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Abstract Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene
Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature
and global ice volume from 0 to 17 Ma using §'80 in conjunction with Mg/Ca records of the infaunal
benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific;

~2500 m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw,
we produce a range of Mg/Ca-temperature-Mg/Ca,, calibrations. Our favored exponential temperature
calibration is Mg/Ca = 0.66 +0.08 x Mg/Cag,2>"*006 x (0114002 x BWD anq our favored linear temperature
calibration is Mg/Ca = (1.21+0.04 +0.12+0.004 x BWT (bottom water temperature)) x (Mg/Cag,, %3+
(stated errors are 2 s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene
section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to &'80 temperatures, calculated assuming
ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of
Mg/Ca,, on the Mg distribution coefficient (Dy). Application of the new equations to the Site 806 record leads
to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition
(~14 Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient
increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern
Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating
the importance of thresholds in the evolution of the Antarctic ice sheet.

1. Introduction

The cryosphere affects climate through changing ocean/atmosphere heat transport and biogeochemical
carbon cycling. Accurate records of the cryosphere and corresponding paleoceanographic conditions are
required to understand how these processes contributed to the evolution of Earth’s climate through the
Cenozoic. Records of ice-rafted debris and continental weathering suggest that semipermanent Antarctic
continental-scale glaciation initiated at the Eocene-Oligocene climate transition (EOT), ~34Ma [Zachos
et al, 1992; Scher et al, 2011]. The history of the development of continental-scale ice sheets in the
Northern Hemisphere is more controversial, but Northern Hemisphere glaciation probably occurred later
[Edgar et al, 2007; DeConto et al., 2008]. Iceberg-derived dropstones have been documented in the
Norwegian Greenland Sea from EOT time but are likely sourced from isolated coastal mountain outlet glaciers
on Greenland [Eldrett et al., 2007], whereas major Pleistocene Northern Hemisphere glaciation apparently
began around 2.6 Ma [Raymo et al., 1989; Bailey et al., 2013]. The Cenozoic benthic foraminiferal oxygen
isotope compilation delineates the nonlinear transition from the greenhouse world of the early Cenozoic
to today’s icehouse world [Shackleton and Kennett, 1975; Miller et al, 1987; Zachos et al, 2001, 2008;
Cramer et al., 2009; Mudelsee et al., 2014]. This record reflects deep-sea temperatures in addition to global
ice volume. Three §'80 “steps” have been interpreted as significant ice sheet growth events, as the climate
system crossed key thresholds [Zachos et al., 1996, 2001, 2008; DeConto et al., 2008]. The earliest “step” at
the EQT is recognized as reflecting the continent-wide glaciation on Antarctica [Zachos et al., 1992; Lear
et al.,, 2000; Coxall et al., 2005; Scher et al., 2011]. The second step is the Middle Miocene Climate Transition
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(MMCT), around 14 Ma [Holbourn et al., 2005]. Backstripping estimates suggest that sea level fell between 53
and 69 m between 16.5 and 13.9 Ma [John et al., 2011]. Glacial landforms provide evidence of larger-than-
modern ice sheets overriding the Transantarctic Mountains during the middle Miocene [Denton and
Sugden, 2005]. The MMCT has been linked to ice sheet advance and a transition from a polythermal to a
dry-based Antarctic ice sheet [Lewis et al., 2007], as levels of CO, decreased and orbital configurations favored
low seasonality at high latitudes [Holbourn et al., 2005, 2007; Foster et al., 2012]. Following the MMCT, the
Antarctic ice sheet may have been less sensitive to changes in high-latitude radiative forcing, with ice volume
controlled more by variations in moisture transport [Holbourn et al., 2013a]. The most recent step in the §'80
record largely reflects the Plio-Pleistocene intensification of glaciation in the Northern Hemisphere. However,
the dual control of temperature and ice volume on foraminiferal 5'80 means that significant questions
regarding the extent of continental glaciation and the relationship between the crysophere and ocean over-
turning circulation through the Neogene remain.

Benthic foraminiferal Mg/Ca paleothermometry has shown great promise in deconvolving the temperature
and 8'80y, signal from foraminiferal 5'80 records, although it is not without its complications [Lear et al.,
2000, 2010; Billups and Schrag, 2002, 2003; Martin et al., 2002; Shevenell et al., 2008; Cramer et al., 2011;
Bohaty et al., 2012]. Chiefly, these are as follows: (1) variations in Mg/Ca temperature sensitivity between for-
aminiferal genera necessitating genus- or species-specific temperature calibrations [Lear et al., 2002], (2) the
influence of carbonate saturation state at low saturation [Elderfield et al., 2006], (3) uncertainties in seawater
Mg/Ca reconstructions [Coggon et al., 2010], and (4) the relationship between seawater Mg/Ca and foraminif-
eral calcite Mg/Ca [Hasiuk and Lohmann, 2010; Ries, 2004; Cramer et al., 2011; Evans and Miiller, 2012]. The last
two complications do not compromise the use of Mg/Ca paleothermometry on short (<1 Myr) timescales,
making the proxy ideally suited to examining relative temperature changes over geologically short time
intervals [Lear et al., 2008; Elderfield et al., 2012; Mawbey and Lear, 2013]. However, over longer timescales they
limit the reconstruction of absolute temperatures, which are required to estimate absolute ice volume from
5'80. Previous efforts to address these issues have been informative, but progress has been limited by a
paucity of available Mg/Ca records [Cramer et al., 2011; Evans and M(iller, 2012]. The saturation state influence
is of particular importance for epifaunal foraminifera, which more directly experience changing bottom water
mass chemistry.

Here we present a record of benthic foraminiferal Mg/Ca for the past 17 Ma and attempt to minimize or
address these factors in order to calculate absolute bottom water temperature (BWT) and 5180y, for the late
Neogene. All records are from one species, the shallow infaunal dwelling Oridorsalis umbonatus, for which
core top calibrations exist [Lear et al., 2002; Rathmann et al., 2004; Healey et al., 2008; Brown et al., 2011;
Tisserand et al., 2013]. We minimize the influence of the bottom water carbonate saturation state [Elderfield
et al,, 2010] by using an infaunal species living within the upper few centimeters of the seafloor sediment,
and by careful site selection, avoiding sites below the lysocline where foraminifera may experience postmor-
tem dissolution. We also present a new Mg/Ca record from the ice-free early Paleogene, for which bottom
water temperatures can be independently calculated from '20, representing a time of far lower seawater
Mg/Ca than today. We combine this record with published core top Mg/Ca data to better constrain the rela-
tionship between seawater Mg/Ca and foraminiferal Mg/Ca for this species. We find that Oridorsalis umbona-
tus has a low sensitivity to changes in seawater Mg/Ca, implying a strong biological control on its calcification
process. We then interpret our Neogene Mg/Ca and §'20 records in terms of absolute BWT and §'80y,, and
find strong support for greater than modern ice volume immediately following the Middle Miocene Climate
Transition and a change in ocean overturning circulation associated with late Neogene global cooling.

2. Materials and Methods

2.1. Advantages of Infaunal Foraminifera in Mg/Ca Paleothermometry

Benthic foraminiferal Mg/Ca is primarily controlled by changes in bottom water temperature [Rosenthal et al.,
1997; Lear et al., 2002; Marchitto et al., 2007]. However, the degree of carbonate saturation (ACO5%7) impacts
benthic foraminiferal Mg/Ca at low saturation [Elderfield et al., 2006; Rosenthal et al., 2006]. Initial work focused
on the epifaunal taxon Cibicidoides, which lives above, at, or very close to the seafloor in direct contact with
bottom water [Jorissen et al., 2007]. Mg/Ca in infaunal benthic foraminifera might be a more reliable paleo-
temperature proxy, because pore waters are buffered to some extent against changes in carbonate
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saturation [Elderfield et al., 2010]. Oxidation of sedimentary organic matter tends to decrease the pore water
carbonate saturation state. Once pore waters become undersaturated, dissolution of carbonate grains buffers
against further decreases in saturation state [Zeebe, 20071.

To address the saturation state problem in the Pleistocene, a Mg/Ca temperature record based on the infau-
nal genus Uvigerina from Ocean Drilling Program (ODP) Site 1123 (3.3 km water depth on Chatham Rise, east
of New Zealand) has been used to calculate Pleistocene changes in 8'20,,. Remarkable agreement with inde-
pendent sea level proxies provides strong support for the validity of this approach [Elderfield et al., 2012;
Rohling et al., 2014]. We take the same approach using Oridorsalis umbonatus, an extant shallow infaunal spe-
cies, found globally through the Late Cretaceous-Cenozoic, for which core top calibrations exist [Lear et al.,
2002; Rathmann et al., 2004; Healey et al., 2008; Brown et al., 2011; Tisserand et al., 2013]. Core top and down
core records suggest that this species, like Uvigerina species, is less sensitive to changes in bottom water
saturation state than epifaunal species [Brown et al., 2011; Mawbey and Lear, 2013; Foster et al., 2013].
However, the trace metal composition of O. umbonatus appears sensitive to changes in carbonate saturation
state in some instances, so we cannot assume that O. umbonatus is consistently and fully buffered from
changes in bottom water saturation state in its microhabitat. For example, Mg/Ca in O. umbonatus increases
by 0.28 mmol/mol across the EOT at ODP Site 1218 [Lear et al., 2004], which is surprising given the widespread
cooling associated with the major Antarctic glaciation [Liu et al., 2009]. However, at ODP Site 1218 the EOT is
also associated with extensive (~1.2 km) deepening of the calcite compensation depth, a lithologic change
from radiolarite to nannofossil oozes and chalks, and thus an increase in pore water buffering capacity of this
deep ocean site (paleowater depth ~3800 m) [Coxall et al., 2005; Lyle et al., 2002]. Possibly, the very low
carbonate saturation state at this site influenced the benthic foraminiferal Mg/Ca through a combination
of effects during test precipitation and postmortem dissolution (many tests, especially from samples taken
from the upper Eocene radiolarites contain dissolution pits).

2.2. Site Selection

We cannot assume that all infaunal foraminifera, living at various depths within the sediment from close to
the surface to >10cm deep [Jorissen et al., 2007] inhabit pore waters that are fully buffered with respect to
carbonate saturation state, so sites for infaunal Mg/Ca paleothermometry should be selected carefully. The
presence of abundant, well-preserved planktonic foraminifera is one indication that sediment can buffer pore
waters against significant decreases in carbonate saturation state. Sediment pore water chemistry under
regions of vigorous upwelling may be complicated by temporal variations in organic matter degradation,
and pore waters thus may not be fully buffered [Rathmann and Kuhnert, 2008]. In addition, hiatuses in sedi-
mentation or transient dissolution events may disrupt the buffering capacity of the pore waters [Mawbey and
Lear, 2013]. Therefore, we selected carbonate-rich samples with abundant planktonic foraminifera. In order to
maximize the potential dissolution capacity of the sediments, we have selected samples from paleowater
depths of less than 3 km.

Our new benthic foraminiferal Mg/Ca and 8'80 data between ~17 and 12 Ma span the MMCT at Ocean
Drilling Program (ODP) Site 806, presently at 2521 m water depth on the Ontong Java Plateau in the
Pacific Ocean (0°19.1'N 159°21.7'E) (Figure 1). Carbonate contents for these sediments are typically between
90 and 95% [Kroenke et al., 1991]. Detailed stable isotope records from ~13.3 to 14.1 Ma on an orbitally tuned
age model are presented in Holbourn et al. [2013b]. We combine our Site 806 record with previously pub-
lished O. umbonatus data from upper Miocene to Pleistocene strata from the same site [Lear et al., 2003].
We also present new benthic foraminiferal Mg/Ca data from the upper Paleocene to lower Eocene from
ODP Site 690, present water depth 2914 m, on Maud Rise in the Southern Ocean (65°9.629'S, 1°12.30'E)
(Figure 1). The sediments typically contain between 75 and 95% carbonate and have abundant planktonic
foraminifera [Barker et al., 1988]. These strata show sedimentation rates of ~1-2 cm/kyr and are estimated
to have been deposited at a paleowater depth of 1900 m [Barker et al, 1988; Thomas and Shackleton,
1996]. Therefore, we assume that the pore waters were buffered with respect to carbonate saturation state.
Our age model for Site 806 uses nannofossil biostratigraphic events [Nathan and Leckie, 2009] and planktonic
foraminiferal events [Kroenke et al.,, 1991] assigned to ages provided in Wade et al. [2011] (Figure S1 in the
supporting information). For ODP Site 690 we correlated carbon isotope events to the record from ODP
Site 1262 on Walvis Ridge, so our ages are consistent with those of Littler et al. [2014] (depths and ages are
provided in the supporting information).
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Figure 1. Locations of sites studied.

2.3. Stable Isotopes

For the ODP Site 806 MMCT samples, approximately six individuals of Cibicidoides spp (250-355 um) were
crushed, ultrasonicated in methanol to remove clays and oxidized with 3% H,0, to remove organic matter.
Samples were analyzed on a ThermoFinnigan MAT252 with online sample preparation using an automated
Kiel Ill carbonate device at Cardiff University. Results are reported relative to Pee Dee Belemnite, and long-
term uncertainty based on repeat analysis of NBS-19 is £0.08%o (20). Data are provided in Table S1 in the
supporting information.

2.4. Trace Element Analysis

The Site 806 MMCT samples were cleaned using the same protocol as that used for the upper Miocene
to Pleistocene record of Lear et al. [2003]. Between three and ten individuals of the benthic foraminifer
O. umbonatus were picked from the 250-355 um size fraction and crushed between glass plates to open
all chambers. Test fragments were cleaned using a protocol to remove clays, metal oxides, and organic
matter [Boyle and Keigwin, 1985]. Between the clay removal and reductive steps the samples were examined
under a binocular microscope, and noncarbonate particles were removed using a fine paintbrush. Samples
were dissolved in trace metal pure 0.065 M HNOs and diluted with trace metal pure 0.5 M HNO; to a final
volume of 350 uL. Samples were analyzed at Cardiff University on a Thermo Element XR ICP-MS against
standards with matched calcium concentration to reduce matrix effects [Lear et al., 2002]. All data for a sam-
ple were rejected if Al/Ca exceeded 50 pmol/mol, Mn/Ca exceeded 100 pmol/mol or Fe/Ca exceeded
200 umol/mol. B/Ca data were rejected if the sample boron intensity signal was less than 10 times that of
the blank. Long-term precision as determined by analyzing an independent consistency standard during
each run is ~1% and 5% (relative standard deviation) for Mg/Ca and B/Ca respectively. The ODP Site 690
Paleocene-Eocene samples were cleaned without the reductive step and analyzed using a Varian Vista
ICP-OES at Cambridge University, with a precision of <1% for Mg/Ca. To achieve consistency between data
sets, 9.1% was subtracted from the Mg/Ca data from ODP Site 690 [Yu et al., 2007]. Trace metal data are avail-
able in Tables S1 and S2 of the supporting information.

3. Results
3.1. ODP Site 806 Middle Miocene Record

Our oxygen isotope stratigraphy displays the global ~1%o shift to heavier values across the Middle Miocene
Climate Transition and is consistent with the shorter duration, high-resolution record of Holbourn et al.
[2013b]. The 12-17 Ma Miocene Mg/Ca record presented here appears consistent with the previously pub-
lished record for 0-11 Ma from the same site (Figure 2) [Lear et al., 2003]. Mg/Ca is variable and high within
the Miocene Climatic Optimum (~15-17 Ma). Following the MMCT, Mg/Ca was lower and more stable at
around 2 mmol/mol until ~5Ma (Figure 2). After ~5Ma Mg/Ca decreased by ~0.6 mmol/mol (Figure 2).
Middle Miocene O. umbonatus Mg/Ca values at ODP Site 806 are on average 0.4 mmol/mol lower than those
at ODP Site 761 (Wombat Plateau; 2179 m) (Figure 3) [Lear et al., 2010].
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5'%0 [Lear et al., 2003] 3.2. ODP Site 690 Paleocene-Eocene
* 50 (this study) ] Record

Our O. umbonatus Mg/Ca record from
ODP Site 690 increases as benthic fora-
miniferal 8'%0 decreases (Figure 4a).
Maximum Mg/Ca values occurred
around 52.8Ma, close to Eocene
Thermal Maximum 2, since no data were
included from the Paleocene-Eocene
Thermal Maximum (Figure 4b) [Zachos
et al.,, 2008]. We compile the Cibicidoides
and Nuttallides 5'0 data from Kennett
and Stott [1990] and Thomas and
o 4 8 12 16 0 Shackleton [1996], using the species off-
Age (Ma) sets in Katz et al. [2003], correlated to
the record in Littler et al. [2014] to create
an isotope stratigraphy for ODP Site 690
(Figure 4a). We then use linear interpo-
lation to estimate an equivalent equili-
brium §'80 value for each of our
Mg/Ca samples (Figure 4b). Assuming an ice-free value for §'80s,, of —0.89%o [Cramer et al., 2011], we cal-
culated bottom water temperatures (BWTs) for the interpolated 5'20 values, using the quadratic oxygen
isotope paleotemperature equation of Marchitto et al. [2014]. The Mg/Ca data display a positive trend
with these 8'80 paleotemperatures, with a slope of 0.09 +0.04 mmol/mol/°C (2 s.e., r*=0.6) (Figure 4c),
within the error of the 0.12 +0.01 mmol/mol/°C (2 s.e., r* = 0.9) sensitivity of a previous calibration based
on a core top O. umbonatus and C. pachyderma data set [Marchitto et al., 2007; Lear et al., 2010]. The value
for the oldest sample at 57.1 Ma is perhaps slightly higher than expected from temperature alone
(Figure 4b). This is likely caused, at least in part, by natural variability in the Mg/Ca record, and the inter-
species interpolation process (compare Figures 4a and 4b), although we cannot rule out the possibility of
higher seawater Mg/Ca in this part of the record. However, the slope in Figure 4c is unchanged if this
sample is omitted.

Benthic 8'°0 (%)

o— Mg/Ca [Lear et al., 2003] |
+— Mg/Ca (this study)

(Jowyjoww) /BN Snjeuoqwin ‘O

Figure 2. Benthic foraminiferal oxygen isotope (6180, circles) and Mg/Ca
(diamonds) records from ODP Site 806. Open symbols are previously
published [Lear et al., 2003], closed symbols are from this study.

4. Discussion

4.1. Constraining the Sensitivity of Mg/Ca in O. umbonatus to Changes in Seawater Mg/Ca

Seawater Mg/Ca (Mg/Cas,,) values have increased from around 1.5 mol/mol in the early Cenozoic to today's
value of 5.2 mol/mol [Coggon et al., 2010; Dickson, 2002; Horita et al., 2002]. The residence times of Ca and Mg
in seawater (~1 Myr and ~10 Myr, respectively) [Broecker and Peng, 1982] means that potential changes in
Mg/Ca,, need to be taken into account when calculating absolute BWT through the Cenozoic. Earlier studies
assumed that benthic foraminiferal Mg/Ca was linearly related to seawater Mg/Ca [Lear et al., 2000; Billups and
Schrag, 2003], but more recent culture studies on a range of calcifying organisms suggest that the relationship is
better described by a power law dependency (equation (1)) [Ries, 2004],

Mg/Cac = F x Mg/Cag, "’ )

where Mg/Ca.. is the Mg/Ca of the calcite, Mg/Cas,, is the Mg/Ca of seawater, and F is a factor that could
include a linear or exponential temperature dependency. A culture study of the planktonic foraminifer
Globigerinoides sacculifer did not produce a clear relationship between Mg/Ca.. and Mg/Cas,, [Delaney
et al, 1985]. Culture studies of the larger, high-Mg calcite, symbiont-bearing benthic foraminiferal
species Amphistegina lobifera, Amphistegina lessonii, and Heterostegina depressa found values for H of 0.8,
0.7-0.8, and 0.44, respectively [Segev and Erez, 2006; Raitzsch et al., 2010; Mewes et al., 2014]. The shallow
water, low-Mg calcite foraminifer Ammonia aomoriensis has an H value of 0.7 [Mewes et al., 2014]. While
it is clear that there are species differences, it is not known whether these values for H would be similar
for other benthic foraminiferal species such as O. umbonatus, which calcifies in deep ocean waters at
lower saturation states.
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Figure 3. Benthic foraminiferal 8'%0 (black), Mg/Ca (red), B/Ca (purple), and 61805W (blue) records from ODP Site 761
(open diamonds) and ODP Site 806 (closed squares). ODP Site 761 380 and Mg/Ca data from Lear et al. [2010] and
ODP Site 806 data from Lear et al. [2003] and this study. 51805W calculated using the Lear et al. [2002] Mg/Ca temperature
sensitivity assuming early Eocene Mg/Cas,, = 1.3 (Table 1) and the oxygen isotope paleotemperature equation of
Marchitto et al. [2014]. The 81805W values from ODP Site 761 are biased toward heavy values as a result of the elevated
Mg/Ca (see text for details).

An alternative approach to constraining the relationship between foraminiferal Mg/Ca and seawater Mg/Ca
is to use fossil foraminifera that precipitated their tests in seawater with different Mg/Ca values than mod-
ern. This approach assumes that the Mg/Ca of the fossil foraminifera has not been diagenetically altered.
Benthic foraminifera are less porous and thus less susceptible to postdepositional alteration than plank-
tonic foraminifera [Edgar et al., 2013]. The species Oridorsalis umbonatus has minute pores (e.g., much smal-
ler than Nuttallides truempyi) and thus is among the least susceptible benthic species [Foster et al., 2013],
but we acknowledge this potential uncertainty. This approach also requires knowledge of the ancient sea-
water Mg/Ca, BWT, and the species-specific Mg/Ca temperature sensitivity. BWT can be estimated using
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Figure 4. (a) Benthic foraminiferal oxygen isotope (blue) and unadjusted Mg/Ca (red) versus sediment burial depth (meters below seafloor) at ODP Site 690. Oxygen
isotope data are from Kennett and Stott [1990] and Thomas and Shackleton [1996], Mg/Ca data are from this study. (b) Benthic foraminiferal Mg/Ca and linearly
interpolated oxygen isotope data from Figure 4a versus age. Mg/Ca data have been adjusted by —9.1% to correct for the short cleaning procedure. (c) Adjusted
benthic foraminiferal Mg/Ca versus interpolated Bwoftemperature, calculated assuming 51805W =—0.89 (SMOW). (d) Benthic foraminiferal Mg/Ca versus temperature,
data combined from Figure 4c (squares) and core top data used in the NS-LBB calibrations (circles) (see text for details). Mg/Ca data from Site 690 have been adjusted by
—9.1% to correct for the short cleaning procedure (see text for details).

benthic foraminiferal §'0 if §'20s,, is independently known. The greenhouse world of the early Eocene is
generally thought to have been ice-free, with s”‘osw of —0.89 +0.02%o0 (SMOW) [Cramer et al., 2011]. With
Mg/Ca,,, very different from modern (<2 versus 5.2, [Dickson, 2002]), this provides an ideal interval to
assess the relationship between foraminiferal Mg/Ca and seawater chemistry [Lear et al., 2002; Billups
and Schrag, 2003; Cramer et al., 2011; Evans and Miiller, 2012]. Cramer et al. [2011] normalized published
multispecies benthic foraminiferal Mg/Ca records to a single species, then applied both a “water depth
correction” and a “calcite compensation depth” correction for the potential influence of the carbonate
saturation state. This approach assumes a linear relationship between benthic foraminiferal Mg/Ca and
carbonate saturation state without a threshold, which is unlikely [Yu and Elderfield, 2008]. For O. umbonatus,
Cramer et al. [2011] estimated H=0.03 using the Mg/Ca temperature sensitivity of Lear et al. [2010] and
H=0.7 using the Mg/Ca temperature sensitivity of Rathmann et al. [2004]. The Mg/Ca temperature sensitiv-
ity of Lear et al. [2002] produced a value of 0.4-0.6 for O. umbonatus, [Evans and Miiller, 2012; D. Evans,
personal communication, 2014].
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Here we attempt to improve upon these estimates. First, for our Paleogene samples, we use Mg/Ca and §'20
data from the same site to reduce the uncertainty associated with BWT estimates. Second, we use a range of
samples from peak greenhouse conditions (52-57 Ma) rather than sparse data from ~48 Ma [Lear et al., 2000;
Evans and Miiller, 2012]. This improves our confidence in the assumption of an ice-free world. Third, rather
than combining epifaunal and infaunal Mg/Ca records, we use only the infaunal species O. umbonatus.
Finally, we do not introduce an ad hoc correction for carbonate saturation state [Cramer et al., 2011] but focus
on ODP Site 690, a carbonate-rich site at an intermediate paleowater depth, which shows relatively minor dis-
solution even during the extreme dissolution of the Paleocene-Eocene Thermal Maximum [Thomas, 1998;
Zeebe and Zachos, 2007; Kelly et al., 2012]. We therefore assume that O. umbonatus precipitated its calcite test
in pore waters buffered against changes in carbonate saturation state at ODP Site 690 in the Paleogene.

We assume that the O. umbonatus Mg/Ca temperature Mg/Cas,, relationship has one of two forms, depend-
ing on whether the Mg/Ca temperature relationship is best described as an exponential or linear relationship
[Ries, 2004]:

Mg/Ca = A - Mg/Cag," - exp®*EWT) )
or

Mg/Ca = (c + m-BWT) - Mg/Cay," 3)

Values for A, B, C, m, and H can be calculated by solving each equation simultaneously to satisfy both the
Paleocene-Eocene data set (Figure 4) and the Mg/Ca temperature relationship in core top samples, for which
Mg/Cas,, = 5.2. This approach is sensitive to the choice of Mg/Ca temperature calibration [Cramer et al., 2011].

The first O. umbonatus Mg/Ca temperature calibration is based on core top data from the North Atlantic, off-
shore Hawaii, Gulf of California, Sea of Okhotsk, Southern Ocean, and Little Bahama Banks [Lear et al., 2002].
An exponential curve fit through the data spans a temperature range of 0.8 to 9.9°C (equation (4)).

Mg/Ca = 1.008 = 0.08 x exp(0.114£0.02 x BWT), n = 23, R> = 0.4 (4)

A later calibration was based on core top O. umbonatus Mg/Ca along a depth transect off the Namibia coast
spanning a temperature range of 2.9-10.4°C [Rathmann et al., 2004]. This study found a similar temperature
sensitivity, but with Mg/Ca apparently offset by around +0.5 mmol/mol (equation (5)).

Mg/Ca = 1.528 x exp(0.09 x BWT) (5)

The Lear et al. [2002] core top data set used foraminifera that had been oxidatively and reductively cleaned,
whereas the Rathmann et al. [2004] data set is based on laser ablation analyses of noncleaned foraminifera.
Direct comparison of the absolute values is therefore not trivial, yet the similarity in temperature sensitivities
is encouraging. However, a study of core top O. umbonatus Mg/Ca from deep ocean sites with temperatures
<4°C [Healey et al., 2008] estimated a temperature sensitivity more than double that of Lear et al. [2002]
(equations (6) and (7)). It seems more than likely that this sensitivity is high because of the influence of low
carbonate saturation states on Mg/Ca [Healey et al., 2008].

Mg/Ca = 0.988 +0.08 x exp(0.252 + 0.036 x BWT) (6)
Mg/Ca = 0.449 +0.066 x BWT + 0.773 £0.151 (7)

Lear et al.[2010] provide further O. umbonatus Mg/Ca core top data from the Norwegian and Timor Seas and
combined core top O. umbonatus and C. pachyderma data [Marchitto et al., 2007] to produce a linear Mg/Ca
temperature calibration (equation (8)).

Mg/Ca = 0.12+0.01 x BWT + 1.2+0.1 (8)

Tisserand et al. [2013] present O. umbonatus Mg/Ca from oxidatively cleaned core top samples from the satu-
rated thermocline waters of the Brazilian Margin. These samples span a narrow temperature range of ~4 to 6°C,
but are useful to consider in the context of other core top data.

For our down core records we avoided deep water sites (>3 km) to maximize the buffering potential of the
carbonate sediments (deep water sites tend to contain fewer of the least dissolution-resistant planktonic
foraminiferal tests). We take a similar approach with the calibration samples, resulting in an alternative O. umbonatus
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Table 1. Constants for the Generic Exponential Mg/Ca-Temperature-Mg/Cas,, Calibration (Equation (2)) Calculated by
Reconciling the Core Top NS-LBB Exponential and Lear et al. [2002] Mg/Ca Temperature Calibrations With the
Paleocene-Eocene Record (Figure 4)?

Mg/Cagy, at 52-57 Ma=1.0 Mg/Cagyy, at 52-57 Ma=1.3 Mg/Cas,y at 52-57 Ma=2.5
A H A H A H
NS-LBB 1.38 0.02 137 0.03 1.32 0.05
B=0.0548 +0.03 +0.01 +0.03 +0.01 +0.06 +0.03
Lear et al. [2002] 0.70 0.23 0.66 0.27 0.46 0.51
B=0.114 +0.03 +0.03 +0.04 +0.03 +0.05 +0.07

#The constants are calculated assuming three different values of Paleocene-Eocene Mg/Cas,,. The value and errors
represent the mean and standard error of the constant as determined individually from each of the 12 Paleocene-
Eocene samples.

Mg/Ca temperature calibration using a subset (n = 11) of the published core top data from two localities. First, we use
the shallowest samples from the Norwegian Sea (NS) data set of Lear et al. [2010], with bottom water
ACO5%™ > 25 umol/kg. Second, we use the samples from the well-saturated waters of the Little Bahama Banks
(LBB) data set [Lear et al., 2002], excluding one obvious outlier (Table S3 in the supporting information). We thus max-
imize the temperature range of the core top calibration data set (—0.8 to 9.9°C), while minimizing the influence of
carbonate ion effects. The resulting Mg/Ca temperature relationship can be cast as an exponential or linear equation
(equations (9) and (10)), referred to as “NS-LBB-exp” and “NS-LBB-lin,” respectively. However, we add a note of cau-
tion: as with O. umbonatus Li/Ca, O. umbonatus Mg/Ca decreases slightly with increasing water depth in the
Norwegian Sea (average O.umbonatus Mg/Ca from depths >3 km is 0.13 mmol/mol less than average O.umbonatus
Mg/Ca from depths <3 km) [Lear and Rosenthal, 2006; Lear et al., 2010], perhaps suggesting a limit to the buffering
capacity of clay-rich sediments.

Mg/Ca = 1.43£0.1 x exp(0.055£0.01 x BWT) > = 0.9 (9)
Mg/Ca = 1.45+0.1 4 0.10+0.02 x BWT rr=0.9 (10)

We calculate the constants in equations (2) and (3) for four of these seven calibrations, using the ODP Site 690
Paleocene-Eocene data (Tables 1 and 2). We chose not to use the two Healey et al. [2008] calibrations which
are useful for the recent deep ocean environment but not appropriate for records from shallower sites. We
also did not use the Rathmann et al. [2004] calibration, because it may not be appropriate to compare the
laser-ablation-based calibration to the solution-based ODP Site 690 record. We therefore use the Mg/Ca
temperature calibrations of Lear et al. [2002], Lear et al. [2010], NS-LBB-lin, and NS-LBB-exp.

In calculating the constants in equations (2) and (3), the temperature variable is relatively well constrained
because the modern calibrations are based on measured temperatures, and we use interpolated §'80 mea-
surements from ODP Site 690 for the Paleocene-Eocene data set, assuming ice-free conditions (section 2.3,
Figure 4). We adjust the 690 Mg/Ca record by —9.1% to account for the different cleaning technique relative
to the core top samples [Yu et al., 2007]. Echinoderm Mg/Ca ratios have been used to estimate Mg/Cas,, at
53 Ma as 1.7 mol/mol [Dickson, 2002], although subsequent reinterpretation of these data using a power
law dependency has revised this to 1.3 mol/mol [Hasiuk and Lohmann, 2010]. Our calculations assume that

Table 2. Constants for the Generic Linear Mg/Ca-Temperature-Mg/Cas,, Calibration (Equation (3)) Calculated by
Reconciling the Core Top NS-LBB Linear and Lear et al. [2010] Mg/Ca Temperature Calibrations With the Paleocene-
Eocene Record (Figure 4)°

SW Mg/Ca=1.0 SW Mg/Ca=1.3 SW Mg/Ca=2.5
m C H m C H m C H
NS-LBB linear 0.098 1.47 —0.007 0.098 1.47 —0.009 0.099 1.49 —0.016
+0.001 +0.03 +0.01 +0.002 +0.03 +0.01 +0.001 +0.03 +0.02
Lear et al. [2010] 0.121 1.21 —0.003 0.121 1.21 —0.003 0.121 1.21 —0.006

+0.002 +0.02 +0.01 +0.002 +0.02 +0.012 +0.002 +0.02 +0.02

*The constants are calculated assuming three different values of Paleocene-Eocene Mg/Casy,. The value and errors
represent the mean and standard error of the constant as determined individually from each of the 12 Paleocene-
Eocene samples.
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seawater Mg/Ca was invariant over the duration of the Paleocene-Eocene data set; we compensate for this
simplification by using a range of Paleocene-Eocene Mg/Cas,, of 1.0, 1.3, and 2.5 mol/mol to calculate the
constants in equations (2) and (3) (Tables 1 and 2). We also calculated the calibration constants after omitting
the oldest data point described above (57.1 Ma). The values are within the error of the constants presented in
Tables 1 and 2 and are provided in the supporting information.

Using the Lear et al. [2002] Mg/Ca temperature calibration, an H value of 0.2-0.5 is predicted, depending on
the assumed value of Mg/Cas,, in the Paleocene-Eocene (Table 1). Reconciling the Mg/Ca temperature sensi-
tivities of the NS-LBB-exp, NS-LBB-lin and the Lear et al. [2010] calibration with our Paleocene-Eocene data set
requires O. umbonatus to be more or less insensitive to Mg/Ca,,, (H~ 0). This would suggest that this deep
ocean, low-Mg calcite foraminifer has an effective strategy for controlling the Mg?* concentration at the site
of biomineralization, such that test Mg/Ca is only weakly related to Mg/Cas,,. While there is a range of poten-
tial biomineralization processes that may influence test Mg/Ca, the exact mechanism remains unknown [Erez,
2003; Dawber and Tripati, 2012; Nehrke et al., 2013; Mewes et al., 2014]. Further study is required to test this
finding, but if H=0, the Paleocene-Eocene data can be combined with the core top data to extend the
Mg/Ca temperature calibration into warmer waters and better constrain the Mg/Ca temperature sensitivity
(Figure 4d). The O. umbonatus Mg/Ca data from the Brazilian Margin are compatible with this relationship
[Tisserand et al., 2013] (Figure S2). A compilation of the NS-LBB calibration data with the ODP Site 690 data
can be fit equally well with an exponential (equation (11)) or linear (equation (12)) relation. The slope of
the linear fit is within the error of a previous calibration based on core top O. umbonatus and C. pachyderma
[Lear et al., 2010]. Stated errors in equations (11) and (12) have 95% confidence intervals.

Mg/Ca = 1.44+0.05 exp(0.050 + 0.005 x BWT) r> = 0.94 (1)
Mg/Ca = 1.46+0.09 + 0.10+0.01 x BWT 2 = 0.95 (12)

If future work confirms the insensitivity of O. umbonatus Mg/Ca to Mg/Cas,, this paleothermometer could be
applied with more confidence to questions of long-term (multi-Myr) climate change.

4.2. ODP Site 806 Versus ODP Site 761: Impact of Porewater Chemistry on Foraminiferal Geochemistry

Mg/Ca values from O. umbonatus from the middle Miocene at ODP Site 761 (Wombat Plateau; Figure 3)
[Lear et al, 2010] are ~0.4mmol/mol higher than those of time-equivalent samples at ODP Site 806
(Ontong Java Plateau). The magnitude of this offset is somewhat puzzling, given the similarity in §'80
between the two sites (Figure 3). We consider two possibilities to explain this offset. One possibility is that
the higher Mg/Ca at Site 761 is caused by diagenetic carbonate overgrowth. The low sedimentation rates
at this site (~0.3 cm/kyr, compared to ~2.5 cm/kyr at ODP Site 806) may have favored the formation of Mn
carbonate coatings [Jarvis et al., 2001]. Measured Mn/Ca typically falls between 100 and 200 pmol/mol at
Site 761, compared to 0-100 pmol/mol at ODP Site 806. However, the Site 761 Mn/Ca record shows an
overall increase across the MMCT, whereas the Mg/Ca shows an overall decrease (Figure S3). This does
not rule out a diagenetic contribution per se, because the influence of the coatings would be imprinted
onto an unknown primary signal, but it makes it more unlikely. Mn can exist in different mineral phases
(e.g., different Mn oxide minerals, Mn adsorbed onto calcite, Ca-Mn carbonates, or Mn-Ca-Mg carbonates)
[Boyle, 1983]. Therefore, samples with Mn/Ca below the proposed threshold of 100 umol/mol [Boyle, 1983]
may be considered free of Mn-related contamination, but it is not necessarily true that all samples with
Mn/Ca above this threshold are contaminated with respect to Mg/Ca. Pacific ODP Site 1218 provides an
example of a site with significant foraminiferal Mn contamination. The ODP Site 1218 record from 20 to
40 Ma displays large variations in Mn/Ca values in reductively cleaned foraminifera, from <100 umol/mol
to >1000 pmol/mol (Figure S4). Despite this order of magnitude variation in Mn content, there is no
relationship between the Mn/Ca and Mg/Ca records, and the highest Mn/Ca values are associated with
the lowest Mg/Ca ratios. However, the origin of the Mn at Site 1218 is likely different from that at Site
761. Authigenic (Mn,,Mg,)CaCO5 coatings on Pleistocene foraminifera at Caribbean Site 999 resulted in
measured Mn/Ca similar to those observed at Site 761 (<500 pmol/mol) [Schmidt et al., 2006]. Assuming
a 10:1 Mn/Mg molar ratio of the authigenic carbonates, the authors demonstrate that less than
0.05 mmol/mol of their measured Mg/Ca could originate from such coatings. Even if we arbitrarily assume
a tenfold Mg enrichment in the authigenic carbonate relative to that observed in the Panama Basin
[Pedersen and Price, 1982], the Mn coatings could not account for more than 0.2 mmol/mol of the
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measured Mg/Ca. We note that there is
D@ 1 no offset in C. mundulus 8'3C between
ODP Sites 806 and 761 (Figure S5).
We, therefore, discount this explana-
tion for the intersite offset in Mg/Ca.

The second and favored explanation for
the Mg/Ca offset between the two sites
is that ODP Site 761 had anomalously
high levels of pore water carbonate
saturation in  which the infaunal
O. umbonatus precipitated its test calcite.
The ODP Site 761 O. umbonatus B/Ca
values are on average 12pmol/mol
higher than values at ODP Site 806,
are more variable, and display a slight
increase across the MMCT, whereas the

Seawater Mg/Ca (mol/mol)

10 N
. Seawater Mg/Ca = 1

. 5.2 -(0.238*Age) + (0.00661 *agez) - (6.66e-5*age3) | ODP Site 806 B/Ca values are lower and

T Y P P Y Loy Lo
0 0 10 20 30 40 50 relatively constant (Figure 3). This is con-
Age (Ma) sistent with the hypothesis that ODP

Site 761 pore waters have a higher

Figure 5. Third-order polynomial curve fit through compiled seawater ~degree of carbonate saturation than
Mg/Ca proxy records based on fluid inclusions, calcite veins, and echi- those at ODP Site 806 [Yu and Elderfield,
noderms [Dickson, 2002; Horita et al., 2002; Coggon et al., 2010]. The grey  2007]. A core top study estimated
envelope represents .the +0.5 mol/mol uncertainty window used in our 0. umbonatus Mg/Ca and B/Ca sensitivity
temperature calculations. to ACO5”~ as 0.0164 mmol/mol/umol/kg

and 0.433 pmol/mol/umol/kg, respec-
tively [Dawber and Tripati, 2012]; Brown et al. [2011] estimated O. umbonatus B/Ca-ACO;°~ sensitivity as
0.29 £ 0.20 pmol/mol/umol/kg. It is not straightforward to interpret these sensitivities directly in terms of
changes in bottom water versus pore water saturation states. Nevertheless, if the O. umbonatus
0.4 mmol/mol Mg/Ca offset between ODP Sites 806 and 761 is caused solely by an offset in ACO3*~, one
would expect a corresponding offset in B/Ca ~11 umol/mol, in excellent agreement with our record
(Figure 3). However, we do not observe an intersite offset in O. umbonatus Sr/Ca, and the observed intersite
offset in O. umbonatus Li/Ca is twice the expected magnitude, albeit in the expected direction (higher Li/Ca
at ODP Site 761). This may point to uncertainties in core top ACO32’ calibrations, or additional, unknown
processes at work.

The reasons for the hypothesized increased pore water saturation state at ODP Site 761 are unknown.
However, we note that the pore water [Mg] and [Ca] profiles at this site are atypical for pelagic marine sedi-
ments, in that their concentrations remain relatively constant from the sea floor down to ~300 m below sea-
floor [De Carlo, 1992]. As the organic carbon content of the sediment is low, these trends are unlikely to be
caused by enhanced dissolution due to remineralization of organic matter. Instead, these profiles may reflect
unusual flushing of the sediments by (oversaturated) seawater, perhaps aided by the unusually low sedimen-
tation rates [De Carlo, 1992]. Hence, it is plausible that the ODP Site 761 Mg/Ca might be biased by the unu-
sual pore water chemistry at the site.

4.3. Estimating Neogene BWT and 5'20,,,

We use our calibration equations (Tables 1 and 2) and a record of Mg/Cas,, from fluid inclusion, calcite vein
and echinoderm proxies [Dickson, 2002; Horita et al., 2002; Coggon et al., 2010] to calculate absolute BWT from
our ODP Site 806 Mg/Ca record. We fit a third-order polynomial curve through the compiled Mg/Ca,, data
and use an uncertainty window of +0.5 mol/mol to encompass most of the proxy data (Figure 5). Each
BWT scenario is then used in conjunction with the 5'0 record from the same samples and the Cibicidoides
quadratic 8'80 paleotemperature equation of Marchitto et al. [2014] to calculate §'80,,,. The result is a suite
of alternative calculated records for the evolution of deep Pacific bottom water temperature and §'80y,, since
17 Ma (Figure 6). The range in predicted temperature and §'80s,, results from a combination of the following:
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(1) differences between Mg/Ca tempera-
ture calibrations, (2) the 1.0-2.5 mol/mol
range of assumed Paleocene-Eocene
. Mg/Cas,, used to calculate the constants
in Tables 1 and 2, and (3) the +0.5 mol/
mol envelope on the Mg/Cay, curve
(Figure 5). Refining the Mg/Ca tempera-
ture calibration is key to improving
3 estimates of absolute temperature and
1 5'8%0,, over long (Myr) timescales
(Figure 6). The Pleistocene portion of
. our record is at too low a resolution to
1 capture the amplitude of glacial-
interglacial cycles. Based on the expected
range of Pleistocene §'80y,, [Duplessy
et al,, 2002; Elderfield et al., 2012], our pre-
= ferred linear Mg/Ca temperature calibra-
1 tion is that of Lear et al. [2010] and our
preferred exponential Mg/Ca tempera-

15 L o 1 ture calibration is that of Lear et al.
0 5 10 15 20  [2002] (Figure 6). We show the full range
Age (Ma) of absolute BWT and 8'80 estimates

based on these two calibrations

Figure 6. (a) Absolute bottom water temperature and (b) seawater 5'%0 (Figure 7). The uncertainty window on
scenarios using the equations in Tables 1 and 2. Equations based on these absolute estimates results from
Lear et al. [2002] are shown in red, on Lear et al. [2010] in green, the the set of constants corresponding to
NS-LBB linear calibration in blue, and the NS-LBB exponential calibration

in black. Scenarios that assume early Eocene seawater Mg/Ca=1.0 are the 1.0-2.5mol/mol range assumed
marked by long dashes, seawater Mg/Ca = 1.3 by solid lines, and seawater ~ for late Paleocene seawater Mg/Ca
Mg/Ca = 2.5 by dotted line. (Tables 1 and 2) and the +0.5 mol/mol

envelope on the Neogene Mg/Cag,
curve (Figure 5). After calculating the maximum and minimum temperatures produced from different com-
binations of these parameters through time, an additional £1°C uncertainty envelope was added to the
record to include sample reproducibility and calibration errors [Elderfield et al., 2012].

4.4. Neogene Ice Sheet Evolution and Ocean Cooling

The low-resolution §'80 and Mg/Ca records from ODP Site 806 (Figure 2) capture the broad trends in late
Neogene Pacific deep water temperature and §8'80,, (Figure 7). The records display three noteworthy
features, which we discuss in more detail below. First, bottom waters cooled between 15.5 and 14.5 Ma
(following the Miocene Climatic Optimum), but there was apparently no significant cooling associated with
major ice growth steps between 14 and 12 Ma. Second, 520, has increased by ~0.5%o overall since ~15 Ma
(prior to the MMCT), with an interval of heavy 5'80,,, between 12 and 8 Ma that could be interpreted as
reflecting bipolar glaciation or the presence of a relatively warm salty water mass at Site 806. We acknowl-
edge that these absolute estimates of §'20y,, are poorly constrained. Improved core top calibrations will sig-
nificantly reduce the uncertainties (Figure 6). The third feature is the major deep water cooling since 5 Ma.
The Plio-Pleistocene drop in sea level is likely within the uncertainty of this broad reconstruction and cannot
be inferred from this low-resolution record.

4.4.1. Neogene Decoupling of Deep Water Temperature and Ice Volume

The decoupling of deep water/high-latitude temperature and ice volume appears to be a consistent feature
throughout the late Neogene (Figure 7). This supports our understanding of the cryosphere as a highly thre-
sholded system, with ice growth occurring once the balance between ice accumulation and ablation is favor-
able [DeConto et al., 2008].

4.4.2. Greater than Modern Ice Volume Following the MMCT

Assuming that the 5'20,, signal can be interpreted in terms of global ice volume, our record suggests greater
than modern ice volume following the Middle Miocene Climate Transition. The Pleistocene §'80,,-sea level
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Figure 7. (a, b) Absolute estimates of bottom water temperature and (c, d) seawater 580 for ODP Site 806 calculated using the equation based on the Lear et al.
[2010] calibration (Figures 7a and 7c) and the equation based on the Lear et al. [2002] calibration (Figures 7b and 7d). The uncertainty envelope is derived from
the range in calibration constants in Tables 1 and 2, the range in seawater Mg/Ca shown by the grey envelope in Figure 5 and a further +1°C uncertainty to reflect
sample reproducibility and calibration error. The solid grey lines represent our favored scenarios, which assume Paleocene-Eocene seawater Mg/Ca =1.3 and use
values for Neogene seawater Mg/Ca shown by the solid black line in Figure 5. These records assume constant pore water saturation state. The Pacific zonal sea
surface temperature gradient (red line, Figures 7a and 7b) has been calculated from TEXgg records [Zhang et al., 2014], and the benthic 3'80 record (blue line) was
compiled by Zachos et al. [2008].

calibration [Fairbanks and Matthews, 1978] indicates that the ~1%o increase in 8'20,,, between 14.5 and
12.5Ma is equivalent to a ~90 m sea level fall. Put into context, the modern Antarctic ice sheet contains
approximately 60 m sea level equivalent ice, and during the Last Glacial Maximum (LGM), sea levels were
approximately 120m lower than today, with around ~14m attributed to a larger Antarctic ice sheet
[Denton and Hughes, 2002; Briggs et al., 2014]. The amount of ice that can be supported on Antarctica
depends not only on climate parameters but also on paleotopography and paleogeography. Drilling off
the East Antarctic coast has revealed a dynamic Miocene history for the Antarctic ice sheet [Escutia et al.,
2005; Passchier et al., 2011]. Age model uncertainties prevent us from correlating intervals of East Antarctic
ice sheet advance to our §'80y,, records, but diamictite textures indicating offshore grounding lines provide
evidence for a greater ice sheet extent than today during the middle Miocene [Passchier et al., 2011].
Paleogeographic reconstructions demonstrate that Antarctic land area has decreased since the earliest
Oligocene, with early Oligocene climate and topography supporting an Antarctic ice sheet ~35% larger than
today [Wilson et al., 2013]. Furthermore, geomorphological evidence indicates that a thicker-than-modern ice
sheet, capable of cross-cutting valleys, overrode the Transantarctic Mountains in the middle Miocene [Denton
et al., 1984; Denton and Sugden, 2005]. These lines of evidence suggest that Middle Miocene Antarctic paleo-
geography and climate were able to support a far larger ice sheet than today. However, it is surprising that
the high absolute §'20,, values persisted and even slightly increased throughout the late Miocene (Figure 7).
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We consider two explanations for this unexpected finding. The first is that there was a period of significant
Northern Hemisphere glaciation, culminating around 8 Ma, and the second is that the Site 806 5'20y,, record
includes a significant component of regional salinity change. Middle Miocene paleotopographic reconstruc-
tions indicate a high relief (>1500 m) in the northwestern Barents Sea. Ice rafted debris (IRD) fingerprinting
has been interpreted in terms of significant glaciation and iceberg calving in the Barents Sea region from
~14 Ma [Knies and Gaina, 2008]. Perennial ice has provided a constant source of IRD from all the circum-
Arctic shelves since ~15Ma [Darby, 2008], and Scandinavian ice, as inferred from IRD on the Véring
Plateau, initiated around 12.6Ma [Thiede et al, 1998]. Therefore, there may have been a Northern
Hemisphere glaciation component following the MMCT, consistent with the hypothesis that atmospheric
CO, levels crossed the proposed threshold for Northern Hemisphere glaciation at the Middle Miocene
Climate Transition [Foster et al.,, 2012; DeConto et al., 2008; Holbourn et al., 2013a]. However, evidence for
extensive Northern Hemisphere continental ice sheets prior to ~7 Ma is lacking [Larsen et al., 1994].

Alternatively, our Site 806 5'20,,, record includes a significant regional salinity signal. In the middle Miocene,
ODP Site 806 likely lay in the path of Pacific Central Water, the return flow of Circumpolar Deep Water
[Holbourn et al., 2013b]. Intersite stable isotope gradients indicate enhanced formation of North Atlantic
Deep Water (NADW) during the early Pliocene relative to today, and this relatively warm, salty water mass
may have influenced deep Pacific waters [Kwiek and Ravelo, 1999; Ravelo and Andreasen, 2000]. Closure of
the Tethys Seaway may have increased Atlantic sea surface salinity and promoted enhanced formation of
NADW since the middle Miocene, with consequent cooling of the Southern Ocean [Zhang et al., 2011] and
an increased NADW influence on Circumpolar Deep Water [Holbourn et al., 2013b]. We note that the upper
Miocene benthic foraminiferal 380 record from ODP Site 806 appears to diverge from the compiled adjusted
8'80 record of abyssal Pacific Deep Sea Drilling Project Site 77 (paleowater depth ~4 km [Cramer et al., 2009]
(Figure S6). We speculate that warmer, saltier waters bathed ODP Site 806, while the Pacific abyss was bathed
by a fresher, colder water mass sourced from high latitudes. High-resolution quantitative reconstructions of
8'80,, from different ocean basins are required to tease out the global ice volume and regional salinity
components of the Site 806 §'20,,, record and hence the link between climate sensitivity and ocean
overturning regime.

4.4.3. Plio-Pleistocene Deep Water Cooling

Our records display a striking cooling trend of ~4-6°C from around 5 Ma to ~2.5 Ma, preceding the onset of
large-amplitude glacial-interglacial cycles in the late Pliocene [Raymo et al., 1989; Bailey et al., 2013] (Figure 7).
The later half of this trend corresponds to a sea surface cooling linked to increased iceberg longevity in the
Southern Ocean [Cook et al., 2014]. However, the early phase (between 5 and 4 Ma) of bottom water cooling
at Site 806 does not appear to be associated with significant cooling in the Southern Ocean. This cooling
might reflect increasing dominance of a cold water mass, rather than a cooling in its source region. In the
early Pliocene, north Pacific ODP Site 1018 (2476 m water depth) was apparently influenced by a water mass
that was warmer and saltier than modern NADW [Kwiek and Ravelo, 1999]. We speculate that this water mass
also influenced ODP Site 806 but became less important between 5 and 4 Ma. The cooling is paralleled by an
increase in the tropical Pacific zonal sea surface temperature gradient (Figure 7), which may have been driven
by an increased meridional sea surface temperature gradient [Zhang et al., 2014]. The associated thinning of
the low-latitude thermocline may have increased climate sensitivity to CO,, thus setting the stage for the
subsequent glaciation of the Northern Hemisphere [LaRiviere et al., 2012].

5. Conclusions

Benthic foraminiferal Mg/Ca paleothermometry is a powerful tool for reconstructing bottom water tempera-
tures and §'80,,. Infaunal foraminifera calcify in pore waters that may be buffered from changes in overlying
bottom water saturation state. We recommend that paired B/Ca and Mg/Ca records are used to assess this
assumption, before Mg/Ca records are interpreted solely in terms of bottom water temperature. We suggest
that sediments with abundant planktonic foraminifera (which dissolve more easily than benthics) may have a
higher buffering capacity than sediment without or with rare planktonic foraminifera, and/or a high fragmen-
tation index. Paired Mg/Ca and &'0 records from the ice-free late Paleocene to early Eocene imply a low sen-
sitivity of O. umbonatus Mg/Ca to seawater Mg/Ca, suggesting that this infaunal deep water species exerts a
strong biological control on its calcification process. We provide a range of possible Mg/Ca-BWT-Mg/Cag,,
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calibrations for calculating absolute BWT and §'20,,,, encompassing uncertainties resulting from core top
calibrations and Cenozoic Mg/Cas,, reconstructions. Uncertainties in reconstructed absolute BWT and
5'%0,,, are large compared to relative changes in BWT and 5'80y,, as determined over short timescales
(<1 Myr). Nevertheless, when applied to an O. umbonatus Mg/Ca record from ODP Pacific Site 806, our cali-
brations imply greater than modern ice volume following the Middle Miocene Climate Transition. Bottom waters at
Site 806 cooled in the Pliocene, as meridional and tropical zonal sea surface temperature gradients increased, thus
supporting the idea that a change in ocean hydrographic regime played an important role in Earth’s transition
from a polar to bipolar glaciated world. The apparent decoupling of deep water/high-latitude temperatures and
ice volume highlights the sensitivity of the cryosphere to thresholds and internal feedbacks in the climate system.
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