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We construct investor sentiment of UK stock market using the procedure of principal component 

analysis. Using sentiment-augmented EGARCH component model, we analyse the impacts of 

sentiment on market excess return, the permanent component of market volatility and the 

transitory component of market volatility. Bullish sentiment leads to higher market excess return 

while bearish sentiment leads to lower excess return. Sentiment-augmented EGARCH component 

model compares favourably to the original EGARCH component model which does not take investor 

sentiment into account. Furthermore, we test the cross-sectional risk premia of the permanent and 

transitory components of sentiment-affected volatility in the framework of ICAPM.    
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1. Introduction  

A long-running debate in financial economics concerns the role and possible effect of investor 

sentiment on asset prices. There are various ways to define investor sentiment. It is the feeling or tone 

of a market, or its crowd psychology, as revealed through the activity and price movement of the 

securities traded in that market. Market sentiment is also called "investor sentiment" and is not always 

based on fundamentals. Baker and Wurgler (2006) explain it as the propensity to speculate or the 

overall optimism or pessimism about an asset. Baker and Wurgler (2007) further define investor 

sentiment broadly, as a belief, usually influenced by emotion, about future cash flows and investment 

risks that is not justified by the facts at hand.  

Traditional asset pricing theory suggests that rational arbitrage necessarily forces prices closer to 

fundamentals and leaves no role for investor sentiment. The capital asset pricing model (CAPM) 

theoretically argues that systematic risk is measured by the exposure to the market portfolio. Prior 

literature has shown, however, that the standard CAPM cannot explain the returns on stocks with 

certain firm characteristics or price histories such as the size effect, value effect and momentum effect 

which have been termed as asset-pricing anomalies in literature. In the attempt to capture the 

dimensions of risk other than exposure to the market risk, Fama and French (1992, 1993) further 

include size and value factors and Pastor and Stambaugh (2003) consider a liquidity factor.  

The existing literature document that investor sentiment exhibits certain degree of predictability of 

time-series stock returns. Fisher and Statman (2003) reveal the level of investor sentiment in one 

month is negatively related to the stock returns over the next month and the next 6 or 12 months. 

Meanwhile, there’s a positive relationship between the monthly changes in investor sentiment and 

contemporaneous market excess returns. Brown and Cliff (2004, 2005) suggest that their measures of 

sentiment co-move with the market in the long run. They find that returns over future multiyear 

horizons are negatively associated with investor sentiment. Lee et al. (2002) demonstrate that excess 

returns are contemporaneously positively related to shifts in sentiment.  

Baker and Wurgler (2006, 2007) show that sentiment affects the cross-section of stock returns. They 

give us an excellent illustration of the theoretical effects of sentiment on the cross-section. The two 

main channels through which sentiment can affect pricing are investor sentiment and arbitrage. Under 

the first channel, sentimental demand shocks vary across stocks while arbitrage limits are constant. 

Investor sentiment might be interpreted as the propensity to speculate. Sentiment drives the relative 

demand for stocks that are more vulnerable to speculation, whose valuations are subjective and 

difficult to determine. For instance, small, young, extreme growth, unprofitable, and non-dividend 

paying stocks, should be more difficult to price. Therefore, opaque stocks are more vulnerable to 

broad shifts in investor sentiment. On the other hand, translucent stocks are less likely to be affected 

by fluctuations in the propensity to speculate.  

Under the second channel, investor sentiment might be interpreted as optimism or pessimism about 

stocks in general. The effect of investor sentiment will be uniform while the arbitrage forces differ 

among stocks. A body of theoretical and empirical research shows that arbitrage is particularly costly 

and risky with certain stock types, for example, young, small, extreme growth, and unprofitable 

stocks. 

The two channels appear to affect the same type of stocks. Put another way, the same stocks that are 

the hardest to arbitrage also tend to be the most difficult to value in practice. Hence, the two channels 

are likely to have overlapping effects and reinforce each other.  

The behavioural finance literature shows that sentiment has impact on trading decisions. The 

influence of investors’ future expectation can lead to the over- or under-pricing of stocks, and thus 

affect pricing models. Various studies provide supportive evidence that investor sentiment plays a 

critical role in determining stock price behaviour. Hence, the question now is no longer whether 

investor sentiment affects stock prices, but how to measure investor sentiment and quantify its effects.  
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In this chapter, our study focuses on three aspects. First, limited by the availability of data, we get five 

sentiment measures, consumer confidence, market turnover by volume, market turnover by value, the 

number of IPOs in each month, and the initial day return of IPOs within each month. We use the first 

principal component analysis (PCA) to construct a composite sentiment index. Second, we test the 

time-series relationship of market level excess returns and investor sentiment. We examine whether 

investor sentiment affects time-series market excess returns. Also, we examine whether market excess 

returns are indirectly affected by investor sentiment through the risk caused by sentiment in the form 

of volatility. Third, in the cross-sectional examination, we demonstrate whether the short- and long-

run sentiment-affected volatilities obtained from the time-series regression are priced factors in the 25 

Fama-French size and BTM sorted portfolios.  

Inspired by the empirical framework of Lee et al. (2002), we augment investor sentiment to Adrian 

and Rosenberg’s EGARCH component model by adding the sentiment to mean and variance 

equations. However, our model differs from their model in the following aspects. First, the main 

framework of our model is EGARCH component model proposed by Adrian and Rosenberg (2008), 

while Lee et al. (2002) utilize the GARCH-in-mean framework. Furthermore, Adrian and Rosenberg 

(2008) do not consider investor sentiment in their model. Second, the dummy variables of sentiment 

enters their model as intercept dummy which suggests sentiment affects the conditional volatility 

directly. However, our investigation suggests that the direct effects of sentiment on short- and long-

run volatilities are statistically insignificant. Therefore, we adapt the approach by adding the dummy 

variables as slope dummies rather than intercept dummies. The empirical results turn out that 

sentiment has influences on short- and long-run volatilities through their impacts on previous short- 

and long-run volatilities. Third, both the level and change of sentiment are investigated in each model 

framework. 

The analysis and results of this chapter contributes to the existing literature by investigating the extent 

to which the impact of investor sentiment on stock market volatility and returns. Furthermore, we 

examine the cross-sectional prices of risks of sentiment-affected volatilities. First, the results 

complement earlier work that shows sentiment help to explain the time-series of returns. Previous 

research has focused on the influence of investor sentiment on the mean of stock returns. Our study 

investigates the impact of investor sentiment on both the market excess returns and the volatility of 

returns. Second, most research utilises the U.S. data and to our best knowledge, there are very few 

empirical research on market sentiment concentrating on U.K. market. The existing studies related to 

U.K. market are mainly discussing the international sentiment and U.K. market is just one part of the 

European or global market. Third, we decompose the market volatility into transitory and permanent 

components. By applying investor sentiment to this model, we investigate the influences of sentiment 

on decomposed market volatility and examine effects on short- and long-run volatilities separately. 

Finally, we further examine whether the short- and long-run sentiment-affected volatility are priced 

factors in the cross-section.  

The chapter is organized as follows. The next section displays a brief literature review on investor 

sentiment and a survey of proxies for sentiment proposed in the literature. Section 3 provides the 

methodology of the construction of investor sentiment and the empirical model of this chapter. 

Section 4 describes the summary statistics of sentiment measures and the construction of the 

composite index. Section 5 shows us the empirical analysis of the time-series and cross-sectional 

estimations. Section 6 provides robustness checks for both the model specification and measure of 

investor sentiment and the last section concludes.  
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2. Literature review 

2.1 Measures of Investor Sentiment 

2.1.1 Economic variables as sentiment measures 

The existing literature has established several different measures of investor sentiment. One approach 

is directly through economic variables. A number of studies use observable economic variables to 

measure levels of sentiment. Baker and Wurgler (2007) summarize some potential economic proxies 

for sentiment, including retail investor trades; mutual fund flows; trading volume; premia on 

dividend-paying stocks; closed-end fund discounts; option implied volatility; first day returns on 

initial public offerings (IPOs); volume of initial public offerings; new equity issues; and insider 

trading.  

Retail Investor Trades. Barber et al. (2007) and Kumar and Lee (2006) find in micro-level trading 

data that trading of retail investors is highly correlated and persistent, which is consistent with 

systematic sentiment. Consequently, Kumar and Lee (2006) suggest constructing sentiment measures 

for retail investors based on their trading comovements.   

Mutual Fund Flows. Brown et al. (2002) find evidence that daily mutual fund flows may be 

instruments for investor sentiment about the stock market and provide evidence that this sentiment 

factor is priced. Frazzini and Lamont (2006) find some affirmative evidence by using fund flows to 

proxy for sentiment for individual stocks. They find that strong inflows of stock within a mutual fund, 

predicts a relative low future return. 

Trading Volume. Trading volume, or more generally liquidity, can be viewed as an investor sentiment 

index. Baker and Stein (2004) note that in the presence of short-sales constraints, which is actually the 

case in practice, irrational investors are more likely to trade, and thus add liquidity, when they are 

optimistic and betting on rising stocks rather than when they are pessimistic and betting on falling 

stocks. Higher turnover predict lower subsequent returns in both firm-level and aggregate data. 

Similarly, Scheinkman and Xiong (2003) claim that trading volume reveals underlying difference of 

opinions, which is accompanied by bubbles in asset price when short selling is difficult.  

Dividend Premium. Baker and Wurgler (2004a, b) define the dividend premium as the difference 

between the average market-to-book-value ratios of dividend payers and nonpayers. When dividends 

are at a premium, firms are more likely to pay them, and are less so when they are discounted. In other 

words, on the margin, when the prevailing demand for the stock market dividend premium is high, the 

propensity to pay dividend increases whereas with a low demand, the propensity to pay dividends 

decreases.  

Closed-End Fund Discount. The closed-end fund discount (or occasionally premium) is the difference 

between the net asset value of a fund’s actual security holdings and the fund’s market price. Many 

authors, including Lee et al. (1991) and Neal and Wheatley (1998) consider the closed-end fund 

discounts to measure individual investor sentiment. They have argued that if closed-end funds are 

disproportionately held by retail investors, the average discount on closed-end equity funds may be a 

sentiment index, with the discount increasing when retail investors are bearish. Both these two papers 

suggest closed-end fund discount predict the size premium.  

Option Implied Volatility. The Market Volatility Index (VIX), which measures the implied volatility 

of options on the Standard and Poor’s 100 stock index, if often referred as “investor fear gauge” by 

practitioners. Whaley et al. (2008) define VIX as a measure of investor’s certainty (or uncertainty) 

regarding volatility. It’s about fear of unknown such that the higher the VIX is, the greater the fear.  

IPO First-Day Returns and IPO Volume. The IPO market is often viewed to be sensitive to sentiment. 

Specifically, high first day return on IPOs is considered as a measure of investor enthusiasm, and the 

low idiosyncratic return on IPOs is often interpreted as a symptom of market timing. The underlying 
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demand for IPOs is also said to be extremely sensitive to investor sentiment. Furthermore, Average 

first-day returns display peaks and troughs which are highly correlated with IPO volume.  

Equity Issues over Total New Issues. Baker and Wurgler (2000) find that high values of the equity 

share predict low stock market returns, and suggest that this pattern reflects firms shifting successfully 

between equity and debt to reduce the overall cost of capital. The authors argue that this pattern need 

not imply that individual firms or their managers can predict prices on the market as a whole. Rather, 

correlated mispricings across firms may lead to correlated managerial actions, which may then 

forecast correlated corrections of mispricings, that is, forecast market returns.  

Insider Trading. Seyhun (1998) presents evidence on the ability of insider trading activity to predict 

stock return and reap significant profits. Corporate executives, board members and large shareholders 

have better information about the true value of their firms than outside investors. Thus, legalities 

aside, their personal portfolio decisions may also reveal their views about the mispricing of their 

firms. If sentiment leads to correlated mispricings across firms, insider trading patterns may contain a 

systematic sentiment component.  

There are a few other economic variables that have been employed as proxies for sentiment in recent 

literature. Brown and cliff (2004) and Wang et al.(2006) outline and examine a number of sentiment 

indicators, such as ARMS index, put-call trading volume and open interest ratios, the percentage 

change in margin borrowing, the percentage change in short interest, and the ratio of odd-lot sales to 

purchases. 

ARMS Index. The ARMS index on day t is equal to the number of advancing issues scaled by the 

trading volume (shares) of advancing issues divided by the number of declining issues scaled by the 

trading volume (shares) of declining issues. ARMS can be interpreted as the ratio of volume per 

declining issue to the volume in each advancing issue. If the index is greater than one, more trading is 

taking place in declining issues, whilst if it is less than one, more volume in advancing stocks 

outpaces the volume in each declining stocks. Its creator, Richard Arms (1989), argue that if the 

average volume in declining stocks far outweighs the average volume in rising stocks then the market 

is oversold and that this should be treated as bullish sign. Likewise, he argue that if the average 

volume in rising stocks far outweighs the average volume in falling stocks then the market is 

overbought and that this should be treated as a bearish sign.  

Put-Call Trading Volume. The put-call trading volume ratio is a measure of market participants’ 

sentiment derived from options and equals the trading volume of put options divided by the trading 

volume of call options. The ratio of CBOE equity put to call trading volume is widely viewed as a 

bearish indicator in US market. When market participants are bearish, they buy put options either to 

hedge their spot positions or to speculate bearishly. Therefore, when the trading volume of put options 

becomes large relative to the trading volume of call options, the sentiment goes up, and vice versa.  

Put-Call Open Interest ratios. Wang et al. (2006) further introduce the approach of using the open 

interest of options instead of trading volume to calculate the put-call ratio. The ratio can be calculated 

on a daily basis using the day or on a weekly basis using the open interest of options at the end of the 

week. Wang et al. (2006) claim that this might be a preferred measure of sentiment as it may be 

argued that the open interest of options is the final picture of sentiment at the end of the day or the 

week and is therefore likely to have better predictive power for volatility in subsequent periods. 

Percentage Changes in Margin Borrowing. This measure is frequently cited as a bullish indicator 

since it represents investors using borrowed money to invest. 

Percentage Changes in Short Interest. The argument is made that the specialists are well-informed 

and relatively savvy investors, so when their short-selling becomes relatively large, the market is 

likely to decline. Hence, the percentage change in short interest is usually viewed as a bearish 

indicator.  

The Ratio of Odd-Lot Sales to Purchases. Fosback (1993) suggests this ratio be a bearish measure.  
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2.1.2 Survey data as sentiment measures 

Another strand of recent research expands the direct measures of investor sentiment to consider 

aggregate market views regarding sentiment across investor types, including both institutional and 

individual investors. Brown and Cliff (2004) assume that the survey data conducted by the American 

Association of Individual Investors (AAII) and Investors Intelligence (II) are reasonable proxies for 

the true sentiment. They demonstrate that surveys measuring investor sentiment are related to other 

popular measures of investor sentiment and recent stock market returns. Brown and Cliff (2005) use 

survey data from Investors Intelligence (II) as a contrarian indicator. Lemmon and Portniaguina 

(2006) explore the time-series relationship between investor sentiment and the small-stock premium 

using consumer confidence conducted in the United States as a measure of investor optimism. One of 

the survey data is collected by the Conference Board [the Index of Consumer Confidence (CBIND)] 

and the other is independently conducted by the University of Michigan Survey Research Centre [the 

Index of Consumer Sentiment (ICS)]. Schmeling (2009) examines whether consumer confidence - as 

a proxy for individual investor sentiment-affects expected stock returns internationally in 18 

industrialized countries.  

2.1.3 Composite sentiment index 

The last measure is to construct a composite proxy index from the available economic variables. Prior 

research presents a number of proxies for sentiment to use as time-series conditioning variables. 

However, there are no definitive or uncontroversial measures. Brown and Cliff (2004) indicate that 

the survey data alone are most likely incomplete measures of sentiment. Conceptually, it is appealing 

to extract the common component (s) of the available economic series which might represent a 

cleaner measure of investor sentiment. In order to exploit as much information as possible, they 

combine the various sentiment measures, indirect and direct ones, and use two well-established 

methods to extract common features of the data: the Kalman filter and principal component analysis 

(PCA). Likewise, Baker and Wurgler (2006, 2007) argue that data availability narrows the list of 

sentiment measures considerably. They suggest a composite index of sentiment which is based on the 

common variation in the available underlying proxies for sentiment. They propose the principal 

component methodology, like Brown and Cliff (2004), to define a sentiment index, which captures the 

common component in the underlying economic variables.  

2.2 Empirical Studies of Investor Sentiment 

Behavioural finance argues that the arbitrage will be limited in some senses, and investors might be 

affected by psychology biases, noise, or sentiment. As Baker and Wurgler (2007) summarize, 

researchers in behavioural finance have therefore been working to modify the standard model with an 

alternative model built on two basic assumptions.  

The first assumption, put forward by Delong et al. (1990), is that investors are subject to sentiment. 

Investor sentiment, defined broadly, is a belief about future cash flows and investment risks that is not 

justified by the facts or economic theory. The remarkable work of Delong et al. (1990) models the 

influence of noise trading on equilibrium prices, in which noise traders act in concert on non-

fundamental signals. The simultaneous actions introduce a systematic risk that is priced. In their 

model, the deviations in price from fundamental value induced by changes in investor sentiment are 

unpredictable. Arbitrageurs betting against mispricing run the risk that investor sentiment becomes 

more extreme and prices vary even further away from fundamental values, at least in short run. The 

possibility of loss and the arbitrageurs’ risk aversion reduce the size of positions they are willing to 

take. Consequently, arbitrage fails to completely eliminate mispricing and investor sentiment affects 

asset prices in equilibrium. The model of Delong et al. (1990) predicts that the direction and 

magnitude of changes in noise trader sentiment are relevant in asset pricing. 

The second assumption, emphasized by Shleifer and Vishny (1997), is that betting against sentimental 

investors is costly and risky and hence there are limits to arbitrage. Rational arbitrageurs are not as 

aggressive in bringing prices to fundamentals as the standard model would suggest.  
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A pioneer and well-known set of studies of sentiment and aggregate stock returns appears in the mid-

1980s. In these researches, the role of sentiment was left implicit and the statistical evidence was not 

very strong. Nowadays, the systematic role of investor sentiment has been suggested by many 

empirical and theoretical studies. One set of studies focuses on demonstrating how sentiment predicts 

future returns in stock market.  

Neal and Wheatley (1998) utilize three popular measures of investor sentiment: closed-end fund 

discount, net mutual fund redemptions and the ratio of odd-lot sales to purchases as sentiment 

measures. They exploit the forecast power of these three measures and show that the first two 

measures forecast the size premium, but little evidence that the odd-lot ratio predicts returns. Fisher 

and Statman (2000) report a negative relationship between investor sentiment and future stock returns. 

Baker and Wurgler (2000) use the share of equity issues in total new issues, that is equity and debt 

issues to proxy for investor sentiment. They demonstrate that this measure predicts significantly 

negative market returns which cannot be explained by efficient market hypothesis. Brown and Cliff 

(2005) use a direct survey measure of investor sentiment to forecast market returns over the following 

1-3 years. The estimation of coefficient on investor sentiment is significantly positive which suggests 

the market is overvalued during periods of optimism. They further show that sentiment is positively 

related to changes in market valuations, in the error correction version of the cointegrating regression. 

Corredor et al. (2013) analyse the forecast performance of investor sentiment in four European stock 

markets: France, Germany, Spain and the UK. They claim that sentiment has a significant effect on 

returns, though there is dispersion in intensity across countries.  

The second set of studies exploits the possibility of a causal relationship between market returns and 

investor sentiment or changes in investor sentiment. The Granger causality tests of Brown and Cliff 

(2004) failed to reject the null hypothesis of no predictability in returns to sentiment for small and 

large stocks. On the other hand, changes in investor sentiment appear significantly negatively impact 

on subsequent market returns of small but not of large stocks. By estimating bivariate VAR models, 

Wang et al. (2006) also take a look at the causality between sentiment and market returns in both 

directions. They confirm the result of Brown and Cliff (2004) that sentiment is not causal variables of 

market returns. On the contrary, sentiment is granger caused by market returns. Schmeling (2009) 

reports that there is a two-way causality between the sentiment measures and stock returns. 

Recent researches shed more light on the cross-sectional effects of investor sentiment. Brown and 

Cliff (2005) use the 25 Fama and French portfolios, together with 5 portfolios sorted from univariate 

size sorts, 5 portfolios from book-to-market sorts and the overall market portfolio. They show that for 

large firms or low book-to-market firms, sentiment is a significant predictor of future returns at the 1-, 

2-, and 3-year horizon. Baker and Wurgler (2006) examine how investor sentiment impacts the cross-

section of stock returns. They form equal-weighted deciles portfolios based on several firm 

characteristics, and look for patterns in the average returns across deciles conditioning on the 

beginning-of-period level of sentiment. They demonstrate that the subsequent returns are relatively 

low for small stocks, young stocks, high volatility stocks, distressed stocks, unprofitable stocks, 

stocks with no dividend payment, and stocks experiencing extreme growth, when sentiment measures 

are high, and vice versa. Berger and Turtle (2012) report that investor sentiment sensitivities increase 

directly with the opacity of firms in the cross-section. They display an inverse relation between ex 

ante investor sentiment and the marginal performance of opaque stocks. The performance of 

translucent stocks, on the contrary, exhibits relatively little variability across levels of sentiment. 

 

3. Methodology 

3.1 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a statistical procedure that uses orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of values of linearly correlated 

variables called principal components. The transformation is defined in such a way that the first 
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principal component has the largest possible variance (that is, accounts for as much of the variability 

in the data as possible), and each succeeding component in turn has the highest variance possible 

under the constraint that it be orthogonal to the preceding components. PCA is sensitive to the relative 

scaling of the original variables.  

3.2 EGARCH Component Model  

Nelson (1991) suggests the EGARCH model to improve the performance of GARCH model. Engle 

and Lee (1999) introduce a component GARCH model where the conditional variance is decomposed 

into transitory and permanent components. Many studies find that two-component volatility model is 

superior to one-component specification in explaining equity market volatility and the log-normal 

model of EGARCH performs better than square-root or affine volatility specifications. Appealed to 

the merits of the component GARCH and the EGARCH models, Adrian and Rosenberg (2008) 

incorporate the features of these two models and specify the dynamics of the market return in excess 

of risk-free rate   
  and the conditional volatility √   as: 

Market return:     
    

  √                   

Market volatility:   √                            

Short-run component:                    (|    |  √  ⁄ )                      

Long-run component:                        (|    |  √  ⁄ )             

In equation (1a),    is a normal i.i.d. error term with zero expectation and unit variance, and   
  is the 

one-period expected excess return. The log-volatility in equation (1b) is the sum of two components    

and   . Each component is an AR(1) processes with its own rate of mean reversion. Without loss of 

generality, let    be the slowly mean-reverting, long-run component and    be the quickly mean-

reverting, short-run component        . The unconditional mean of    is normalized to zero. 

The terms |    |  √  ⁄  in equations (1c) and (1d) are the shocks to the volatility components. Their 

expected values are equal to zero, given the normality of   . For these error terms, equal sized positive 

or negative innovations results in the same volatility change, although the magnitude can be different 

for the short- and long-run components (   and    ). The asymmetric effect of returns on volatility is 

allowed by including the market innovation in equations (1c) and (1d) with corresponding coefficients 

   and   .  

The market model defined by equations (1a) – (1d) converges to a continuous-time, two-factor 

stochastic volatility process. An advantage of this specification is that it can be estimated in discrete 

time via maximum likelihood. The daily log-likelihood function is: 

           |  
    

 

 
                   

   
                   

 

     

  

where t=1, …, T is the daily time index, T is the total number of daily observations, and   
  is the 

daily market excess return. 

3.3 Sentiment-Augmented EGARCH Component Model 

Delong et al. (1990) present a notable paper that, in a simple overlapping-generation model of an asset 

market, irrational noise traders with erroneous stochastic beliefs affect prices and actually enjoy 

higher expected returns.  In this model, there are two types of investors: rational investors and noise 

traders. Each period, rational investors and noise traders trade assets based on their respective beliefs 

of expected return. There are two crucial assumptions of this model. First, the authors assume that the 

investment horizons of rational investors are short, so that they care about the interim resale prices of 
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the assets they hold, not just the present values of future dividends. Second, this model assumes that 

noise traders’ sentiment is stochastic and cannot be perfectly predicted by rational investors.  

The optimism or pessimism of noise trader creates a risk in the price of the asset that causes transitory 

divergences between price and intrinsic value, even in the absence of fundamental risk. Rational 

investors run the risk that sentiment will become more extreme and prices deviate further away from 

fundamentals. The risk aversion and pressure in the fund of rational investors limits their willingness 

of taking extremely volatile positions to bring the prices back to intrinsic values. Therefore, noise 

trading limits the effectiveness of arbitrage and rational arbitrage fails to eliminate mispricing. 

Furthermore, sentiment induces trading that occurs contemporaneously across many assets in the 

markets. This introduces additional variability in returns which is a non-diversifiable systematic risk 

that is priced in equilibrium.  

In Delong et al. (1990), the impact of noise trading on the returns of risk assets is a result of 

interaction of four effects. They summarize that hold more effect and create space effect tend to 

increase noise traders’ relative expected returns. The Friedman effect and price pressure effect tend to 

lower noise traders’ relative expected returns. In particular, the hold more and price pressure effect 

affect mean returns directly, since they are related to the direction of shifts in noise trader sentiment. 

Meanwhile, Friedman effect and create space effect is related to the magnitude of the shifts in noise 

trader sentiment. Hence, the influence is indirectly on mean returns through changes in noise traders’ 

misperceptions of the asset’s risk. 

In accordance with the research of Delong et al. (1990), Lee et al. (2002) propose a sentiment-

augmented GARCH-in-mean model to capture the four effects of noise trading. Contemporaneous 

shifts in investor sentiment are included in the mean equation and lagged shifts in the magnitude of 

investor sentiment are embodied in the conditional volatility equation. Their model takes the 

following form: 

                                      

            
        

                            
               

          

where    is the weekly return on a market index,     is the risk free rate, and     is a measure of 

noise trader risk. Lee et al. (2002) apply two alternative measures of the noise trader risk. One is the 

changes in Investor’s Intelligence (II) sentiment index and the other one is the percentage changes in 

II sentiment index. Furthermore,            and      and      are dummy variables where (i) 

       if        and        if       ; and (ii)        if         and        if 

       .  

Arik (2012) also examines the impact of sentiment on stock returns in the framework of GARCH 

process. The author augments his sentiment measures to the mean equation of the GARCH 

specification. Inspired by the model specifications of Lee et al. (2002) and Arik (2002), we intend to 

include investor sentiment in Adrian and Rosenberg’s EGARCH component model. Levels of 

Investor sentiment or changes in investor sentiment are introduced into the mean and variance 

equations. Besides the base model of EGARCH component, we test three alternative sets of empirical 

models. 

-Model 1: Benchmark model - EGARCH component model of Adrian and Rosenberg (2008), as in 

equations (1a) – (1d) above 

-Model 2: Investor sentiment in mean and variance equation in accordance with GARCH-in-mean 

model of Lee et al. (2002) 

    
                          √       

                   (|    |  √  ⁄ )          
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                       (|    |  √  ⁄ )          
            

        

where      if      and      if     . Since the mean of the sentiment index (       is close 

to zero, which will be shown later, the variance of the sentiment index can be approximated by 

     
 . Furthermore, we examine both the levels and changes in investor sentiment. Hence, in a 

parallel regression, all the levels of sentiment are replaced by the changes in sentiment (      ). 

     if       and      if      . Similarly, the levels together with changes in investor 

sentiment are applied respectively to Model 3 and 4. Coefficients of    ,    ,     and     describe the 

asymmetric effects of sentiment on short- and long-run volatilities.  

It is worth pointing out that Lee et al. (2002) introduce the dummy variable       in their model. The 

intuition of the inclusion of      is to encompass the well-known volatility asymmetry or leverage 

effect in financial market. The argument is that investors form their expectations of conditional 

volatility which may perceive positive and negative shocks differently. If     is negative as expected, 

a negative shock is more likely to induce a larger upward revision of volatility than a positive shock 

of the same magnitude. However, this dummy is not included in the EGARCH component model 

since the parameters of     and    of the model already allow for the leverage effect.  

-Model 3: Investment sentiment only in mean equation which is consistent with Arik (2012) 

    
                          √       

                   (|    |  √  ⁄ ) 

                       (|    |  √  ⁄ ) 

This model assumes that market sentiment affects the contemporaneous stock returns and has no 

direct effect on volatility components.  

-Model 4: Investor sentiment in mean equation and variance equation which is different from the 

model of Lee et al. (2002) 

    
                          √       

                   (|    |  √  ⁄ )                                  

                  

                       (|    |  √  ⁄ )                                  

                 

In model 2 in accordance with the framework of Lee et al. (2002), sentiment enters the models as the 

intercept dummy and the sentiment directly affects the level of short- and long-run volatilities. In 

Model 4, sentiment dummies act as the slope dummies, and sentiment influences the short- and long-

run volatilities through their impacts on market shocks (    ) and lagged short- and long-run 

volatilities (    and   ). Through the dummy variables    and       , both the direction and 

magnitude of investor sentiment can have an asymmetric impact on conditional variance and market 

returns.  

The short- and long-run sentiment-affected volatility components are obtained from the time series 

regressions. After that, the Fama-Macbeth two-stage regressions are employed to investigate the 

cross-sectional pricing abilities of short- and long-run volatility.  

3.4 ICAPM Framework. 
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Ang et al. (2006), Petkova (2006) and Da and Schaumburg (2011) establish systematic theoretical 

motivations of pricing market volatility and are presented as follows. When investment opportunities 

vary over time, the multifactor models of Merton (1973) and Ross (1976) show that risk premia are 

associated with the conditional covariance between asset returns and innovations in state variables 

that describe the time-variation of the investment opportunities. And hence, covariance with these 

innovations will therefore be priced. In Campbell's (1993, 1996) ICAPM framework, investors care 

about risks both from the market return and from changes in forecasts of future market returns. For an 

investor that is more risk-averse than log utility, assets that covary positively with good news about 

future market expected returns enjoy higher average returns .These assets reduce a consumer’s ability 

to hedge against deterioration in investment opportunities and a compensation is required. The 

intuition from Campbell’s model is that risk-averse investors want to hedge against variations in 

aggregate volatility because volatility positively affects future expected market returns, as Merton 

(1973).  

                                                                          

However, as Ang et al. (2006) point out, in Campbell’s setup, there is no direct role for fluctuations in 

market volatility to affect the expected returns of assets because Campbell’s model is premised on 

homoscedastic consumption. Chen (2002) extends Campbell’s model to a heteroskedastic 

environment and allows for time-varying covariances and stochastic market volatility. Chen shows 

that risk-averse investors tend to directly hedge against changes in future market volatility. In Chen 

(2002)’s model, an asset’s expected return depends on risk from the market return, changes in 

forecasts of future market returns, and changes in forecasts of future market volatilities. For an 

investor more risk averse than log utility, Chen (2002) demonstrates that an asset shall have a lower 

expected return if its return positively covaries with a variable that forecasts higher future market 

volatilities. This effect arises because risk-averse investors reduce current consumption to increase 

precautionary savings in the presence of increased uncertainty about market returns. 

Motivated by these multifactor models, we express market volatility risk explicitly in equation (1),  

                          
                      ∑      (           )

 

   

               

Where    represent other factors other than aggregate volatility that induce changes in the investment 

opportunity set.   

Recent empirical study concentrates on how the volatility and other factors are priced in the cross-

section of stock returns. For the convenience of empirical application, the above model can be written 

in terms of factor innovations. Suppose     
       represents innovation in the market return, 

          represents the innovation in the factor reflecting aggregate volatility risk, and innovations 

to the other factors are represented by            . A true conditional multifactor representation of 

expected returns in the cross-section would take the following form:  

    
    

      
 (    

      )      
 (         )  ∑     

              

 

   

       

Where     
  is the excess return on stock i,     

  is the loading on the excess market return,     
  is the 

asset’s sensitivity to market volatility risk, and the     
  coefficients for k=1, …, K represent loading 

on other risk factors. In the full conditional setting in equation (3), factor loadings, conditional means 

of factors, and factor premia potentially vary over time. The conditional mean of the market and 

aggregate volatility are denoted by      and     , respectively, while the conditional means of the 

other factors are denoted by     . In equilibrium, the conditional mean of stock i is given by  
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    ∑   
   

 

   

       

where      is the price of risk of the market factor,      is the price of aggregate volatility risk, and the 

     are the prices of risk of the other factors. Note that only if a factor is traded is the conditional 

mean of a factor equal to its conditional price of risk, that is                            .  

If the short- and long-run volatility components are also asset pricing factor, in the spirit of the 

ICAPM, the equilibrium pricing kernel thus depends on both short- and long-run volatility 

components as well as the excess market returns. Denote returns on asset i in excess of the risk free 

rate by   
 . The equilibrium expected return for asset i is : 

  (    
 )        (    

      
 )       (    

      )        (    
      )              

where    is the coefficient of relative risk aversion, and    and    are proportional to changes in the 

marginal utility of wealth due to changes in the state variable    and   .  

Equation (5) shows that expected returns depend on three risk premia. The first risk premium arises 

from the covariance of the asset return with the excess market return, multiplied by relative risk 

aversion   . This is the risk-return tradeoff in a static CAPM. The second and third risk premia 

depend on the covariance of the asset return with the innovations in the short- and long-run factors. 

These are scaled by the impact of changes in the volatility factors on marginal utility of wealth,    and 

  .  

The two-stage Fama-MacBeth regression estimates the premium rewarded to particular risk factor 

exposure by the market, the short- and long-run volatilities in our case. This methodology provides a 

particularly robust way to test the theoretical model empirically. However, betas are estimated with 

error in the first-stage time-series regression, an errors-in-variables (EIV) problem is introduced in the 

second-stage cross-sectional regression. Shanken (1992) finds that the Fama-MacBeth two-pass 

procedure for computing standard errors fails to reflect measurement error in the betas and overstates 

the precision of the estimates of factor premium. However, Jagannathan and Wang (1998) argue that 

if the error terms are heteroskedastic, then the Fama-MacBeth procedure does not necessarily result in 

smaller standard errors of the risk premium estimated. Nevertheless, we use the correction procedure 

proposed by Jagannathan and Wang (1998) to account for the errors-in-variables problem. Hence, the 

p values reported in this paper are computed from the corresponding t-values which are adjusted to 

account for the first-step estimation error and potential heteroskedasticity and autocorrelation using 

the Newey-West (1987) correction with 12 lags.  

 

4. Data  

4.1 Data Summation and Description of Sentiment Proxies 

In this paper, the EGARCH-component volatility model is estimated using monthly excess returns. 

FTSE All Share Index with its dividend yield is used as the proxy for the market return,   , and one 

month return on Treasury Bills for the risk free rate,   . The data covers from March 1987 to 

December 2012 which is in line with the data range of sentiment index and are collected from LSPD 

(London Stock Price Database) and datastream. For the cross-sectional price test of the ICAPM, we 

apply the Fama and French 25 portfolios sorted on size and book-to-market (B/M) equity. The 

portfolio returns and monthly factors are taken directly from Gregory et al. (2009) website.  
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Data availability narrows down the sentiment measures considerably. Existing literature suggests a 

variety of approaches of proxies for sentiment. However, there are no definitive or uncontroversial 

measures. Hence, we construct the composite index of sentiment which is based on the common 

variation in the available underline proxies for sentiment, in accordance with Baker and Wurgler 

(2004, 2005) and Brown and Cliff (2004). Baker et al. (2012) study UK stock market as part of their 

global market and the volatility premium, number and first-day returns of IPOs and turnover by value 

are employed to construct UK sentiment index. Corredor et al. (2013) use consumer confidence, 

turnover and volatility premium to measure UK sentiment as a part of European stock market. In our 

research, the individual proxies include share turnover by value on LSE, share turnover by volume on 

LSE, the number and average first-day returns on IPOS, and the consumer confidence. The first four 

variables are the same as those used in Baker and Wurgler index, and the aim of the last variable is to 

compensate the lack of closed-end fund discounts. The sentiment proxies are measured monthly from 

October 1986 to December 2012. However, the beginning 5 data are omitted due to data process 

procedure and hence the sample period starts from March 1987 eventually.  

Market share turnover can be defined both by trading volume and trading values. Market turnover by 

value is the total sterling volume over the month divided by total capitalization of London Stock 

Exchange (LSE). Market turnover by volume is the number of total share traded on LSE over the 

month divided by the number of shares listed on the exchange. The daily trading volume, trading 

values, total capitalization of LSE and total share trade on LSE are aggregated within each month to 

get the monthly data respectively. The data are extracted from Datastream Global Equity Indices, 

which are calculated on a representative list of stocks for each market. The number of stocks for each 

market is determined by the size of the market and the sample covers a minimum of 75% - 80% of 

total market capitalisation.  

Numbers of IPOs within each month, denoted by NO_IPO, are taken from two sources. One is the 

New Issue and IPO Summary spreadsheet from the London Stock Market website which contains IPO 

summary since June 1995. The other source is the London Share Price Database (LSPD). The 

population of IPOs are identified using the LSPD “birth maker” and investment trust offerings are 

excluded since they are classified as financial institution offerings. 

First-day return of IPOs is defined as the difference between initial trading price and offer price 

divided by offer price of the IPO stock. The offer prices are obtained from Thomson One Bank, LSE 

new issue and IPO Summary, together with the LSPD. The initial trading prices are collected from 

Datastream as the first day open price. The equal-weighted average first-day returns are then 

computed and denoted by RE_IPO.  

Consumer confidence, denoted by CC, is a business survey data reported by the European 

Commission, Economic and Financial Affairs. UK respondents express their economic or financial 

expectations over the next 12 months in the following areas: the general economic situation, 

unemployment rate, personal household financial position and personal savings. 
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Figure 1: Figures of the five raw sentiment measures. 

 

 

4.2 Construction of the Level Sentiment Index 

Table 1: Summary statistics of investor sentiment measures 

 Mean Std. Dev. Skewness Kurtosis Unit root test 1
st
 lag 

autocorrelation 

CC -9.314 8.575 -0.562 2.412                    
NO_IPO 10.263 10.025 1.734 6.689                      
RE_IPO 0.114 0.102 1.157 6.555                        
Turnover_value 0.070 0.034 0.976 2.877                
Turnover_volume 0.101 0.041 0.648 2.428                

 

-40

-30

-20

-10

0

10

86 88 90 92 94 96 98 00 02 04 06 08 10 12

Consumer Confidence

0

10

20

30

40

50

60

86 88 90 92 94 96 98 00 02 04 06 08 10 12

No. of IPO

-.2

.0

.2

.4

.6

.8

86 88 90 92 94 96 98 00 02 04 06 08 10 12

Initial Return of IPO

.00

.04

.08

.12

.16

.20

86 88 90 92 94 96 98 00 02 04 06 08 10 12

Turnover by Value

.00

.05

.10

.15

.20

.25

86 88 90 92 94 96 98 00 02 04 06 08 10 12

Turnover by Volume



15 
 

The statistics of the five sentiment measures are presented in table 1. All these measures display a 

skewed and leptokurtic pattern and are rejected by the null hypothesis of normality. The unit root tests 

detect that there is a time trend in both turnover by value and by volume, so we use the log of 

turnovers and detrend them with an up-to-five-month moving average. The detrended turnovers by 

value and by volume are defined by TURN1 and TURN2, respectively. After detrending, these two 

time series become I(0) process. The autocorrelation tests show that the five time series suffer from 

high autocorrelations, including TURN1 (with the first lag correlation of 0.103) and TURN2 (with the 

first lag correlation of 0.089). The log transformation is applied to the Number and first-day returns of 

IPOs and the transformed variables are denoted as NIPO and RIPO.  

Figure 2: Detrended market turnover by value (TURN1) and turnover by volume (TURN2). 

     

 

Furthermore, sentiment measures reflect economic fundamentals to some extent and hence are likely 

to contain a sentiment component as well as idiosyncratic components that are not related to 

sentiment. To control and remove the information about rational factors that our sentiment measures 

may contain, we orthogonalize each proxy to six available macro series, following Brown and Cliff 

(2005) and Baker and Wurgler (2006, 2007, 2012). The macro variables suggested by Brown and 

Cliff (2005) include 1-month Treasury bill return, difference in monthly returns on 3-month and 1-

month T-bills,  term spread, default spread, dividend yield and rate of inflation. The control variables 

chosen by Baker and Wurgler(2006, 2007, 2012) are consumption growth, industrial production 

growth, employment growth, the short-term rate, and the term premium. According to the data 

availability, we take 1-month Treasury bill return which is the short-term return, the difference in 

monthly return on 3- and 1-month T-bills, the term spread as measured by the spread in yields on the 

10-year Gilt and the 3-month T-bills, inflation rate, industrial production growth, and consumption 

growth as our control variables.  

Table 2 shows the correlations of each of the raw proxies and its own variable orthogonalized by the 

above mentioned macro variables. It turns out that the macro series explain comparatively little of the 

variation in the sentiment measures, except for consumer confidence. The correlation between the raw 

and orthogonalized proxies is 88.67% on average across the five measures. The macro control 

variables that contain contemporaneous and forward-looking information about economic 

fundamentals are largely unrelated to the investor sentiment proxies. However, Baker and Wurgler 

(2012) emphasize that it is impossible to rule out that there might be an as-yet undiscovered risk 

factor driving all of the various relationships between the expected returns and the sentiment 

measures.  

Table 2: Correlations of the raw proxies and their orthogonalized results 

 Raw and 

orthogonalized 

CC 

Raw and 

orthogonalized 

TURN1 

Raw and 

orthogonalized 

TURN2 

Raw and 

orthogonalized 

NIPO 

Raw and 

orthogonalized 

RIPO 

Correlation 0.6628 0.9807 0.9772 0.8645 0.9483 
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Furthermore, Baker and Wurgler (2006) point out that the sentiment measures might exhibit lead-lad 

relationships. Some economic variables may reflect a given shift in sentiment earlier than others, and 

hence we need to determine the relative timing of the variables in forming a composite index. Baker 

and Wurgler (2006) assert that proxies that are based directly on investor demand or investor 

behaviour can be expected to one period ahead of proxies that involve firm supply responses. 

Consequently, turnover and return of IPOs might be one period before the IPO volume. Perhaps 

sentiment is partly behind the high initial-day returns, and high sentiment attracts more IPO volume 

with a lag. Similarly, high sentiment triggers more trading volume, and leads to higher turnover, both 

in volume and value.  

To encompass the issue of relative timing of the variables, the six proxies together with their lags are 

included in the principal component analysis (PCA), which will give us a first-stage index with 10 

loadings, one for each of the current and lagged measures. The correlation between the first-stage 

index and the current and lagged variables are computed, and each respective proxy’s lead and lag, 

whichever gives higher correlation with the first-stage index, will be kept for the PCA construction of 

the final sentiment index. It’s worth pointing out that the principal component analysis (PCA) is 

sensitive to the scaling of the variables. Hence, each orthogonalized variable should be normalized to 

have zero mean and unit variance before applying the PCA procedure.  

The procedure gives a parsimonious index 

                                                            

                                                                                                                                        

where each of the proxies has been orthogonalized by the mentioned macro variables.  The fraction of 

variance explained by the first principal component is 52.13%, which suggests that this composite 

factor captures much of the common variation. Meanwhile, the correlation between the sentiment in 

equation (6) and the 10-term first-stage index is 95.87%. Hence, we may conclude that there is little 

information loss in dropping the five terms with other time subscripts. The composite sentiment index 

already has a zero mean and is then standardized to have unit variance.  

The SENTIMENT index has two appealing properties. First, as expected, all the five sentiment 

measures are positively associated with sentiment levels. Second, each individual proxy enters with 

the expected timing, such that price and investor behaviour variables (consumer confidence, market 

turnover, returns of IPOs) lead firm supply variables (IPOs volume).  

The changes in the index of sentiment levels are obtained by taking the first-order difference.  

Figure 3: Levels and changes in sentiment index 

Panel A: Index of sentiment levels 
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Panel B: Index of sentiment changes 

 

 

Figure 3 depicts the sentiment levels and changes from March 1987 to the end of 2012. There are two 

obvious patterns that coincide with the history of UK stock markets. First, sentiment peaks in 2000 

which may result from end of internet bubble in early 2000. Second, sentiment crashes in 2008 and 

recovers thereafter which may depict the financial crisis from 2007 to 2010. 

4.4 Granger Causality Test of Market Returns and Sentiment Indices 

Recognizing that sentiment itself is affected by recent market behaviour, we seek to determine the 

direction of any causal relationships between market return and sentiment. Results from simple 

bivariate (stock returns and investor sentiment) Granger-Causality tests are shown in Table 3. As can 

be inferred, the hypothesis that market return and sentiment are not causally related variables cannot 

be significantly rejected for lags of one and two. This suggests the time-series dependencies between 

our sentiment measures and market excess returns in short run are weak. In contrast, for lags of six or 
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twelve, market return is more likely to Granger cause the level of sentiment, and changes  in 

sentiment are more likely to Granger cause excess returns. 

 

Table 3: Granger Causality tests of market excess return and investor sentiment for1-, 2-, 6 and 6-

month lag 

Null hypothesis  Lag 1 Lag 2 Lag 6 Lag 12 

Market excess return does not Granger cause 

levels of sentiment 

F-stat. 0.480 0.837 3.492 2.293 

p-value 0.489 0.434 0.002 0.009 

Levels of sentiment does not Granger cause 

market excess return 

F-stat. 1.092 1.264 1.552 2.182 

p-value 0.297 0.284 0.161 0.013 

Market excess return does not Granger cause 

changes in sentiment 

F-stat. 0.424 0.481 1.674 1.229 

p-value 0.515 0.619 0.127 0.262 

Changes in sentiment does not Granger cause 

market excess return 

F-stat. 0.012 0.009 3.397 1.189 

p-value 0.915 0.991 0.003 0.036 

 

 

5. Empirical Results 

5.1 Time-Series Estimations 

  



19 
 

 

Table 4: Estimation results of the four models in section 3.3 

                                       Levels of Sentiment Changes in Sentiment 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 2 Model 3 Model 4 Model 5 
                                                                 -0.371          

                                                                                  

                                                                                           

                                                                                    

                                                                                           

                                                                                    

                                                                                    

                                                                                    

                                                                                 

             0.016                                                                 

                                            

                                            

     -0.004                

     -0.006              

     0.008              

     0.008                 

                                              

                                               

       -0.133    -0.034  

       -0.148    0.036  

                                                

                                              

                 0.075  

       0.159    -0.006  

L.L -1158.96 -1175.73 -1171.42 -1167.99 -1164.23 -1175.73 -1167.50 -1172.72 -1154.42 

AIC 7.542 7.683 7.629 7.648 7.608 7.682 7.628 7.688 7.545 

SC 7.662 7.862 7.809 7.877 7.789 7.816 7.761 7.917 7.617 

Note: L.L: Loglikelihood. 

This table shows the time-series regression results of EGARCH component and sentiment-augmented EGARCH 

component model, where sentiment is augmented in various ways, with levels and changes of sentiment 

respectively. */**/** denotes significance at 10% / 5% /1%  level. 

 

 

 

 

Model 1: the benchmark model 

     
               √                   

  √                            

                   (|    |  √  ⁄ )                    

                       (|    |  √  ⁄ )             

 

Model 2:   

    
                          √       

                   (|    |  √  ⁄ )          
            

        

                       (|    |  √  ⁄ )          
            

        

 

Model3:  

    
                          √       

                   (|    |  √  ⁄ ) 

                       (|    |  √  ⁄ ) 

 

Model 4:  
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                          √       

                   (|    |  √  ⁄ )                                                  

                       (|    |  √  ⁄ )                                                  

 

Model 5: 

    
                          √       

                   (|    |  √  ⁄ )                      

                       (|    |  √  ⁄ )                      
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The estimation results of the four models are reported in table 4. For each of the models including 

investor sentiment, we estimate both the levels and changes of sentiment respectively. The major 

findings are summarized below.  

First, across the three models with investor sentiment, almost all of the estimated coefficients in the 

base models are significant, for both levels and changes of sentiment indices. The only one estimate 

that is not significant is   , which is trivial in the model. The estimates of the short- and long-run 

volatilities are opposite for all the cases, which supports the fact that existing studies have difficulty 

detecting a time-series relationship between aggregate risk and expected returns. 

Second, the levels of sentiment are significantly positively related to market returns while the changes 

are significantly negatively related to market excess returns. This suggests that sentiment is an 

important factor in explaining equity excess returns. On the contrary, in Model 2 where sentiment 

enters directly into the conditional volatility, we find that estimates of both levels and changes of 

sentiment are insignificant and the magnitudes are very small. Furthermore, in Model 4 where 

sentiment dummies influences transitory and permanent volatilities through their impacts on market 

shocks and lagged short- and long-components of volatilities. However, the estimates of sentiment 

dummy affecting market shocks are insignificant throughout the levels and changes of sentiment. The 

hypothesis that sentiment or changes of sentiment has no effect on market shocks in the EGARCH 

component model cannot be rejected statistically.  

Empirical results of Model 2 and 4 suggest further refinement of our specifications of empirical 

models. In model 3, after dropping the sentiment elements in the volatility equations, all the estimates 

are significant and the log likelihood and information criteria are improved. Therefore, Model 3 can 

be treated as a remedy with respect to Model 4. We propose Model 5 which drops the effects of 

sentiment dummy on return shocks to rectify Model 4. 

    
                          √       

                   (|    |  √  ⁄ )                      

                       (|    |  √  ⁄ )                      

After the refinement, the estimates are all significant. Again, the shift in sentiment has a significant 

positive impact on market excess returns while the shift in changes in sentiment has a significant 

negative impact on excess return. The increase in log-likelihood value and decrease of information 

criteria attest to improvement in the goodness of fit for either the level or the changes of sentiment 

index. The estimation results are shown in Table 4. 

As pointed out by Delong et al. (1990), when investor sentiment is bullish, the trading of noise traders 

creates price pressure that leads to a purchase price higher than fundamental value and thereby lowers 

expected returns. On the other hand, when noise traders are bullish, they increase their demand for the 

risky assets which amplifies the level of market risk, which is known as hold-more effect. Hence, they 

thereby expect to enjoy a higher return. The overall effect of sentiment on stock returns depends on 

which effect dominates. Therefore, the significant positive estimate of level sentiment (1.046) implies 

that the hold-more effect dominates the price-pressure effect. The hold-more effect tends to dominate 

the price-pressure effect and leads to an increase in market excess return when investors are more 

bullish. 

Third, from estimations of Model 5, we also find that both the levels and changes of sentiment have 

significant and asymmetric effects on short- or long-run volatility that in turn influence the future 

short- or long-run volatility respectively. When noise traders are bullish, sentiment has a significantly 

positive, though little, impact on short-run volatility which further increases future short-run volatility, 

whereas sentiment is negatively related to long-run volatility and decreases future long-run volatility. 
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Combined with the signs of coefficients on short- and long-run volatility in mean equation, the overall 

outcome of direct sentiment, variations of short- and long-run volatilities triggered by sentiment is an 

increase in market excess return, when investors are optimism, the market excess return. On the 

contrary, when sentiment is bearish, levels of sentiment have a negative impact on short-run volatility 

and positive impact on long-run volatility. The overall effect of sentiment, variations of short- and 

long-run volatilities trigered by sentiment is a decrease in market excess return.  

Specifically, given a positive sentiment, a 1% increase in sentiment results in 0.3% increase in future 

short-run volatility and -34.5% decrease in future long-run volatility. The overall effect of 1% 

increase in sentiment leads to 1.285% increase in market excess return. When sentiment is bearish, the 

overall effects of 1% decrease in sentiment leads to 1.116% lower excess return. The patterns of 

effects of changes in sentiment on excess return are similar to levels of sentiment. A 1% upward shift 

after a positive change in sentiment results in a 2.49% increase in market excess return. A 1% percent 

downward shift after a negative change in sentiment results in a 2.53% decrease in market excess 

return.  

Finally, Model 3 is preferred to Model 2, and Model 5 is preferred to Model 4. However, Model 3 and 

5 are not more favourable compared to the benchmark model since the log-likelihood value and 

information criteria are not improved. 

5.2 Cross-Sectional Regressions of ICAPM 

In section 5.1, the sentiment affected transitory and permanent volatilities are obtained from the time- 

series estimation of sentiment-augmented Adrian and Rosenberg’s EGARCH component model. Ang 

et al. (2006) set up a standard two-factor pricing kernel with the market return and stochastic volatility 

as factors in the framework of ICAPM. They show that market volatility is a significant cross-

sectional asset pricing factor. Adrian and Rosenberg (2008) present that the short- and long-run 

volatility components have negative, highly significant prices of risk which is robust across sets of 

portfolios, sub-periods, and volatility model specifications. In this section, we run the Fama-Macbeth 

two-stage regression to determine whether these two volatilities at different horizons after the 

introduction of investor sentiment remain significantly priced across assets. Meanwhile, we examine 

whether the sentiment-augmented EGARCH component model outperforms the benchmark model 

which does not take investor sentiment into account.  

For the cross-sectional pricing tests, the innovations of short- and long-run volatilities are acquired by 

subtracting the short- and long-run component from the value expected one month earlier.  

                                                       

                                                        

In this section, we only analyse the refined models where investor sentiment affects the mean 

equation only, Model 3 and impacts both mean and conditional volatility, Model 5. The estimated 

prices of risks, including the transitory volatility, the permanent volatility and the aggregate volatility, 

are presented in table 5. Panel A reports the results of Model 3 and Panel B reports the results of 

Model 5. Both panels are displayed with the statistics of the benchmark model, Model 1. The overall 

performance of the model specifications, the adjusted cross-sectional R-square is provided to describe 

how well the model fits the data.  

Column (i) of Panel A exhibits that by applying monthly data, the short- and long-run components of 

volatility have significant positive prices. The price of aggregate volatility is also significantly 

negative as shown in column (ii). The short- and long-run sentiment (changed sentiment)-affected 

volatility of Model 3 are significantly negative pricing factors in the cross-section as shown in column 

(iii) (column (v)). Their respective aggregate volatilities are also significantly negatively priced across 

portfolios. The conclusions hold true for Model 5 as reported in Panel B.  
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In terms of pricing performance, there are two main inferences. First, the EGARH component 

volatility decomposition model compares favourably with the aggregate volatility model proposed by 

Ang et al. (2006). Second, after the introduction of investor sentiment, the goodness of fit of Model 3 

and Model 5 are greatly enhanced. Finally, level sentiment-affected specifications outperform the 

specifications with changed sentiment-affected volatilities, for both Model 3 and Model 5.  

 

Table 5:  Summary statistics of the cross-sectional Fama-MacBeth regression for the 25 size and 

book-to-market sorted portfolios. 

 
Panel A: The cross-sectional regression of Model 3, using levels and changes of sentiment respectively 

This table reports the two-stage cross-sectional regression results for the 25 size and B/M sorted portfolios under 

ICAPM model with different state variables. Specifically, column (i) uses market excess return and innovations 

of short- and long-run volatilities from Model 1 of Table 4 as state variables.  Column (ii) uses market excess 

return and aggregate volatility innovation from Model 1 of Table 4 as state variables. Columns (iii) to (vi) of 

Model 3 use market excess return and innovations of short- and long-run volatilities from Model 3 of Table 4. 

Columns (iii) to (vi) of Model 5 use market excess return and innovations of short- and long-run volatilities 

from Model 5 of Table 4. The t-ratios are calculated using Jagannathan and Wang (1998) and Newey and West 

(1987) procedures to account for the estimation errors in first-stage estimation and correct for the possible 

heteroskedasticity and autocorrelation.  

  Model 1 Model 3 

   Level of sentiment Change in Sentiment 

  (i) (ii) (iii) (iv) (v) (vi) 

  s, l variance s, l variance s, l variance 

Market excess return Coef.                                                             
 t-stat. -3.266 -4.302 -3.552 -3.981 -2.871 -3.142 

Short-run volatility Coef.                               

 t-stat. -3.567  -5.355  -1.723  

Long-run volatility Coef.                                 

 t-stat. -3.812  -2.732  -3.299  

Market variance Coef.                               
 t-stat.  -1.847  -2.161  -4.151 

Adjusted R-squared  0.392 0.326 0.552 0.488 0.545 0.455 

 

Panel B: The cross-sectional regression of Model 5, using levels and changes of sentiment respectively 

  Model 1 Model 5 

   Level of Sentiment Change in Sentiment 

  (i) (ii) (iii) (iv) (v) (vi) 

  s, l variance s, l variance s, l variance 

Market excess return Coef.                                                          
 t-stat. -3.266 -4.302 -2.045 -2.353 -3.171 -3.455 

Short-run volatility Coef.                                 

 t-stat. -3.567  -4.698  -2.264  

Long-run volatility Coef.                                  

 t-stat. -3.812  -5.238  -4.040  

Market variance Coef.                              
 t-stat.  -1.847  -2.161  -2.536 

Adjusted R-squared  0.392 0.382 0.555 0.522 0.537 0.520 

*Significant at 10% level. 

** Significant at 5% level. 

*** Significant at 1% level. 
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6. Robustness Analysis  

6.1 Robustness Analysis with Alternative Sample Period 

Table 6: Prices of risks over different subsamples 

This table reports the two-stage cross-sectional regression results for the 25 size and B/M sorted portfolios using different 

sample periods. The state variables used are market excess return and innovations of short- and long-run volatilities from 

Model 3 and Model 5 of Table 4, respectively. The t-ratios are calculated using Jagannathan and Wang (1998) and Newey 

and West (1987) procedures to account for the estimation errors in first-stage estimation and correct for the possible 

heteroskedasticity and autocorrelation.  

Panel A: summary statistics of Fama-MacBeth regressions of Model 3 using different sample periods, for levels 

and changes of sentiment respectively 

   Level of Sentiment  Change in Sentiment 

  (i) (ii) (iii) (i) (ii) (iii) 

Excess market return Coef.                            -        -                 
 t-stat. -2.011 -2.636 -3.322 -2.667 -3.523 -2.611 

Short-run volatility Coef.                                                         
 t-stat. -5.355 -2.868 -2.116 -1.723 -3.577 -2.533 

Long-run volatility Coef. -                                                   
 t-stat. -2.732 -1.918 -1.944 -3.299 -2.481 -1.771 

Adjusted R-squared  0.552 0.637 0.488 0.545 0.516 0.455 

 

Panel B: summary statistics of Fama-MacBeth regressions of Model 5 using different sample periods, for levels 

and changes of sentiment respectively 

  Level of Sentiment Change in Sentiment 

  (i) (ii) (iii) (i) (ii) (iii) 

Excess market return Coef.                             -                           
 t-stat. -2.878 -2.978 -1.756 -2.853 -3.918 -1.965 

Short-run volatility Coef.                              -                        
 t-stat. -4.698 -3.126 -2.140 -2.264 -1.867 1.773 

Long-run volatility Coef.                                                        
 t-stat. -5.238 -2.266 -1.188 -4.040 -1.930 -4.988 

Adjusted R-square  0.555 0.567 0.491 0.537 0.548 0.446 

Column (i): sample period from 1987m03 to 2012m12, which is the full sample period; 

Column (ii): sample period from 1987m03 to 2007m06, which is before crisis period; 

Column (iii):sample period from 1987m03 to 2012m12, excluding period of 2007m07 to2010m06, which is 

clarified as crisis period. 

*Significant at 10% level. 

** Significant at 5% level. 

*** Significant at 1% level. 

 

In this section, the cross-sectional pricing results over different sample periods are examined and 

depicted in Table 6. We find that the prices of risk for the two volatility components are significantly 

negative across sample periods, regardless the model specification, for both levels and changes of 

investor sentiment. The magnitudes of the prices of risk for the two volatility components are fairly 

similar across sample periods, which suggest our results are robust to model specification and sample 

selections.  
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The estimations of sample period before crisis shown in column (ii) achieve the highest adjusted 

cross-sectional   . We can infer that the sentiment-augmented EGARCH component model fits the 

sample period better before crisis period, whereas the estimations of sample excluding crisis period 

acquire the lowest goodness of fit.  

 

6.2 Robustness Analyses of Different Measures of Investor Sentiment 

This section demonstrates a robustness test on the construction of the sentiment index.  A host of 

robustness checks is undertaken to examine if our results are driven by some admittedly arbitrary 

choice. We consider an alternative proxy for investor sentiment, the consumer confidence, as a direct 

investor sentiment measure. Furthermore, in the framework of principal component analysis, the put-

call trading volume and open interest ratios of derivative market are included to construct a new 

composite sentiment index, in comparison with the sentiment analysed in the previous sections.  

 

6.2.1 Consumer confidence as an alternative to proxy for investor sentiment 

The consumer confidence is orthogonalized to the control variables and the residuals are taken as the 

level sentiment measures (       . The residuals from the changed consumer confidence are treated 

as measures of changed sentiment (        . There’s no Granger causality relationship between 

market excess return and consumer confidence in short duration, for example, within 2 months. The 

correlation between the      and        is 0.578, while the correlation between the changed 

sentiment between       and         is 0.231 which is surprisingly not very high. The graphs of 

these sentiment measures are depicted in Figure 4.  

Figure 4: Graphs of sentiment from different measures, dating from March 1987 to December 2012. 

    

 

Table 7 presents the cross-sectional estimation results using short- and long-run volatilities from 

sentiment-augmented EGARCH component model where the consumer confidence is used directly as 

the measure of investor sentiment. The prices of short- and long-run components are significantly 

negative. The magnitudes of the estimates are smaller compared to those reported in Table 5.  

Table 7: The Fama-MacBeth regressions of prices of short- and long-run sentiment-affected 

volatilities. Consumer confidence works as direct proxy for investor sentiment. 

This table reports the two-stage cross-sectional regression results for the 25 size and B/M sorted using 

innovations of short- and long-run volatilities estimated from Model 3 and Model 5 employing consumer 

confidence as investor sentiment. The t-ratios are calculated using Jagannathan and Wang (1998) and Newey 
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and West (1987) procedures to account for the estimation errors in first-stage estimation and correct for the 

possible heteroskedasticity and autocorrelation.  

  Level of Sentiment Change in Sentiment 

  Model 3 Model 5 Model 3 Model 5 

Market excess return Coef.                                    
 t-stat. -2.455 -2.572 -2.263 -1.956 

Short-run volatility Coef.                                       
 t-stat. -3.302 -3.321 -2.374 -2.068 

Long-run volatility Coef.                                    
 t_stat. -3.219 -1.993 -2.105 -2.051 

Adjusted R-square  0.447 0.516 0.491 0.555 

*Significant at 10% level. 

** Significant at 5% level. 

*** Significant at 1% level. 

 

6.2.2 First principal component analysis of sentiment index with the inclusion of data of FTSE 

100 options 

The put-call trading volume ratio, denoted as PCV, is widely recognized as a bearish indicator. It is a 

measure of market participants’ sentiment derived from options which is equal to the trading volume 

of put options over the trading volume of call options. Investors tend to buy put options either to 

hedge their spot positions or to speculate, when they are bearish. When the trading volume of put 

options becomes large with respect to the trading volume of call option, the ratio goes up, and vice 

versa. 

An alternative approach to calculate the put-call volume ratio is to use the open interest of options 

instead of trading volume. It may be argued that the open interest ratio is the final picture of sentiment 

at the end of day or on a monthly basis and therefore, it might be a preferred measure of sentiment 

index. The put-call open interest ratio is labelled as PCO. 

We use the trading volume and open interests of FTSE 100 option (UKX) to calculate the put-call 

trading volume and open interest ratios. The data of trading volume and open interest are taken from 

Bloomberg. Unfortunately, the trading volume data start from 31/10/1994 while the complete data of 

open interests only originate from 31/12/1998. For convenient consideration, the new composite 

sentiment index is formed from December 1998 to December 2012. The procedure of forming this 

new sentiment and its changed values are the same as described in Section 4.2. The parsimonious new 

sentiment is presented in Equations (9). 

     
                                                                   

                                                          

The first principal component of sentiment proxy explains 51.79% of the total variance. The changes 

in the index of sentiment levels are obtained by taking the first-order difference. There’s no Granger 

causality relationship between the new sentiment index and market excess returns for one- and two-

month lags. 

 

Table 8: Correlations of the three sentiment measures and changes in sentiment measures 

                  
                         

    

     1.000         1.000   

       0.674 1.000          0.293 1.000  

     
    0.906 0.674 0.622       

    0.935 0.210 1.000 
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The correlation of levels of sentiment and changes in sentiment measured from three alternative 

approaches are reported in Table 8. Sentiment with and without the inclusion of option data are highly 

correlated with each other, for both levels and changes of sentiment. The graphs of levels and changes 

of sentiment measured from three different ways are exhibited in Figure 5. 

 

Figure 5: Graphs of sentiment from different measures, dating from Dec1998 to Dec 2012 
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Table 9: The Fama-MacBeth regressions of prices of short- and long-run sentiment-affected 

volatilities. Levels of investor sentiment are measured in Equations (9) and changes in sentiment 

index are obtained by taking the first-order difference.  

This table reports the two-stage cross-sectional regression results for the 25 size and B/M sorted using 

innovations of short- and long-run volatilities estimated from Model 3 and Model 5 employing the new 

composite sentiment index with option data. The t-ratios are calculated using Jagannathan and Wang (1998) and 

Newey and West (1987) procedures to account for the estimation errors in first-stage estimation and correct for 

the possible heteroskedasticity and autocorrelation.  

  Level of Sentiment Change in Sentiment 

  Model 3 Model 5 Model 3 Model 5 

Market excess return Coef.                                   
 t-stat. -2.195 -2.038 -2.038 -2.288 

Short-run volatility Coef.                                       
 t-stat. -2.037 -2.973 -2.973 -5.636 

Long-run volatility Coef.                                       
 t-stat. -1.835 -2.601 -2.601 -3.490 

Adjusted R-squared  0.434 0.437 0.437 0.520 

*Significant at 10% level. 

** Significant at 5% level. 

*** Significant at 1% level. 

 

Table 9 shows the cross-sectional estimation results using short- and long-run volatilities from 

sentiment-augmented EGARCH component model where the put-call trading volume as well as open 

interest ratios of FTSE 100 options is taken into account for the first principal analysis. The prices of 

short- and long-run components are significantly negative. In contrast to the results displayed in table 

7, the magnitudes of the estimates are higher compared to those shown in Table 5.  However, the 

adjusted R-square is reduced among most cases. 

In conclusion, the volatility components remain highly significant for different sample periods and the 

significance is robust to the choice of the measures of investor sentiment.   

 

7. Conclusion 
 

The classical finance theory leaves no role for investor sentiment in cross-section of stock prices, 

realized returns, or expected returns. This view has been challenged by researchers in behavioural 

finance. Empirical results suggest that investor sentiment has significant cross-sectional effects.  

 

The model of Delong et al. (1990) predicts that the direction and magnitude of noise trading risk are 

relevant in asset pricing. Noise traders’ belief, recognized as investor sentiment, affects asset returns 

and systematic risks in this model.  Lee et al. (2002) propose a GARCH-in-mean specification to 

explicitly test the impact of noise trader risk on both the formation of expected return and conditional 

volatility. Inspired by the studies of Delong (1999), Lee et al. (2002) and Adrian and Rosenberg 

(2008), we use a sentiment augmented EGARCH component model to exploit the time-series 

relationship between sentiment and market return and market volatilities. We further test the cross-

section prices of short- and long- run components of market volatility which are affected by investor 

sentiment.  

 

By augmenting sentiment to the mean of Adrian and Rosenberg’s EGARCH component model, or to 

both the mean and variance equations, market excess returns are significantly positively related to 

investor sentiment and are significantly negatively related to the changes in investor sentiment in the 

time-series estimations. In the cross-sectional estimations, significantly negative prices of short- and 

long-run components of volatility are detected. Our models which taking market sentiment into 

consideration outperform the pure EGARCH component model since they achieve higher explanatory 
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power indicated by larger adjusted R-square. Therefore, the incorporation of sentiment enhances the 

price ability of short- and long-run volatilities of EGARCH component model. The conclusion is 

robust to the choice of sample periods and alternative constructions of investor sentiment.  
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