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Abstract

Using Monte Carlo experiments, we examine the performance of Indirect Inference tests of DSGE

models, usually versions of the Smets-Wouters New Keynesian model of the US postwar period. We

compare these with tests based on direct inference (using the Likelihood Ratio), and on the Del Negro-

Schorfheide DSGE-VAR weight. We find that the power of all three tests is substantial so that a false

model will tend to be rejected by all three; but that the power of the indirect inference tests are by far

the greatest, necessitating re-estimation by indirect inference to ensure that the model is tested in its

fullest sense.
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1 Introduction

An unresolved issue in macroeconomics is the best way to evaluate the empirical performance of DSGE

models. This problem has become more pressing due to the increasing use of DSGE models estimated using

Bayesian methods. The aim of this paper is to compare a number of different ways of evaluating DSGE

models, including carrying out formal statistical tests.

DSGE models emerged largely as a response to the perceived shortcomings of previous formulations of

macroeconometric models. The main complaint was that these macroeconometric models were not structural

and so were subject to Lucas’ critique (Lucas, 1976). They were also criticised for incorporating "incredible"

identifying restrictions (Sims, 1960) and for over-fitting the data due to data-mining. In contrast, the

emphasis in DSGE models - particularly their early RBC manifestation - is on the logical coherence of their

theoretical structure and choosing parameter values through calibration rather than conventional econometric

estimation.

For all their theoretical advantages, the strong simplifying restrictions on the structure of DSGE models

resulted in a severe deterioration of fit. This had not been such a problem with the previous generation of

macro models in which ad hoc supply and demand functions with lagged adjustment had been sufficiently

flexible to pass tests of the models; indeed they still did so even when rational expectations were added.

There have been various reactions to this empirical failure of DSGE models. Supporters of DSGE models

- such as Prescott and Lucas (see Canova, 1994, for a discussion of their position) - argued that these

models were ‘misspecified’ or ‘false’ and so should not be tested by the usual econometric methods which

would always reject them. Rather they should be evaluated by whether in simulation they could generate

behaviour mimicing the ‘stylised facts’. This mimicry could not be evaluated by statistical inference; rather

it was an informal comparison. Others, following Sims’s criticisms of earlier macroeconometric models,

thought that DSGE models were far too simple to capture the economy’s real complexity and preferred

instead to build time-series models of the economy, such as VARs. A third reaction has been to replace

calibration with Bayesian estimation, a weaker way of incorporating prior beliefs, and to specify a more

flexible lag structure determined more by the data, for example, by including disturbances that are allowed

to be serially correlated. As a result, modern DSGE models tend to fit the data much better. Nonetheless,
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the concern remains that there would be no need to use Bayesian estimation if the model was correct, as

classical estimation would yield similar parameter values. The need to evaluate DSGE models empirically

therefore remains.

Various econometricians – for example Watson (1993), Canova (1994, 1995, 2005), Del Negro and

Schorfheide (2004, 2006) – have shown an interest in evaluating DSGE models statistically. They accepted

the argument that these models were misspecified and, instead of testing these models, they suggested

measures of their overall ‘closeness’ to the data. The role of such closeness measures was not to reject the

model, rather to act as a ranking device for alternative models (all of which implicitly would be rejected).

Bayesians in particular suggested the use of marginal likelihood testing, whereby features of the model that

could be varied as alternative specifications could be ranked by their likelihood values. Overall closeness

measures could then be seen as linked to these marginal tests since a model with less marginally rejected

features should be closer overall to the data. To quote Canova (1994), these econometricians were asking

about a DSGE model: ‘given that it is false, how true is it?’ Bayesian methods could seek out marginal

features that could enhance the extent of its truth.

Measuring the closeness of the predictions of a DSGE model to actual data rather than carrying out a

formal statistical test of the model might be justified on the grounds that since DSGE models are known

to be simplifications they cannot be a true representation of the macroeconomy. Support for this view

may be found as far back as Friedman (1953 ) who laid down generally accepted foundations of economic

testing methodology according to which a model should not be tested on its ‘literal truth’ but rather on its

implications for the data it was designed to explain. Thus a macro model should be tested on its ability

to explain macro data, not on whether it is a gross simplification of a complex reality; indeed as Friedman

noted, the more simple a theory, the greater its potential explanatory power, in the sense that it has a higher

ratio of explanation to theoretical complexity. He gave the example of perfect competition which could,

though never actually existent, predict closely the behaviour of industries with a high degree of competition.

Nonetheless, it is still more informative to assess closeness of fit to the data by measuring the probability

that the data could be generated by the model, using a statistical test.

A standard likelihood ratio test is based on all of the parameters of a model. This appears to be a
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stringent criterion.1 In a recent paper Corradi and Swanson (2007) proposed a likelihood test based on the

model’s simulated distribution for output alone. This is, perhaps, too weak a criterion. Another criterion,

that may reflect better the purposes for which the model is built, is to base a test on key parameters or

features of interest such as measures of certain ‘stylised facts’, for example, key moments and cross-moments.

This provides a way of implementing the notion that a DSGE model may be a good model in the sense that

it can capture data features of principal interest. The Wald statistic proposed in this paper provides a way

of evaluating whether a DSGE model satisfies this criterion but is potentially flexible in its choice of data

features to focus on. In this way we provide valid statistical foundations for inference about a model in

respect of chosen features of the data rather than the data as a whole.

The distribution of the Wald statistic under the null of the DSGE model can be easily and accurately

obtained using the bootstrap; it can be seen as an aspplication of indirect inference. The details of this

testing procedure are dealt with in Le et al (2011), together with Monte Carlo experiments gauging the

procedure’s accuracy and the consistency of the bootstrap in this context. As the test examines more than

one feature, the test is based their joint distribution under the null of the model. The results of this test

may be very different from that based on matching these features one by one. In the rest of this paper we

review the main properties of indirect inference as implemented by our test procedure and compare them

with other procedures currently in use to evaluate DSGE models.

We begin in section 2 by reviewing the main features of the indirect inference testing procedure as we

implement it; in it we cover the major issues that have arisen in the application of this largely new and

unfamiliar testing procedure2 . In section 3 we compare this testing method with the widely used Likelihood

Ratio test used in Direct Inference. In section 4 we go on to compare both these two methods with the

evaluation procedure proposed by the Bayesians Del Negro and Schorfheide (2006), in which an unrestricted

1 In a recent interview Sargent remarked of the early days of testing DSGE models: ‘...my recollection is that Bob Lucas and
Ed Prescott were initially very enthusiastic about rational expectations econometrics. After all, it simply involved imposing on
ourselves the same high standards we had criticized the Keynesians for failing to live up to. But after about five years of doing
likelihood ratio tests on rational expectations models, I recall Bob Lucas and Ed Prescott both telling me that those tests were
rejecting too many good models.’ Tom Sargent, interviewed by Evans and Honkapohja (2005)

2This discussion draws extensively on Le et al (2011) – q.v. for more details – as well as discussing some issues not covered
there.
In all our work reported here we deal with stationary data; in practice most macroeconomic data has to be detrended in

some way for this to be possible. We largely ignore issues of how such detrending should be done and what effect it has on the
analysis. However in Davidson et al (2010) we show how these testing methods can be extended to non-stationary data and
illustrate the approach with an application to UK data. Nevertheless this remains an important area for further research as we
have not investigated most of the issues discussed here in a situation of unfiltered data.
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VAR is weighted with the restricted VAR implied by the DSGE model; the weight maximising the marginal

likelihood is used as an index of misspecification. We show that this weight can be treated as a test statistic,

if its distribution is found by bootstrapping3 . Our final section concludes with some overall lessons of these

comparisons.

2 Model evaluation by indirect inference

Indirect inference provides a classical statistical inferential framework for judging a calibrated or already, but

maybe partially, estimated model whilst maintaining the basic idea employed in the evaluation of the early

RBC models of comparing the moments generated by data simulated from the model with actual data. An

extension of this procedure is to posit a general but simple formal model (an auxiliary model) – in effect

the conditional mean of the distribution of the data – and base the comparison on features of this model,

estimated from simulated and actual data. If necessary these features can supplemented with moments and

other measures directly generated by the data and model simulations.

Indirect inference on structural models may be distinguished from indirect estimation of structural models.

Indirect estimation has been widely used for some time, see Smith (1993), Gregory and Smith (1991,1993),

Gourieroux et al. (1993), Gourieroux and Monfort (1995) and Canova (2005). In estimation the parameters

of the structural model are chosen so that when this model is simulated it generates estimates of the auxiliary

model similar to those obtained from actual data. The optimal choice of parameters for the structural model

are those that minimise the distance between a given function of the two sets of estimated coefficients of

the auxiliary model. In the use of indirect inference for model evaluation the parameters of the structural

model are taken as given. The aim is to compare the performance of the auxiliary model estimated on

simulated data derived from the given estimates of a structural model – which is taken as the true model

of the economy, the null hypothesis – with the performance of the auxiliary model when estimated from

3Testing an overall model against the data is not something that Bayesian analysis does because it involves questioning the
priors and their distribution. However, in economics priors cannot be considered as at all firm in many cases; a given theory can
contain a wide difference in values for many parameters. Thus it is natural to ask whether the whole model fits the data since
this could lead one to seek different values for the parameters restricted under the priors. Bayesian estimation appears to us to
be a most useful method for obtaining initial ML estimates of a model which may be hard to obtain without some restrictions
on the likelihood surface. However our argument here is that it needs to be supplemented with a test of the overall success of
the resulting estimates. The Bayesian λ which is nowadays widely estimated as a measure of closeness can also provide a test
statistic, as we show in this section.

5



actual data. If the structural model is correct then its predictions about the impulse responses, moments

and time series properties of the data should match those based on actual data. The comparison is based

on the distributions of the two sets of parameter estimates of the auxiliary model, or of functions of these

estimates.

Our choice of auxiliary model exploits the fact that the solution to a log-linearised DSGE model can

be represented as a restricted VARMA model and this can be closely represented by a VAR. For further

discussion on the use of a VAR to represent a DSGE model, see for example Canova (2005), Dave and DeJong

(2007), Del Negro and Schorfheide (2004, 2006) and Del Negro et al. (2007a,b) together with the comments

by Christiano (2007), Gallant (2007), Sims (2007), Faust (2007) and Kilian (2007). A levels VAR can be

used if the shocks are stationary, but a VAR in differences may be needed if the shocks are permanent as

is commonly assumed in DSGE models for productivity (real) and money supply shocks (nominal). This is

because, if productivity shocks are permanent, then the production function is not cointegrated and so the

associated VAR representation in levels would have non-stationary disturbances. The a priori structural

restrictions of the DSGE model impose restrictions on the VAR; see Canova and Sala (2009) for an example

of lack of identification based on a simple three equation model consisting of a new Keynesian IS function,

a Phillips Curve and a Taylor Rule. Provided this VAR is over-identified, the DSGE model can be tested

by comparing unrestricted VAR estimates (or some function of these estimates such as the value of the log-

likelihood function or the impulse response functions) derived using data simulated from the DSGE model

with unrestricted VAR estimates obtained from actual data. If the solved VAR is not identified then it is not

restricted; the null and alternative hypotheses are then indistinguishable in the VAR. The Smets-Wouters

(2007a, SW) model we will use in what follows is clearly over-identified; changes in its parameter values

imply quite different simulation properties.4

The model evaluation criterion we use is based on the difference between the vector of relevant VAR

coefficients from simulated and actual data as represented by a Wald statistic. If the DSGE model is correct

(the null hypothesis) then the simulated data, and the VAR estimates based on these data, will not be

4We discuss the issue of identification in Le, Minford and Wickens (2012); there we propose a numerical test for identification
based on indirect inference and show that the SW model is idetified according to it, as is also an example New Keynesain three-
equation model.
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significantly different from those derived from the actual data. The method is in essence extremely simple;

though it is numerically taxing, with modern computer resources it can be carried out quickly. The idea is

to bootstrap the DSGE model with the shocks it and the data imply must have generated the data. These

bootstrap simulations represent what the model and its implied shocks could have generated for the sample

historical period of the data. The test then compares the VAR coefficients estimated on the actual data

with the VAR coefficient distribution coming from VAR estimates on the many simulated samples. The

Wald statistic, WS, computes the joint distance of the data coefficients from the mean of the simulation

distribution as follows:

WS = (aT − aS(θ0))′W (θ0)(aT − aS(θ0))

where W (θ0) is the inverse of the variance-covariance matrix of the distribution of aT− aS(θ0). Here aT

is the set of VAR coefficients found in the data while aS(θ0) is the mean of the VAR coefficients found

in the simulated samples; the distribution of aT− aS(θ0) is estimated as the bootstrap distribution of aS

around its mean. We are not compelled to use the VAR coefficients in this formula: thus one could use

other data ‘descriptors’ considered to be key features of the data that the model should match – these

could be particular impulse response functions (such as to a monetary policy shock) or particular moments

(such as the correlations of various variables with output). However, such measures are functions of the VAR

coefficients and it seems that a parsimonious set of features is these coefficients themselves. There are still

issues about which variables to include in the VAR (or equivalently whether to focus only on a subset of

VAR coefficients related to these variables) and what order the VAR should be. Also it is usual to include

the variances of the data or of the VAR residuals as a measure of the model’s ability to match variation. We

discuss these issues further below.

The idea of the test can be seen usefully with a simple example, with just two VAR coefficients being

assessed. The diagram below shows the joint distribution of the two coefficients under two assumptions: the

top illustrates the case where the two are uncorrelated, the bottom where they are highly correlated. Two

data points are shown, one in blue, the other in red. The Wald statistic would not reject the blue point in the

top case, but reject it in the bottom case. It would reject the red point in the top case but not in the bottom
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case. In the top case the covariance matrix of the coefficients has zero off-diagonal elements, whereas in the

bottom case they are non-zero. It is unusual to find zero off-diagonal elements because different features of

the data to be correlated across the samples generated by the DSGE model5 .
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-0.200.20.40.60.811.2

0.5
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Correlation=0
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1
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1
2
3
4
5

Correlation=0.9

Figure 1: Bivariate Normal Distributions (0.1, 0.9 shaded blue and 0, 0 shaded red) with correlation of 0 and
0.9.

5To understand why DSGE models will typically produce high covariances and so distributions like those in the bottom
panel of Figure 1, we can give a simple example in the case where the two descriptors are the persistence of inflation and interest
rates. If we recall the Fisher equation, we will see that the persistence of inflation and interest rates will be highly correlated.
Thus in samples created by the DSGE model from its shocks where inflation is persistent, so will interest rates be; and similarly
when the former is non-persistent so will the latter tend to be. Thus the two estimates of persistence under the null have a
joint distribution that reflects this high correlation.
In Figure 1, we suppose that the model distribution is centred around 0.5 for each VAR coefficient; and the data-based VAR

produced values (the blue ones) for their partial autocorrelations of 0.1 and 0.9 respectively for inflation and interest rates –
the two VAR coefficients. We suppose too that the 95% range for each was 0−1.0 (a standard deviation of 0.25) and thus each
is accepted individually. If the parameters are uncorrelated across samples, then the situation is as illustrated in the top panel.
They will also be jointly accepted.
Now consider the case where there is a high positive covariance between the parameter estimates across samples, as implied

by the DSGE model (with its Fisher equation). The lower panel illustrates the case for a 0.9 cross-correlation between the two
parameters. The effect of the high covariance is to create a ridge in the density mountain; and the joint parameter combination
of 0.1, 0.9 will be rejected even though individually the two parameters are accepted.
The red data values (0, 0) analogously reject the model in the top case but do not reject it in the more usual bottom case of

high correlation.
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We can show where in the Wald bootstrap distribution the Wald based on the data lies (the Wald

percentile). We can also show the Mahalanobis Distance based on the same joint distribution, normalised

as a t-statistic, and also the equivalent Wald p-value, as an overall measure of closeness between the model

and the data.6 In Le et al. (2011) we applied this test to a well-known model of the US, that of Smets and

Wouters (2007; qv); we found that the Bayesian estimates of SW were rejected for both the full post-war

sample and for a more limited post-1984 (great Moderation) sample. However, we modified the model by

adding competitive goods and labour market sectors and we searched with a powerful Simulated Annealing

algorithm for other parameter sets that might improve the Wald, succeeding in finding a set for the post-1984

sample. Here we refer to some aspects of that work to illustrate the test’s application.

Thus the joint distribution of the VAR(1) coefficients for 5 variables and their data variances in the

Smets-Wouters model gave a distribution for the Wald statistic shown in Figure 2:

0 10 20 30 40 50 60 70 80 90 100
0
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10

15

20

25

30

35

40

Figure 2: Histogram of Wald statistic for weighted SW, with Chi-squared distribution (30 degrees of freedom)

It may be observed that the small sample distribution given by 1000 bootstraps differs from the asymptotic

distribution shown in this figure; the small sample distribution is in principle the one we wish to use, subject

to any inaccuracy imported by the bootstrap.

The same Wald statistic transformed to a normalised t-value (Mahalanobis Distance) is shown next.

This is arrived at as follows. The
√
χ2 is a normal variable;

√
Wald is the Mahalanobis Distance, MD; by

adjusting its mean and standard deviation this can be normalised as a t-value where the 95% point is 1.645

6The Mahalanobis Distance is the square root of the Wald value. As the square root of a chi-squared distribution, it can be
converted into a t-statistic by adjusting the mean and the size. We normalise this here by ensuring that the resulting t-statistic
is 1.645 at the 95% point of the distribution.
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as in Figure 3.
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Figure 3: Normalised Mahalanobis Distance

The jointness of the distribution of the VAR coefficients can be illustrated from the two-coefficient case

shown in the three-dimensional diagram above. With 2 coefficients, as in that diagram, the Wald statistic for

the blue values can be written as
t2
1
+t2

2
−2t1t2ρ12
1−ρ2

12

where t1 = −1.6, t2 = +1.6 are the data points expressed as

the distance from the mean relative to their standard deviation; thus in the top panel of Figure 1 ρ12 = 0.9

and the Wald=51.2; whereas if it is the case (Figure 1, bottom) that ρ12 = 0, then the Wald=5.12. The 95%

value of the χ2(2) is 5.99. Thus we can see how a high correlation affects the Wald statistic and so the joint

significance of the two coefficients. In the case of the red values the Wald is 8.0 for ρ12 = 0 (a rejection) but

falls to 4.2 for ρ12 = 0.9 (non-rejection).

A variety of issues concerning the use of the bootstrap and the robustness of these methods more generally

are dealt with in Le at al (2011)7 . A particular concern with the bootstrap has been its consistency under

conditions of near-unit roots. Several authors (e.g. Basawa et al., 1991, Hansen (1999) and Horowitz,

2001a,b) have noted that asymptotic distribution theory is unlikely to provide a good guide to the bootstrap

distribution of the AR coefficient if the leading root of the process is a unit root or is close to a unit root. This

is also likely to apply to the coefficients of a VAR when the leading root is close to unity and may therefore

affect indirect inference where a VAR is used as the auxiliary model, as here. In Le et al. (2011) we carried

7Since that paper we have looked at two further issues in more depth: the choice of covariance estimate in the Wald, and
the method of error extraction from the DSGE model being tested. This work is shown in the Appendix to this paper.
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out a Monte Carlo experiment to check whether this was a problem in models such as SW. We found that the

bootstrap was reasonably accurate in small samples, converged asymptotically on the appropriate chi-squared

distribution and, thus being asymptotically chi-squared, satisfied the usual requirement for consistency of

being asymptotically pivotal.

3 Comparing Indirect Inference with other testing methods in

general use

It is useful to consider how other methods of testing are related to indirect inference. If there is a distribution

of certain features of the data behaviour under the null and hence of a Wald statistic derived from these

features, we would also like to know what the distribution is under the null for other measures of fit, including

likelihood ratio tests and the closeness DSGE-VAR λ measure of Del Negro and Schorfheide.8

Another question of interest is the relative power of these various tests against misspecified models. That

is, suppose we set up the test based on the distribution under the null hypothesis; we want to know how the

rejection rate rises as the true model deviates increasingly from the null.

These questions can be answered by Monte Carlo experiments in which we posit a true model and find

out the distribution of the various test statistics for this model. We can check power by using test statistics

under the null of a particular model but generate the data used in these tests from an alternative true model;

we can then see the frequency of rejection of the null (false) model as we move it increasingly further from

the true model.

3.1 Some preliminary experiments comparing indirect with direct inference

We would like to know how far the indirect inference tests replicate tests via direct inference. In particular,

we compare the DSGE model performance in respect of properties where we could conceivably expect some

8The marginal likelihood ratio tests carried out in Bayesian estimation apply to features of the model: they measure the
extent to which adding a particular feature improves the closeness of the model to the data. Hence they are not measures of
closeness for the whole model like our Wald statistic. Also as measures of improvement they will depend on which features of
the model are taken as given already. It can be that a particular feature that we are interested in will reduce the closeness of a
model with given parameter values; yet when those parameter values are allowed to change to maximise the model’s fit when
this feature is added, the model may perform better than when the feature is absent.
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relationship. For our comparison we use the Smets-Wouters model of the US, for the whole post-war sample,

investigated in Le et al. (2011), with a VAR as the auxiliary model. We treat this model as the true one

and generate 1000 bootstraps.

The two tests focus on rather different aspects of a model’s performance. Direct inference asks how close

the model gets to forecasting current data; indirect inference asks how close the model gets to replicating

properties of the auxiliary model we obtain from the data. As the Direct Inference test statistic we take

the Likelihood Ratio for the DSGE model against the unrestricted VAR; thus each LR shows how well the

DSGE model forecasts the ‘data’ compared with the VAR estimated for that data.

We check the power of the Wald test by positing a variety of false models. We generate the falseness by

introducing a rising degree of numerical mis-specification for the model parameters. Thus we construct a

False DSGE model whose parameters were moved x% away from their true values in both directions (even

positive, odd negative); similarly the higher moments of the error processes (standard deviation, skewness

and kurtosis) are altered by the same x%. We think of this False Model as having been proposed after either

calibration or estimation on some set of actual true data or a combination of both. The essential point is that

the False Model is believed by the researcher to be potentially true; the relevant question is how the testing

procedure will evaluate this belief. We assume that the degree of error in the beliefs, whether of parameters

or errors, cannot be obviously identified from just examining the data sample; as we see in the appendix,

from a given sample with a given θ one can extract different error processes with different methods so that

there is no uniquely determined set of ρs and error moments; similarly θ can also be variously estimated or

calibrated. Thus for any given data sample the information in the sample itself will be consistent with a

wide range of parameters and error moments.

Thus for the evaluation of the power of Indirect Inference under our Monte Carlo procedure we generate

10000 samples from some True model (where we take an error distribution with the variance, skewness and

kurtosis found in the SW model errors), and find the distribution of the Wald for these True samples. We

then generate a set of 10000 samples from the False model θ and calculate the Wald distribution for this False

Model. We then calculate how many of the actual samples from the True model would reject the False Model

on this calculated distribution with 95% confidence. This gives us the rejection rate for a given percentage
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degree x of mis-specification. We use 10000 samples for the Indirect Inference case because the size of the

variance-covariance matrix of the VAR coefficients is large for high VAR orders and variable numbers.9

For the evaluation of the power of Direct Inference we need to ask how well the DSGE model forecasts

within samples generated by the True Model compared with a VAR model fitted to those samples. We use

the first 1000 samples as no more are needed in this case. The DSGE model is given a θ and the residuals

and ρs are extracted by LIML from each sample. In a forecasting test the model is given at each stage

the lagged data including the lagged errors. We assume that since the lagged errors are observed in each

sample, the researcher can also estimate the implied ρs for the sample errors and uses these in its forecast.

We assume the researcher does this by LIML as this is a robust method – the DSGE model’s forecasting

capacity is clearly helped by the presence of these autoregressive error processes. We find the distribution of

the LR when θ is the true model; and then we apply the 5% critical value from this to the False model LR

value for each True sample to obtain the rejection rate for the False Model. A False model is again chosen

by changing its θ parameters by + or −x%.

Thus the two methods share the same first 1000 samples generated from the same True model. In Indirect

it checks the VAR behaviour of these against the simulated VAR behaviour from the DSGE model; in Direct

it checks the relative forecast accuracy of the DSGE model versus that of the VAR model on these samples.

Percent Mis-specified Indirect Inference Direct Inference
True 5.0 5.0

1 19.8 6.3
3 52.1 8.8
5 87.3 13.1
7 99.4 21.6
10 100.0 53.4
15 100.0 99.3
20 100.0 99.7

Table 1: Rejection Rates for Wald and Likelihood Ratio for 3 Variable VAR(1)

9We assume in this the accuracy of the bootstrap itself as an estimate of the distribution; the bootstrap substitutes repeated
drawings from errors in a particular sample for repeated drawings from the underlying population.
Le et al (2011) evaluate the accuracy of the bootstrap for the Wald distribution and find it to be fairly high.

13



 

0 200 400 600 800
0

50

100

150

200

250

300

350

Indirect Inference

 

 

Rejection Rate = 52.14%

3% False

True

-300 -200 -100 0 100
0

10

20

30

40

50

60

70

Direct Inference

 

 

Rejection Rate = 8.8%

3% False

True

Figure 4: Histograms of true and 3% false models for Indirect and Direct Inference (some outliers deleted
from Indirect for the chart)
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This comparison shows, first, that there is no correlation between the two measures of ‘fit’ for a given

model (Figure 5). When a sample is well-fitting on one measure it may be well- or badly-fitting on the other

measure. Thus in effect these two tests measure entirely different things. When the model forecasts well it

does not necessarily match data behaviour and vice versa.

Second, we find that the power of the Indirect Inference Wald test is considerably greater than that of

the Direct Inference LR test (Table 1). With 5% mis-specification the Wald rejects 99% of the time (at the

95% confidence level) while the LR test rejects 15% of the time. At a sufficiently high degree of falseness

both reject 100% of the time, so that clearly the LR test too has good power. This in turn implies that

the two tests though uncorrelated across samples for a given model are reasonably correlated across models;

thus as a model becomes more false both tests increase their rejection rate. This can be seen in Figure 6

that shows the same samples’ measures across progressively more False models.

What this seems to show is that both methods of testing have a potential role. But they are not equivalent

tests. The researcher can choose which test to use depending on the purposes in hand. If the purpose is

to have a DSGE model that behaves qualitatively like the data, indirect inference is the testing tool. This

purpose also imposes greater demands on a DSGE model as the test’s power is very high. If the purpose is to
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have a DSGE model that forecasts accurately, then direct inference is the relevant tool; it is also substantially

less demanding. Thus in the first case one wishes to know whether a model has a structure that picks up

‘typical’ responses, even if it is not accurate in any given episode. In the second case one is using forecasting

precision as a test of the model.

It seems to us that for researchers or policymakers interested in whether the DSGE model captures the

causal system well, the Indirect Inference test will be relevant since it tests whether the model captures the

interrelationships within the data. Such people have no interest in the model’s forecasting capacity since

forecasting is generally done by other means; thus the second test will not be relevant to them.

Nonetheless, one may use a direct inference test as a pure ‘specification test’; that is, asking whether the

model is the true generating system. As such it will perform with much less power than the comparable

Indirect Inference test. Nevertheless one should be aware that in a given sample a DSGE model that was

not rejected in its capacity to reflect data behaviour could be rejected in its capacity to forecast, and vice

versa. For a DSGE model that is only modestly False will be rejected by two almost entirely different sets of

samples under the two tests. Thus a final point to make about conducting these tests is that if a researcher

were to use say two tests jointly and insist that the DSGE model passes both (reject if any reject), then

the size of each test (since they are uncorrelated under the null) needs to be adjusted downwards; thus to

test a model at the 5% level, each test individually must be at the 5/2% = 2.5% level, so that the chance

of rejecting the true model (by one or other) is then 5%. By the same token if the researcher tests on both

and only rejects if both reject, each test must be sized at a sufficiently high level that 5% of the samples lie

within the joint rejection area.

3.1.1 Comparison of the tests with different VAR variable coverage and VAR order

Tests based on Indirect Inference that use high order VARs, or VARs with more than a few variables, are

extremely stringent and they tend to reject uniformly. We proposed in Le et al. (2011) ‘directed’ Wald

tests where the information used in evaluating a DSGE model was deliberately reduced to cover ‘essential

features’ of the data; of course all Wald tests are based on chosen features of the data and therefore are

always to some degree ‘directed’ but we use the term in practice when the Wald is focused on only a small
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subset of variables or aspects of their behaviour. Table 2 shows how the Wald rejection rate varies when

the order or number of variables is raised. What we see is how the power tends to rise with the number of

coefficients in the VAR.
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Figure 7: Power Functions for Indirect and Direct Inference for Various VARs.

VAR – no of coeffs TRUE 1% 3% 5% 7% 10% 15% 20%
3 variable VAR(1) – 9 5.00 19.76 52.14 87.30 99.38 100.00 100.00 100.00
3 variable VAR(2) – 18 5.00 38.24 68.56 84.10 99.64 100.00 100.00 100.00
3 variable VAR(3) – 27 5.00 38.22 65.56 92.28 99.30 100.00 100.00 100.00
5 variable VAR(1) – 25 5.00 28.40 77.54 97.18 99.78 100.00 100.00 100.00
7 variable VAR(3) – 147 5.00 75.10 99.16 99.96 100.00 100.00 100.00 100.00

Table 2: Indirect Inference Rejection Rates at 95% level for varying VARs

From Table 3 we can see that using the Direct Inference Likelihood ratio test (using the LIML method

on the residuals) we find that the test’s power does not appear to vary in any systematic way with the

benchmark VAR used, either in terms of the number of variables included or the order of the VAR. It follows

that the LR test may well perform similarly, whatever the order of the VAR and the number of variables

that are included. The reason for this seems to be that

a) the absolute forecasting performance of a DSGE model is not worsened by adding variables to be
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VAR – no of coeffs TRUE 1% 3% 5% 7% 10% 15% 20%
3 variable VAR(1) – 9 5.00 6.30 8.80 13.10 21.60 53.40 99.30 99.70
3 variable VAR(2) – 18 5.00 6.00 8.30 13.40 23.10 55.10 99.40 99.70
3 variable VAR(3) – 27 5.00 6.00 7.90 13.10 21.90 52.30 99.50 99.70
5 variable VAR(1) – 25 5.00 6.00 8.20 11.70 15.90 29.30 93.30 99.70
7 variable VAR(3) – 147 5.00 5.50 7.10 11.40 18.80 49.90 99.60 99.70

Table 3: Direct Inference Rejection Rates at 95% level for varying VARs

forecast – each variable in the DSGE model has its own autoregressive error that helps to keep its forecast

on track

b) the relative forecasting performance and so the relative likelihood of the DSGE model is indeed

worsened by going to a higher order VAR because the higher the VAR order the better the VAR forecasts.

However this lowers the relative likelihood of both the True DSGE model and the False DSGE models by

improving the forecasting performance of the common comparator. Hence the LR distribution is similarly

altered for all DSGEmodels, whether True or False; and so the rejection rate (which depends on the difference

in the distributions) is not much altered.

With Indirect Inference however the addition of variables or VAR detail adds to the complexity of

behaviour that the DSGE model must match; the more complexity, the less well can the matching occur

when the model is moderately false.

Again, this brings out the essential difference in the two measures of performance.

4 Extension to the Del Negro-Schorfheide measure of closeness,

the DSGE-VAR weight

As noted earlier, Del Negro and Shorfheide have proposed as a measure of model closeness, the hyperpara-

meter λ, which gives the maximum-likelihood weight of the model-restricted VAR when combined with the

unrestricted VAR. This measure is now widely used in Bayesian analysis of DSGE models to evaluate the

extent to which the model is misspecified as a whole – for a recent example, an application to the Smets-

Wouters model of the US, see Del Negro et al. (2007a). It is therefore of interest to find the distribution of λ

under the model null and compare its power, if used as a testing device, with the other measures considered
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already, Wald and LR.

This λ hyperparameter is estimated under the model’s priors in essentially the same way as the model’s

ordinary parameters; the posterior λ is found that maximises the likelihood. It can be done using any set of

variables to be used to gauge the fit and with any VAR order wished for. This test is similar to the LR test

in that it is also a forecasting test. We might therefore expect the λ test to have rather similar properties

to the LR test when applied with the same VAR order and variable number. We therefore initially compare

the two in what follows, using a maximum 7 variables and a high-order VAR(3).

To compare the two tests we take a true model (the same as above), generate 1000 Monte Carlo samples

from a normal distribution10 and we estimate on each sample a VAR for all variables at an order that fits

best and avoids overfitting; we experiment with a few samples to check what this is – and find in fact that

it is a VAR(3). For each sample we find the DSGE-VAR weight for the True Model’s parameters (θ, ρ and

standard deviations of the errors). The distribution of these 1000 weights is the distribution under the null

from which we obtain the 5% critical value. We now evaluate the power against False Models,where the θ, ρ

and error standard deviations are false by +/−x%. Thus our procedure mirrors that under direct inference,

to which it is essentially similar in that we are asking what combination of the data-based VAR and the

DSGE-restricted VAR gives the lowest errors in current period forecasts. Table 4 shows how the power of

the two tests differs; the distributions for the True and 3 and 7% False are shown in Figure 8. Here the

model we use is the same as in the last section (the SW model) but we make the error distributions normal

with no skewness or excess kurtosis as assumed in DYNARE which we use to do this calculation.

Percent Mis-specified Direct Inference Lambda
True 5.0 5.0

1 4.0 5.6
3 4.4 11.5
5 10.3 35.8
7 30.8 73.9
10 89.7 99.8
15 100 100
20 100 100

Table 4: Rejection Rates for Direct Inference and DSGE-VAR Weight, 7 Variable VAR(3)

10The usual Bayesian assumption is that errors are normal and hence this assumption is embodied in the null hypothesis for
the λ test. The normality restriction on the null is unnecessary for the other two tests.
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Figure 8: Histograms of true and false models for Lambda

It can be seen that the power of this weight-derived test is rather higher than that of the Likelihood

Ratio/direct inference test. There appears to be a small positive correlation between λ and LR for a given

model and a strong positive correlation between them across models of differing falseness (Figures 9 and

10). So clearly these two tests are related for a given model; across models they are clearly again strongly

related. The Direct LR measures current-period forecasting success and λ also measures forecasting success

though in a somewhat different way from Direct.

The question then arises how the λ test varies in power as the number of variables and the VAR order

vary. We have seen above that the LR test is essentially insensitive to these variations while the Wald

Indirect Inference test is highly sensitive, tending to greater rejection rates as either of these two rise. For

the λ test, much like the LR test, this is hardly true; the power of the test rises very little as one moves from

the minimum 3VAR(1) to the maximum 7VAR(3). Again this shows that the λ test is fairly close to the LR

test in being another forecasting test.

Percent Mis-specified λ 3VAR(1) λ 7VAR(3)
True 5.0 5.0

1 6.6 5.6
3 11.7 11.5
5 28.5 35.8
7 63.0 73.9
10 97.9 99.8
15 100 100
20 100 100

Table 5: Rejection Rates for DSGE-VAR Weight, 3 Variable VAR(1) and 7 Variable VAR(3)
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4.1 An example of test comparison: the SW model post-1984 as re-estimated

by Le et al. (2011)

We now examine11 whether we can use the LR test on the SW model post-1984 that Le et al. (2011) found,

after re-estimation by Indirect Inference, passed the Indirect Inference test comfortably. That test used a

VAR(1) on three variables – output, inflation and interest rates – as the auxiliary model. With a higher

order VAR on these 3 variables, as well as a VAR(1) on more than these three, the model did progressively

worse, being rejected on most. Le et al. interpreted this to mean that the model is able to capture the

‘truth’ about the joint behaviour of these 3 variables but not with fine accuracy; thus it captures the ‘broad

outlines’ of key macro behaviour. We would like to know whether this same model would pass these two

other tests.

We choose a VAR(1) on 3 variables as the benchmark for the Likelihood Ratio; as we have seen the power

does not vary with the order of the VAR or the number of variables included. The test gives similar results

to the VAR(1), which is to pass about as well as it does on the Indirect inference test. In both these cases

our procedure is to generate bootstrap data from the model’s errors to obtain the distribution of the tests

for this model under the null that it is true, to obtain the critical value.

We may note that with more variables and higher VAR orders, the results worsen for Indirect Inference

but remain similar for the Direct Inference LR test – Table 6. Out of the two tests, the LR fails to reject

at all, while the Wald rejects for any VAR with more that 18 coefficients.

VAR – no. of coefficients Wald+ LR
3 variable VAR(1) – 9 83.5 71.7
3 variable VAR(2) – 18 99.6 71.4
3 variable VAR(3) – 27 100 67.7
4 variable VAR(1) – 16 90.1 82.8
5 variable VAR(1) – 25 96.6 74.2
7 variable VAR(3) – 147 100 13.4
+For the Wald the test includes the variances of the data in each case

Table 6: Tests using varying VARs

11As noted in the last footnote, the usual Bayesian assumption that the errors are normal implies that the λ test cannot be
used for a model as here where the errors are skewed and have excess kurtosis. To use it the Bayesian process must be adapted
to allow for these higher moments being non-normal; Dynare, which we are using to solve our models, is not adapted for this.
We are working on solutions for this problem. We may conjecture, based on the work in the last section, that the λ test would
give similar results to the LR test.
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We can see that for our main focus on three variables with a VAR(1) both tests give consistent results.

We also notice that the LR is totally insensitive to the benchmark VAR used, as discussed above..

5 Conclusions

In comparing these tests we have found that they measure the performance of a model in different ways: two

of them, LR and λ, measure its forecasting performance, and one, the Indirect Inference Wald, measures its

ability to replicate descriptors of the data. While all three tests are correlated across models of increasing

falseness, and the LR is moderately correlated with the λ test for a given model, the Wald measure is quite

uncorrelated with the LR test (and therefore also with λ) for a given model; thus the Wald and the other

two tests are measuring quite different things.

The power of the Indirect Inference tests depends on the benchmark comparator used. As the number

of variables in, and the order of, the VAR comparator are raised the power increases. This is because as

the benchmark becomes more demanding the true model manages to match the VAR coefficients as well as

before; but False models fail by a greater extent than before because the accuracy demanded is greater. We

choose a level of power suitable for our purpose as users. Typically a user of a macro model wants a model

to replicate the behaviour of three key macro variables: output, inflation and interest rates. Furthermore,

since the model is a guide to main inter-relationships, a VAR(1) on these three giving 9 coefficients, plus

the variances to check ‘size’, 12 coefficients in all, will be sufficiently accurate a descriptive set. This is

somewhat like requiring a photograph to have a certain minimum resolution (the pixel density) for it to

represent reality sufficiently well for our needs; for our macro models we require a moderate density to be

satisfied. Thus ‘Truth’ or ‘realism’ is defined by the user practically in relation to the user’s needs.

The power of the Direct Inference test, the LR test, does not depend on the benchmark comparator.

This is because as the benchmark becomes better at forecasting (with higher order), the true model fails

relative to it by about the same extent as the false models. Similarly, when the number of variables being

forecast is raised, the relative forecast performance of the model and the VAR alters by a similar extent for

both the True and the False models. To a reasonable degree the same statements apply to the λ test, with

the proviso that when a maximum-size VAR is used, the power of this test is much larger.
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For the single example we have investigated here – the SW model for post-1984 – the Direct and

Indirect Inference tests give broadly consistent results in assessing the accuracy of this model for the key

three variables. However, as the VAR complexity is raised the tests differ: LR fails to reject however great

the complexity, while the Wald test rejects to an increasing degree as the complexity rises..

These results seem to suggest that the reason why early Rational Expectations models were being rejected

by LR tests (as in the quotation from Sargent in Evans and Honkapohja, 2005, in footnote 1) was probably

that these models did not have the sort of dynamic content that enabled them to meet these stringent

forecasting tests nor did they have lavished on them the re-estimation resources that we have used here.

Certainly the SW model does pass these tests for the post-1984 sample when re-estimated as above by

indirect methods.
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6 Appendix 1

6.1 The bootstrap variance-covariance matrix

In our Wald statistic we used the variance-covariance matrix implied by our model bootstrap samples. An

alternative procedure would be to use the variance-covariance matrix implied by the VAR based on the

data; under the null this would correspond to the true variance-covariance matrix implied by the model. If,

however, the model is false then this variance-covariance matrix would not correspond to the true variance-

covariance matrix. The bootstrapped DSGE variance-covariance matrix corresponds to the true matrix, as

restricted by the model, whether the model is true or false. When the model is false, therefore, we conjecture

that the null is more likely to be rejected if we use the restricted variance-covariance matrix than if we use

the data variance-covariance matrix. Effectively the Wald statistic would not be based on the behaviour of

the model being tested except in respect of the bootstrap mean. Yet we have seen that the model restricts

the distribution of the VAR coefficients in very definite ways, with a joint distribution ‘footprint’. It will

be easier for a false model to get closer to the data if it is allowed to have a footprint from the true model

whose restrictions will be different.12

To investigate the relative power of the test using the two different covariance matrices we set up a Monte

12 Indeed we found this to be the case with the SW model here. This was rejected by the data using the model-based covariance
matrix and can be regarded as False. In the data-based matrix the off-diagonal elements are small, so that the test becomes
close to the Wald based only on the no-covariance case, whereas in the model-based covariance matrix the off-diagonal elements
are often rather large, indicating the way in which the model produces restrictions between the implied VAR coefficients. Had
we used the data-based covariance matrix the model would have got much closer to passing. This mirrors our basic findings
in this and related papers: that DSGE models are rejected because the data does not reflect the fine detail imposed by the
model’s restrictions. Thus, specifically, the data-based variance-covariance matrix mirrors in its small off-diagonal elements the
lack of tight restrictions between VAR coefficients in the data, whereas the model-restricted variance-covariance matrix with
its large off-diagonal elements reflects the tight restrictions imposed between the VAR coefficients by the DSGE model (for an
illustration of this see the discussion above of Figure 1).
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Carlo experiment in which we treated the SW model with unity NK weight. We then test False models where

Falseness is created by randomly increasing even parameters in θ and reducing odd parameters by x% where

x goes from 1-20. To ensure that the errors are consistent with these False models given the data, we

recompute them from the data using the False parameters.13

What we find is that the power of the test is reduced substantially in the range of 1-10% mis-specification.

By 20% both covariance matrices are rejecting at 100% because the bootstrapped VAR coefficients are so far

away from the true model coefficients that the subtlety of the covariances implied by the model is redundant.

Rejection rates using 5% tail General Mis-specification
1% 3% 5% 7% 20%

DSGE Model Covariance 6.60 8.78 18.07 35.98 100.00
VAR-from-data Covariance 4.07 4.50 5.91 8.53 100.00

Notes: the errors and their ρ(AR) parameters are extracted from
the data using LIML

Table 7: Power Function for 95%

6.2 Extracting the model residuals from the data

We find that there is little change in the results when using structural errors obtained from the original data

using our Limited Information estimation method, instead of errors derived from SW’s Bayesian estimates.

This finding is reassuring as it suggests that our test procedure is robust to different ways of extracting the

residuals from the data. It also echoes the finding of Le et al. (2010) in their investigation of the results of

Chari et al. (2002). We now investigate this issue using a Monte Carlo experiment. We set up a True Model

and endow it with some True Errors. We then simulate it once to obtain a data set which we treat as our

sample data and compare two ways of extracting residuals from this data. The differences in the errors arise

from the way in which expectations are generated. For equations containing no expectations and given the

model parameters, both methods give the same as the residual is simply backed out of the data.

One way to extract the residuals of equations with expectations is to find a set of residuals such that

13We do this as follows. The True model is endowed with some True errors. One simulated data set is assumed to be the
‘data’ for our experiment. We extract from this the LIML estimates of the errrors under the True model parameters. We then
test the True Model with these estimated errors (and corresponding ρs,timeseries parameters of the errors); thus we treat this
as the True Model for the test. We generate 1000 data sets from this True Model. The test based on the bootstrap distribution
of the errors will have approximately the right size: thus for example this model will be rejected 5% of the time at the 95%
significance level. The x% False Model is then specified; the same data is used to extract its implied LIML errors. These are
bootstrapped to provide the test.
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the rational expectations they imply in turn generate the same residuals.This iterative method will give the

exact residuals implied by the model if it is given the true ρs since it will use the exact rational expectations

implied by the model and the data. When it does not have the true ρs then it has to estimate them and this

creates a potential error in both the ρs and the residuals. We have created an iterative algorithm to search

for this set of residuals, using OLS to estimate the ρs from the residuals – we call this the Exact Method,

even though it is of course inexact in practice when the ρs must be estimated.

Another way to extract the residuals, and one predominantly used in our work both because of its

computational speed and because the residuals it produced were invariably well behaved, is to project the

expectations using LIML; specifically we use the predictions of the data-generated VAR as the expectations.

We call this the LIML Method.

Applying these two methods to the data for our full US sample and the Smets-Wouters model, it can

be seen that the two sets of residuals are very close together; with correlations (marked on the graphs) of

0.82− 0.91. Nevertheless, the ρs they each imply are in several cases startlingly different.
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Figure 11: Comparison of LIML and EXACT Residuals

These two sets of extracted residuals can be compared with the True residuals used in a Monte Carlo

generated sample where we know the True errors by construction. Again we see that not only are the two

extracted sets very close but both are very close to the True errors. It might seem that the True residuals and
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LIML EXACT
ρgov 0.9452 0.9445
ρpref −0.0658 0.6155
ρinv 0.5282 0.2506
ρmon 0.3682 0.3680
ρprod 0.9750 0.9718
ρprice 0.2052 0.6664
ρwage 0.1195 0.6283

ρgov,prod 0.6341 0.4831

Table 8: Comparison of LIML and EXACT rhos

the estimated ones must give the same results. However, these small differences create non-trivial differences

between the true and the estimated ρs. These in turn make the model behave differently.
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Figure 12: Comparison of LIML and EXACT residuals with True residuals

Comparing the LIML and the Exact Walds we get from around 700 random samples of this Monte Carlo

experiment, we find that, on average, they are fairly similar: the average Wald differs by only 15%, indicating

that the estimated ρ and η are on average similar for the LIML and the Exact Wald statistics. Somewhat

surprisingly, the Exact Wald statistic is less accurate than the LIML Wald statistic when compared with the

true errors. The correlation between the two across these samples is 0.61. What this reveals is that while

the two methods do not give identical results in all samples, they do give quite similar ones. Thus which

method is used to extract the residuals may not affect the initial test of the model. Nevertheless, as we

have explained in the last section, this initial test is merely the starting point for testing the model and the
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TRUE LIML EXACT
ρgov 0.9452 0.9407 0.9289
ρpref −0.0658 0.0593 0.4163
ρinv 0.5282 0.6509 0.4465
ρmon 0.3682 0.3557 0.3500
ρprod 0.9750 0.9247 0.9520
ρprice 0.2052 0.2539 0.5557
ρwage 0.1195 0.1236 0.3561

ρgov,prod 0.6341 0.0812 0.4741

Table 9: Comparison of LIML and EXACT rhos with True rhos

ultimate set of parameters that are found to result in the least rejection rate for the model should not be

affected by this starting point.
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Figure 13: Scatter Plot of LIML versus EXACT Walds

It may help at this point if we recall what our procedure entails. We wish to test some model on an

actual sample (we compare the α̂ from the sample with its distribution under the null hypothesis of the

model). We create a True Model with vectors of structural parameters θ, of autoregressive error parameters

ρ, and of innovations η with some true distribution: the Model is thus described as (θ, ρ, η). We generate the

potential sample distribution of this True Model’s α̂ in a Monte Carlo experiment. When we test whether a

given data sample’s α̂ comes from a True Model which is determined by (θ, ρ, η), we choose these parameters
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according to our ‘best estimates/calibration’.14

Thus to repeat what we set down in the previous section, our procedure sets up a unique model as the

null (True) hypothesis and tests it on the given sample. The ρ, η used in this are constrained to be consistent

with the actual data; thus we cannot choose values that are directly rejected by the sample. In this respect

we depart from some other methods of testing simulated models in that we are not at liberty to assume

errors and autodependence that are directly rejected by the data when fitted to the DSGE model. As we

have noted the DSGE model forces on the data a division between the part that is due to θ, the causal

structure, and the unexplained part that is exogenous, the residuals. In testing the model we cannot ignore

the nature of this unexplained part since this is dictated by the data when confronted with the model.

We have seen that the two methods of error extraction for given θ give similar values for Wald statistic

for given samples generated by a model with that θ and some chosen ρ, η. The power of the test of the True

supposed model is quite insensitive to the choice of residual extraction method. We therefore take one of our

Monte Carlo samples and set up the True Model to have the estimated ρs and innovations found by the LIML

method; we generate 1000 Monte Carlo samples of this model, which by construct will be correctly rejected

at a nominal 5% level. Now to test the False models, we fit each to the same actual sample using LIML to

extract the residuals and ρs, and check the rejection rate on the 1000 samples. For the Exact method we

follow the same procedure, with Exact in place of LIML.15 It can be seen that the two methods of extraction

have very similar power. This exercise shows is, for a given actual sample from which the innovation and ρ

estimates are extracted, both the substantial power of the test and its insensitivity to the method of error

extraction.

Finally, as expkained in the previous sction, we note that our initial null hypothesis (θ, ρ, η) is just

a starting point for the whole testing process for the model. Our initial test simply discovers whether

the model can be rejected for this particular set of parameters and innovations. We then proceed, using

14This should be distinguished from testing some unknown True Model with estimated parameters drawn from the distribution
of these parameters associated with this unknown True Model. As explained in the last section, such a test gives rise to a far
more dispersed Wald distribution than the one for a model where the parameters are known and fixed. In particular, if we
regard the ρ (and hence also η) as unknown, then while the distribution is not so dispersed as the one where all the parameters
are regarded as unknown, it is still substantially more widely-distributed than the one where the parameters are known.
15Notice that this exercise differs from the power exercise in the section above on parameter uncertainty. There the False

models were created by varying both θ and ρ parameters by the +/− x% and the true η were kept unchanged. Here we vary
θ similarly and extract the implied ρ, η. The former method uses η which are not necessarily compatible with the sample and
hence tend to generate slightly higher rejection rates. But the difference is not great.
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Percent General Mis-specification
0% 3% 5% 7% 10% 15% 20%

LIML 5 7.18 13.71 31.02 78.12 99.97 100
EXACT 5 6.76 13.36 32.00 76.30 99.86 100

Table 10: Power and size of tests using estimated residuals: Percent Rejection at 95% Confidence

simulated annealing, to find the set of parameters and innovations that fail to be rejected by the sample data,

if such exists. If we find a set that we cannot reject as the True parameter set, we can then extract from this

parameter set and the sample the Exact innovations implied; if the parameters are the True parameters, then

these will be the True innovations. We may then infer that the test still fails to reject when bootstrapping

these innovations with these parameters.16 Note that, wherever we start the process from, the SA algorithm

should converge on the same end result.

7 Appendix 2

7.1 The accuracy of the bootstrap

Le et al. (2011) reported extensive tests of the accuracy of the bootstrap under Indirect Inference. In a

Monte Carlo experiment, they set up the model they chose as best for the post-1984 sample, with the errors

implied by that sample and they gave these a normal distribution with the same variance as estimated. They

then drew random samples from the innovations in these error processes, creating 1000 artificial samples of

the same length as the original data – 76 observations, a small sample. They then bootstrapped each of

these samples 1000 times. For each sample they computed the Wald statistic generated by the bootstraps to

check whether the model is accepted or rejected at various confidence levels. The results in Table 11 indicate

that the procedure is fairly accurate, with a slight under rejection.

We replicated these results on the model used in our work here – viz the SW model as modified for Le

et al. (2011) and obtained very similar results (Table 12).

16The Exact and the LIML estimates of ρ, η are neither of them more or less accurate when the model fitted is not in fact the
true model; nor when the model has the true θ parameters but we do not impose the true ρ. In fact both provide inaccurate
estimates of ρ, η in these circumstances. However, if we know the True θ, ρ the the Exact method will generate the exactly
correct innovations for the sample. Hence once we are in the vicinity of the True θ, ρ we must use the Exact method to extract
the innovations.
Nevertheless, at the start of the process when Simulated Annealing search has not yet taken place, neither extraction method

gives clearly superior performance; LIML is probably at this stage easiest to use from a computational viewpoint.
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Nominal RP(%): 10 5 1

True RP (%) 5.1 2.6 0.4

Table 11: True versus nominal Rejection Probabilities for Indirect Inference (n=76; Montecarlo experiment;
post-1984 model and sample)

Nominal RP(%): 10 5 1

True RP (%) 4.3 2.6 0.4

Table 12: True versus nominal Rejection Probabilities for Indirect Inference (n=225; Montecarlo experiment;
post-war model and sample)

With the Likelihood Ratio we test the bootstrap’s accuracy by taking the same model and generating

1000 samples by Monte Carlo. For each one, we generate the bootstrap distribution of the LR (thus we

bootstrap that sample’s innovations to obtain 1000 data sets; and for each we generate the VAR forecast

errors as well as the model’s forecast errors, using LIML residuals extracted from the data as in our usual

procedure). Then we check whether the true sample LR is rejected on the bootstrap distribution. Over the

1000 true samples we obtain the bootstrap rejection rate (Table 13).

Nominal RP(%): 10 5 1

True RP (%) 8.4 5.1 2.6

Table 13: True versus nominal Rejection Probabilities for Likelihood Ratio (n=225; Montecarlo experiment;
post-war model and sample)

We do not use the bootstrap for the λ tests (the distribution of λ is generated by the Bayesian stochastic

simulation routine) and so its accuracy does not arise.
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