
from the pepsin digest solution after 12 days and placed in
a 60�C oven until a constant dry weight was obtained. The
average corneal dry weight (which represents the mass of
undigested tissue) was calculated for each group.
Statistical Analysis
Measurements of corneal thickness (before and after treat-
ment), corneal disk diameter, dry weight, and complete
digestion time were statistically analyzed using a 1-way
analysis of variance test. Post hoc Bonferroni comparisons
were used to isolate significant interactions. All statistical an-
alyses were performed with Statistical Package for the
Social Sciences software (SPSS Statistics 20, International
Business Machines Corp.). A P value less than 0.01 was
considered to be significant. Data are presented in the results
as the mean G standard deviation. The observed power
computed using a equal to 0.05 was 1, demonstrating that
the sample size was sufficient.

RESULTS

Measurements of CCT before and after epithelial
removal and after each stage of treatment are shown
in Table 1. No statistically significant differences in
Table 1. Central corneal thickness before and after epithelial removal a

Groups
Before Epithelial
Removal (mm)*

After Ep
Remova

Untreated 830 G 46 739 G

Dextran only 821 G 41 721 G

Riboflavin–dextran only 775 G 45 676 G

SCXL 3 mW 792 G 48 694 G

ACXL 9 mW 820 G 38 716 G

ACXL 18 mW 807 G 32 706 G

ACXL Z accelerated crosslinking; NA Z not applicable; SCXL Z standard crossl
*Data are given as mean G standard deviation.
†Percentage change from corneal thickness postepithelial removal to posttreatmen
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corneal thickness were observed between the groups
either before or after epithelial removal. However,
there was a significant reduction in corneal thickness
after administration of dextran-containing solutions
in both group 2 (20% dextran) and group 3 (riboflavin
0.1%–dextran 20%) (P ! .0001). Application of the
riboflavin solution (containing dextran) to the deepi-
thelialized cornea (group 3) resulted in a significantly
greater reduction in corneal thickness than application
of the dextran-only solution (group 2) (P ! .001). A
significant reduction in corneal thickness was
observed after CXL in groups 4, 5, and 6 (P ! .0001).
Because the post-treatment thickness of the irradiated
corneas (groups 4, 5, and 6) did not differ from that of
the nonirradiated riboflavin–treated corneas (group 3),
the corneal thinning in CXL may be attributed to the
application of riboflavin rather than to UVA exposure.

An approximately 10-fold increase in the thickness of
the corneal disk, as a result of stromal swelling in the
posterior–anterior direction,was observed in all corneal
buttons within 24 hours of submersion in pepsin digest
solution (Figure 1). After 1 week of digestion, the
anterior portion of each treated and untreated corneal
button had separated from the posterior portion.
Once detached, the posterior stroma was rapidly di-
gested (within 10 days); however, the anterior stromal
button persisted considerably longer and maintained
its form sufficiently to obtain reliable measurements
of its changing diameter during the digestion process.

Figure 2 shows the summed diameters of 6 corneal
disks within each treatment group as a function of
incubation time in pepsin solution. Statistical analysis
revealed no significant difference in either the mean
corneal button diameter of nonirradiated specimens
(groups 1, 2, and 3) at any timepoint during digestion
or in the time taken for complete digestion to occur
(Table 2). Similarly, in the irradiated specimens, no sig-
nificant difference in these parameters was detected
nd after treatment.*

Central Corneal Thickness

ithelial
l (mm)* Posttreatment (mm)* Change (%)†

45 NA NA
39 602 G 41 �17
45 508 G 39 �24.9
50 494 G 28 �28.8
40 514 G 31 �28.1
34 495 G 34 �29.9

inking

t
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Figure 1. Corneal disks from left to right: untreated (U), riboflavin–dextran only (R), standard CXL 3 mW (S3), accelerated CXL 9 mW (A9), and
accelerated CXL 18mW (A18) before (a) and after 1 day (b), 2 days (c), and 12 days (d) of immersion in pepsin digest solution. All corneal buttons
are swollen after 1 day in pepsin digest solution (b). After 2 days of digestion, the anterior curvature has been lost in the untreated corneas but
remains intact in the crosslinked corneas (c). After 12 days, all nonirradiated buttons have been completely digested and only the anterior portion
of the crosslinked corneas remain.
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between specimens treated with standard CXL (group
4) or acceleratedCXL (groups 5 and 6). The diameter of
the corneal disks in the CXL-treated groups (4, 5, and
6) was, however, significantly higher than that in the
nonirradiated specimens (groups 1, 2, and 3) at all
daily timepoints after 8 days (P ! .0001) (Figure 2),
and the time required for complete digestion to occur
was significantly longer (P ! .0001) (Table 2). By
12 days all nonirradiated corneas had been completely
digested, but the mean diameter of the CXL-treated
eyes (groups 4, 5, and 6) had decreased by only
27.2%, 27.0%, and 26.6% in the standard CXL 3mW,
accelerated CXL 9mW, and accelerated CXL 18 mW
groups, respectively.

At day 0, there was no significant difference be-
tween the mean wet weight of corneal disks in groups
Figure 2. The summed diameter of all corneal disks (n Z 8) in each trea
(ACXL Z accelerated crosslinking; SCXL Z standard crosslinking).
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1, 3, 4, 5, and 6 (P O .14). However, the mean wet
weight of the dextran-only treated corneas (group 2)
was significantly higher than that of the 3 mW stan-
dard CXL (group 4) (P ! .03) and 9 mW accelerated
CXL treated corneas (group 5) (P ! .03) (Table 3).

Measurements of corneal disk dry weight after 12
days of digestion showed a statically significant differ-
ence between irradiated and nonirradiated corneas
(P ! .0001) and between irradiated corneas treated
with 3 mW, 9 mW, or 18 mW accelerated CXL (P !
.0001) (Table 3). The standard CXL 3 mW-treated cor-
neas had a statistically higher mean dry weight than
the 9 mW and 18 mW accelerated CXL-treated corneas
(P! .0001) and the 9 mW accelerated CXL group had
a higher dry weight than the 18 mW accelerated CXL
group (P ! .003) (Table 3).
tment group shown as a function of time in pepsin digest solution
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Table 2. Time taken for the complete digestion of treated and
untreated corneal buttons.

Group

Time Taken for Complete Digestion (Days)

Minimum Maximum Mean G SD

Untreated 10 11 10.5 G 0.55
Dextran only 10 11 10.5 G 0.55
Riboflavin–

dextran only
9 11 9.83 G 0.75

SCXL 3 mW 24 26 24.7 G 1.03
ACXL 9 mW 23 26 24.7 G 1.03
ACXL 18 mW 24 27 24.8 G 0.98

ACXL Z accelerated crosslinking; SCXL Z standard crosslinking

Table 3. Corneal disk weight before and after 12 days of pepsin
digestion.

Group
Day 0

(Wet Weight) (g)*
Day 12

(Dry Weight) (g)*

Untreated 0.0540 G 0.0050 0 G 0
Dextran only 0.0563 G 0.0055 0 G 0
Riboflavin–dextran only 0.0477 G 0.0047 0 G 0
SCXL 3 mW 0.0438 G 0.0032 0.0041 G 0.0013
ACXL 9 mW 0.0440 G 0.0038 0.0020 G 0.0005
ACXL 18 mW 0.0445 G 0.0018 0.0008 G 0.0003

ACXL Z accelerated crosslinking; SCXL Z standard crosslinking
*Data are given as mean G standard deviation.
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DISCUSSION

Although the precise etiology of keratoconus is un-
known,22 an increased activity of proteinase enzymes
and a reduced activity of protease inhibitors have
been identified in keratoconic corneas.18 This
increased stromal protein digestion is thought to be
an important factor in the resultant corneal thinning
and biomechanical instability seen in keratoconic
eyes.19 Spoerl et al.15 demonstrated an increased resis-
tance of corneal stromal tissue to enzymatic digestion
after CXL, with irradiances of 2 mW/cm2 and
3 mW/cm2 UVA. This increased resistance to protein-
ase digestion after CXL has been replicated by
others16,17 and is likely to be an important factor in
preventing disease progression.15,19

In this study, the enzymatic resistance of
nonirradiated-treated porcine corneas was compared
with that of standard CXL- and accelerated CXL-
treated corneas. Similar to other clinical- and
laboratory-based studies,16,23,24 a significant reduction
in corneal thickness was observed after CXL using an
isotonic riboflavin solution. Because the posttreatment
thickness of the irradiated corneas did not differ from
that of the nonirradiated riboflavin-treated corneas,
the corneal thinning observed during CXL and acceler-
ated CXL may be attributed predominantly to the
application of riboflavin–dextran solution rather
than to the effect of CXL after UVA exposure. The
application of riboflavin solution (containing 20%
dextran) resulted in a significantly greater reduction
in corneal thickness than the application of the same
concentration of dextran in the absence of any ribo-
flavin. This finding may be the result of riboflavin
increasing the ionic strength of the applied solution,
because higher ionic strengths are known to be associ-
ated with lower corneal hydrations25 and reduced
corneal thickness.

As described previously,15,16 significant stromal
swelling occurred (predominantly in the posterior
J CATARACT REFRACT SURG - V
stroma) in all corneal buttons during the first 24 hours
in pepsin solution. This observation can be attributed
to the negatively charged glycosaminoglycan compo-
nents of the proteoglycans within the extracellular ma-
trix, which result in the pepsin digest solution being
drawn into the tissue.26 The higher ratio of keratan sul-
fate to chondroitin sulfate in the posterior stroma
compared with the anterior27 may explain why most
of the swelling occurred in this region because keratan
sulfate has a higher water affinity than chondroitin
sulfate.28 Interestingly, the separation of the cornea
into anterior and posterior stromal regions during
the first week of digestion was observed in all treated
and untreated corneas. The separation of the corneal
buttons cannot, therefore, be attributed to CXL-
induced changes within the anterior stroma but must
instead be the result of naturally occurring structural
differences that exist between the anterior and poste-
rior regions. The diameter of the anterior portion of
the corneal button was unaffected by the changes
in corneal hydration and, therefore, formed a
much more reliable measure of the rate of enzymatic
digestion than measurements of corneal thickness.
However, calculations based on the sample size used
and the standard deviation of diameter measure-
ments confirmed that the sensitivity of the technique
was such that differences between groups (in terms
of the time taken for complete digestion) of less than
1 day could not be detected by this method. For this
reason, measurements of corneal disk dry weight
(which reflect the mass of undigested corneal tissue)
were recorded at day 12 of the digestion process to
allow more subtle differences in enzymatic resistance
between treatment groups to be identified.

Our results showed an increased resistance to pro-
teinase digestion after standard CXL that is in agree-
ment with the findings of other investigators.15–17

However, for the first time, we have shown that a
similar increase in enzymatic resistance can also be
OL 41, SEPTEMBER 2015
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achieved using higher fluences (up to 18 mW/cm2)
and shorter exposure times. Although the diameter
measurements detected no difference in enzymatic
resistance between the CXL protocols used in this
study, the mean dry weight of corneal tissue after 12
days of protein digestion was found to differ
significantly between groups (3 mW accelerated CXL
O 9 mW accelerated CXL O 18 mW accelerated CXL).
Measurements of corneal dry weight, which represent
the total mass of undigested tissue and negate the
complications associated with within-sample varia-
tions in corneal thickness and between-sample differ-
ences in hydration, provide a more accurate means
of assessing the relative efficacy of CXL procedures
at increasing corneal enzymatic resistance. Our find-
ings suggest that in protocols that use a higher fluence
and shorter exposure time, either the most anterior
layers of the corneal stroma may be crosslinked
equally and the effective depth of CXL is reduced or
the intensity of CXL (which is known to be depth
dependent29) decreases more rapidly as a function
of depth. One interesting observation in previous
studies is the presence of a shallower demarcation
line in accelerated CXL compared with standard
CXL,30,31 suggesting that this may represent a
reduced or shallower CXL effect. However, this as-
sumes that the depth of the demarcation line correlates
directly with the degree and depth of CXL, and
currently there is no direct evidence to support this.
The so-called stromal demarcation line, first described
by Seiler and Hafezi,32 has been shown to possibly be
shallower in older patients and thosewithmore severe
ectatic disease.33 It has been found to be thicker cen-
trally and thinner peripherally34 and possibly related
to an increased density of the extracellular matrix.35

Although a deeper demarcation line has been associ-
ated with a larger decrease in corneal thickness,36 its
depth has not been shown to be correlated to either
visual or keratometric changes 6 months postopera-
tively.33 It may simply represent natural wound-
healing responses rather than delineate the true area
between crosslinked and uncrosslinked tissue, and
more research is required to ascertain the true nature
of this demarcation line and its relationship to the
actual CXL process.

Other studies have concentrated on comparing the
biomechanical changes after CXL and accelerated
CXL using methods such as scanning acoustic micro-
scopy and extensiometry. Hammer et al.37 reported a
reduced corneal stiffening effect with increasing
UVA intensity (up to 18 mW); however, others have
shown similar biomechanical changes after both stan-
dard 3mW/cm2CXL and 9 to 10mW/cm2 accelerated
CXL,20,21 but a sudden decrease in efficacy with high
intensities (greater than 45 mW/cm2).38 The failure
J CATARACT REFRACT SURG - V
of the Bunsen-Roscoe law12 of reciprocity in cases of
high intensity and short illumination time is not yet
understood but may be related to rapid oxygen
consumption and subsequent reduced oxygen avail-
ability, which has been shown to limit the photochem-
ical CXL process.39 Oxygen and its vital role in free
radical production has been shown to be central in
driving the CXL process.39 Therefore, limitations in
availability because of reduced time to replenish suit-
able oxygen levels can theoretically inhibit the photo-
chemical CXL process.39 In our study, we found only
subtle differences in enzymatic resistance, with
increasing UVA intensity up to 18 mW/cm2. Further
studies with energies of 30 mW/cm2 and above are
indicated to seewhether the results of pepsin digestion
studies replicate those of extensometry and other me-
chanical methods.

Even though most laboratory results are supportive
of accelerated CXL, published clinical studies of the
technique are limited. A significant reduction in topo-
graphic keratometry and improvement in corrected
distance acuity, comparable to standard CXL, have
been reported at the 6-month follow-up.13 In a ran-
domized prospective study comparing a fluence of
7 mW/cm2 for 15 minutes with 3 mW/cm2 for 30 mi-
nutes,14 similar clinical results for ectasia stabilization
were reported after each treatment protocol, and
neither treatment resulted in any adverse effects. Simi-
larly, clinical studies using 9 mW/cm2 for 10 minutes
have shown a significant reduction in keratometry
after CXL, with no adverse effects in terms of endothe-
lial cell counts at 3 months.40 More recently, it was
shown that accelerated CXL with an irradiance of
30 mW/cm2 for 3 minutes resulted in a significant
improvement in uncorrected distance visual acuity
and a reduction in keratometry at 6 months.41 This
finding was supported by a nonrandomized study
comparing standard CXL with 30 mW/cm2 acceler-
ated CXL, which found no difference in visual, refrac-
tive, keratometric, or biomechanical parameters
between the 2 treatments at the 12-month follow-up.42

Although our studies have indicated that the
amount of CXL may be less with accelerated CXL,
the minimum effective amount of CXL needed for ec-
tasia stabilization has not yet been established. The
success of the clinical studies described previously in-
dicates that the amount of CXL produced by acceler-
ated CXL may be sufficient to prevent keratoconus
progression. Clearly, further clinical studies, especially
randomized prospective trials, will be necessary to
ascertain the clinical safety and efficacy of accelerated
CXL. But thus far, the accumulating clinical and labo-
ratory evidence demonstrates its similar efficacy to
standard CXL, and its clear benefits in terms of patient
and surgeon convenience support its use.
OL 41, SEPTEMBER 2015
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WHAT WAS KNOWN

� Standard riboflavin–UVA CXL increases both the strength
of the cornea and its resistance to enzymatic digestion
and has proved to be successful in halting keratoconus
progression. The effect of accelerated CXL protocols on
corneal enzymatic resistance is currently unknown.
WHAT THIS PAPER ADDS

� Both standard and accelerated riboflavin–UVA corneal
CXL protocols (up to 18 mW) resulted in an increase in
corneal enzymatic resistance.

� Differences in enzymatic resistance suggest that the
accelerated protocols result in less CXL than the standard
treatment.
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