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Abstract 

 

We propose a general form of vector Multiplicative Error Model (MEM) for the 

dynamics of duration, volume and price volatility. The vector MEM relaxes the two 

restrictions often imposed by previous empirical work in market microstructure 

research, by allowing interdependence among the variables and relaxing weak 

exogeneity restrictions. We further propose a multivariate lognormal distribution for 

the vector MEM. The model is applied to the trade and quote data from the New York 

Stock Exchange (NYSE). The empirical results show that the vector MEM captures 

the dynamics of the trivariate system successfully. We find that times of greater 

activity or trades with larger size coincide with a higher number of informed traders 

present in the market. But we highlight that it is unexpected component of trading 

duration or trading volume that carry the information content. Moreover, our 

empirical results also suggest a significant feedback effect from price process to 

trading intensity, while the persistent quote changes and transient quote changes affect 

trading intensity in different direction, confirming Hasbrouck (1988,1991). 
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1. Introduction  

Microstructure theory generally indicates that trading duration
1
 and trading 

volume convey information with respect to fundamental asset prices, and reflect the 

behaviour of financial market participants.
2
 Since French and Roll (1986) have found 

evidence that price volatility is caused by private information that affects prices when 

informed investors trade, the empirical studies on trade and price processes have been 

based on increasingly on the analysis of the dynamics of trading duration, volume and 

price volatility. However, prior research on this issue is based on a recursive 

framework, in which the trade and price processes are independent of each other.  

In this paper, we extend the recently developed recursive framework of Engle 

(2000) and Manganelli (2005) for high frequency data to a vector MEM model in 

which the trading duration, volume and price volatility are involved simultaneously 

and are interdependent. We further propose a multivariate lognormal for the 

distribution of the vector model, which allows the innovation terms to be correlated 

contemporaneously. In addition, maximum likelihood is proposed as a suitable 

estimation strategy. In this way, we can build a system that incorporates various 

causal and feedback effects among these variables. We also construct impulse 

response functions that show how the price reacts to a perturbation of its long-run 

equilibrium. The method is applied to a trade and quote dataset of the NYSE, and the 

model is estimated using a sample of ten stocks.  

Our empirical results are generally consistent with the previous findings in the 

empirical microstructure literature (see, for example, Dufour and Engle (2000), Engle 

(2000) and Manganelli (2005)). But our work is novel in two ways. First, we find that 

duration and duration shocks have a significant impact on price volatility, while only 

the unexpected components of volume are considered to carry information content 

                                                

   
1
 Duration is defined as the time that elapses between two consecutive transactions. 

   
2
 In general, duration is considered to reflect the trading strategy of informed traders or is 

an indicator of liquidity (Easley and O’Hara 1992), while volume is viewed as an important 

determinant of the strength of a market move and reflects information about changes in 

investors’ expectations (Harris and Ravid, 1993). 
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with respect to price. This generally suggests that it is the unexpected components of 

trading characteristics rather than the trading variables themselves that carry 

information content with respect to fundamental asset prices. In addition, impulse 

response analysis shows that that shocks to duration or volume are incorporated 

appropriately into the price within one trading day for frequently traded stocks, but 

this takes up to one week for infrequently traded stocks. Second, our empirical results 

suggest that volatility has a negative impact on trading intensity, while volatility 

shock has a positive impact on trading intensity. We explain this by considering the 

persistent quote change (volatility) to be motivated by information based reason, and 

transient quote change (volatility shock) to be motivated by inventory based reason. 

The results confirm Hasbrouck (1988,1991)’s prediction that persistent quote changes 

(volatility) reduce trading intensity and transient quote changes increase trading 

intensity.  

The remainder of this paper is organized as follows. Section 2 reviews the relevant 

literature; the theoretical and empirical work on the relationship of duration, volume 

and volatility are reviewed in this section. Section 3 outlines the empirical motivation 

and describes the model and methodology used in the analysis. Section 4 introduces 

the high frequency data and empirical results. Section 5 concludes the paper. 

2. Literature Review  

Theoretically, the market microstructure literature explains trading activity using 

two types of model: information based and inventory based models. Specifically, 

trading occurs either for information motivated or liquidity motivated reasons. 

Accordingly, predictions of the relations between duration, volume and price 

volatility differ. In empirical analysis, the operation of the market is customarily 

undertaken by using time-series, high-frequency data. The dynamics of such 

positive-valued variables is generally modelled by a type of autoregressive 

conditional duration (ACD) model (Engle and Russell, 1998). In this section, we first 

review the relevant market microstructure theory and its prediction of the relations 

between duration, volume and volatility. And then the ACD model of the relevant 

empirical findings on these relationships is reviewed. 
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2.1 Review of market microstructure theory 

In the information-based model, three types of traders are assumed: informed 

traders; uninformed traders; and market makers. Informed traders are usually defined 

as corporate officers with private information, while uninformed traders are liquidity 

motivated and simply behave according to their current information. Market makers 

are also assumed to be uninformed. Obviously, the different traders have asymmetric 

information. Informed traders hope to obtain profits from their information so, on 

average, the market makers lose out to the informed traders. Market makers are 

specialists and can access information by reading the signals in the market, such as 

trading intensity and volume, and can thus recoup any losses as uninformed traders. 

Their activities are covered by the sequential trade model (Diamond and Verrecchia, 

1987; Glosten and Milgrom, 1985) and the strategic trade model ((Admati and 

Pfleiderer, 1988; Easley and O'Hara, 1992; Kyle, 1985).) 

In the sequential trade framework, the market maker and market participants 

behave competitively. Trades take place sequentially, with only one trader allowed to 

transact at any given point in time. Informed traders would like to trade as much (and 

as often) as possible. So the market maker would quickly (perhaps instantly) adjust 

prices to reflect this information. It is obvious that trading volume is positively 

(perhaps contemporaneously) correlated with price volatility. The strategic model 

allows the agents to act strategically. For example, in order to make full use of their 

private information, the informed traders may conceal their trading type by timing 

their trades carefully or choosing their trade sizes (Easley and O'Hara, 1992; Kyle, 

1985). Uninformed traders may also learn by observing the actions of informed 

traders. In particular, Admati and Pfleiderer (1988) distinguish two types of 

uninformed traders in addition to informed traders: non-discretionary traders are 

similar to liquidity traders in the previous model; while discretionary traders, while 

uninformed, trade strategically. Discretionary traders choose the timing of their trades. 

They usually select the same period of transaction in an attempt to minimize adverse 

selection costs, and informed traders follow the pattern introduced by discretionary 

traders. 

In inventory based models, the trading process is effectively motivated by the 

market makers desire to keep their inventory position at some specific level. Based on 

their inventory position and uncertainty about order flow, dealers alter their bid and 



5 
 

ask prices to elicit the desired imbalance of buy and sell orders thereby moderating 

deviations in order flow. The dealer’s action in the market is simply independent of 

information. It only depends on trading costs, the dealer’s previous position and net 

demand to the dealer (Ho and Stoll, 1981; O'Hara and Oldfield, 1986).  

These types of model generally induce patterns of various trade characteristics, 

such as timing, price and volume. These factors contain information and reflect trade 

behaviour in the market. 

2.2 Prediction from market microstructure theory  

Among the key variables considered, the timing of the trade plays an important 

role. It is ignored initially, and incorporated explicitly into market microstructure 

models by Diamond and Verrecchia (1987) and Easley and O'Hara (1992).  

Diamond and Verrecchia (1987) use a rational expectations model with short-sale 

constraints. The informed traders’ actions are driven by the arrival of private 

information, while uninformed traders are assumed to trade for reasons unrelated to 

the arrival of such information. If the news is bad, informed traders will wish to sell 

(or, alternatively, to short-sell if they do not own the stock). Given short-sale 

constraints, there may be no trade. Therefore, long durations are associated with bad 

news and should lead an adjustment of the prices and hence to increase the return 

volatility. This is summarized as ‘No trade means bad news”. 

Easley and O'Hara (1992) provide a different explanation for the role of time. 

Informed traders only trade when there is new information (whether good or bad) 

arriving in the market. So variations in trading intensity are closely related to the 

change in the participation rate of informed traders. It follows that short trade duration 

is a signal that informed traders are participating in the market. Consequently, the 

market maker adjusts his/her prices to reflect the increased risk of trading with 

informed traders, which reveals a higher volatility and wider bid–ask spreads in the 

market. To summarize, ‘No trade means no news’. In the strategic trading assumption, 

the informed trader may choose to segment large volume trades into a greater number 

of smaller-volume, information-based trades, and hence conceal their type and make 

full use of private information. It follows that both trading intensity and trading 

volume may provide information concerning the behaviour of market participants. 
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A relationship between duration and volatility is also explained by the model of 

Admati and Pfleiderer (1988). It is assumed that frequent trading is associated with 

liquidity traders, and therefore low trading means that liquidity (discretionary) traders 

are inactive, which leaves a high proportion of informed traders in the market. This 

again translates into quick price adjustment and hence high volatility. 

Goodhart and O'Hara (1997) ) examine the price effect of trade. Traders may learn 

over time from the information-based model, and adjust their speed of trading in 

reaction to this. For example, a large change in a market maker’s mid-quote price may 

be a signal to the informed traders that their private information has been revealed to 

the market makers, assuming that no new signal has been released subsequently. This 

means that private information is no longer superior, and therefore the incentive to 

trade disappears, which decreases trading intensity. However, from the inventory 

model perspective, large quote changes would immediately attract opposite-side 

traders, thus increasing trading intensity. In addition, when uninformed traders behave 

strategically (O'Hara, 1995), it becomes more complex, since the uninformed will 

increase the probability they attach to the risk of informed trading when they observe 

large absolute returns or large trading volume. Consequently, they will reduce the 

overall trading intensity. Hasbrouck (1988,1991) explains the two effects using the 

short-run and long-run characteristics of trading behaviour. The private information is 

persistent and long-lived; the persistent quote change is related to private information, 

and should have a negative impact on trading intensity. The inventory level in 

stationary and inventory control is inherently a transient concern, the transient quote 

change is related to inventory control, and has a positive impact on trading intensity. 

Table 1 summarizes the related market microstructure literature and its predictions. 
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Table 1: Summary of the related market microstructure literature 

Model  Authors and year Main feature Predictions 

Information-based 

model 

 

 

 

 

 

 

 

 

 

 

 

Sequential 

trade model 

Glosten and 

Milgrom (1985) 

All agents act 

competitively 

Volume is positive correlated with volatility 

Diamond and 

Verrecchia (1987) 

Short sale constraints 

Incorporating time  

No trade means bad news (duration is correlated positively 

with volatility) 

Strategic 

trade model 

 

Kyle (1985) Informed traders act 

strategically 

Long-lived 

information 

 

Easley and O’Hara 

(1992) 

Incorporating time No trade means no news (duration is correlated negatively 

with volatility) 

Admati and 

Pfleiderer (1988) 

Parlour (1998) 

Uninformed traders 

also act strategically 

Short-lived 

information 

Rational expectations 

Trade intensity increases, the informativeness of trades 

decreases 

Large quote change is a risk of informed trading; liquidity 

traders may leave or slow down trading activity 

Inventory-based 

model 

Ho and Stoll (1981) 

O’Hara and Oldfield (1986) 

Hasbrouck (1991) 

Market makers use 

price to balance their 

inventory 

Large quote changes attract opposite-side traders, thus 

increasing trading intensity 
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2.3 Empirical studies  

Empirically investigation of market microstructure predictions is subject to the 

availability of high-frequency transaction data. Statistically speaking, high-frequency 

data are realizations of point processes; that is, the arrival of the observations is 

random. This, jointly with other unique features of financial data (long memory; 

strong skewness; and kurtosis) implies that new methods and new econometric 

models are needed. It was first addressed, by Engle and Russell (1998) in the context 

of an ACD model for the dynamics of transaction time. It represents the time duration 

as product of a (autoregressive) scale factor and non-negative valued random process. 

In the ACD framework, the trade characteristics associated with time are 

incorporated and modelled simultaneously, so that the market microstructure 

predictions can be evaluated at the transaction level. Among them, Engle (2000) 

proposed a recursive framework to represent the dynamics of duration and volatility. 

The joint density of duration and volatility is expressed as the product of the marginal 

density of the duration times and the conditional density of the volatility, given the 

duration. The result provides evidence of the bad-news effect of long durations, which 

is the reverse of the Diamond and Verrecchia (1987) result. The recursive framework 

of Engle (2000) reduces the complexity of the model, since each process is estimated 

separately, and used widely by later empirical works. Engle and Sun (2007) model the 

joint density of the duration and the tick-by-tick returns within a recursive framework. 

They build an econometric model for estimating the volatility of the unobserved 

efficient price change. Using this model, it is easy to forecast the volatility of returns 

over an arbitrary time interval through simulation using all the observations available. 

Taylor (2004) models future market trading duration using various augmentations of 

the basic ACD model, and confirms that bid–ask spread and transaction volume have 

a significant impact on the subsequent trading intensity. 

Manganelli (2005) notes that other high-frequency data (trading volume, bid–ask 

spread) share similar characteristics to duration (for example, they are positive-valued 

and persistently clustered over time), so that their dynamics can be represented using 

the same autoregressive process. He incorporates the trading volume into Engle 

(2000)’s model and develops a framework to model jointly duration, volume and price 

volatility. Following Engle (2000), the joint distribution of duration, volume and 
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volatility is decomposed into the product of the marginal distribution of duration; the 

marginal distribution of volume, given duration; and the conditional distribution of 

volatility, given duration and volume. Further assumptions of weak exogeneity are 

made, such as that the three processes are independent so they can be estimated 

separately. Manganelli (2005) studies the causal and feedback effects among the three 

variables and found that times of greater activity coincided with a larger fraction of 

informed traders being present in the market. However, his empirical results suggest 

that lagged volatility increases trading intensity, which is in contrast to Easley and 

O'Hara (1992), but confirms the inventory based model predictions that large returns 

attract opposite side traders and increase trading intensity.  

Grammig and Wellner (2002) noticed that duration and volatility might be 

interdependent. They have extended Engle (2000)’s recursive model by formulating 

an interdependent intraday duration and volatility model. In this model, conditional 

volatility and intraday duration evolve simultaneously. The conditional volatility is 

formulated as a generalized autoregressive conditional heteroskedasticity (GARCH) 

process, with time-varying parameters that are functions of the expected interday 

duration. Their empirical results show that lagged volatility significantly reduces 

transaction intensity, which is consistent with Easley and O'Hara (1992). Hautsch 

(2008) analyses the return volatility, trade size and trading duration under the 

Multivariate Error Model (MEM)
3
 framework. Rather than using transaction data, 

Hautsch (2008) uses the cumulated five-minute data and focuses on the study of the 

underlying common factors that jointly drive the trading processes. He finds that the 

common factor captures most causal relations and cross-dependencies between the 

individual variables. The existence of common factors is also an indicator of the 

interdependence of the three processes. 

In additional to the ACD framework, the vector autoregressive (VAR) model is 

used in the study of high frequency data. For example, Bowe et al. (2009) used a 

trivariate VAR model to analyse the interrelationship between trading volume, 

duration and price volatility, which is similar to Dufour and Engle (2000). But it is 

also similar to the recursive model and assumes that trade and price processes are 

cross-independent. Using the data from an emerging futures market, they find that 

                                                
3
 MEM is an extension of ACD model.   
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duration is affected positively by volatility, which is consistent with Diamond and 

Verrecchia (1987).  

To summarize the empirical studies, the recursive frameworks are generally 

adopted for the analysis of high frequency data, but this is challenged by some 

empirical evidence. The empirical results with respect to the relations of trade and 

price process as are partially contradictory and there is no uniform conclusion at 

present.  

3. Methodology 

In this section, we first specify the dynamics of duration volume and price volatility 

according to the Engle (2000) and Manganelli (2005) recursive framework and 

discuss the statistic and economic concerns with this framework. We then extend the 

recursive framework of Engle (2000) and Manganelli (2005) to a vector specification 

in which trading duration, volume and price volatility evolve simultaneously and are 

interdependent.    

3.1 Duration, volume and price volatility --- a recursive framework 

Define{ , , }t t td v r , 1, ,t T  as the three-dimensional time series associated with 

intraday trading duration, trading volume and the return process, respectively. In 

particular, duration is defined as the time elapsing between consecutive trades, 

volume is the trade size associated with each transaction and return is measured as the 

mid-quote change. The trivariate trading process - duration, volume and return 

volatility - can be modelled as follows:  

1{ , , } ( , , | ; )t t t t t t td v r f d v r   (1) 

where 1t  denotes the information available up to period 1t  , and   is a vector 

incorporating the parameters of interest.  

   In the recursive model (Manganelli, 2005), the joint distribution is decomposed 

into the product of three components: marginal density of durations, the conditional 

density of volumes given durations and the conditional density of the return volatility 

given durations and volumes. Specially,  

1 1 1{ , , } ( | ; ) ( | , ; ) ( | , , ; )t t t t t d t t t v t t t t rd v r g d h v d k r d v      . (2) 
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For the dynamics of such a non-negative valued financial point process, Engle and 

Russell (1998) first propose an ACD specification for financial duration. They model 

duration as the product of its conditional expectation and the non-negative supported 

innovation term,  

2

1( ; ) , ~ . . .(1, )t t d t t t ud u u i i d   . (3) 

The ACD model is further characterized by the assumptions that the conditional 

duration t follows a GARCH-type process and the innovations are independently 

and identically distributed. The base (1,1) specification of t is: 

1 1t t td       . (4) 

The logarithmic version is also specified (Bauwens and Giot, 2000) to ensure 

positivity of the conditional duration,  

1 1log log logt t td        . (5) 

To close the model, the parametric density function for the innovations is needed. 

Engle and Russell (1998) initially consider the exponential and Weibull distribution, 

which is extended later by Grammig and Maurer (2000), Allen et al. (2009) and Xu 

(2011a), offering more flexible density and hazard functions.   

Following the ACD model, Manganelli (2005) considers similar specifications for 

volume and volatility. Then the trivariate system has the following specifications: 

2

1

2

1

1

2 2

1

( ; ) , ~ . . .(1, )

( ; , ) , ~ . . .(1, )

ˆ ( ; , , ) , ~ . . .(0,1)

ˆ ( ; , , ) , ~ . . .(1, )

t t d t t t u

t t v t t t t

t t r t t t t t

t t r t t t t t

d u u i i d

v d i i d

r h d v i i d

or r h d v i i d





  

    

  

   

















 (6) 

where 2

t̂r  is the proxy for volatility
4
, ( , , )t t th  are the conditional expectations of 

duration, volume and volatility, respectively, and
 

,

1 2( , ,...., )s     is a vector of s 

parameters of interest. Manganelli (2005) considers the univariate exponential 

distribution for the innovations in this specification.  

To capture the causal and feedback effect among these variables, he specifies the 

following first order autoregressive conditional model: 

                                                
4
 In order to obtain a price change sequence which is free of the bid-ask bounce 

that affects price, we follow Ghysels, et al. (1998) and tr̂  is obtained as the residuals 

of an ARMA(1,1) process of return series. See also in Hautsch (2008). One advantage 

of using tr̂  is that it avoids the problem of exact zero values in tr . 
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2

1 11 1 12 1 13 1 11 1 12 1 13 1

2 12

2 21 1 22 1 23 1 21 1 22 1 23 1 0

2 13 23

3 31 1 32 1 33 1 31 1 32 1 33 1 0 0

ˆ( ) ( ),

ˆ( ) ( ) ,

ˆ( ) ( )

t t t t t t t

t t t t t t t t

t t t t t t t t t

w a d a v a r b b b h

w a d a v a r b b b h a d

h w a d a v a r b b b h a d a v

  

  

 

     

     

     

      

       

         .

 (7) 

Under the restrictions of weak exogeneity ( 0ijb  for i j ) and independence of 

the innovations terms, the three components are estimated separately. This approach is 

generally adopted in the existing empirical literature (see, for example, Engle (2000), 

Dufour and Engle (2000), Manganelli (2005) and Engle and Sun (2007)). 

3.2 Econometric concerns  

Following Manganelli (2005), there are two concerns regarding the recursive 

model. First, it assumes that the specific processes are independent. To incorporate the 

contemporaneous information, Manganelli (2005) specifies causality from duration to 

volume and from duration and volume to price volatility. However, modelling the 

distribution of price as being conditional on duration and volume is just one strategy 

to obtain their joint distribution. As pointed out by Engle and Sun (2007), it is also 

possible to go from the price process and model duration conditional on its 

contemporaneous return. Theoretically, variation in duration and variation in the price 

process would be related to the same news events or the underlying information 

process. Empirical studies also address this issue. For example, Hautsch (2008) finds 

the existence of a common unobserved component that jointly drives the dynamics of 

the trade and price processes. This common component explains most of the causality 

between the trade and the price processes, even if the contemporaneous effect of the 

trade variable on the price variable is controlled. We tested this restriction in our 

previous paper (Xu, 2011b) and show the existence of cross-dependence between the 

trading and price process. Therefore, the advisable approach is to allow the innovation 

terms to be contemporaneous correlated, and specify a vector form for the dynamics 

of the trivariate system. 

Second, Manganelli (2005) assumes weak exogeneity, which means the 

conditional expectation of one variable is a function only of its own past conditional 

expectation, while the past conditional expectations of other variables are not taken 

into consideration. This strategy has been adopted by most empirical microstructure 

papers (see, for example, Dufour and Engle (2000)). However, we argue that this 

assumption is too restrictive. When studying the price impact of trade, various 
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specifications of duration and volume should be considered. For example, trade 

innovation is an exclusive a manifestation of the private information of the informed 

trader. Engle (2000) and Wuensche et al. (2007) argue that it is the unexpected 

components of the trade process that carry informational content with respect to the 

fundamental asset price, since price change is unpredictable. And the same happens 

for the feedback effects from price to trading intensity. For example, Grammig and 

Wellner (2002) find that expected volatility and volatility shocks have significant 

effects on trading intensity. Manganelli (2005) conducts a robustness test on this 

restriction. Specifically, he regresses the residuals of the three equations against past 

conditional expectations of other variables. The results indicate that the coefficients of 

past expected variables are almost never significant, and thus the recursive model is 

correctly specified. However, the robustness check might be misleading, since the 

dynamics of expected variables have been distorted when estimating and predicting 

the expected variables using recursive models. It is also shown by Grammig and 

Maurer (2000) in a simulation study that the misspecification of the conditional mean 

has severe consequences for the expectation of conditional duration.  

We therefore extend the recursive model into a vector form, by allowing the three 

processes to be interdependent and relaxing weak exogeneity. 

3.3 Vector MEM  

Let ( , , ) 't t t tx d v r , ( , , ) 't t t th    and ( , , ) 't t t tu   . Following Cipollini et al. 

(2007); Engle (2002), we write this system of equations as a trivariate vector 

multiplicative error model (MEM). The three-dimensional vector MEM for duration, 

volume and volatility is:  

t t tx    (8) 

where  denotes the Hadmard (element by element) product; the components of t  

are process-specific innovation terms which are assumed to be cross-dependent; and

t  has a mean vector I  with all components unity and a general 

variance-covariance matrix ,i.e, 1| ~ ( , )t t D I   . The multivariate specification for

t  is:  

0

1 1

p q

t l t l l t l t

l l

A x B A z   

 

      (9) 
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where tz  is a vector of predetermined variables.  

We do not specify recursively the contemporaneous relationship from duration to 

volume and from duration and volume to volatility (Manganelli, 2005). However, we 

allow the innovation terms to be contemporaneously correlated. By this specification, 

the conditional expectation of one variable is a function not only of its own past 

conditional expectation, but also of past conditional expectations of other variables. 

The two restrictions imposed by the recursive model are released. 

The mean equation is further extended to be a logarithmic version to ensure the 

positivity of the individual processes without imposing additional parameter 

restrictions. 

0

1 1

ln( ) ln( ) ln( ) ln( )
p q

t l t l l t l t

l l

A x B A z   

 

      (10) 

The first two moment conditions of the vector MEM are given by: 

1

1

( | )

( | ) ' ( ) ( )

t t t

t t t t t t

E x

Var x diag diag



   







   
 (11) 

which is a positive defined matrix by construction, as emphasized by Engle (2002). 

3.4 Specification of t  

A completely parametric formulation of the vector MEM requires a full 

specification of the conditional distribution of t . In the ACD literature, Engle and 

Russell (1998) initially consider the exponential and Weibull distribution for the error

t , which is extended later by Grammig and Maurer (2000) to be a Burr distribution, 

by Lunde (1999)to be a generalized gamma distribution, and recently by Allen et al. 

(2009) and Xu (2011a) to be a lognormal distribution. Figure 1 plots the comparison 

of density functions implied by these parametric distributions. It can be seen that only 

the exponential distribution implies a monotonically decreasing density function, 

while the others imply hump shaped density functions. Xu (2011a) tests the 

specification of the duration distributions, and finds that the lognormal ACD model is 

superior to the Exponential ACD and Weibull ACD models, while its performance is 

similar to the Burr or Generalized Gamma ACD models. It is well known that price 

volatility is typically lognormally distributed, while Andersen et al. (2001) and Cizeau 

et al. (1997), among others, also showed that the lognormal distribution fitted the 
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Figure 1: A comparison of parametric density 

 

realized volatility distribution very well.  

So we propose to use the multivariate lognormal distribution for the MEM. Indeed, 

the multivariate lognormal distribution seems to be the only feasible choice in the 

specification of vector MEM. It has a closed form conditional density function, so that 

ML estimation can be conducted. Cipollini et al. (2007) consider appropriate 

multivariate gamma versions but find that the only useful version admits only positive 

correlation, which is too restrictive. The multivariate lognormal distribution admits 

both positive and negative correlations. Moreover, Allen et al. (2008) prove that the 

lognormal distribution is sufficiently flexible to provide a good approximation to a 

wide range of non-negative distributions, and is also sufficiently accurate so as not to 

induce unnecessary numerical difficulties. 

Assume t follows a multivariate lognormal distribution such that

| ln ( , )t t N v D  5
. The density function is: 

                                                

5
 where 

1

2
i iiv d   to guarantee that 1( )t tE I    
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1/2/2 1 1

1 ,

1

1
( | , ) (2 ) ( exp (ln ) ' (ln )

2

K
k

t t i j t t

i

f D D v D v    
  





 
    

 
  (12) 

where 0t  . The conditional density of tx  is then: 

1/2/2 1 1

1 ,

1

1
( | , ) (2 ) exp (ln ln ) ' (ln ln )

2

K
K

t t i t t t t t

i

f x D x x v D x v   
  





 
      

 
 . (13) 

The log likelihood of the model is then: 

1

1 1

ln ( , )
T T

t t t

t t

l l f x 

 

    (14) 

where 

1 ,

1

1

1
ln ( , ) ln(2 ) ln( )

2 2

1
(ln ln ) ' (ln ln )

2

K

t t t i t

i

t t t t

K
l f x D x

x v D x v

 

 







    

    


 (15) 

The first and second moments of the multivariate lognormal distribution are given 

by:  

1

2
1 2

( )
2

( ) ( , , , ) ' 1

( )( ) ' ( 1) 1

1

( 1)( 1)

i ii

ii jj
i j

ij ij

ij

jjii

v d

k i

d d
v v d d

ij ij

d

ij
dd

E e

E x e e e

e

e e

     

    






 

   

        




 

 

where 
1

2
i iiv d   and 

ijd  is the ij th element of D . It is clear that if 

1 2(ln , ln , , ln )k    are independent, then 1 2( , , , )k   are also independent and 

vice versa. The multivariate lognormal distribution allows both positive and negative 

correlation, which is much more flexible than the multivariate gamma distribution 

(Cipollini et al., 2007).  

The lognormal belongs to the exponential family. The parameters are still 

consistently estimated, even if the chosen density is wrong. The asymptotic 

distribution of the QML estimator differs from that of the ML estimator. The 

variance-covariance matrix is not the inverse of the Fisher information. It has the 

so-called ‘sandwich’ form. 

1 1ˆ ˆ ˆ ˆ( ) (0, ( ) ( ) ( ))QMLN N I J I        (16) 
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where
2 ˆln ( ; )ˆ( )

ˆ ˆ '

L x
I E




 

 
   

  
,

ˆ ˆln ( ; ) ln ( ; )ˆ( )
ˆ ˆ

L x L x
J E

 


 

            

 are, 

respectively, the components of the empirical average Hessian and the empirical 

average outer product of the gradients evaluated at the estimates ̂ .   

3.5 Impulse response function 

Following the vector MEM, we can derive the impulse response functions. We 

concentrate on the first order model and exclude the predetermined variables.  

1 1

,

ln ln ln .

t t t

t t t

x

A x B

 

   



  
 (17) 

In the impulse response, we work on the impulse of 0 ln i   on the natural 

logarithmic of the interested variable ln tx . The impulse responses function of the 

model (17) for 0t   is
6
:  

0

ln t
t

x




 


 (18) 

where 1( ) ( )t

t A B A B     , 0 I  .
 

This process can be rewritten in such a way that the residuals of different 

equations are uncorrelated. For this purpose, we choose a decomposition of the white 

noise covariance matrix 'W W    , where   is a diagonal matrix with positive 

diagonal elements and W  is a lower triangular matrix with unit diagonal. Thus,  

1

0

ln , .t i t i i i

i

x W 








      (19) 

Then the impulse response function of the model (17) for 0t   is: 

0

ln t
t

x




 


. (20) 

The standard errors for the impulse response are computed as followings. Let 

( 1)
[ ', ', '] 'd v r

p
   

  and  ( )t tvec   . If ˆ( ) (0, )

a

T N Q   , then

ˆ( ) (0, ')
a

t t t tT N G QG   , where 
'

t
tG









. 

                                                
6
 See Appendix 3: Proofs of impulse response function  
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3.6 Vector ARMA representation 

One of the advantages of using the lognormal distribution for the vector MEM 

model is that it has an equivalent Vector ARMA specification with an innovation that 

follows a multivariate Gaussian distribution.  

From the following log vector MEM model,  

t t tx   , (21) 

0

1 1

ln( ) ln( ) ln( ) ln( )
p q

t l t l l t l t

l l

A x B A z   

 

     . (22) 

If we take logs of (21), we obtain 

ln( ) ln( ) ln( ) ln( )t t t t tx c e      

 

(23) 

where 1| ~ (0, )t te iid N  .  

Then, 

ln( ) ln( )t t tx c e    ,
 (24) 

1 1 1 1

ln( ) ln( )
q q q q

l t l l t l l l t l

l l l l

B B x B c B e   

   

      .
 (25) 

Substituting ln( )t  and 
1

ln( )
q

l t l

l

B  



  into Equation (22), it follows that 

0

1 1 1

ln( ) ( ) ln( ) ln( )
p q q

t l l t l t l t l l

l l l

x c A B x e B e A z 

  

       
 

(26) 

where 
1

q

l

l

c c B c


   .  

It is interesting that the vector MEM model is equivalent to a VARMA 

specification. In particular, it provides a good way to adopt the VARMA inference
7
 

to make inferences in the vector MEM model.  

4. Empirical analysis 

4.1 Data 

We use the data from the Trades and Quotes (TAQ) dataset at NYSE. The TAQ 

data consists of two parts: the first reports the trade data, while the second lists the  

                                                
7
 See Appendix 2:  Inference of VARMA Models 



 

19 
 

Table 2: Stocks used in the analysis 

A. Frequently traded    B. Infrequently traded 

TRN Trinity Industries  ABG Group ABG 

R Ryder System Inc.  OFG Oriental Finl Grp Hold Co. 

ARG Airgas Inc.  LSB LSB Industries Inc. 

FMO Federal-Mogul Corp.  HTD Huntingdon Life S.G. 

VTS VERITAS DGC INC  HUN Hunt Corp. 

 

quote data (bid and ask data) posted by the market maker. The data were kindly 

provided by Manganelli (2005). He constructed 10 deciles of stocks covering the 

period from Jan 1,1998 to June 30, 1999, on the basis of the 1997 total number of 

trades of all stocks quoted on the NYSE. We randomly selected 5 stocks from the 

eighth decile (frequently traded stocks) and 5 from the second decile (infrequently 

traded stocks) covering the period from Jan 1,1998 to June 30, 1999. The tickers and 

names of the ten stocks are reported in Table 2: 

Before the analysis began, we adopted Manganelli (2005)’s strategy to prepare the 

data. First, all trades before 9:30 am or after 4:00 pm were discarded. Second, 

durations over night were computed as if the overnight periods did not exist. For 

example, the time elapsing between 15:59:50 and 9:30:05 of the following day is only 

15 seconds. We keep overnight duration because our samples for infrequently traded 

stocks are very small. Eliminating this duration would cause the loss of important data 

for these stocks. Third, all transaction data with zero duration are eliminated. These 

transactions are treated as one single transaction, and the related volumes are summed. 

Fourth, to deal with the impact of dividend payments and trading halts, we simply 

deleted the first observation whose price incorporated the dividend payment or a 

trading halt. Fifth, to adjust the data for stock splits, we simply multiplied the price 

and volume by the stock split ratio. Sixth, the price of each transaction is calculated as 

the average of the prevailing bid and ask quote. To obtain the prevailing quotes, we 

use the 5 second rule used by Lee and Ready (1991) which liniks each trade to the 

quote posted at least 5 seconds before , since the quotes can be posted more quickly 

than trades are recorded. This procedure is standard in microstructure studies. Seventh, 

the returns were computed as the difference of the log of the prices. To obtain a return 

sequence that is free of the bid-ask bounce that affects prices (see Campbell et al., 

1997, chapter 3), we follow Ghysels et al. (1998) in using the residuals of an 

ARMA(1,1) model estimated on the return data. 
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  Figure 2: Nonparametric estimate of daily pattern of transaction duration and return   

          square. 

   

The second issue to be addressed prior to the analysis concerns the intraday 

pattern in the data. It is well known that duration, volume and volatility exhibit strong 

intraday periodic components, with a high trading activity at the beginning and end of 

the day. To adjust for this, we make use of a method used by Engle (2000). We 

regress the durations, volumes and returns squares on a piecewise cubic spline with 

knots at 9:30, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00, 15:30 and 16:00. The original 

series are then divided by the spline forecast to obtain the adjusted series. Figure 2 

depicts the nonparametric estimate of daily pattern of duration and return square for 

one typical stock ARG. Generally, less frequently traded stocks do not exhibit any 

regular intraday pattern. More frequently traded stocks typically show the inverted U 

pattern for duration, the L pattern for return squares, and no regular pattern for 

volume.  

Table 3 presents some summary statistics for the ten stocks. For the frequently 

traded stocks, the number of observations range from 33,850 to 69,720 in the sample 

period, and the average trading duration ranges from 87 seconds to 259 seconds. For 

the infrequently traded stocks, the number of observation ranges from 2,074 to 7,212 

in the sample period, with the average trading duration ranging from 1,215 seconds to 

4,215 seconds. The trading volume does not show any difference between frequently 

traded stocks and infrequently traded stocks. The number of trading volumes ranges   
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Table 3: Summary statistics for the 10 stocks 

  Notes: LB(20) denotes Ljung–Box statistics for order 20. MLB(20) denotes 

multivariate Ljung–Box statistics. 

 

from 833 to 5,295. The multivariate Ljung–Box statistics, computed according to 

Hosking (1980)and is given by 

1 1 2

0 0

1

1 ˆ ˆ ˆ ˆ( ) : ( 2) ( ) ( )
s

j j

j

MLB s n n trace C C C C ks
n j

 



  



 

(27) 

where k denotes the dimension of the process ( in this case k=3), s is the number of 

lags taken into account, and ˆ
jC is the j th residual autocovariance matrix. It is 

apparent that duration, volume and volatility showstrong serial autocorrelations, and 

this is particularly true for high frequency traded stocks. The large multivariate 

Ljung-Box statistics in the table indicate that the trivairate system reveals strong 

dynamic and contemporaneous dependencies. These indicators suggest the use of 

vector form MEM.  

We also depict the non-parametric density and parametric densities implied by the 

exponential and lognormal distributions.
8

 Figure 3 reports the comparison of 

parametric and non-parametric densities for one typical stock LSB. It can be seen that 

the lognormal distribution fits with the true density very well for the duration data. 

This result is consistent with Xu (2011a). For volume data, we are surprised to find 

the lognormal distribution has the best performance. And the raw data fluctuates 

closely around the lognormal distribution. Even for volatility, the lognormal  

                                                
8
 See Xu (2011a) and Grammig and Maurer (2000) for the discussion of parametric and 

non-parametric density. 

 Obs Mean  LB(20) MLB(20) 

Duration Volume  Duration Volume Variance 

TRN 55582 157.86 1369.43  3780.09          1383.35 3769.80          12744.02  
GAS 101332   86.54 3118.12  5951.85           2338.08           4073.09          19049.05  
TCB 55208 158.94 1855.20  4171.36  2644.11 2925.82 14716.45 
R 69702 125.67 2492.98  14072.3  7276.91 23685.7 58049.96 
ARG 33850 259.2 1280.70  3780.09  1383.35 3769.80 12744.02 

                    
ABG 2074 4214.88 5259.05  120.28  225.07 146.00 760.08 
OFG 7212 1214.58 833.86  523.16  1343.43 738.09 3557.98 
LSB 2962 2962.19 1971.61  481.41  435.69 523.58 2110.88 
HNN 5887 1483.73 1070.02  2431.00  660.60 788.81 4564.73 
JNS 3949 2215.94 2748.60  268.52  682.92           297.01 1571.99 
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Figure 3: A comparison of parametric density and non-parametric densities--LSB 
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distribution also performs well. For brevity, the other 9 stocks have are not been 

reported for brevity, but these findings are robust across the stocks.  

The data we use in this paper strongly support the multivariate lognormal MEM 

model for the dynamics of duration, volume and price volatility.  

4.2 Empirical model  

In the empirical analysis, we are interested in the causal and feedback effects 

among the variables. In contrast to the previous recursive model, we allow trade 

duration, volume and innovations of these variables to affect price volatility and vice 

versa: the volatility and volatility shocks are allowed to affect trading intensity. So we 

specify and estimate the following vector MEM:  

 
t t tx    , 1| ~ ( , )t t D I                        

1
1 1

1

ln ln ln ln t
t t t

t

x
A x B C  




 



     
(28) 

where B is a diagonal matrix and C is a matrix where the diagonal elements are zero. 

Then, 31a ( 32a ) measures the impact of duration (volume) on price volatility, 31c ( 32c ) 

measures the impact of duration (volume) shocks on price volatility, 13a measures the 

impact of volatility on trading intensity and 13c measures the impact of volatility 

shocks on trading intensity. The estimation results and various diagnostics for the five 

frequently traded stocks are reported in Table 4 and results for the five infrequently 

traded stocks are reported in  

Note: LL denotes Log likelihood function. BIC denotes Bayes Information Criterion. 

LB denotes Ljung-Box statistics of flitted residuals and MLB denotes. multivariate 

Ljung-Box statistic. The Ljung-Box statistics are computed based on 20 lags. Critical 

values 2

0.05(6) =12.59, 2

0.01(6) =16.81 
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Table 5.  

Considering the diagnostic statistics of the model, these suggest that the vector 

MEM improves the dynamic properties of the model significantly, as we can see from 

the sharp drop in the Ljung-Box statistics. This is particularly true for the volatility 

process. Moreover, the vector MEM reduces the multivariate Ljung-Box statistic 

significantly, indicating that the vector MEM does a good job in capturing the 

multivariate dynamics and interdependencies between the individual processes. For 

frequently traded stocks, the dynamics of the system are still not captured completely 

by the model. But this is commonly the case with such large time series (see, for 

example, Engle (2000)). For infrequently traded stocks, the dynamics of the system 

are captured completely by the vector MEM.  
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Table 4: Estimation results and diagnostics: frequently traded stocks. 

 ARG TRN TCB GAS   R 

11  0.060*** 0.089  0.055*** 0.062  0.064 

12  0.107** 0.228***  0.122***  0.216***  0.168  

13  0.012*** 0.007***  0.025***  0.009  0.018  

21  -0.067** 0.113**  -0.003**  0.121  0.018  

22  0.125  0.124  0.098  0.118*** 0.125  

23  -0.009 -0.004  -0.009***  -0.007***  -0.011** 

31  -0.337*** -0.204***  -0.387***  -0.065  0.071***  

32  -0.109 0.219***  0.371***  -0.019  -0.434  

33  0.389*** 0.241*** 0.278*** 0.316*** 0.195  

11b
 

0.939*** 0.730*** 0.942*** 0.724*** 0.912*** 

22b
 

0.508*** 0.638*** 0.695***  0.706*** 0.606** 

33b
 

0.239*** 0.301*** 0.075*** 0.246*** 0.629*** 

12c
 

-0.171*** -0.331*** -0.202*** -0.338*** -0.265  

13c
 

-0.023*** -0.017*** -0.035*** -0.014*** -0.032  

21c
 

0.064  -0.127** -0.013*** -0.132  -0.031  

23c
 

0.004  0.005** 0.008*** 0.007*** 0.009*** 

31c
 

0.015  -0.084*** 0.015*** -0.170  -0.414*** 

32c
 

0.629*** 0.353*** 0.260*** 0.474*** 0.882** 

 LR test
9
     

H0: 

0,ijc i j   

240 519 345 408 1587 

 Diagnostics     

LL  -221998  -358758  -365788  -260314  -407773  

BIC  444247  717780  731838 520883  815812  

MLB  565.8*** 991.6** 1018*** 684.3*** 1086 

_LB d  101.4*** 36.23** 104.0*** 52.82*** 60.37*** 

_LB v  95.97*** 184.1*** 182.3*** 83.37*** 355.9*** 
2ˆ_LB r  

174.3*** 308.7*** 457.0*** 219.9*** 70.30*** 

 

Note: LL denotes Log likelihood function. BIC denotes Bayes Information Criterion. 

LB denotes Ljung-Box statistics of flitted residuals and MLB denotes. multivariate 

Ljung-Box statistic. The Ljung-Box statistics are computed based on 20 lags. Critical 

values 2

0.05(6) =12.59, 2

0.01(6) =16.81 

  

                                                
9
 We estimate five different vector MEMs for comparison. The results have not reported for 

brevity. LR test is based on the likelihood values of restricted and unrestricted models. 
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Table 5: Estimation results and diagnostics: infrequently traded stocks. 

 ABG HTD LSB HUN  FEP 

11  0.042*** 0.019** 0.032  0.056*** 0.056*** 

12  -0.079***  0.015***  0.049  -0.002  0.016  

13  -0.021***  0.018***  -0.004  0.013**  0.085  

21  0.019***  -0.564***  -0.083  -0.005  -0.051  

22  0.231*** 0.198  0.166  0.133** 0.185*** 

23  -0.079***  -0.090**  -0.009  -0.025***  -0.155  

31  -0.023***  -0.446  -0.145***  0.032  -0.062  

32  -0.599***  -0.408***  -0.140  -0.374  -0.134  

33  -0.079***  -0.090**  -0.009  -0.025***  -0.155  

11b
 

0.912*** 0.980*** 0.967*** 0.932*** 0.910*** 

22b
 

0.366*** 0.290*** 0.569  0.708*** 0.643*** 

33b
 

0.682*** 0.665*** 0.522*** 0.67*** 0.318** 

12c
 

0.108*** -0.061*** -0.118  -0.013*** -0.103*** 

13c
 

0.024*** -0.038*** 0.006  -0.028** -0.094  

21c
 

-0.034*** 0.549*** 0.087  0.000  0.042  

23c
 

0.079*** 0.095** 0.013  0.028*** 0.149*** 

31c
 

-0.024*** 0.370  0.028  -0.160*** -0.006*** 

32c
 

0.919*** 0.663*** 0.389  0.721** 0.580** 

 LR test      

H0: 

0,ijc i j   

35.1 54.7 10.4 110 34.0 

 Diagnostics     

LL  -14392  -17116  -19370  -37243  -28574  

BIC  28967  34420  38932  74695  57310  

MLB  221.3** 191.3  249.3*** 167.2  195.7  

_LB d  36.47** 32.81** 48.37** 25.04  29.12  

_LB v  22.17  17.11  37.52*** 19.98  10.38  
2ˆ_LB r
 

27.78 21.57  35.27** 12.73  65.36*** 

 

Note: LL denotes Log likelihood function. BIC denotes Bayes Information Criterion. 

LB denotes Ljung-Box statistics of flitted residuals and MLB denotes. multivariate 

Ljung-Box statistic. The Ljung-Box statistics are computed based on 20 lags. 

Critical values 2

0.05(6) =12.59, 2

0.01(6) =16.81 
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In Manganelli(2005) ’s recursive model, the assumption of weak exogeneity is 

made in the specification of the conditional mean. The past expected variables are 

assumed not to carry any information ( 0ijc  ). Manganelli (2005) and Dufour and 

Engle (2000) also conduct robustness tests of this restriction, in which the residuals of 

the three models are regressed against lagged expected variables. They find that the 

lagged expected variables are insignificant. However, we find that the most lagged 

expected variables are significant (
ijc ) in our vector MEMs. It is particularly true for 

infrequently traded stocks. The LR tests also suggest that the lagged expected 

variables are jointly significant in almost all cases. We argue that the robustness 

checks conducted by Manganelli (2005) and Dufour and Engle (2000) are misleading, 

since the dynamics of expected variables has been distorted by the marginal model. 

Therefore, the weak exogeneity assumption is not supported by the empirical data. 

The lagged expected variables should be incorporated in this trivariate system. 

4.3 Empirical results  

Looking first at the price volatility ( th ) process. The coefficient of duration ( 31a ) 

and coefficient of duration shocks ( 31c ) in the volatility equation are negative and 

significant in most cases. This is consistent with Easley and O'Hara (1992), indicating 

that trades with short duration or the shocks of trading intensity are related to the 

arriving of new information, which reveals a higher volatility impact. The implicit 

application is that market makers will associate the higher trading activity or trading 

activity that is higher than its expected level as a signal of informed trading. 

The volume coefficient ( 32a ) is only significant for 4 out of 10 stocks and the sign 

is unclear. However, the volume shocks coefficient ( 32c ) are all significant and 

positive. This implies that the unexpected component of volume rather than the raw 

volume carry information. Implicitly, market makers will only consider trade size that 

is larger than its expected level as a signal of private information, and adjust bid-ask 

price accordingly. The expected large trade size is simply for liquidity reason. The 

results partly support the prediction from Easley and O'Hara (1987,1992).  

This exercise of the price impact of trade is novel in two aspects. First, most 

empirical market microstructure literature (see, for example,Dufour and Engle (2000) 

and Manganelli (2005)) uses raw duration (volume) to determine the presence of 
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informed traders in the market. We highlight that it is the unexpected components of 

trade that carry information with respect to asset prices. Second, in contrast to 

Manganelli (2005), our findings are generally robust for less frequently stocks. There 

is no reason why the informed traders should avoid taking advantage of their private 

information if it is related to infrequently traded stocks. 

The strikingly different results, with respect to the feedback effects from the price 

process to trading intensity, are found in the duration equation. For the frequently 

traded stocks, the coefficient of volatility ( 13a ) is always positive but significant for 3 

out of 5 stocks and the coefficients on volatility innovation ( 13c ) is always negative 

but significant for 4 out of 5 stocks. Following Hasbrouck (1988,1991), we explain 

this by considering the persistent quote change (volatility) to be information 

motivated and transient quote change (volatility shock) to be inventory motivated. 

Then our results are consistent with microstructure predictions. For example, 

information motivated large absolute quote changes indicate a risk of informed 

trading and the liquidity traders may leave or slow down the trading activity to avoid 

adverse selection(Admati and Pfleiderer, 1988; Easley and O'Hara, 1992), while 

inventory motivated large quote changes may attract opposite side traders and 

increase trading intensity. Similar results can be found for infrequently traded stocks, 

but the effects are less significant.  

In the existing empirical microstructure literature, Dufour and Engle (2000) and 

Manganelli (2005) find that short durations follow large returns, while Grammig and 

Wellner (2002) find that lagged volatility significantly reduces trade intensity. Our 

findings enhance the existing literature by incorporating both of these effects in one 

model.  

4.4 Impulse Response Analysis 

From the estimates of the MEM in equation (28), we generate the impulse 

responses which trace the effect of a one­time shock to one of the innovations on the 

future values of the endogenous variables. The impulse response function for two 

representative stocks TRN and ABG are plotted in Figure 4 and Figure 5. This gives 

the effects of a variation on the forecast up to the 10th trade. Since the 

impulse-response functions are plotted in transaction time, they are not directly 

comparable among different stocks. We use the Manganelli (2005) method to 
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Figure 4: Impulse response function for TRN 

 
Figure 5: Impulse response function for ABG 
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approximate the calendar time the system takes to return to its long-run equilibrium, 

by multiplying the number of transactions by their average duration. The average 

duration per trade of the two representative stocks is 158 seconds for TRN and 4215 

seconds for ABG. This implies, for example, that a shock to the duration of TRN is 

absorbed by the expected duration after about 27 trades, or, on average, after 1.2 

hours. In the case of ABG, the same shock is absorbed after 54 transactions, which 

corresponds, on average, to a period of 63.3 hours. Similar results hold for the other 

impulse-responses, indicating that the more traded the stock, the faster the market 

returns to its full information equilibrium after an initial perturbation. In particular, 

this is consistent with the (plausible) assumption that the more frequently traded the 

stock the higher the number of informed traders.  

Table 6 summarizes the results for the other stocks, confirming that the price 

volatility of frequently traded stocks converges much faster to its long-run 

equilibrium
10

 after an initial perturbation. In general, for frequently traded stocks, the 

new information is implicitly incorporated in the price within one trading day, while it 

takes up to a week for the new information to be included into the price for 

infrequently traded stocked. Overall, the effect is to suggest that the market is 

reasonably efficient. This result, in contrast to Kyle (1985), confirms Admati and 

Pfleiderer (1988) and Holden and Subrahmanyam (1992)’s finding that information is 

short lived. For example, Holden and Subrahmanyam (1992) show that with multiple 

informed traders there will be more aggressive trading in the early periods, causing 

more information to be revealed earlier in the process. 

Table 6: Time (in hours) it takes to absorb shocks to the long term equilibrium 

variances 

 ARG TRN TCB GAS R 

Shock to duration 2.5 1.2 0.8 1.7 3.1 

Shock to volume 2.5 1.2 0.8 1.7 3.1 

Shock to price 

volatility 

2.4 1.1 0.7 1.7 3.0 

 ABG HTD LSB HUN FEP 

Shock to duration 63.3 59.0 37.8 29.7 7.7 

Shock to volume 69.1 61.9 38.7 31.3 8.9 

Shock to price 

volatility 

63.3 59.0 38.7 29.3 7.2 

                                                
10

 The threshold at which the shock producing the impulse–response is assumed to be 

absorbed is at 1e-7 for shocks. That is, Table 7 reports the time it takes for the 

impulse–response of the variance to fall below 1e-7. 
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5. Conclusion  

In this paper, we extend the recursive framework of Engle (2000) and Manganelli 

(2005) for the transaction data to a vector MEM, in which trading duration, volume 

and price volatility are interdependent. We further propose a multivariate lognormal 

for the distribution of the vector MEM, which allows the innovations terms to be 

contemporaneously correlated. In this way, we can build a system that incorporates 

various causal and feedback effects among these variables. The method is applied to 

the trade and quote dataset of the NYSE and the model is estimated using a sample of 

10 stocks. The empirical findings are summarized as follows: 

 

(1) The diagnostic statistics show that the vector MEM improves the dynamic 

properties of the model significantly. Moreover, the lagged (un)expected variables 

are widely significant in the MEM model, challenging the weak exogeneity 

assumptions used in the empirical market microstructure literature.  

(2) We find a significant price impact of trade. However, we highlight the effect of 

unexpected components of trading characteristics. Both duration and duration 

shocks carry price information, while only unexpected volume carries most of the 

volume related information content.  

(3) We also find significant feedback effects, with volatility and volatility shocks 

affecting duration in different directions. This finding confirms Hasbrouck 

(1988,1991)’s prediction that persistent quote changes are driven by private 

information, which decreases trading intensity, while the transient quote changes 

are motivated by inventory control, which would attract opposite side traders and 

increase trading intensity. However, this effect is only robust for frequently traded 

stocks.  

(4) With the impulse response, we find that the new information is implicitly 

incorporated in to the price within one trading day for frequently traded stocks, 

and it takes up to one week for infrequently traded stocks.  

 

With respect to further research, the methodology used in this paper can easily be 

extended to model any non-negative valued variables. An interesting extension is to 
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model financial volatilities. For example, there are different measures of volatility, but 

no individual one appears to be a sufficient measure on its own. One possibility is to 

consider absolute daily returns, daily high-low range and daily realized volatility in 

the vector MEM for forecasting volatility (see Engle and Gallo (2006)). A second 

example, the multivariate GARCH model is usually used in modelling dynamics 

interactions among volatilities in different markets. But it is hindered by parametric 

limitations. However, one can model directly the volatility proxy (i.e. daily range) for 

each market and insert other markets’ volatility in the expression of its conditional 

expectations in the vector MEM. This is a very promising possibility, since there is no 

parametric limitation.  
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Appendices: 

Appendix 1: Lognormal distribution  

[A] Univariate lognormal distribution 

A lognormally-distributed random variable is a random variable whose logarithm is 

normally-distributed. Consider a standard lognormally-distributed x , whose 

logarithmic transformation log( )y x  is normally-distributed with mean   and 

standard deviation  . The probability density function for a lognormal distribution is 

given by,  

 2

22

1 (log )
( | ) exp[ ] , 0

22

x
f x x

y







      

As noted, for example, in Hines and Montgomery (1990) this distribution is 

skewed with a longer tail to the right of the mean. When  and  are known for y, 

the corresponding mean and variance for x can be found from the following: 

      

2

2 2

1

2

2

( )

( ) ( 1)

E x e

Var x e e

 
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




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[B]Multivariate lognormal distribution  

Let 1 2( , , , )ky y y y be a k-dimensional random variable having multivariate 

normal distribution with mean v  and covariance matrix ( )ijD d . The probability 

density function of y is defined as:   

1/2/2 11
( | ) (2 ) exp ( ) ' ( )

2

k

yf y D D y v D y v
  

    
 

 

So the variable, exp( )x y , has a multivariate lognormal distribution. It is defined as 

ln ( , )x N v D .Using the Jacobian transformation, and ( ) ln( )y h x x  , the 

probability density for the multivariate lognormal distribution has the following form:  

1/2/2 1 1

1 2

( | ) ( ( ) | )

1
(2 ) ( ) exp (ln ) ' (ln )

2

x y

k

k

dh
f x D f h x D

dx

D x x x x v D x v
  



 
    

   
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Law and Kelton (2000)show that the covariance and correlation of the bivariate 

lognormal variables 1 2( , , , )kx x x x  are given by: 

1

2
1 2

( )
2

( ) ( , , , ) '

( )( ) ' ( 1)

1

( 1)( 1)

i ii

ii jj
i j

ij

ij

jjii

v d

k i

d d
v v d

ij ij

d

ij
dd

E x e

E x x e e

e

e e
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   






 

  

      




 

 

where 
ij

d  is the ijth element of D . It is clear that if 1 2, , , ky y y  are independent, 

then 1 2, , , kx x x are also independent and vice versea.  

[C] Jacobian transformation 

Let 1( , , )ky y y  be a k-dimensional random variable with probability density 

function (pdf) ( )yf y : ( ) : k

yf y R R  

Define some 1:1 differentiable transformation of y  into x  using : k kg R R , 

1 1( )

( )

( )k k
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with inverse 
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The pdf of y, the transformed random variable, is  

( ) ( ( ))x y

dh
f x f h x

dx
  
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Appendix 2:  Inference of VARMA Models 

A general K-dimensional, linear, time-invariant, covariance stationary VARMA (p,q) 

model takes the form
11

 

qtqttptptt BBAA     1111              

Or, in lag operator notation, as 

tt LBLA  )()( 
 

where 
p

pK LALAILA  1:)( and 
q

qK LBLBILB  1:)(  

[A] Stationarity and invertibility  

The VARMA(p,q) system will be stationary if 0)(det 1  p

pn AAI    for 

1 . The VARMA system will be invertible if and only if  

0)(det 1  q

qn zBzBI   for 1z .  

[B] Identification  

It is well known that the VARMA (p,q) model is generally not identified unless 

special restrictions are imposed on the coefficient matrices (Lütkepohl, 2005).  

[C] The Gaussian quasi-maximum likelihood function 

Assume our VARMA(1,1) process is a Gaussian, stationary, and invertible process, 

       1111   tttt BA   
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where   is a 3 3T T   matrix and M is a 3 3( 1)T T   matrix, 

                                                
11

 In principle, it should contain an intercept term. This has not been done here 

because it is assumed that the mean has been subtracted prior to estimation.  
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Then we get 













































































T

T

A
















 1

001

1

0

0
 

Hence, for given, fixed presample values 0  

))(,(~ 1

1

1

0

1

1





 

















 vT

T

IN 





   

where  0 : =





































0

0

01









A

 

Assuming that t  is Gaussian white noise, the corresponding likelihood function, 

conditional on 0 , is  
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where 1  has been used.  

Even if the Gaussian white noise assumption of  t  is invalid, maximization of 

the Gaussian log likelihood function can provide consistent estimates of the 

parameters of this linear representation. This is a quasi-maximum likelihood 

estimation solution. However, the standard errors have to be adjusted. 
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Appendix 3: Proofs of impulse response function 

Model: t t tx  
 

      
1 1ln ln lnt t tA x B       

Firstly, weHasbrouck (1988,1991 transform the vector MEM into a VARMA model, 

by substituting   

ln t  with ln ln t
t

t

x
x


 .  

Then, 
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where A A B   , and B B    

The causal and feedback effect are not affected by this transformation. Therefore, it is 

feasible to assume that ln i  follows a multivariable Gaussian distribution. Then, 

(quasi) maximum likelihood estimation can be used to estimate the parameters of 

VARMA model. Suppose t  is a multivariable Gaussian distributed random 

variables, then 

1 1ln lnt t t tx A x B   
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where ~ (0, )t N   , , ( )D BD D dia        

In the impulse response, we work on the impulse of t on the ln tx  in a standard 

way. Writing the VARMA (1,1) equation as an infinite VAR model: 
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The impulse response function of the model (17) for 0t   is : 
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This process can be rewritten in such a way that the residuals of different 

equations are uncorrelated. For this purpose, we choose a decomposition of the white 

noise covariance matrix 'W W    , where   is a diagonal matrix with positive 

diagonal elements and W  is a lower triangular matrix with unit diagonal. This 

decomposition is obtained from the Choleski decomposition 'PP    by defining 

a diagonal matrix D which has the same main diagonal as P and by specifying 

1W PD  and 'DD   

    1

0
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Then the impulse response function of the model (17) for 0t   is : 
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