
1 
 

Characterisation of the in vitro properties of 

pacritinib (SB1518) in Acute Myeloid Leukaemia 

 

 

 

 

 

Ceri Marrin 

MBBch FRCPath FRCP PGDME 

 

 

Department of Haematology, Institute of Cancer and Genetics 

Cardiff University 

 

Masters of Philosophy 

Summer 2015 

 

 

 

 

 

 

 

 

 



2 
 

ABSTRACT 

Acute Myeloid Leukaemia remains an incurable malignancy in the majority of cases, with long term 

survival rates of 30-40% in those under 60 years old and less than 15% in older patients.   FMS like 

Tyrosine kinase 3 (FLT3) is a trans-membrane receptor tyrosine kinase that is mutated in around one 

third of cases of AML, making FLT3 an attractive therapeutic target and paving the way for the 

development of a range of  FLT3 Tyrosine Kinase Inhibitors (TKIs) over the last 10 years.  Progress has 

been hampered by the limited efficacy of the majority of FLT3 TKIs in targeting the bone marrow 

blast population. Pacritinib is a second generation TKI with equimolar efficacy for both the FLT3 and 

Janus Kinase 2 (JAK2) receptors. FLT3 occupies a strategic position at the head of a complex array of 

downstream pathways which control transduction of signals from the extracellular environment to 

the nucleus. These pro-survival pathways may be enhanced on stroma leading to the creation of 

leukaemia niches where AML blasts can evade the effects of treatment. Cross talk between 

pathways such as dual activation of Signal Transducer and Activator of Transcription 5 (STAT5) by 

FLT3 and JAK2 has been implicated in this phenomenon and can be targeted by pacritinib. 

Pacritinib showed good efficacy in cell lines and in primary AML mononuclear cells with increased 

potency seen in cases which harboured a FLT3 ITD mutation compared to wild type FLT3. There was 

no correlation between surface FLT3 level, as measured by CD135 expression, and in vitro sensitivity 

to pacritinib. Western blotting experiments demonstrated inhibition of phosphorylated FLT3 protein 

in MV4-11 cell lines and rapid inhibition of phosphorylated-STAT5 in MV4-11 and primary AML cells 

in a dose dependent manner following pacritinib treatment. There was minimal effect on the 

Extracellular Regulated Kinase (ERK) pathway which is known to generate pro-survival signals in AML 

cells and may be upregulated on stroma.  

Short term resistance to pacritinib treatment was seen when primary AML cells were cultured on 

mouse (MS-5) stroma with supplemented medium as compared to culture in standard medium 

alone, potentially related to delayed apoptotic induction on stroma as seen by Annexin V Binding 
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Assay. Further western blotting experiments in the co-culture setting showed basal up regulation of 

both p-STAT5 and p-ERK in primary AML when cultured on MS-5 stroma which was not entirely 

inhibited by pacritinib treatment, supporting the argument that this is a possible mechanism of drug 

resistance. 

This observation led to the rationale to combine pacritinib with two different agents, which could 

potentially be used to eradicate residual disease within the stroma niche. A good synergistic effect 

was seen using the combination of pacritinib with cytarabine and with PD0325901 (a small molecule 

inhibitor of the ERK pathway) and this latter combination may be able to overcome stroma-induced 

protection of AML blasts. This justifies the on-going laboratory and clinical development of pacritinib 

in targeting environment mediated drug resistance in acute myeloid leukaemia. 
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Chapter 1: Introduction 

1.1 Overview of Acute Myeloid Leukaemia  

Acute Myeloid Leukaemia is the commonest myeloid malignancy in adults and results from an 

accumulation of immature cells in the marrow (Estey, 2012, AJH 87(1)) and peripheral blood. The 

presence of this abnormal clone disrupts normal haematopoiesis leading to bone marrow failure. 

Patients with AML typically present with features of bone marrow failure such as anaemia, bleeding 

due to thrombocytopenia and the secondary effects of either a high white cell count (leucostasis) or 

a low count (opportunistic infections). Less frequently, malignant cells may also infiltrate other 

tissues, spreading the leukemic effect throughout the lungs, CNS and soft tissue. 

1.2 Classification of AML 

AML is a clonally heterogeneous disorder and different patients show variable degrees of maturation 

and differentiation within the leukaemic clone. The original French-American-British (FAB) 

classification system was largely based on these characteristics and morphological findings; recently 

it has been superseded by the World Health Organisation (WHO) criteria, which also incorporates 

clinical and cytogenetic features. Both classification systems are summarised in the table below, 

although now outdated the FAB system is included given that is the system used for stratification of 

patients entered into the NCRI trials. 
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Table 1 

FAB type Description 

M0 Undifferentiated acute 
myeloblastic leukaemia 

M1 Acute myeloblastic leukaemia with 
minimal maturation 

M2 Acute myeloblastic leukaemia with 
maturation 

M3 Acute promyelocytic leukaemia 
(APL) 

M4Eo Acute myelomonocytic leukaemia 
with eosinophilia 

M4 Acute myelomonocytic leukaemia 

M5 Acute monocytic leukaemia 

M6 Acute erythroid leukaemia 

M7 Acute megakaryoblastic leukaemia 

   Table 2 

Group Description 

AML with certain genetic 
abnormalities 

t (8,21), inv(16), t(15,17) 

AML with multilineage dysplasia More than one myeloid cell 
involved 

AML related to previous 
chemotherapy or radiation 

 

AML not otherwise specified  

Undifferentiated or bi-phenotypic 
leukaemia 

 

Tables 1 + 2: FAB and WHO Classification of AML taken from www.cancer.org.uk 

It has become increasingly clear from attempts to classify the disease using clinical, morphological, 

cytogenetic or molecular techniques that AML is much more than one disease entity. Partly in an 

attempt to develop better treatments, a great deal of work has been invested into improving 

http://www.cancer.org.uk/
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knowledge of how best to stratify patients at diagnosis and deliver risk adapted or tailored therapy 

thereby improving patient outcomes. This work has identified a variety of therapeutic targets over 

recent years of which the FMS like tyrosine kinase-3 (FLT3) receptor is one of many and represents 

the focus for this work. 

1.3 Pathogenesis of AML 

Most cases of AML are sporadic in that there is no underlying genetic factor but there are certain 

factors which are known to increase an individual’s risk of developing the condition such as exposure 

to high levels of radiation or benzene, smoking, increased body mass index and several congenital or 

acquired bone marrow failure syndromes.  For example AML commonly occurs following a 

leukaemic transformation of a chronic myeloproliferative or myelodysplastic neoplasm such as 

polycythaemia vera or a myelodysplastic syndrome. Less frequently AML can result from 

transformation of one of the rare congenital clonal myeloid disorders such as Fanconi Anaemia 

(2014). There are around 2,600 new cases of AML in the UK every year which corresponds to an 

annual incidence of around 3 per 100,000. 

All of these  initiating factors are associated with the presence of a mutation in a somatic stem cell 

(Dash A & Gilland DG, 2001) which results in the development  of a leukaemic clone.                                                                                

These genetic changes lead to a variety of outcomes which affect transcription or translation of 

genes regulating myeloid cell development, proliferation of cells of the myeloid lineage or regulate 

apoptotic signalling to curb the development of abnormal clones.  

Structural chromosomal abnormalities are known to be associated with the prognosis of AML in 

recognised risk-scores  (Burnett AK et al, 2006). For example there are several ‘good risk’ lesions 

such as t (8,21) or inv(16) where in general patients with these abnormalities have good outcomes 

with chemotherapy. In contrast, poor risk features include monosomy 7 or complex karytotypes and 

these patients have been shown to require more intensive treatment to improve survival including 
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allogeneic transplant. Nevertheless, more than 50% of patients have a normal karyotype even with 

the most sensitive techniques which is considered ‘standard risk’ and yet carries a very 

heterogeneous outlook. This observation has led to a more targeted genetic sequencing approach 

and at a molecular level it has been shown that the abnormalities underlying AML are 

heterogeneous and often polyclonal entities where new mutations may arise at relapse or in 

response to treatment. Consequentially AML has the worst prognosis of all leukemias and is a 

disease which lacks effective targeted therapies.  

1.4 Summary of Molecular Lesions in AML 

The Genome Atlas Study (Ley TJ et al, 2013) identified a total of 13 mutations within the average 

AML genome, 6 of which encode genes which are recurrently mutated, which are FLT3, DNMT3a, 

NPM1, CEPBA, IDH1/2 and RUNX1. The commonest mechanistic effects of these genetic 

abnormalities involved disruption to cell signalling (59%), DNA-methylation (44%) and chromatin 

modification (30%). The authors conclude that nearly all AML samples carry at least one potential 

‘driver’ mutation; however it is known that this alone is not sufficient to give rise to leukaemia. A 

summary of common molecular lesions in AML is shown in Table 3. 

Class of Mutation Class I  Class II Epigenetic Mixed 

Main Mutations 
described 

KIT 

FLT3 (25-30%) 

N-RAS (15-30%) 

K-RAS (15-30%) 

PTPN11 

CBFβ-MYH11 

PML-RARα 

RUNX1-RUNX1T1 

RUNX1 

NPM1 

CEBPα 

EVI1 

DNMT3a (15-25%) 

TET2 (7-23%) 

EZH2 (Rare) 

IDH1/2 (15-30%) 

AXSL1 (10-15%) 

JAK2 (Class 1 and 
Epigenetic) 

WT1 (Class I & II) 

MLL 
translocations  

MLL-PTD 

(both epigenetic 
and class II) 

Table 3: Overview of molecular lesions in AML adapted from Ley TJ et al. Percentages are that of 

cases with the mutation. 
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One of the best described theories to explain the pathogenesis of AML is the “2 hit hypothesis” 

which relates to the fact that more than one different type of genetic mutation is required for 

malignant transformation of a myeloid precursor cell. In simple terms two mutations are required to 

drive proliferation and inhibit differentiation so that the primitive clone survives (Ofran Y, 2014). This 

theory has been borne out in mouse models of AML where co-operative events such as C-KIT 

mutations  (Wang Y et al, 2010) in mice who carry full length AML1-ETO fusion gene or FLT3 internal 

tandem duplication (ITD) in an MLL-partial tandem duplication model (Zorko N et al, 2012) have 

been shown to be required for leukaemogenesis. FLT3 ITD mutations have also been shown to co-

operate with the inversion of chromosome 16 acute myeloid leukaemias where expression of the 

fusion product core binding factor (CBF) beta subunit-smooth muscle myosin heavy chain (SMMHC) 

only promotes development of AML in a mouse model when there is co-expression of a FLT3 ITD 

mutation (Kim H-G et al, 2008). Although the paper acknowledged that FLT3 ITD mutations are 

relatively rare in inv(16) AML (approximately 3-8% cases) the model does demonstrate proof of 

principle for a ‘two-hit’ mechanism of disease pathogenesis. The association has also been borne out 

in an in vivo setting involving 176 patients where clinical heterogeneity within inversion 16 acute 

myeloid leukaemia was reflected by genetic findings and FLT3 mutations were found to be one of a 

handful of prognostic marker lesions (Paschka P et al, 2013).  

There is increasing awareness  that interactions between mutations are of utmost importance from 

a prognostic standpoint (Rowe J, 2014) for example in determining the overall significance of 

combination of a ‘good risk’ cytogenetic marker (e.g. inv(16)) with a ‘poor risk’ molecular lesion 

(isolated FLT3 ITD mutation). There is a large body of scientific and clinical evidence to suggest that 

in these cases FLT3  ITD is probably a weak driver mutation (Smith C et al, 2012) so that it’s presence 

is required for leukaemogenesis but it is not a determinant of its maintenance . This may explain the 

lack of potency of early FLT3 inhibitors (Smith C et al, 2012) which will be discussed later. There is 

some disagreement in the literature regarding this point however, and other authors have proposed 

more of a driver role for FLT3 mutations given that in up to 84% of patients the ITD mutation is 
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present at diagnosis and at relapse suggesting that these FLT3-mutated cells may include ‘leukaemic 

stem cells’ (Shih L-Y et al, 2002). This is also supported by the increase in allelic ratio seen at relapse 

(Levis M, 2011) suggesting that as other clones are killed by chemotherapy, the ITD mutated clone 

carries a survival advantage, possibly due to interaction with the bone marrow stroma (Shih L-Y et al, 

2002).  

As previously stated AML is a polyclonal disease and it is now thought to arise via an initial assembly 

of founding clones which are likely to contain mutations in epigenetics-modifying genes such as 

DNMT3a, IDH1/2 and TET2 many of which can be found at diagnosis and at relapse (Wakita S et al, 

2013). At the time of relapse however, new sub-clones can emerge and the same authors showed 

that FLT3-ITD mutations were commonly expressed by these cells. This suggests that the initial 

mutations in epigenetic-modifying genes such as DNMT3a or IDH1/2 results in epigenetic changes 

and the promotion of secondary lesions such as FLT3-ITD (Wakita S et al, 2013). This has relevance 

for minimal residual disease (MRD) monitoring and also there has recently been preliminary data 

using an inhibitor to mutant mitochondrial IDH2 which shows potential in overcoming the ability of 

this lesion to block cellular differentiation (Stein E, 2014). In a phase 1 study of 48 patients, the drug 

was well tolerated by oral dosing and led to triggering of differentiation of leukaemic blasts and 

ultimately to objective responses in patients including some complete remissions. 

1.5 Overview of treatment of AML 

With knowledge of the complex aetiology and molecular genetic makeup of AML it becomes clear 

that all of these factors combine to confound efforts to stratify patients and tailor treatment 

accordingly. It is clear that a ‘one size fits all’ approach to treatment does not produce satisfactory 

outcomes in the majority of patients because AML is simply not one disease. Traditional (cytarabine-

daunorubicin based) induction regimens can produce wildly different results in patients who may 

seem to be similar according to standard methods of disease classification. This can range from 

primary refractory disease to patients who achieve a durable remission with just 2 or 3 courses of 
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standard therapy. This molecular heterogeneity and variation in response to therapy is one of the 

principal clinical features of AML  and partly explains why overall responses remain poor with less 

than 50% long term survivors across all risk groups (Burnett AK, 2012). 

The success of treatment of AML rests on two main factors: firstly patient factors which define 

tolerance to chemotherapy such as age and performance status (Dohner H et al, 2014). In clinical 

practice most patients diagnosed with AML are over 60 years old and increasing age is an adverse 

prognostic factor even after accounting for other risk factors such as cytogenetics, molecular 

genetics and type of AML (i.e. de novo or secondary).  The second main factor is specific 

characteristics of the leukemic clone which may lead to greater or lesser intrinsic resistance to 

therapy as described above. Approximately one third of cases of AML have normal cytogenetics in 

that no aberrant karyotypic lesions are found within the clone. Prognostic significance within 

cytogenetically normal AML has been consistently been shown for mutations in the NPM1, CEBPA 

and FLT-3 genes alone or in combination in younger adult patients.  With this evidence in mind, one 

of the key aims of this project is to explore the mechanism and potency of FLT3 signalling as a 

determinant of in vitro response to drugs targeting this pathway in primary AML samples taken from 

patients at diagnosis.1.6 The role of FLT-3 mutations in disease behaviour 

FLT3 is a receptor tyrosine kinase of the same family as Steel factor receptor (KIT), Macrophage-

colony stimulating factor (M-CSF) and the receptors for PGDFRα and β  (Grafone T et al, 2012) all of 

which are found to be aberrantly expressed in many malignancies including leukaemia (Stirewalt DL 

& Radich JP, 2003). FLT3 plays a key role in cellular signalling for proliferative growth and survival 

pathways and it’s downstream effectors include Signal Transducer and Activator of Transcription 5 

(STAT5), Janus Kinase (JAK) family, phosphatidylinositosol (PI)-3-kinase (PI3K/AKT and Reticular 

Activating System (RAS)/mitogen-activated protein kinase (MAPK) and Extracellular Regulated Kinase 

(ERK) pathways (Grafone T et al, 2012). 
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The human gene for FLT3 encodes a 993-amino acid protein, which is comprised of an 

immunoglobulin-like extracellular ligand binding domain, a transmembrane domain, a 

juxtamembrane dimerization domain and a cytoplasmic domain with a split tyrosine kinase motif. 

The inactivated form of the receptor is a monomer which resides within the plasma membrane, the 

structure of the FLT3 receptor is shown in Figure 1.1.  

 

Figure 1.1: Schematic representation of FLT3 structure which shows its 5 immunoglobulin-like folds that make up the ligand 

binding extracellular domain, single transmembrane domain and cytoplasmic domain which comprises a kinase domain 

interrupted by a kinase insert. The arrows highlight the juxtamembrane domain where internal tandem duplications (ITDs) 

occur and residue aspartic acid 835 where most kinase domain mutations occur. Many FLT3 TKIs interrupt the ATP binding 

pocket of the kinase domain. (ASH Education Book January 1, 2006 vol. 2006 no. 1 178-184) 

Exposure of FLT3 to its ligand is a crucial step in regulating activity of the receptor (Grafone T et al, 

2012). FLT3 ligand is produced by many cells of the haemopoeitic system and binds to the 

extracellular domain of FLT3, promoting dimerization, phosphorylation and activation of the FLT3 

receptor which results in phospho-activation of secondary mediators.  High levels of FLT3 expression 

and additional paracrine/autocrine stimulation by FLT3 ligand may in some cases render FLT3 wild 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=Xdd1CyAkhmCPmM&tbnid=w4Pig-BsSueKiM:&ved=0CAUQjRw&url=http://asheducationbook.hematologylibrary.org/content/2006/1/178/F1.expansion&ei=FS2SU-a2GsOw7QaEhoHwCw&bvm=bv.68445247,d.ZGU&psig=AFQjCNHn1qM8wShB3YfB53hvgq4RK29Axg&ust=1402175030
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type (WT) blasts dependent on FLT3 signalling and therefore more sensitive to FLT3-TKI therapy 

despite the lack of a FLT3 mutation (Kindler T et al, 2010). 

FLT3 is mutated in approximately 1/3 of AML patients making this receptor a major molecular 

abnormality in AML. It is thought that activating FLT-3 receptor mutations lead to a proliferation and 

survival benefit for the leukemic clone. Such mutations confer growth factor independence to 

myeloid cells in mouse models which can lead to leukaemogenesis (Parmar A et al, 2011) as 

described above. Mutations can occur in 2 principal regions of the FLT3 receptor, namely Internal 

Tandem Duplication (ITD) and tyrosine kinase domain (TKD) mutations.  

FLT3 activating ITD mutations occurring in exon 14 & 15 of the juxtamembrane domain are 

activating mutations found in 25-30% cytogenetically normal AML and are widely accepted to confer 

a poor prognosis. The length of the duplicated region measured in base pairs (bp) is variable 

between 3 and more than 400 bp, however its length always increases in multiples of three which 

preserves the reading frame and therefore a functional protein is always produced. FLT-3 ITD 

mutations result in a mis-localised and constitutively activated receptor (Taylor SJ et al, 2015)  

which, through  ligand-independent auto-phosphorylation, leads to an impact on downstream pro-

survival pathways (Zirm E et al, 2011). ITD mutations also impair intracellular trafficking which 

promotes localisation of the receptor within the endoplasmic reticulum (ER) rather than at the cell 

surface (Choudhary C et al, 2009). Constitutively activated FLT3-ITD kinase stimulates aberrant 

proliferative signalling pathways, including PI3K/AKT, RAS/ERK, NF-κB (nuclear factor kappa-B) and 

STAT5  (Gerloff D et al, 2015) which leads to a variety of effects including resistance to apoptosis, 

abnormal cell growth and differentiation block (Stanicka J et al, 2015) through alteration in 

expression of target genes (Taylor SJ et al, 2015). Other authors have suggested that activation of 

downstream pathways by the oncogenic mutant of FLT3 (FLT3-ITD) is compartment-dependent with 

different effects seen depending on if the receptor is localised at the endoplasmic reticulum 
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(reduced impact on PI3K and MAPK) or at the cell membrane (lesser effect on STAT5 signalling) 

(Choudhary C et al, 2009) as described in Figure 1.2. 

Figure 1.2: Schematic presentation of FLT3-ITD signalling compartmentalisation adapted from 

(Choudhary C et al, 2009) to show only main downstream effectors at cell surface and ER. 

 FLT3 ITD mutations are associated with high presenting white cell count and bone marrow blast 

percentage reflecting a more proliferative disease phenotype. FLT3 ITD mutations are also 

associated with a greater propensity to relapse, and relapse quickly in first remission with median 

time to relapse being 6-7 months (Levis M & Small D, 2003) .  These factors have combined to 
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develop a body of opinion that allogeneic transplant in first response or additional novel therapies 

should form the recommended standard or care for patients with cytogenetically normal AML who 

harbour a FLT3 ITD mutation at diagnosis. 

The extent to which FLT3 mutation status can predict outcome depends on several factors such as 

the FLT3 mutated to wild type allelic ratio, other characteristics of the study population such as age 

and interaction with other lesions, principally the nucleophosmin-1 (NPM1) mutation. An interaction 

between the two lesions has been described such that isolated presence of FLT3-ITD mutation in the 

absence of NPM1 mutation is a poor risk feature for survival in both younger (Gale R et al, 2008) and 

older patients (Lazenby M et al, 2014). In contrast  several authors suggest that isolated NPM1 

mutation has a positive effect on survival and when the two mutations are balanced there is no 

overall effect (Kindler T et al, 2010). 

In younger patients (less than 60 years old at diagnosis) the role of FLT3 mutations in conferring an 

increased relapse risk has been well described (Gale R et al, 2008;Swords R et al, 2012). As 

previously described however,  FLT3-ITD positive patients remain a molecularly heterogeneous 

group and FLT3 status may well be a surrogate for additional poor risk markers. There have also 

been attempts to correlate abnormalities of FLT3 expression with clinical features, for example, high 

WBC, prior myelodysplasia and performance score >2.    

The other main category of FLT3 mutations are, mainly single base point mutations within the 

tyrosine kinase domain (TKD) of FLT3 which frequently involve a change of amino acid from aspartic 

acid to tyrosine (D835Y or Asp835Tyr). TKD mutations can be found at diagnosis  but have also been 

shown to be acquired following treatment with FLT3 TKIs in FLT3-ITD positive cell lines (Moore AS et 

al, 2012;Zimmerman E et al, 2013) and also in clinical studies (Baker S et al, 2014)). These ‘treatment 

emergent’ mutations include a new D835Y TKD mutation of the FLT3 ITD+ allele and have been 

found at several other sites including F691L (Baker S et al, 2014). FLT3 TKD mutations occur in 5-10% 
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of AML cases at diagnosis, they can also coexist with ITD mutations and are sometimes seen as a 

feature of disease relapse (Baker S et al, 2014) . Like ITD mutations, FLT3 TKD mutations promote 

ligand independent auto-phosphorylation thus stabilising the activation loop in its open binding 

configuration (Knapper S, 2011) and resulting in constitutive receptor activation. The association of 

TKD mutations with disease characteristics (e.g. presenting white cell count) is not as clear as in the 

case of ITD mutations. Also TKD point mutations may be present at diagnosis in a small percentage 

of malignant cells, which are then not necessarily detectable at relapse suggesting that this clone is 

non-dominant. 

1.7 Development and Clinical Experience of FLT3 inhibitors in AML 

In view of its frequency of expression in AML, importance as a proliferative signalling molecule and 

association with poorer risk features such as relapse and non-favourable cytogenetic profile, FLT 3 

ITD is an attractive therapeutic target (Gozgit JM et al, 2011) and to this end several FLT3 inhibitors 

have been trialled in AML. Relatively modest clinical activity has been reported to date (Gozgit JM et 

al, 2011) partly explained by the fact that preclinical studies show that FLT3 inhibition needs to be 

sustained to facilitate destruction of AML cells carrying a FLT3 ITD mutation to overcome the 

proliferative advantage of the clone. This sustained inhibition of the receptor may be demonstrated 

in the laboratory by means of suppression of FLT3 auto-phosphorylation and several authors have 

shown that a level of <15% of baseline phosphorylation is the minimum cut off to achieve 

simultaneous cytotoxic effect (Smith BD, 2004) .To achieve maximum therapeutic benefit, 

continuous, near complete inhibition of FLT3 kinase  with minimal off target effects on other 

tyrosine kinases within the same class III family (e.g. cKIT, FMS, Platelet Derived Growth Factor 

receptors  PDGFR α and β) which are more likely to lead to undesirable physical side effects such as 

flushing and diarrhoea would be ideal although such specificity is very difficult to achieve due to 

overlap between domains. 
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A variety of small molecule tyrosine kinase inhibitors with variable potency against FLT3 have been 

in development for more than ten years both in in vitro and in clinical trials. (Knapper S, 2011) (Levis 

M & Small D, 2003). In summary their development has followed a structured progression from 

single agent studies into combination chemotherapy regimens and advanced stage international 

studies in treatment both at diagnosis and relapse. Progress has been such that these agents may 

now be sub divided into first and second generation inhibitors, where the first generation (e.g. 

Lestaurtinib or Midostaurin) were largely ‘off the shelf’ compounds taken from compound libraries 

with broad spectrum tyrosine kinase inhibitory properties not designed specifically with FLT3 in 

mind. In contrast the second generation of agents (e.g. AC220 or Crenolanib) have a more targeted 

mode of action; they are more potent in terms of FLT3 inhibition and have been developed to 

specifically target FLT3 (Table 4). 

Compound Chemical Class Generation FLT3 IC50
 Other targets Clinical trial 

development 

Semaxinib 
(SU5416) 

3-Substituted 
indolinone 

1st  100nM c-KIT, VEGF Phase II 

Sunitinib 
(SU11248) 

3-Substituted 
indolinone 

1st  50nM c-KIT, PDGFR, 
VEGFR 

Phase II 

Lestaurtinib 
(CEP701) 

Indolocarbazole 1st  3nM TrkA, VEGFR, 
JAK2 

Phase III 

Midostaurin 
(PKC412) 

Indolocarbazole 1st  10nM c-KIT, PDGFR, 
c-FMS 

Phase III 

Tandutinib 
(MLN518) 

Piperazinyl 
quinazoline 

1st  30nM c-KIT, PDGFR Phase II 

Sorafenib 
(BAY 43-9006) 

Bi-aryl urea 
derivative 

1st  3nM c-RAF, PDGFR, 
VEGFR, c-KIT 

Phase III 

KW-2449 n/a 2nd  13nM Aurora kinase, 
ABL 

Phase II 

AC220 Bis-aryl urea 
derivative 

2nd  1nM c-KIT, PDGFR, 
RET, CSF1R 

Phase III 

Ponatanib n/a 2nd 3.8nM Pan BCR-ABL 
c-KIT 

Phase II 
planned (NCRi 
AML 19 pilot) 

Crenolanib n/a 2nd <10nM PDGFR Phase II 

Table 4: Chemical properties of FLT3 inhibitors used in clinical trials adapted from (Knapper S, 2011)  
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Although there have been a multitude of phase I-III clinical trials involving the first generation 

compounds, their development has been hindered by the facts that they are generally poorly 

tolerated, they have minimal activity against FLT3 TKD point mutations (Tandutinib being entirely 

inert) and none have shown genuine efficacy in terms of inducing sustainable marrow remissions.  

Sorafenib (BAY-43-9006) has a slightly improved pedigree compared to most other FLT3 TKIs, having 

been trialled extensively in both AML and solid tumours. In exception to all other FLT3 inhibitors it is 

a licensed drug in renal and hepatocellular carcinoma and can therefore be prescribed outside the 

context of a clinical trial. It has a wide range of therapeutic targets with inhibition of a variety of 

kinases including FLT3, PDGFR, VEGF and c-KIT (Knapper S, 2011). It has been used both as a single 

agent in a phase-I dose finding study in refractory AML (Zhang W et al, 2008), in several 

compassionate use programmes, often in relapsed-refractory patients as a ‘bridge’ to allogeneic 

transplant or in the setting of relapse post transplant. It has also been combined with a range of 

therapies including standard induction regimens in the upfront setting (Rollig C et al, 2014) where 

sorafenib treatment was associated with longer relapse free and overall survival in patients carrying 

FLT3 ITD mutation and there was generalised improvement in event free survival regardless of FLT3 

status.  

AC220 (Quizartinib) is a novel bis-aryl derived second generation drug that was produced in 

response to screening a cohort of kinases against a scaffold-focused compound library (Knapper S, 

2011) . It has the advantage of both potency and specificity for key interaction sites within the FLT3 

molecule and has been shown to be the most potent and targeted in comparison to lestaurtinib, 

midostaurin, sunitinib, KW-2449 and sorafenib (Pratz KW et al, 2010) . 

Figure 1.3 
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Figure 1.3: Results of KinomeScan binding assay for 7 FLT3 TKIs, the red circles represent 
geographical areas of the human kinome which are inhibited by the relevant compound and the 
relative size of the circle is inversely proportional to the IC50 binding affinity. Compounds with a 
smaller number of binding sites are said to be more ‘specific’ with fewer ‘off target effects’ image 
taken from Knapper 2011 1-19 (original source Cell Signaling Technology, Inc). 

Safety and efficacy of AC220 was assessed during a phase II open label monotherapy study in 

patients with relapsed/refractory FLT3 ITD positive AML. Of those who were refractory to their last 

therapy, 31% achieved a CR with AC220 monotherapy which represents the highest level of single 

agent activity to date for FLT3-targeted therapy in FLT3 ITD mutated patients but the results were 

also encouraging for those with FLT3 WT disease suggesting a potential wider application for the 

drug. It was also highly significant that 1/3 patients in the study were successfully ‘bridged’ to 

allogeneic stem cell transplant with AC220, a treatment which represents their only real chance of 

durable remission and survival. 

This study has been followed up with a phase I dose escalation study of AC220 in combination with 

standard induction and consolidation chemotherapy in patients aged 18-60 years with newly 

diagnosed AML (Altman J et al, 2013). The study showed that safety and tolerability was good and 

has paved the way for a number of on-going phase III studies looking at the use of AC220 in a similar 

setting including the NCRI AML 18 and LI-1 studies which are looking, respectively, at the 
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combination of AC220 with intensive and non-intensive therapeutic strategies in older patients with 

newly-diagnosed AML. 

Almost before it has had a chance to prove its worth, however, AC220 has become somewhat 

notorious for the development of ‘treatment emergent’ resistance-conferring mutations in patients 

treated with the drug. Similarly to the story of TKI development in Chronic Myeloid Leukaemia it 

seems likely that disease evolution and perhaps ‘clonal tiding’ as a driver for treatment resistance is 

relevant in FLT3 mutated AML as in other haematological malignancies and it is this resistance which 

represents one of the major barriers to on-going drug development in this area. It could be argued 

that compounds such as AC220 which have been specifically developed to target treatment 

emergent resistance-conferring mutations such as D835V in the FLT3 molecule are perhaps failing to 

tackle the primary cause of resistance to treatment in AML. If relapse is determined by the inability 

to eradicate the disease at an MRD level during first line therapy this lends weight to the argument 

supporting the use of drugs which can combat mechanisms that allow sub-populations of the 

leukaemic clone to evade treatment.  One such protective factor is the bone marrow 

microenvironment and several of the newer generation of drugs used to treat AML in recent MRC 

studies (such as pacritinib) have been developed to target this mechanism of ‘environment mediated 

resistance’ in AML. 

1.8 Summary of resistance mechanisms to FLT3 inhibitors 

One of the main lessons from early preclinical and clinical studies of FLT3 inhibitors has been that 

some patients with FLT3 mutations are resistant to treatment, in spite of laboratory evidence of 

suppression of FLT3 phosphorylation or silencing of further downstream targets as evidenced by 

Western blot readouts. This lack of direct correlation between the bench and bedside observations 

can be explained by four major ‘resistance mechanisms’. 
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Firstly, the degree of ‘addiction’ to FLT3 signalling varies within the same patient between samples 

taken at diagnosis and at relapse. Data compiled from phase I and II monotherapy studies suggests 

that around 30% of patients with FLT3-ITD mutated AML have primary resistance to FLT3 TKIs (Stone 

RM et al, 2005). At diagnosis the dependence on FLT3 signalling is generally less and therefore 

patients are less likely to benefit from targeted FLT3 inhibition. Inhibition of FLT3 alone is not 

enough to induce apoptosis in a significant proportion of FLT3 ITD positive samples taken from 

newly diagnosed patients (Levis M, 2011) such that some patients demonstrate inherent resistance 

despite evidence of almost complete inhibition of FLT3 tyrosine phosphorylation.  Also an 

individual’s sensitivity to treatment may vary depending on the physical properties of their given 

mutation, particularly relevant to point mutations, for example different FLT3 TKIs show distinct 

inhibitory activity against different FLT3 TKD mutations (Baker S et al, 2014) . Finally in this area, up-

regulation of anti-apoptotic proteins such as B cell lymphoma 2 (BCl-2) has been shown in FLT3-

expressing cell lines and primary AML blasts that have developed resistance to FLT3 TKIs which can 

be overcome in vitro using the BH3-mimetic ABT-737 (Kohl TM et al, 2007). 

Secondly, responses to FLT3 inhibitors are often transient with a relatively rapid loss of response. 

Possible explanations include insufficient plasma drug levels or short plasma half life due to either 

poor oral bioavailability or hepatic metabolism which may lead to incomplete/transient inhibition of 

FLT3 autophosphorylation and therefore incomplete elimination of the leukaemic clone (Kindler T et 

al, 2010).  

Alternatively, resistance may be explained by the emergence of new acquired mutations in response 

to treatment, again particularly TKD point mutations. This phenomenon has hampered treatment 

strategies with TKIs in CML and in AML an in vitro screen to detect mutations in the adenosine-tri-

phosphate (ATP) binding pocket of FLT3 identified 4 mutations which conferred resistance to 

SU5614, midostaurin and K-252a. In an attempt to overcome this,  sorafenib has been used in 

combination with sunitinib in FLT3 ITD mutated AML to explore whether dual-TKI therapy could 
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target ‘treatment emergent’ FLT3-TKD mutations (Baker S et al, 2014).  The contrasting, non-

overlapping profiles of resistance of cells expressing FLT3 TKD mutations (based on cell line models 

and binding assays) to these two drugs was given as an explanation for how sunitinib may be 

effective if given following therapy with sorafenib that results in resistant disease. Importantly there 

was some evidence in this trial that sunitinib could retain activity against F691L and D835H 

mutations both in vitro and in vivo suggesting potential clinical benefit for combinations of FLT3 

inhibitors. 

Thirdly, as previously mentioned, an increase in levels of FLT3 ligand (FL) in response to 

chemotherapy treatment has been suggested as a mechanism of resistance to FLT3 TKIs. FLT3 ligand 

hyperactivates FLT3 signalling and its downstream cascade, including the MEK/ERK and mTOR/S6K 

pathways, potentially promoting cell survival and enhancing disease activity (Smith C et al, 2012).  

Finally and perhaps conceptually the most simple to grasp, if FLT3 is over activated by means of a 

mutation, then other pathways may become more dominant to negate this effect and make FLT3 

signalling effectively redundant. Potential ‘survival mechanisms’ include persistent activation of 

STAT5 via JAK2 or ongoing MAPK/ERK pathway activation (Kindler T et al, 2010). Treatment may also 

induce activation of compensatory survival pathways such as MEK/ERK where up-regulation may 

lead to a reduction in dependence of the clone on FLT3 signalling, thereby turning the mutation into 

a ‘bystander’ at relapse. These factors are felt to be increasingly important when AML cells are in 

contact with the bone marrow stroma, reflecting the alteration in signalling pathway activity within 

the bone marrow microenvironment compared to the peripheral circulation. 

1.9: The role of the bone marrow stroma 

A recurring feature of treatment with FLT3 TKIs over the years has been the achievement of 

significant reduction in peripheral blood blast percentage without any meaningful, sustained effect 

on bone marrow disease. This leaves a reservoir of disease within the stroma niche that may remain 
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quiescent for a given period of time until conditions are favourable to induce a proliferative 

response and subsequently disease relapse. The quiescent nature of this population may be part of 

the mechanism by which it evades both cytotoxic clearance and eradication by usual mechanisms of 

programmed cell death.   

 Previous studies have identified that FLT3 ITD mutated clones show a tendency to emerge and 

disappear at diagnosis and at the time of relapse (Kottardis PD et al, 2002). It is felt that the high 

incidence of relapse in those who carry a FLT3 ITD mutation may be linked to persistence of a low 

level resistant; ‘non-cycling’ clone within the bone marrow microenvironment which can evade 

treatment in contrast to the active cycling population in the peripheral blood. The persistence of this 

leukemic stem cell (LSC) population in the bone marrow after chemotherapy is thought to be 

responsible for the high rate of relapse .This has been confirmed in an animal model where the non-

cycling fraction was shown to retain CD34 expression and this marker was used to demonstrate that 

this population can engraft the non-obese severe combined immunodeficiency (NOD-SCID) mouse. It 

has been suggested that these non-cycling cells are particularly resistant to treatment with FLT3 

inhibitors  possibly due to the observation that they may be less reliant on FLT3 signalling for survival 

than their actively cycling counterparts, despite the fact that the FLT3 ITD mutation can still be 

detected amongst the stroma adherent population in in vitro experiments again potentially due to a 

lack of reliance on FLT3 signalling for survival (Alvares C et al, 201). This suggests a potential 

therapeutic niche for TKIs with dual target inhibitory properties. So far none of the established FLT3 

inhibitors have demonstrated robust evidence of their ability to overcome this stroma-derived 

protection in laboratory experiments which therefore represents an area of developmental need. 

Growth and survival of normal progenitors is tightly regulated and their ability to migrate to other 

areas of the haematopoietic system is controlled so that cells in circulation are mature and 

functional.  One of the hallmarks of acute myeloid leukaemia is a loss of this regulatory control so 

that immature forms are able to proliferate and enter the peripheral circulation and it is thought 
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that this loss of control is greatly influenced by signals derived from the bone marrow 

microenvironment which may be up-regulated, blocked or modified compared to the normal state. 

Organisation of normal BM stroma can be summarised as two distinct compartments: the 

osteoblastic (endosteal) niche and the vascular niche. Together these areas modulate HSC 

quiescence, proliferation, differentiation and migration. The stem cells interact with their niche by a 

process of adhesion and release (migration) which is governed by the exchange of stimuli through a 

variety of receptors such as CXCR4 and molecular signalling pathways such as those involving JAK, 

STAT and CD44 expression. Under normal conditions, the vascular and cellular compartments within 

the BM work in harmony and loss of this regulatory control is critical to disease survival in AML and 

other malignancies such as multiple myeloma (Percy L et al, 2014). The microenvironment provides 

cytokine support and cell-contact mediated signals to LSCs (Raaijmakers MH et al, 2010) through the 

same mechanisms used by normal cells. For example SDF-1-mediated CXCR4 signalling for homing 

and mobilisation within the bone marrow (Messinger Y et al, 1996) can also act as a chemo-

attractant for malignant cells. Another key effector of this abnormal stroma response is CD44, which 

has been shown to alter gene expression at a microRNA level through its interaction with its 

ligand/RTK signalling and regulation of promoter methylation sites. This may lead to effective re-

programming of leukaemia cells to exhibit a more stem cell like behaviour and remain within the 

marrow, therefore limiting the potential for successful treatment with conventional agents that are 

not able to penetrate the stroma niche (Williams K et al, 2013). This adhesive signal may also 

determine disease phenotype through its influence on the level of the presenting peripheral white 

cell count. 

 



38 
 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                        Extracellular matrix 

                                                                                                                        Cytokines + chemokines 

              SDF-1 

 VCAM-1 

 

OSTEOBLASTS 

↓cell cycling 

↑PI3k/Akt MAPK 
signalling 

↑Bcl-2 
expression CXCR4 

F

L

T

3 

K

I

T 

 

V

L

A

4 

CD44 

CD123 

C

D

6

2

L 

N

O

T

C

H 

F

L

T

4 AML BLAST 

 

    Endothelial 

  stroma cells 

 
Figure 1.4: Diagrammatic representation of the protective effect of the marrow microenvironment 
which highlights the interaction between extracellular matrix components, osteoblasts, 
stromal/mesenchymal cells and receptors expressed on AML blasts, including FLT3 adapted from 
(Abboud C, 2009). 

Certainly, the bone marrow microenvironment provides a supportive background to growth and 

maturation of normal hematopoietic stem cells, this being its major evolutionary function. Recently 

it has been proposed that leukemic stem cells may not only benefit from this support network but 

may also be able to manipulate it to their own advantage over normal progenitors (Tabe Y & 

Konopleva M, 2014).  This interaction may influence the efficacy of FLT3 TKIs in the eradication of 

these cells. 
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1.10 Pacritinib overview and mechanism of action 

Pacritinib (SB1518) is one of the new generation of tyrosine kinase inhibitors which has been 

specifically chosen for in vitro and clinical study in AML due to its potential to overcome the 

protective effect of the stroma. This drug is the main focus of laboratory work in the project and its 

biology, pre-clinical and clinical development will now be discussed in greater detail. 

Pacritinib is an innovative pyrimidine based macrocycle with a unique kinase profile  showing almost 

equipotent activity for both Janus Kinase-2 (JAK-2; EC50=23 and 19nM for JAK2wt  and JAK2V617F 

respectively) and FLT-3 (EC50=22nM) (Hart S et al, 2011b). It also shows activity against other 

members of the JAK family (EC50=1280, 520 and 50nM for JAK1, JAK3 and TYK2 respectively) 

although the potency against JAK1 is particularly weak. A very recent piece of work (Singer J et al) ,   

identified that pacritinib has potent inhibitory activity against all members of the JAK family at low 

nM concentrations other than JAK 1 and this may explain the relative lack of myelosuppression seen 

in patients treated with this drug compared to other JAK inhibitors (Hatzmichael E et al, 2014). 

Pacritinib is a type I inhibitor, meaning that it only binds to the active state (‘DFG-in’ conformation) 

of tyrosine kinases.  Microarray expression profiling  of AML cells treated with pacritinib revealed 

alterations in CCAAT/enhancer-binding protein α (C/EBPα) and PU.1 expression (known to be 

impaired by FLT3 signalling and leading to differentiation arrest and a survival advantage for the 

leukaemic clone) (Mizuki M et al, 2003). Following this initial cell line work pacritinib has also shown 

efficacy in   a mouse model context (Zheng R et al, 2004). Two models were selected on the basis of 

their relevance to the molecular targets: Ba/F3-JAK2v617F and MV4-11 allograft and xenograft studies 

representing cell lines dependent on JAK2 and FLT3 signalling respectively (William AD et al, 2015).  

The MV4-11 xenograft was selected to evaluate the effect of pacritinib on FLT3 signalling and here 

the drug showed survival benefits at very well tolerated doses. 
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Other pathways that may also be important in the mechanism by which AML blasts may be able to 

overcome the inhibitory effect of FLT3 TKIs include Extracellular Regulated Kinase (ERK) 1 and 2 

downstream of  Janus Kinase (JAK) and STAT5. Activation of both FLT3 and JAK2 receptors leads to 

phosphorylation of STAT proteins which facilitates dimerisation of this molecule and ultimately 

governs cell proliferation. Pacritinib can inhibit STAT5 protein activity both via FLT3 and JAK 

pathways (Hart S et al, 2011a) and this dual pronged effect is of potential therapeutic benefit in a 

variety of haematological malignancies. 

   

Figure 1.5: Kinome inhibitory activity of pacritinib 

1.11 The clinical development of pacritinib in haematological malignancy 

Pacritinib has been evaluated in a number of early phase clinical trials where it has displayed 

considerable activity and acceptable toxicity. Its side effect profile is largely manageable and largely 

consists of GI side effects such as diarrhoea (Hatzmichael E et al, 2014). The patient groups included 

in these studies included those with lymphoid malignancies where aberrant activation of JAK-STAT 

signalling is known to play a role in disease pathogenesis (Hatzmichael E et al, 2014) . The bulk of its 
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clinical interest however appears to lie in the treatment of myeloproliferative neoplasms due to the 

frequency of expression of the JAK2V617F mutation in these disorders and this has been the major 

driving force behind the therapeutic development of JAK inhibitors in recent years with minimal data 

on the use of these drugs in AML. 

1.12 Clinical trial development of pacritinib  

The following table (Table 5) summarises the development of pacritinib in preclinical studies and one 

recent phase III clinical trial. To date there have been 9 clinical trials in total where pacritinib has 

been evaluated, 6 of which have completed, 1 terminated and 2 are still in progress . 

Study 
title;identifier 

Phase;number 
enrolled;status 

Primary endpoint Diseases Dosing schedule 

Phase I/II study of 
SB1518 for the 
Treatment of 
Advanced Myeloid 
Malignancies 

NCT00719836 

Phase I/II, 76, 
completed 

Phase I: establish 
MTD 

Phase II: assess CBR 

AML, CML, 
CMML, MDS, 
PMF 

Dose escalation:100-
600mg 

Oral 25 days #1 then 
28 day cycle 

Phase I study of 
SB1518 for the 
Treatment of 
Advanced 
Lymphoid 
Malignancies 

NCT00741871 

Phase I, 35, 
complete 

Establish MTD HL, MCL, FL, SLL, 
MZL 

Dose escalation 100-
600mg 

Oral, 28 day cycle 

Phase I/II Study of 
SB1518 in Subjects 
with Chronic 
Idiopathic 
Myelofibrosis 
(CMF) 
NCT00745550 

Phase 
I/II,54,complete 

Phase I: establish 
MTD 

Phase II; assess CBR 

CMF including 
PET-MF, PPV-MF 

Dose escalation 100-
600mg orally up to 1 
year if tolerated. 

A Phase 2 Safety 
and Efficacy Study 
of SB1518 for the 
Treatment of 
Advanced 
Lymphoid 
Malignancies 

Phase 
II,28,completed 

Assess overall tumour 
response by CT/FDG-
PET scan and bone 
marrow biopsy as a 
measure of efficacy 

HL, MCL, FL, MZL, 
SLL 

Oral, 400mg per day, 
28 day cycle up to and 
beyond 12 cycles as 
tolerated. 
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NCT01263899 

PERSIST-1 

Oral Pacritinib 
versus Best 
Available Therapy 
to treat 
Myelofibrosis 

NCT01773187 

Phase 
III,completed 
recruitment 
(n=270) 

Compare efficacy 
versus ‘best available 
therapy’ in patients 
with PPV-MF or PET-
MF 

PMF, PPV-MF, 
PET-MF 

Oral, 400mg per day, 
28-day cycle given 
continuously while 
patient clinically 
benefitting. 

PERSIST-2 

Oral Pacritinib 
versus Best 
Available Therapy 
to treat 
Myelofibrosis with 
Thrombocytopenia 

NCT02055781 

Phase II, 
estimated 300, 
recruiting 

Compare efficacy of 
two dosing schedules 
(pooled once daily 
and twice daily) with 
that of BAT in 
patients with PMF, 
PPV-MF or PET-MF 

PMF, PPV-MF, 
PET-MF 

 

AML 17 

EudraCT 2007-
003798-16 

Phase III, closed Patients with FLT3-
ITD mutated AML 
treated within the 
AML 15 or 17 studies 
who have relapsed 
pre or post allogeneic 
stem cell transplant 

Relapsed AML Oral 200mg twice 
daily for 28 days. 
Patient assessed at 
day 14 and dose may 
be increased to 
300mg BD. 

Treatment for up to 
12 months + 6 month 
extension if benefit 
shown 

Table 5: Summary of clinical trial experience with pacritinib, adapted from (Hatzmichael E et al, 
2014) . Key: MTD (maximum tolerated dose), CBR (Clinical benefit rate), PET-MF (post-essential 
thrombocythaemia-myelofibrosis), PPV-MF (post-polycythaemia vera-myelofibrosis), PMF (primary 
myelofibrosis), HL (Hodgkin lymphoma), MCL (mantle cell lymphoma), MZL (marginal zone 
lymphoma), FL (follicular lymphoma), SLL (small lymphocytic lymphoma), CML (chronic myeloid 
leukaemia), CMML (chronic myelomonocytic leukaemia). 

The NCRI AML 17 trial closed to recruitment in December 2014 but continues to gather data 

regarding the use of pacritinib in relapsed AML patients who harbour a FLT3-ITD mutation. This will 

offer the strongest indication yet as to the potential efficacy of pacritinib in the treatment of AML in 

the refractory phase of the disease. As previously mentioned however, the drug may have a 

therapeutic target in preventing the development of primary resistance to FLT3 TKI therapy in the 
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upfront setting due to its potential to overcome the protective effect of the bone marrow stroma 

and this will now be discussed in the final section of the introduction to this project. 

1.13 The potential advantage of pacritinib in overcoming the protection of the bone marrow 

microenvironment  

FLT3 ITD activation of signal transduction pathways entails the interaction of numerous protein 

kinases and underscores the possible therapeutic advantage of targeting tyrosine kinases acting 

downstream of the receptor. Increasing dependence on JAK2 signalling has been proposed as a 

mechanism of resistance of FLT3 ITD mutated AML, particularly in the population of cells adherent to 

the bone marrow microenvironment. It is well described that resistance of MPNs to JAK2 inhibitor 

treatment is mediated by cytokines secreted by stroma cells, namely IL-6, FGF4 and CXCL-10/IP-10 

(Manshouri T et al, 201) for example because IL-6 is known to activate JAK/STAT signalling (Weisberg 

E et al, 2012). High circulating levels of IL-6, IP-10, KC and MCP-1 have been measured in AML mouse 

models in the absence of drug treatment where addition of single agent pacritinib lead to 

normalisation of IL-6, IP-10 and KC levels (Novotny-Diermayr V et al, 2012) suggesting that the drug 

may be able to overcome the protective effect of the bone marrow microenvironment. Similarly, 

Weisberg et al tested a panel of JAK inhibitors for the ability to potentiate FLT3 inhibition in an 

attempt to overcome cytoprotection mediated by stroma derived cytokines. They found that JAK 

inhibitors synergise with FLT3 inhibitors against mutant FLT3 expressing cells in a stroma co-culture 

environment.  

There are some data to suggest that treating FLT3 ITD positive AML cells with FLT3 TKIs that have no 

anti-JAK2 activity (e.g. sunitinib)  may lead to additional up regulation of this pathway so that the 

cells become resistant to treatment (Hart S et al, 2011a), presumably because constitutive FLT3  

activity is no longer the major factor driving survival. With all this evidence in mind, it is logical to 

conclude that due to its dual target effectiveness pacritinib may be a viable therapeutic option for 
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both patients with FLT3 ITD mutated disease and those patients who do not carry a FLT3 ITD 

mutation, which represents the majority (approximately 70%) of patients at diagnosis and could 

eventually support it’s usage as part of induction therapy for all. The concurrent inhibition of both 

FLT3 and JAK2 pathways induced by pacritinib may carry potential to override the environment 

mediated resistance that results from interactions between stromal cells and leukaemic cells which 

is frequently observed in AML (Hatzmichael E et al, 2014). This direction of therapeutic design is 

novel compared with previous mechanisms to tackle resistance induced by for example ‘treatment 

emergent’ mutations. If targeting the stroma niche population holds the key to MRD erradication 

then theoretically treatment emergent mutations could become a feature of the past in this aspect 

of AML therapy. 

1.14 Study Aims 

In summary, it is clear that there remains a paucity of effective therapies which can target the FLT3 

signalling pathway in frontline therapy for AML. The laboratory and clinical development of existing 

agents has been limited by a lack of durable potency and a particular inability to clear blasts from 

the bone marrow niche. There are a variety of underlying explanations for this at a mechanistic level 

and therefore the aim of this project is to analyse the potency of pacritinib, a next generation dual-

targeted tyrosine kinase inhibitor, in inducing a cytotoxic response in primary AML samples and also 

investigate its mechanism of action and potential to overcome environment mediated resistance in 

AML.  

The aims are as follows: 

1. To determine the mean EC50 for primary AML cells treated with pacritinib and assess 

whether potency varies according to FLT3 mutation status, FLT3 cell surface 

expression,  % allelic expression and any other patient characteristics including clinical 

outcome.   
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2. To determine the mechanism of cell death in response to pacritinib and to analyse the 

effect of pacritinib on signalling pathways downstream of FLT3 

3. To assess whether pacritinib can target primary AML cells cultured on a stroma 

monolayer as an in-vitro model of environment mediated resistance to therapy  

4. To investigate the effect of pacritinib treatment on FLT3 downstream signalling in a co-

culture setting.  

5. To investigate combination treatment of pacritinib with conventional and novel 

targeted agents to address signalling pathways arising from a co-culture setting.  

The next chapter will describe the materials and methods used to carry out these investigations. 
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Chapter 2: Materials and Methods 
 
All reagents and plasticware were obtained from Sigma Aldrich UK Ltd (Dorset, UK) or Fisher 

Scientific UK Ltd (Loughborough, UK) unless otherwise stated. 

2.1: Composition of Stock Solutions 

Primary Cell Thawing reagent 900µl 0.45µM filtered Fetal Calf Serum (FCS Labtech, FCS-

SA/500-40507) 20µl DNase 10µg/ml 

2.1.1 Western blotting reagents:  

Western blotting cell Lysis buffer stock: 1.5ml 5M NaCl, 1ml 1M Tris buffer (pH 7.4), 5ml 

Glycerol, 0.5ml Igepal NP40, 1ml 0.5M EDTA, 5ml 1M NaF, 30ml ddH2O 

Homogenisation buffer working solution: 1 MiniComplete EDTA free tablet (Roche) 

dissolved in 1ml ddH2O, 8.7ml lysis buffer stock, 300µl 0.1M Sodium orthovanadate 

Western blotting Running buffer: 950ml sterile water, 50 ml running buffer  

Western blotting Transfer buffer: 100ml methanol, 1ml NuPage antioxidant, 50ml  transfer 

buffer, 849ml distilled water 

Blocking buffer for immunoprecipitation experiments: 500ml TBS-T, 10% Bovine serum 

albumin 

Blocking buffer for other western blotting experiments: 500ml TBS-T, 25g milk powder 

TBS-T: 10ml 1M Tris (pH 7.4), 20ml 5M NaCl, 10ml 10% Tween-20, 960ml ddH20 

Western blotting Stripping buffer: 15g Glycine, 1ml 10% Sodium azide, 6ml HCl, 5ml 10% 

Tween-20, 988ml ddH20 
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2.1.2 Tissue culture Media: 

IMDM: Dulbecco’s medium, HEPES buffer, sodium bicarbonate, 10% L-glutamine, 10% FCS, 

Gentamicin 

LTC Medium: α-MEM, 12.5% Horse serum (HS biosera, Boussens France), 12.5% FCS 1uM 

Hydrocortisone, 9mM Beta-mercaptopurine, , TPO (0.2%) , IL-3 and GCSF (0.1%) (PeproTech 

EC Ltd.) 

MEM dilution medium: MEM, Penicillin/Streptomycin, 20u/ml Heparin sodium (CP 

Pharmaceuticals) 

MEM complete medium: MEM (Biowest, Ringmere,UK), 10% FCS  

RPMI culture medium: RPMI 1640 medium containing 25mM HEPES and L-glutamine,  

10% Foetal calf serum, 1% Penicillin/Streptomycin 

Flow cytometry Staining buffer: 0.5% BSA, 1x PBS, 0.02% Na Azide 

TBS: 10ml 1M Tris (pH 7.4), 20ml 5M NaCl, 970ml ddH20 

7AAD staining buffer 100ug/ml diluted in PBS 

2.2: Drug preparations: 

Pacritinib (molecular weight 472.58) was supplied by CTI Biopharma Corporation, Seattle, 

WA, US in 0.5% methylcellulose (w/v) and 0.1% Tween-80 in H2O. PD035901 (molecular 

weight 482.19) was purchased from Sigma Aldrich as a white powder. AraC (cytosine 

arabinoside) (molecular weight 243.2) was supplied by the University Hospital of Wales 

pharmacy in a glass vial containing 100mg dissolved in 5ml water for injections.  All three 

drugs were dissolved in DMSO at 10mM, aliquoted and stored at -20°C. When required, 

drugs were diluted in media to an intermediate concentration prior to well dilution. 
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2.3: Antibodies 

2.3.1: Antibodies used in flow cytometry 

Anti-CD135 (FLT3) allophycocyanin (APC) mouse monoclonal antibody (Biolegend 313308), 

Anti-CD45 flourescin isothiocyante (FITC) (Biolegend 304038) and anti-CD34 phycoerythrin 

(PE) (BD Bioscience 345802) mouse monoclonal antibodies and their respective IgG labelled 

control antibodies (IgG APC Biolegend 400120, IgG FITC Biolegend 400108 and IgG PE BD 

340270) were used. 

2.3.2 Antibodies used in Western Blotting 

Anti-phospho-STAT5 (pSTAT5) (Tyr 694), anti-STAT5 (9363S), anti-Map-kinase (p44/42) 

(4695), anti-caspase3 (9664S) and anti-phospho-Map-kinase (p44/42) (9102s) rabbit 

polyclonal antibodies were produced by Cell Signalling Technology (Massachusetts, US). ECL 

anti-rabbit IgG and anti-mouse IgG, horseradish peroxidase-linked, species specific 

secondary antibodies were obtained from Amersham Biosciences (Little Chalfont, UK). 

2.4: Tissue Culture 

The following experiments were carried out in class II laminar flow biological cabinets on 

work surfaces sterilised with 70% ethanol in water prior to commencing work. All materials 

used in tissue culture were either purchased sterile or filter-sterilised prior to use and 

contaminated waste was disposed of using an autoclave. 

 

 

2.4.1: Primary cells:  Freezing and Thawing 
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Bone marrow and peripheral blood diagnostic samples were obtained at both the University 

Hospital of Wales and other institutions throughout the UK from patients newly diagnosed 

with AML and enrolled in the UK MRC AML 15, AML 16, AML 17 and AML LI-1 studies. All 

patients gave informed consent for storage of excess material for research purposes at the 

time of trial entry and samples were collected in preservative-free heparin or EDTA. 

A nucleated cell count was performed on a 40µl aliquot of sample diluted in 20ml Isoton II 

diluents using a Coulter Z2 Particle Count and Size Analyzer (Beckman Coulter). 6-7ml 

aliquots of patient sample were then layered over equal volumes of Ficoll-Histopaque 1077 

(Sigma) using a syringe with 0.8mm aluminium hub needle. Samples were diluted according 

to the baseline count with warmed MEM dilution medium and FCS to give a maximum of 

100 x 106 nucleated cells per Ficoll gradient. This suspension was then centrifuged twice and 

the monolayer pellet was re-suspended in 500µl MEM dilution medium and pooled in a 

universal container. A further nucleated cell count was then performed. 

Mononuclear cells, suspended in MEM dilution medium, were divided into 500ul aliquots in 

1.8ml cryovials, to ensure a maximum of 100 x 106 cells per vial. 400µl FCS and 100ul 

dimethylsulphoxide (DMSO) were added to each vial. Cryovials were then transferred to a 

freezing container half filled with propan-1-ol and placed at -80°C overnight to ensure 

controlled-rate freezing. Cryovials were then moved to cryovats containing liquid nitrogen. 

Cells were recovered from the liquid nitrogen cryostore and 900ul 0.45µM filtered FCS and 

20µl DNase 10µg/ml) were added followed by transfer to a water bath heated to 37°C. After 

3 minutes the vials were removed and swabbed with alcohol then transferred to a universal 

container. Next a doubling volume of IMDM complete medium was added slowly, dropwise 

over 3 minutes in triplicate to prevent osmotic damage up to a volume of 14ml and then the 
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cells were centrifuged at 1000rpm for 10 minutes prior to resuspension in MEM complete 

media at 5x10 6/ml for further analysis. 

2.4.2: Cell viability assessment 

Prior to spinning, an aliquot of cells was removed for counting, mixed 1:1 volume with 0.4% 

Trypan Blue viability stain and cells counted by light microscopy using Fast-Read Disposable 

Counting Chambers (Immune Systems Ltd), where live cells exclude the Trypan blue stain 

and dead cells stain blue and a minimum of 200 cells was counted. Cell viability was 

expressed as a percentage of live cells out of the total number of cells. A minimum pre-

treatment viability of 80% was required for drug culture experiments. 

From the average count the total number of cells in the sample may be calculated using the 

formula: 

Total cells = Average cell count x106/ml x 14ml volume x 2 trypan dilution factor 

2.4.3: Cell Glo Cytotoxicity/Proliferation Assay 

Primary AML blasts were cultured with a range of concentrations of pacritinib, PD035901 

and AraC used alone and in combination. After 48 hours, Cell Titer Glo (Promega) assay was 

performed to determine the number of viable cells that remained; this is a luminescent 

viability-based assay where the number of viable cells in a culture can be determined based 

on their ATP content, which signals the presence of metabolically active cells. 

Opaque walled 96 well plates were marked and then 50ul of IMDM was placed in each 

required well, excluding the outside wells where evaporation is more likely to occur. Top 

dose wells were made up to 100ul with  further medium and drug added from a working 
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solution of appropriate concentration (~100-150µM solutions) to give a top dose drug 

concentration of 2x the desired final concentration. Serial dilution using 50µl from the top 

wells was applied across the 96well plate resulting in 10 doses in triplicate. Control wells 

were set up using DMSO (Pacritinib and PD035901) at equivalent concentrations to that 

found in the top dose wells. Finally 50ul of cells diluted in IMDM from 5 x 106 /ml 

suspension were added to all the drug and DMSO wells (8x104/well) and then plates were 

incubated at 37°C, 5% CO2 for 48 hours.  

At the end of 48 hours, Cell Glo reagent was defrosted at room temperature and shielded 

from light. Plates were removed from the incubator and allowed to equilibrate to room 

temperature for 1 hour (to prevent temperature gradients which may affect the rate of the 

luciferase reaction), then 100ul Cel Glo was added to each well and the plates were then 

shaken protected from light on an orbital shaker for 2 minutes to allow complete lysis of 

cells. Plates were read using a Chameleon automated plate reader (Hidex, Finland) on single 

direct luminescence setting with the aperture adjusted for RLU in the range of20,000 – 

5,000,000. The amount of ATP and therefore the luminescence reading is directly 

proportional to the number of LIVE cells present in culture within this range. 

Dose response curves were established for cell viability as a percentage of the 

untreated/DMSO control according to the formula: 

 

% Cell Viability =   Mean luminescence (treated cells) – background control 

       Mean luminescence (DMSO/untreated control) – background control  

 

 



53 
 

Calcusyn version 2.1 (Biosoft, Cambridge. UK) was used to calculate a 50% inhibitory concentration 

(EC50) for cytotoxic responses to pacritinib based on luminescence data from cell glo experiments. 

and, where relevant, the combination index (CI) for each drug combination.  

2.4.4: Stroma Co-Culture Cytotoxicity/Proliferation Assay 

MS-5 mouse stroma cells were used for the co-culture experiments purchased from Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany www.dsmz.de). 

The stroma co-culture plates were set up in exactly the same way as the basic cell glo assay 

described above to assess the effects of stroma on drug sensitivity. Additionally plates were 

set up for AML in LTC medium alone to assess the effects of cytokine/serum interaction on 

AML drug sensitivity. 

MS5 control plates with monolayer plus drug at identical concentrations were run to 

determine the effect of the drug on the monolayer itself. The change in luminescent signal 

from the drug + MS5 only was later subtracted from for the combined AML + MS5 co-

culture plates,  to give the change in output purely based on the effect on the AML cells in 

the co-culture setting.  

2.5 Flow Cytometry 

Flow Cytometry was performed using a Becton-Dickinson Accuri C6 cytometer coupled to a 

Dell Optiplex 765 Personal Computer running C-Flow Plus software for data acquisition and 

analysis. 

2.5.1: Immunophenotyping and quantification of cell surface FLT3 expression on primary 

AML blasts 
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1x105 cells were placed in a universal container and centrifuged at 1200 rpm for 5 minutes. 

The supernatant was removed and re-suspended in 40ul of ice cold staining buffer and then 

20ul of this suspension was placed in duplicate in a 96 well V-bottom plate. 10ul each of the 

following antibodies was added to the first well: anti-CD135 APC, anti-CD34 PE and anti-

CD45 FITC to give a total volume of 50ul per well. In the second well 10ul of the relevant 

anti-IgG1 isotope control for APC, PE and FITC was added. The plate was covered and 

vortexed gently and incubated at 4°C for 30 minutes. After this time, 150ul of cold staining 

buffer was added to stop the reaction and the plate was centrifuged at 1200 rpm for 3 

minutes and the supernatant aspirated. Cell pellets were re-suspended in 50ul 1ug/ml 

7AAD/FACS buffer and then this suspension was transferred to flow tubes for analysis 

where a minimum of 10,000 live events were recorded. Using C-Flow software blasts were 

selected using a CD45/side scatter gating strategy and FLT3 expression levels quantified by 

mean fluorescence intensity.   

2.5.2: Annexin V apoptosis assay 

MV4-11 cell lines were plated out at a density of 2x105/ml into 24 well plates in triplicate for 

three, 24, 48 and 72 hours in IMDM medium. Varying concentrations of drug at twice the 

required final concentration were added to make up to a total volume of 1ml per well. At 

each time point cells were harvested into a universal container with 3ml ice cold PBS added 

to wash the cells. Following centrifugation at 1200 rpm for 5 minutes, the supernatant was 

aspirated and the pellet re-suspended in a cocktail of 97.5ul Binding buffer Annexin V 

binding buffer: (pH 7.4) 10mM HEPES, 10mM NaOH, 140mM NaCl, 2.5mM CaCl2 (Alexis 

Biochemicals + 2.5ul Annexin V FITC per well in a 96 well plate. This was incubated at room 
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temperature for 10 minutes then 100ul of binding buffer was added and the plate spun at 

1200rpm for 5 minutes.  

 

After centrifugation the pellet was resuspended in a second cocktail of 190ul binding buffer 

+ 10ul propidium iodide (PI from stock) and transferred to FACS tubes for analysis by flow 

cytometry with at least 10,000 events per sample recorded. Results were analysed using 

CFlow Plus software looking at changes in percentage annexin V and propidium iodide 

positivity with time. Populations were stratified into viable cells (annexin V-/PI-), early 

apoptotic (annexin V+/PI-) and late apoptotic (annexin V +/PI+) and in particular the 

percentage increase in the ‘double positive’ population with time was selected to represent 

degree of apoptotic induction. 

2.6: Western Blotting 

2.6.1: Sample preparation and protein extraction 

Primary cells were seeded at 3 x106 per well in 1.5ml in six well plates for each of the 

relevant time points (1, 24 or 48 hours depending on experiment.) Varying concentrations of 

drug or DMSO vehicle control were added made up in IMDM to give a total volume of 3ml 

per well. The plates were incubated at 37°C, 5% CO2 until time point reached, then 

harvested into a universal container with 10ml TBS and spun for 5 minutes at 1200rpm. The 

pellets were aspirated to dryness and snap frozen on dry ice and stored at -20°C until ready 

for protein extraction. 

Western blot experiments were also set up to analyse the effect of stroma on downstream 

signalling. These experiments were set up in the usual way except that, together with 

standard IMDM culture, an additional stroma comparison arm was set up using 6 well 
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plates. After the required time point, cells from the MS5 plates were harvested in two 

separate fractions. Firstly the suspension cells were aspirated as in previous experiments, 

washed, spun and frozen. The adherent population (containing both MS5s and adherent 

AML cells) were removed by washing and trypsinisation, followed by the usual process of 

centrifugation and snap freezing. 

Pellets were transferred on ice and spun briefly then thawed in the presence of 1ul DNase 

1mg/ml + CaCl2 for 5 minutes with occasional vortexing. The pellet was resuspended in 

150ul complete homogenisation buffer and incubated on ice for 30 minutes during which 

time samples were vortexed and transferred to pre-chilled eppendorf tubes. The tubes were 

then centrifuged at 10,000 rpm for 5 minutes after which time the aspirated supernatant 

was transferred to fresh chilled eppendorf tubes and the total volume of extract recorded. 

Lysate samples were then stored at -80°C until ready for use.   

2.6.2: Protein quantification 

In a 96-well Maxisorp flat bottom plate, 10ul protein standards were prepared in advance 

using BSA and sterile water, then aliquoted in duplicate with 1ul complete added to each 

standard well to equalize standard curve and unknown readings.  Primary samples were 

diluted at 1 in 10 using 3ul sample lysate + 27ul sterile water per well. Sample dilutions were 

then aliquoted 10ul each in duplicate and 190ul Bradford’s working solution (Bradford’s 

stock diluted 1:1 with SWFIrr) added to all wells. The absorbance of the solutions was 

measured by reading the plate on a spectrophotometer at 590nm. Samples were equalised 

for loading using 4x Loading buffer (Life Technologies), sterile water and sample reducing 

agent and 20 µl of this composite solution was added to each well at the time of running the 

gels. 
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 2.6.3: Western gel electrophoresis 

Unless stated separately, all pre-prepared reagents and materials used in western blotting 

including NuPage gels, LDS loading buffer, sample reducing agent, antioxidant, 3-(N-

morpholino) propane sulphonic acid (MOPS) running buffer, 20x transfer buffer, Magic Mark 

XP Western Protein Standards and polyvinylidine difluoride (PVDF) membranes were 

supplied by Invitrogen Ltd (Paisley, UK). XCell SureLock Mini-Cell electrophoresis tank and 

XCell II Blot Module were also supplied by Invitrogen. 

 Prior to loading, samples were incubated in a water bath at 70°C for 10 minutes then 

quenched on ice for 1 minute. Samples were loaded into pre-cast gels NuPage 4-12% Bis-tris 

gel (1mm 12 well) NP0322 (Life sciences) previously washed in sterile water and wells were 

washed and filled with running buffer with added antioxidant (229.425ml running buffer + 

575ul NuPAGE antioxidant). Gels were run with MagicMan Marker(Life Sciences) as a 

running marker, at 200V constant for 50 minutes. 

2.6.4: Western transfer 

During electrophoresis a pre-cut nitrocellulosemembrane (0.45um pore size) and filter 

paper blotting sheets were pre-soaked in transfer buffer together with sufficient blotting 

pads to fill the transfer module. The gel was removed from the tank and after careful 

removal of the stacking gel a sandwich of blotting membrane and filter paper was 

constructed around the gel. This was surrounded by pre-soaked blotting pads and the blot 

module was filled with transfer buffer. The surrounding outer chamber was filled with de-

iodinized water. The transfer was then run at 30V constant for 1 hour. 

 
 

 

         UPPER CHAMBER 
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Fig 2.1: Western blotting module diagram: lower chamber contains sandwich of filter paper 
(red) gel (blue) and nitrocellulose membrane (white) filled with transfer buffer. 

2.6.5: Immunodetection 

At the end of transfer the gel was removed and washed twice in 20ml double distilled water 

for 5 minutes. It was then incubated in 10ml pre-made 5% ECL Advance Blocking Solution 

for 1 hour and then washed in TBST for 15 minutes followed by 3x 5minute washes. After 

this time the primary antibody was added, made up in 10ml 5% ECL Block and diluted, 

according to the manufacturer’s instructions for the given antibody. The membrane was 

incubated overnight in primary antibody diluents at 2-8°C.  

Following incubation, the membrane was rinsed twice in TBST and then washed for 15 

minutes followed by three 5-minute washes. It was then incubated in secondary antibody 

(rabbit [1/25000] select or mouse [1/5000] prime, depending on the primary antibody used) 

in 2% ECL Advance Blocking Solution for 60 minutes. After this time the membrane was 

given a 15 minute wash followed by three further 5-minute TBST washes and then 

developed with Chemiluminescent Substrate (ECL Select or Prime depending on the 

antibody) for 5 minutes. Finally the membrane was processed on the LAS-3000 imager for a 

period of time   determined by the strength of the signal ranging from 1-30 minutes. 

2.7: Statistical analysis 

       LOWER CHAMBER 
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Statistical significance of the difference in mean cell glo cytotoxicity responses between the 

entire cohort of FLT3 WT versus ITD mutated samples was determined by Students t test 

where p=<0.05 indicated significance. The data was further analysed at an individual dose 

level of pacritinib using the Kruskal-Wallis Test where initially the mean score for each dose 

was calculated for the ITD and WT cohorts separately using the Mann-Whitney U test  and 

the difference between them used to generate a Chi-Square where a Pr>Chi-Square reading 

of <0.05 was taken as being statistically significant. The same test was used for the stroma 

cohort to examine the significance of the difference in EC50 in IMDM versus MS5 co-culture 

setting for the entire cohort of 7 samples analysed at each dose of pacritinib. The Mann-

Whitney U test was also used, for example to compare the median EC50 between cohorts 

when the samples carrying FLT3 ITD mutations were stratified into low and high allelic ratio 

making the assumption that the values are normally distributed. This test compares the 

median EC50 to the range of low and high values within each cohort where the null 

hypothesis asserts that the medians of the two samples are identical and the alternative 

hypothesis states that a particular population tends to have larger values than the other. 

 Drug combination data were analysed using the median effect method of Chou and Talalay. 

The software package Calcusyn (Biosoft, Cambridge, United Kingdom) was used to perform 

linear regression analysis of dose-response data from each experiment and calculate a 

combination index (CI) for each individual patient for each drug combination. According to 

this method strong synergism was implied by a CI < 0.3 and lesser synergy by CI of 0.3-0.9 

with a CI of 0.9-1.1 representing an additive effect.  

Further statistical analysis was carried out looking at the relationship between clinical 

characteristics of the overall patient cohort such as age, presenting WBC etc and median 
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EC50 for each group. Given that these data were not normally distributed the Spearman 

correlation test was used to assess significance of any difference between groups. 
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Chapter 3: The in-vitro cytotoxic effects of pacritinib 
3.1 Introduction 
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FLT3 ITD mutated AML is a heterogeneous disorder which is very difficult to treat effectively. This is 

exemplified by the fact that despite 10 years of development, no single FLT3 inhibitor has been 

licensed for this purpose. Weak or transient inhibition of the target has been proposed as an 

explanation for this relative lack of efficacy. Potent inhibition of cellular FLT3 autophosphorylation 

and viability has been well described in cell lines (Hart S et al, 2011b) (Zarrinkar P et al, 2009) 

including the FLT3-ITD mutated cell line MV4-11 and evidence for translation of this property into 

therapeutic response in xenograft models has also been shown (Zarrinkar P et al, 2009) Several of 

the early clinical trials of tyrosine kinase inhibitors in AML have shown both improved efficacy in 

those patients with FLT3 ITD mutated disease and a correlation between achievement of drug 

plasma levels that are sufficient to produce comprehensive, sustained FLT3 inhibition in vivo (via the 

Plasma inhibitory assay (PIA) assay) and clinical response (Weisberg E et al, 2012). Using all these 

factors we may be able to maximise patient response to therapy provided that FLT3 inhibition and 

it’s downstream effects play a major role in determining cell survival.  

Regarding the use of any cytotoxic drug, there will always be a degree of disparity between the 

ability to establish that cell death has occurred, the level of confidence in the mechanism by which 

this effect has been produced and therefore, the ability to demonstrate that the pathway targeted 

by a given agent has been effectively modified to contribute to this effect. Cytotoxicity is a generic 

term for a destructive effect on living cells which interrupts their ability to divide and proliferate 

normally.  There is a danger that this property will be incorrectly interpreted as being consistently 

associated with the establishment of cell death whereas many ‘cytotoxicity’ experiments lead to 

more of a ‘cytostatic’ effect where the cell can no longer divide but remains viable. Establishment of 

cell death is dependent on disruption of cell membrane integrity following cleavage of caspase 

family proteins which is associated with other morphological features  such as membrane blebbing, 

cell shrinkage and condensation of nuclear chromatin (Zeestraten EC et al, 2013). Many high 

throughput viability based assays cannot distinguish between changes induced by a drug due to 

inhibition of cell cycle proliferative mechanisms or establishment of apoptosis. 
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Apoptosis or ‘programmed cell death’; refers to a series of genetic events that lead to the controlled 

death of the cell. It is a normal part of mammalian physiology that is essential for development, 

tissue homeostasis and immunity. Apoptosis is also part of the internal quality control system that 

allows abnormal cells to be eliminated; it is therefore unsurprising that loss of apoptotic regulation 

has been shown to be associated with the development of a variety of malignancies and auto-

immune diseases (Czabotar PE et al, 2014). In contrast, over-activity of the apoptotic pathway can 

result in worsening of ischaemic conditions and drive neurodegeneration (Czabotar PE et al, 2014). 

As described in chapter 1, FLT3-ITD mutations play a role in inhibition of apoptosis which is part of 

the mechanism which confers a survival advantage to the leukaemic clone.  

3.2     Methods 

3.2.1 Laboratory assays used to quantify cell viability  

Several laboratory techniques may be used to measure and quantify the cytotoxic effect of drugs on 

leukaemia cells. These include colorimetric proliferation assays that measure change in NADPH 

metabolism as a surrogate marker of cell viability. Such assays incorporate compounds such as MTT 

(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide or MTS (3-[4,5-dimethylthiazol-2-yl]-

5-[3-carboxymethoxyphenyl]-2-[4-sulphenyl]-2H-tetrazolium, inner salt;MTS) when the tetrazolium 

salt MTT is reduced to formazan (Sims J & Plattner R, 2009). We and other authors (Savasan S et al, 

2005) (Haselsberger K et al, 1996) have however,  noted contradictory results to question the 

reliable use of this assay for drug screening due to several factors including: inhibitory effect of the 

drug itself on the tetrazolium salt, drug induced increased cell volume, mitochondrial number and 

activity (Pagliacci M et al, 1993), pH and glucose supply (Marshall N et al, 1995) and its inability to 

distinguish between malignant and normal cells all of which can be independently variable between 

cellular cohorts and culture conditions particularly in primary AML (Srinivasan D et al, 2008).  
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An alternative technique is the Cell Titer Glo assay (described in more detail below) which measures 

ATP generation by living cells regardless of metabolic turnover and this measurement is used to 

generate a reading of percentage viability compared to untreated or vehicle control wells. Using this 

technique, the same authors showed a reduction in luminescence consistent with the known growth 

kinetic of the experiment, summarised as a decrease in viability following treatment with imatinib 

which the MTT assay was unable to show. 

The Cell Titer Glo luminescent cell viability assay (CellGlo, Promega, Madison WI) allows 

quantification of the number of viable cells in a culture system by measurement of the amount of 

adenyl-triphosphate (ATP) present. ATP is an energy bearing molecule found in all living cells. The 

energy released following hydrolysis of ATP to adenyl-diphosphate (ADP) is essential for a variety of 

metabolic reactions. The activity of luciferase enzymes is ATP dependent; therefore, the amount of 

luminescent signal is directly proportional to the amount of ATP present in the lysate which is, in 

itself, a reflection of the number of viable cells present. The cell glo reagent also simultaneously 

inhibits endogenous ATPase release during cell lysis which may otherwise negatively influence the 

amount of ATP measured.  

The assay relies on the properties of a proprietary thermostable luciferase (Ultraglo Recombinant 

Luciferase) which generates a stable “glow-type” luminescent which is stable for up to five hours. 

This is another advantage over the MTS/MTT technique where plates must be ‘read’ at specified 

time points and a different result will be obtained outside of this time window as the colour intensity 

and therefore absorbance continues to  saturate with time. All of these factors influenced the choice 

of Cell Glo in preference to MTS/MTT assay in attainment of the following results.  

 

3.2.2 Cell Glo Assay method  
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According to the methods described in chapter 2, primary AML mononuclear cells were obtained, 

cryopreserved, thawed and cultured. Following the initial thaw a cell count and viability stain was 

undertaken using trypan blue exclusion (samples with greater than 80% viability were used in 

cytotoxicity experiments). Sample thawing and plate set up were always carried out within a 

maximum of 4 hours. 

Cell Titer Glo cytotoxicity assay was performed using opaque 96 well plates and doubling serial 

dilutions as described in chapter 2. For each patient sample the cytotoxic response to pacritinib used 

at doubling concentrations ranging from 6.0nM to 3µM was assessed. AraC was used at 

concentrations ranging from 24nM to 3µM in AML cell lines and 180nM to 100µM in AML patient 

blasts due to decreased efficacy in primary samples. 20,000 cell line cells or 80,000 AML cells were 

placed in triplicate wells at each drug concentration and cultured for 48 hours at 37°C 5%CO2 prior 

to the assessment of viability by the addition of Cell Glo reagent. Prior to harvesting for the Cell Glo 

assay, a viability assessment was made using one of the untreated AML cell wells and trypan blue 

exclusion. This was to confirm sufficient survival of untreated/vehicle treated wells, as Cell Glo 

technique may give a signal from only a few viable cells present. Again the minimum acceptable 

viability was 80%.  

As pacritinib is dissolved in DMSO the cell viability at each drug concentration was expressed as a 

percentage of cell viability in a control well containing no drug, but at an equivalent concentration of 

DMSO. 

 3.2.3 Assays to measure induction of apoptosis  

Induction of apoptosis can be demonstrated in the laboratory by a number of different methods 

including the annexin V/PI technique, measurement of PARP cleavage and induction of caspase-3 by 

western blotting. The AVB assay has previously been shown to demonstrate that FLT3 inhibitors 
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induce apoptosis in FLT3 dependent cell lines (e.g. MV4-11) and that this phenomenon correlates 

with inhibition of cell growth (O'Farrell AM et al, 2003).  

3.2.4  Annexin V Binding Assay 

During apoptosis the arrangement of the plasma membrane phospholipids is disrupted which results 

in phosphatidyl serine (PS) residues being externalised or ‘flipped’ from the inside to the outside of 

the membrane. Annexin V is a protein which binds to phospholipid in a calcium dependent manner; 

it has a high affinity for PS and can be used as a marker for PS exposure when added to non-fixed 

cells and analysed by flow cytometry  (van Engeland M et al, 1997;van Engeland M et al, 1997). Since 

PS translocation is not confined to apoptosis and also occurs during necrosis, a cationic dye such as 

Propidium Iodide (PI) is added to distinguish the double positive population which have lost 

membrane integrity and are undergoing late stage apoptosis from those with an intact membrane 

(PI negative/Annexin V positive). 

Annexin V binding assay was performed using 24 well plates and 5 different doses of Pacritinib 

ranging from 10-200nM together with an untreated well. The dose range was selected in light of the 

EC50 of pacritinib in MV4-11 cells (approximately 50nM) this being around the mid-point of the 

range. 200,000 viable cells were added to each well and cultured for between 24 and 72 hours at 

37°C, 5% CO2. 

Following drug incubation, cells were stained with AnnexinV-FITC and analysed immediately by 

FLOW cytometry using the Accurri cytometer and C-Flow software as previously described. 

 

3.3 Results: Cytotoxic effects of FLT3 inhibitory compounds 

3.3.1 Comparison of   FLT3 TKI activity in cell lines 
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Initially, the efficacy of three different FLT3 inhibitors was assessed in AML cell lines compared to 

conventional AraC dosing. The drugs tested were ponatanib, crenolanib and pacritinib.  

Crenolanib is a highly selective, potent FLT3-inhibitory TKI with activity against FLT3 ITD mutant cells 

and treatment emergent FLT3 D835 point mutations (Galanis A et al, 2013;Smith C et al, 2014). The 

same authors showed that crenolanib has an EC50 of around 2nM for inhibition of FLT3 

(autophosphorylation by immunoblot assay) and also an EC50 of less than 10nM in MV4-11 cell lines 

when using the MTT assay (similar to data shown in Figure 3.1).  This correlates with findings in this 

study where crenolanib showed a mean EC50 of 7.78nM in MV4-11 cell lines, however NB4s were 

largely resistant to this drug (mean EC50 1120nM)  

Ponatanib is a novel, multi-targeted kinase inhibitor that potently inhibits native and mutant BCR-

ABL at clinically achievable drug levels (Gozgit JM et al, 2011) and is also the first drug to suppress all 

BCR-ABL mutations including T315I (Rivera V, 2011). It also has in vitro inhibitory activity against a 

discrete set of other kinases including FLT3, KIT, FGRF1 and PDGFRα (Gozgit JM et al, 2011). Previous 

authors have shown that ponatanib shows potent activity against MV4-11 cell lines (EC50 2nM) with 

lesser activity in RS4-11 cells (EC50 >100nM) which express wild type FLT3 (Gozgit JM et al, 11 A.D.).  

Pacritinib is described previously in Chapter 1.10 

The cell lines tested included those arising from three different FAB types of AML, two which express 

wild type FLT3 (NB4 (M3) and HL-60 (M2)) and also the MV4-11 (M4) cell line which carries a FLT3 

ITD mutation. 

Crenolanib showed good efficacy in MV4-11 cell lines but all others tested were resistant (NB4 and 

HL-60 data not shown) Figure 3.1. Ponatanib showed good efficacy in MV4-11 cell lines with less 

potent effect seen in NB4s and HL-60s (Figure 3.2 and Table 6). Pacritinib shows low nanomolar 

efficacy in MV4-11 cell lines with a less potent effect in NB4 and HL-60s Figure 3.3. 
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Fig 3.1: Mean cytotoxic dose response to crenolanib and AraC in MV4-11 cell lines 
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Figure 3.2: Mean cytotoxic dose response to ponatanib and AraC in cell lines. 
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Figure 3.3: Mean cytotoxic dose response to pacritinib and AraC in cell lines (data from Mrs C Guy).  

 

 

Table 6: Summary of EC50 for FLT3 tyrosine kinases inhibitors and AraC in cell lines; numbers are an 
average of three repetitions, values given are mean (standard deviation). Data from Mrs Carol Guy *. 

 

In terms of potency, ponatanib appears superior to both crenolanib and pacritinib in MV4-11 cell 

lines with no other TKI showing considerable effect in either FLT3 WT cell line tested. Pacritinib was 

Drug EC50 NB4/nM  EC50 HL-60/nM  EC50 MV4-11/nM 

Pacritinib 1500 (+/-361)* 1433 (+/-230)* 54 (+/-13)* 

Ponatanib 522 (+/-149) 715 (+/-26) 4.2 (+/-0.4) 

Crenolanib Resistant (>10µM) Resistant (>10µM) 7.78 (+/-5.6) 

AraC 492 (+/-132) 288 (+/-24) 961 (+/-88) 
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also tested in 72 hour culture as well as 48 hour and the EC50s were equivalent, hence 48 hour 

culture was taken forward into the primary AML sample experiments to maximise the number of 

samples surviving the assay. 

3.3.2 Results of cytotoxicity experiments with pacritinib in primary AML cohort 

Cell titer glo cytotoxicty assay was performed using cryopreserved primary AML mononuclear cells 

donated by a total of 74 patients enrolled in the MRC AML-15, 16, 17 and Li-1 studies. All samples 

had been screened for FLT3 activating mutations by other workers in the department using RT-PCR 

techniques. 63 patients had a confirmed FLT3 mutation status result and were considered eligible for 

inclusion within this study. Of the 63 eligible patients, 34 cases (52%) expressed only wild type FLT3, 

19 (32%) harboured FLT3 ITD mutations ranging from 21 to 174 base pairs in size, 7 (11%) had FLT3 

TKD point mutations and 3 (5%) were double-mutants with both ITD and TKD mutations (Table 7 ).  

Characteristic Number  Median EC50 

(range) 

p-value (relation 

between EC50 

and 

characteristic) 

All data 63 112 (11-12400)  

Trial
ǂ 

   

AML15 37 111 (11-12400)  

AML16 (Int + non-Int) 2+2 282 (115-618)  

AML17 22 98 (11.6-1100) 0.2* 

Treatment regimen    

Intensive chemo 61 111 (11-12400)  

Non-intensive 2 Values: 184, 380  

Age (years)    

0-29 10 99 (25-779)  

30-39 6 90 (19-361)  

40-49 16 93.5 (11-732)  

50-59 20 191.5 (16-2600)  
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60+ 11 64.5 (13-12400)  

Median (Range) 47 (0-70)  0.4** 

Sex    

Male 31 127 (11-1100)  

Female 32 109.5 (11.6-12400) 0.6* 

WBC    

0-9.9 2 Values: 415, 700  

10-49.9 24 121 (22-779)  

50-99.9 18 123.5 (13-12400)  

100+ 19 56 (11-732)  

Median (Range) 61.4 (1.8-386.5)  0.005** 

Type of AML    

De Novo 58 113.5 (11-12400)  

Secondary 5 111 (20-380) 0.6* 

Cytogenetic group    

Favourable 9 133 (20-1100)  

Intermediate 43 111 (11.6-12400)  

Adverse 3 732 (361-779)  

Unknown 8 96.5 (11-2600) 0.3** 

WHO Performance status†    

0 33 112 (11.6-2600)  

1 22 124 (13-12400)  

2 3 28 (11-380)  

3 4 85 (16-322) 0.6** 

FLT3 status   0.2* 

ITD wt 40 147 (19-2600)  

ITD mutant 23 85 (11-12400) 0.01* 

TKD wt 51 108 (11-12400)  
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Table 7: Relationship between patient characteristics and Pacritinib EC50 * Wilcoxon Rank-
Sum/Kruskal-Wallis test for difference between groups; **: Spearman correlation coefficient for 

continuous data/ordered groups; ǂ Trials AML15, 16 and 17 patients were treated intensively up to 2 
rounds: ADE (Daunorubicin, Cytarabine, Etoposide), DA/DAT (Daunorubicin, 
Cytarabine/Daunorubicin, Cytarabine, Thioguanine), FLAG-Ida (Fludarabine, Cytarabine, Idarubicin, 
G-CSF) (follow-up complete to 1/1/2015). † 1 child completed play performance scale. 

Results of initial cytotoxicity assays showed that pacritinib exerts a much greater cytotoxic effect 

than AraC in primary AML samples (Figure 3.4). Its activity is similar although superior to that of 

ponatanib and far superior to that of crenolanib (Figure 3.5).   
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Fig 3.4: Scatter plot for EC50 of 63 primary AML samples following treatment with pacritinib and 
AraC. Mean EC50 pacritinib 191.6 nM AraC 3323 nM. 
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TKD mutant 12 138 (24-1100) 0.3* 

NPM1 status    

WT 41 115 (11.6-12400)  

Mutant 22 110.5 (11-2600) 0.6* 
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Fig 3.5: Scatter plot for EC50 of primary AML samples following treatment with three FLT3 TKIs. 
Pacritinib mean EC50 191.6nM (n=63 samples), Ponatanib mean EC50 253.8nM (n=34), Crenolanib 
mean EC50 5588nM (n=32) 
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Fig 3.6:  Scatter plot of EC50 for cytotoxic response to pacritinib in 63 primary samples, sub-divided 
according to FLT3 mutation status. Mean EC50 191nM all samples, 221nM WT, 93nM ITD, 376nM 
TKD, 65 nM ITD+TKD. Mann Whitney U tests for EC50 < WT value p=0.01 ITD, p=0.5 TKD,p= 0.004 
ITD+TKD (*p<0.05) 

Using the mean EC50 for each cohort as a reference, pacritinib was more cytotoxic to primary AML 

blasts with FLT3 ITD mutations than those that expressed only wild type FLT3 (Mann Whitney U test 

p=0.01). This statement masks the fact however, that within each cohort there were individual 

samples showing markedly high or low sensitivity to pacritinib treatment as would be suggested by 

normal distribution such as is seen in Figure 3.6.  
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Fig 3.7: Mean cytotoxic dose response to pacritinib normalised to untreated control and grouped by 
FLT3 status for 60 primary samples, the 3 double mutant samples were excluded from this analysis 
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as numbers were small. Error bars represent standard error of the mean. Mann Whitney U test 
p=0.01 ITD vs WT, p=0.5 TKD for mean EC50 and for individual doses of pacritinib  *=p<0.005   for ITD 
<WT. 

Fig 3.7 shows a difference between the mean cytotoxic dose response as measured by mean % 

survival in cell glo experiment for primary AML mononuclear cells expressing a FLT3 ITD mutation as 

compared to WT samples or those with a FLT3 TKD mutation. This difference was significant at the 

lower end of the dose range from 5nM – 100nM suggesting that at low concentrations of the drug 

the presence of an ITD mutation can enhance sensitivity. Between the doses 95 and 190nM the 

significance of this difference disappears which coincides with the threshold of the mean EC50 for ITD 

mutated samples (93nM).  

It is interesting to note that there is a significant p value for a lower mean EC50 in ITD vs WT (0.01) 

and also in double mutant ITK+TKD versus WT (0.004). The presence of a TKD mutation alone 

appeared to have no bearing on sensitivity to pacritinib with a mean EC50 greater than that for WT 

samples. To further assess the impact of the presence of ITD mutations on pacritinib it is rational to 

consider whether the allelic ratio or percentage mutation of a given sample has any bearing on drug 

sensitivity. Potentially those samples with a higher percentage mutation might be expected to show 

higher sensitivity (and hence lower EC50) following treatment with a drug that is assumed to target 

the FLT3 ITD receptor pathway such as pacritinib. The ITD mutation data for the 19 ITD samples in 

summarised in table 8 below. 

Sample Age ITD size ITD % source 

1. 15-1997 
(JH) 

47 27 32 BM 

2. 15-1979 
(DH) 

58 57 29 BM 

3. 15-2913 
(JB) 

41 66 9 PB 

4. 17-1904 
(LS) 

22 35/84 92/3 PB 

5. 15-1718 
(JO) 

65 24/42 21/65  

6. 17-1689 
(LVA) 

61 81 19 BM 

7. 15-2729 55 42 15 BM 
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(AC) 

8. 15-3358 
(DP) 

45 18/57 29/10 BM 

9. 15-3135 
(SL) 

37 39/90/174 23/4/6 PB 

10. 17-3400 
(DK) 

59 57 63 BM 

11. 17-3549 
(LH) 

42 60 70 PB 

12. 17-1629 
(SG) 

51 18 28 BM 

13. 15-3389 
(EL) 

56 54 17 PB 

14. 15-2917 
(JB) 

45 84 87 BM 

15. 17-2093 
(SFH) 

40 66 62 BM 

16. 17-3288 
(AAG) 

41 27 37 BM 

17. 15-3063 
(PH) 

65 83 8.7 PB 

18. 15-1323 
(JB) 

55 21 43  

19. 15-2098 
(GH) 

68 51 33 PB 

 

Table 8: Mutation characteristics of ITD samples 

 

Using these data, the samples were then stratified into two groups, either high (33-92%) level 

percentage mutation or low (9-32%), the top 10 samples were selected for the high ratio group and 

the remainder for the low ratio group and this data in reference to EC50 to pacritinib is presented in 

the Figure 3.8. 
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Fig 3.8: Scatter plot for 19 ITD samples EC50 stratified by ITD % mutation. Low ratio n=9 (range % 
mutation 9-32%) , High ratio n=10 (range % mutation 33-92%), p=0.02 (Mann-Whitney U test) 
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Fig 3.9: Scatter plot for 19 ITD samples EC50 stratified by ITD mutation length in base pairs. Short 
mutation  n=9 (range 18-54), long mutation n=10 (range 60-303) 

 

The data shown in Figure 3.8 suggest that a higher FLT3 % mutation is associated with a lower mean 

EC50 in primary AML samples that carry an ITD mutation. Interestingly, the mean EC50 is around three 

fold higher in the low ratio cohort compared to the high ratio cohort (mean 150nM low ratio versus 

53.8nM high ratio) and this was a statistically significant difference p=0.02. Also there was a single 

sample with a very high EC50 of > 3000nM, one possible explanation for the resistance is that this 

sample also carried the lowest percentage mutation (8.7%) which may mean that it’s phenotype is 

borderline and essentially that of a WT sample. There were 4/19 samples that carried two or three 

different length ITD mutations, in these cases the highest percentage level across all 2/3 mutations 

was used to stratify patients as either high or low. Similarly the data shown in Fig 3.9 suggests that a 
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longer length of FLT3 mutation in base pairs is associated with a lower EC50 following treatment with 

pacritinib (mean EC50 long mutation cohort 70nM vs 112nM short mutation cohort).  

3.3.3 The effect of pacritinib on apoptosis 

The data described above suggest that primary AML cells and certain cell lines are sensitive to 

pacritinib as measured by reduction in cell viability following treatment. It does not provide absolute 

confirmation that cell death has occurred and this question will now be addressed. As described 

above the annexin V binding assay can be used to measure apoptotic induction in cell lines and 

primary AML cells by tracking the percentage change in number of viable and apoptotic cells over 

time following drug treatment. Using combined staining with annexin V and propidium iodide this 

transit can be characterised as described in the example flow cytometry plots below. 

          Untreated                                      10nM Pacritinib                           200 nM Pacritinib 

  

 

Fig 3.10:  Example plots for Annexin V (AV) vs Propidium Iodide (PI) staining of MV4-11 cells at 72 
hours showing transit from predominant viable (AV-PI-) population to early apoptotic (AV+PI-) and 
late apoptotic (AV+PI+) population. 

 

Figure 3.11 below shows percentage late apoptosis induction (annexin V/PI ++) over time for 

untreated MV4-11 cells and 5 concentrations of pacritinib (10nM, 20nM, 50nM, 100nM, 200nM).  

The experiment was repeated in duplicate with different MV4-11 cell batches on different days.  
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Fig 3.11: Percentage late apoptotic induction (annexin V+/PI +) over time for a range of doses of 
pacritinib from untreated to 200nM. Error bars represent standard deviation and n=2 

  

 

Fig 3.12: Change in response of MV4-11 cells to pacritinib over time for 2 concentrations (20nM and 
200nM) V=Viable (AnnexinV-PI-) EA= (Early) Apoptotic (annexin+/PI-) LA= (Late Apoptotic) (++) Data 
are the mean of two independent determinations. Bars highlighted in yellow show increase in late 
apoptotic population size with time for 200nM dose. 

Figure 3.12 above shows that there is a progressive induction of apoptosis with time which is also 

dose-dependent. There is a gradual increase in early and late apoptotic cell numbers with time more 

marked for the higher dose level, with numbers approaching 50% apoptotic induction only seen 

after 72 hours of incubation. Significant late apoptotic induction was only seen with the higher dose 
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level (200nM) when the effect was quite marked, but it was largely absent at the lower dose shown 

(20nM). 

The annexin V binding assay was also carried out in primary AML mononuclear cells (3 samples all of 

which carried a FLT3 ITD mutation) following treatment with pacritinib and culture for 24,48,72 

hours and also 7 days shown in figure 3.13. 

 

Fig 3.13: percentage late apoptotic induction (Annexin V+/PI+ cells) over time for 3 primary AML 
samples showing significant dose and time dependent response compared to untreated control . * 
p<0.001 ** p< 0.0001. Data from Mrs Michelle Lazenby. 

 

These data show minimal late apoptotic induction in primary AML cells following 24 hours of culture 

with pacritinib with a failure to achieve a level of 20% Annexin V+/PI+ at any dose tested. There was 

however a markedly improved response after 48 hours with >50% achieved for 500nM and 1000nM 

dose and this trend continued up until 7 days of culture. 

3.3.4 Caspase 3 induction 

Generation of an apoptotic signal is followed by activation of a common final catalytic pathway 

involving the caspase and cysteine protease enzymes. This ultimately leads to cleavage of structural 

proteins and a loss of membrane integrity, (Czabotar PE et al, 2014).Western blotting experiments 

were carried out using MV4-11 cell lines and primary AML cells as described in detail in chapter 4.  

** ** * 
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The same membranes were subsequently re-probed using cleaved caspase 3 primary antibody with 

an example given below in figure 3.14 for sample 15-2913 (ITD mutated) and MV4-11. 

 

     Unt             300nM         1000nM 

   

  

Fig 3.14: Cleaved Caspase 3 induction in primary AML sample and MV4-11 cell line at 24 hours 

This experiment shows induction of caspase 3 protein in MV4-11 cell line and AML primary 

mononuclear cells (single example shown) following treatment with pacritinib which was not seen in 

the untreated cells. It correlates with the result of the AVB assay above and suggests that pacritinib 

can induce cell death via apoptosis. 

3.4 Discussion 

The results of the experiments described in this chapter have shown that pacritinib induces a 

cytotoxic response in AML primary mononuclear cells at 48 hours, whereas the effect in cell lines is 

more likely to be cytostatic. Although the 48 hour Cell Glo data in cell lines (fig 3.1 and table 1) 

suggest a cytotoxic effect, the evidence from the MV4-11 annexin experiments (figures 3.11 and 

3.12) confirms that significant apoptotic induction (close to 50% late apoptotic cells) only occurs 

after 72 hours. This apoptotic blockade is probably related to cell cycle arrest at G2 phase given that 

MV4-11 cells carry a p53 mutation (Zauli G et al, 2012) which is therefore a reflection of the cellular 

processing mechanisms of the cell line rather than a deficiency in the effect of the drug. Most 

primary AML cells retain p53 activity and hence less limitation on apoptotic induction is seen in the 

AVB assay as shown in figure 3.13 where levels approaching 50% late apoptotic cells are seen at 

doses above 300nM from 48 hours onwards. 

Caspase 

Actin 

Unt 50nM       200nM       500nM 

 

15-2913 Primary AML 

 

MV4-11 
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This highlights several of the limitations of the use of the Cell Glo assay in this study; firstly that it 

was only used to assess short term cytotoxicity to Pacritinib after 48hours of treatment. The 

rationale for using a 48 hour time point for analysis was derived from the observation that in MV4-

11 cell lines the mean EC50 was similar at 48 and 72 hours of culture. Primary AML cells can be 

difficult to support beyond 48hours of culture without using supplemented media which would 

introduce additional confounding signalling effects so this aspect was not formally tested. Taking the 

data from the Cell Glo and AVB cytotoxicity experiments together however, we see significant Cell 

Glo efficacy with confirmatory evidence that apoptosis has occurred at 48 hours in primary cells 

which is not seen in cell lines until 72 hours. To resolve these conflicting results it would be 

necessary to carry out cell cycle analysis to establish whether cell cycle arrest is responsible in MV4-

11 for the delayed apoptotic induction.  

Cell lines which express FLT3 ITD mutations (MV4-11) are markedly more sensitive to pacritinib than 

AraC (mean EC50 54 vs 961 nM) which is a more standard chemotherapeutic drug used to treat AML. 

There was less of a difference between sensitivity to these two drugs in cell lines which express WT 

FLT3 (NB4 and HL-60); this suggests that the drug is appropriate for FLT3 targeted therapy with a 

therapeutic dose which is low and clinically achievable given that in humans, pacritinib achieves 

steady state free drug levels of approximately 200nM at a standard 400mg daily dose (Singer J et al, 

2014) 

When comparing three different FLT3 TKIs however, although all three drugs preferentially target 

the ITD mutated cell line MV4-11, pacritinib showed marginally reduced efficacy in comparison to 

both ponatanib and crenolanib in this context. The MV4-11 cell line was established from the blast 

cells of a patient with biphenotypic B-myelomonocytic leukemia and although it carries a FLT3 ITD 

mutation, it’s in vitro behaviour may not be a good predictor of in vivo drug performance. The 

differential response to pacritinib as compared to pontanib and crenolanib in MV4-11 cell lines may 

be a reflection of the fact that the latter two drugs rely on cell cycle interference whereas pacritinib 
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does not. Therefore the effects of ponatanib and crenolanib can overcome the presence of p53 

mutation in MV4-11s by inhibition of cell cycle transition at alternative site, an effect which 

pacritinib is unlikely to induce. This hypothesis would need to be confirmed in future work by 

carrying out experiments specifically analysing the effect of pacritinib on the cell cycle. One other 

interesting observation is that pacritinib and crenolanib show virtually no activity in NB4 or HL-60 

cell lines whereas ponatanib (and also AraC) performed better. Two possible explanations again 

relate to cell cycle activity given that NB4 and HL-60 carry un-mutated p53 so can proceed normally 

through apoptosis and, secondly, that this is probably triggered by off target effects of ponatanib 

and AraC (an S phase inhibitor) that are distinct from FLT3. This was not observed in primary culture 

where the cells cycle less rapidly than cell lines, suggesting good efficacy for pacritinib in vivo in AML 

patients. 

We also observed a marked segregation in sensitivity to pacritinib  by FLT3 status in primary blasts 

with the mean EC50 in FLT3 ITD mutated samples being  92.3nM vs 292.1nM for FLT3 WT samples 

p=0.01. This is similar to values described elsewhere in the literature (Hart S et al, 2011b)) . Although 

these corresponding data were taken from a smaller cohort of 14 primary samples (compared to 63 

samples in this study), similarly increased sensitivity was seen amongst those samples harbouring a 

FLT3 ITD mutation. The 63 samples used in this study were analysed according to certain clinical 

characteristics and mutation analysis to determine whether any were significantly associated with in 

vitro sensitivity to pacritinib (Table 2). Of these only the presence of an ITD mutation and higher 

presenting WBC showed a significant positive correlation. In addition higher presenting WBC is 

known to associate with presence of a FLT3 ITD mutation itself due to a proliferative effect on the 

clone and the observation of these two factors together validates the ITD mutation as a driver of 

pacritinib sensitivity. 

The experiments in this chapter have also analysed the impact of ITD mutation level on in vitro 

sensitivity to pacritinib both in terms of percentage mutation (figure 3.8) and mutation length in 
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base pairs (figure 3.9). Previous authors have suggested that there is no definite correlation between 

ITD mutation length (in base pairs) and response to inhibitors including AC220 (Zarrinkar P et al, 

2009). There is a larger body of evidence to support the rationale that FLT3-ITD mutant load or % 

mutation is more predictive of response to therapy in vitro and in clinical studies (Gale R et al, 2008) 

with higher percentage mutation being associated with poorer prognosis due largely to a higher risk 

of relapse (Whitman SP et al, 2001). In this study there was a correlation between samples with a 

higher mutation percentage being more sensitive to the effects of pacritinib (mean EC50 low:high 

mutant groups = 150nM:53.8nM p=0.02) which not only adds weight to the evidence that pacritinib 

targets ITD mutated disease but also suggests a potential therapeutic benefit if the higher level 

percentage mutation phenotype is associated with an increased risk of relapse. The data also 

suggests that a larger ITD mutation size (in base pairs) may also be associated with increased 

sensitivity to pacritinib (mean EC50 long mutation 70nM vs 112nM short mutation). This is also 

encouraging, given that some previous authors have suggested that a longer mutation size is 

associated with a reduced remission rate and/or reduced overall survival (Breitenbuecher F et al, 

2009). There is some evidence that the structural location of the mutation is critical depending on 

whether or not it involves the kinase domain or the juxtamembrane domain. 

Interestingly, further sub analysis of the initial Cell Glo work shows that the difference between 

mean cytotoxic response for ITD mutated sample vs. WT was only significant at doses <100nM which 

suggests that the lower mean EC50 in ITD samples is correct and also that  above this dose level the 

presence of an ITD mutation does not confer increased sensitivity to the drug, presumably due to  

loss of the negative effect on the constitutive activation of the FLT3 receptor (conferred by the ITD 

mutation) which drives a proliferative survival advantage in untreated cells. It also shows drug 

specificity in the sense that at a low dose (<100nM) pacritinib acts in a FLT3 specific manner and 

FLT3 ITD is directly targeted over WT FLT3. This is in keeping with previous in vitro kinome based 

data, as described in chapter 1 showing low nanomolar efficacy for inhibition of the FLT3 ITD target 

(Singer J et al, 2014). Given that pacritinib also shows reasonable efficacy in samples expressing WT 
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FLT3 (mean EC50 292.1 nM), it seems logical to conclude that between doses of approximately 100 

and 200nM, the power of an ITD mutation to impact on sensitivity is lost and potentially at higher 

doses the drug exerts additional effects on other signalling pathways distinct from FLT3 such as JAK. 

In general many FLT3 inhibitors which have previously been through clinical development show very 

modest cytotoxic effects against wild type samples for example lestaurtinib (Knapper S, 2011)  which 

does not really justify their use outside patients who harbour a FLT3 ITD mutation. Given the poor 

prognosis of patients with this subtype of AML this suggests that pacritinib may have promising 

therapeutic potential as an additional treatment to complement conventional chemotherapy in 

patients who harbour a FLT3 ITD mutation. 

Interestingly the mean EC50 for samples carrying a FLT3 TKD mutation was very similar to that for WT 

suggesting no clear therapeutic advantage for pacritinib in patients with FLT3-TKD mutations 

although sample numbers were small. Some of the newer compounds such as crenolanib have been 

developed by specifically targeting cell lines which have been engineered to be resistant to some of 

the earlier FLT3 TKIs such as was seen following long term exposure of Ba/F3-ITD to sorafenib  

(Zhang W et al, 2008;Zhang W et al, 2014) and pacritinib requires further testing to characterise its 

therapeutic potential in this field. These have been termed treatment emergent resistance 

mutations, many of which are TKD point mutations such as D835V (Smith C et al, 2014). This may 

explain why crenolanib performed so poorly in these experiments using primary samples from TKI 

naive patients taken at diagnosis and the drug may show improved efficacy in samples taken at 

relapse. Crenolanib showed relatively poor in vitro activity against AML primary samples in this work 

compared to pacritinib and ponatanib (Fig 3.6) and its efficacy was not improved when tested 

against TKD samples compared to any other FLT3 mutation subgroup. It has shown improved 

efficacy elsewhere in an in vivo mouse model (Zimmerman E et al, 2013). 

By aiming to combat primary environment mediated resistance and target the low level stroma 

adherent population the aim of a drug such as pacritinib is to prevent the development of the 
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former mutations which are likely to persist due to continuous evolution of the resistance 

mechanism. The TKI development story in CML demonstrates this effect succinctly due to the need 

for sequential development of new TKIs in response to new mutations in the BCR-Abl target which, 

interestingly, are also often centred around the ATP binding pocket, similar to the situation with 

FLT3 ITD mutations. 

 Following on from the initial cytotoxicity experiments, the next step was to characterise the effect 

on the AML cells which underlies the observed response. Annexin V binding assay in the MV4-11 

(ITD mutated) cell line shows induction of apoptosis at 72 hours of pacritinib treatment with a dose 

response effect (Fig 3.11). In primary AML cells apoptosis is induced more rapidly with a >50% 

response seen by 48 hours of treatment (3.13). Previous authors have described that FLT3 inhibitory 

compounds such as lestaurtinib (Knapper S et al, 2006a) are selectively cytotoxic to, and induce 

apoptosis in, leukaemia cell lines such as MV4-11 and Molm-13 which harbour FLT3-ITD mutations 

as well as primary AML blasts samples taken from patients diagnosed with FLT-3 ITD mutated acute 

myeloid leukaemia  (Knapper S, 2011;Knapper S, 2011;Knapper S, 2011;Levis M & Allebach J, 

2002;Knapper S et al, 2006b). The cytotoxicity experiments carried out by Knapper et al were 

processed at 72 hours using the MTS technique for lestaurtinib and PKC412 compared to 48 hours in 

this study. Although there is no published data of cell cycle analysis in the lestaurtinib study this 

suggests that the 48 hour time point was considered to be too early to permit confidence that 

apoptosis has occurred. The primary annexin data on pacritinib in this study (Fig 3.13) shows that at 

48 hours 50% late apoptosis induction occurs between the 100-300nM doses. This is very close to 

the experimental EC50 from the Cell Glo experiments (92nM). The early apoptotic effect seen at 

lower doses could still contribute to the Cell Glo EC50 of 100nM or lower as seen in many samples. 

Therefore, the apparent ‘cytotoxic’ effect in the Cell Glo experiments requires further analysis in 

terms of the effect on downstream signalling which will be described in chapter 4. 
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The other technique used to assess induction of apoptosis was the effect on Cleaved Caspase 3 (CC3) 

protein levels measured by western blotting (Fig 3.14). Here we see dose dependent induction of 

CC3 in a single primary sample after 24 hours, with a less marked effect in the MV4-11 cell line after 

a similar period of time. The primary sample used (15-2913) was sensitive to pacritinib by Cell Glo 

(EC50 94nM) and so the strong CC3 signal at 300nM and 1000nM dose is to be expected. The MV4-11 

signal appears weak in comparison, which is partly explained by uneven loading most marked for the 

500nM dose. In view of the cell line annexin data however, (figures 3.11 and 3.12) this is to be 

expected as minimal induction was seen with 100nM and 200nM doses at 24 hours. 

Elsewhere it has been shown that pacritinib, in a dose-dependent fashion, increases cell populations 

in early and late stages of apoptosis, without inducing necrosis in MV4-11 cell lines treated for 72 

hours with doses between 0.03 and 0.15uM (Hart S et al, 2011b;Hart S et al, 2011b). The same 

authors also showed activation of caspase-3/7 in a dose dependent manner following treatment 

with pacritinib. Also, following 24 hour exposure to pacritinib, there was cell cycle arrest  at the G1 

phase and a reduction in the size of the S-phase population in MV4-11 and MOLM-13 cell lines (both 

of which carry an ITD mutation) (Hart S et al, 2011b). This correlates with the inferior apoptotic 

response observed here in MV4-11 cell lines at 24 hours (Figure 3.11).  Interestingly, less effect was 

seen in FLT3-WT cell lines such as RS4;11 by a factor of 15-20 fold (EC50 RS4;11 cells 930nM vs 47nM 

MV4-11 and 67nM MOLM-13) consistent with our data . 

Data from the Cell Glo work gives an indication of the in vitro sensitivity of primary AML 

mononuclear cells to pacritinib and there is evidence from several sources that this property can 

translate from the bench to the bedside. The experiments described above show that pacritinib 

reliably induces cytotoxicity in primary AML cells cultured for 48 hours in IMDM with a greater 

magnitude of effect in those harbouring a FLT3-ITD mutation. The AVB assay and caspase western 

blot experiment suggests that the mechanism of cell death is primarily via induction of apoptosis in 

primary material.   
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 In vivo, pacritinib has shown good efficacy in an MV4-11 allograft and xenograft model with 

significant survival benefits shown at a tolerable dose (William AD et al, 2015). Clinical trial 

development to date has included 8 clinical trials: 5 have completed, 2 are still in progress and 1 was 

terminated (Hatzmichael E et al, 2014). Only 1/5 completed studies has included AML patients.  

Recently, however, pacritinib has been added as a treatment option in the NCRI AML-17 study for 

patients with relapsed, ITD mutated AML.  

The following chapter will explore the effect of pacritinib on signalling pathways downstream of FLT3 

to further analyse the mechanism of action and potential clinical application of the drug. 
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Chapter 4: The effect of Pacritinib on FLT3 downstream signalling pathways 
 

4.1 Introduction 

As described in chapter 3, primary AML mononuclear cells show a heterogeneous in vitro cytotoxic 

response to several different FLT3 inhibitors including pacritinib, crenolanib and ponatanib. Also, 

within the cohort of results obtained for each individual drug there remains a wide distribution of 

EC50 results (high and low) which does not strictly segregate according to FLT3 mutation status. Part 

of this diversity in response is due to different dependency on underlying signalling pathways within 

AMLs and in chapter 3 the relationship between FLT3 ITD: WT mutation ‘allelic ratio’ and cytotoxic 

response was explored.  This factor, however, only analyses the reliance on FLT3 signalling at the cell 

surface through different levels of receptor activation which fails to address whether  a greater 

degree of constitutive activation, through a higher ‘allelic ratio’ ultimately results in up-regulation of 

the secondary effects of increased FLT3-mediated drive such as proliferative response and evasion of 

apoptosis.  This chapter will focus on the effects of pacritinib on downstream targets and FLT3 

status, to address differential pacritinib sensitivity in this context. 

4.1.1 The FLT3 signalling cascade 

FLT3 has a crucial role in many of the regulatory and survival pathways of haematopoietic cells 

(Stirewalt DL & Radich JP, 2003). This has been previously described in figure 1.1 (chapter 1). 

Activation of FLT3 results in phosphorylation of these proteins with further downstream effects on 

PI3K/protein kinase B (Akt) and mitogen activated protein kinase (MAPK) pro-survival pathways. 

FLT3 is also physically associated with other aspects of phospholipid metabolism and proliferation 

such as SH2-containing sequence proteins (STAT3, STAT5, PI3K, SRC, ABL etc), the SH2 domain binds 

a phosphorylated tyrosine residue and thereby facilitates communication/activation between 

signalling proteins (Stirewalt DL & Radich JP, 2003). FLT3 also interacts with GTPase-activating 
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protein (Gap) which is a key regulator of the proliferative RAS-RAF-MEK-ERK pathway, many 

components of which are associated with FLT3 inhibitor resistance (Yang X et al, 2014).  

4.1.2: FLT3 expression in primary AML blasts: quantification and in vitro relevance  

As previously stated, around one in three patients with AML carry an activating mutation of the FLT3 

receptor; most frequently of ITD subtype.  It is well known, however, that patients expressing wild 

type FLT3 can show up-regulation of the receptor and it has also been reported that this may 

contribute to disease pathogenesis. Patients showing only wild type FLT3 expression may, therefore, 

be sensitive to the effects of a FLT3 inhibitor if the drug is able to down regulate signalling from an 

activated but structurally normal receptor. The data discussed in chapter 3 showed that a subset of 

FLT3 wild type patients still show sensitivity to pacritinib with a mean EC50 of 292nM in 33 patients 

studied which although nearly threefold higher than the average for ITD mutated samples (92nM), is 

still much lower than the same reading for many conventional cytotoxic agents such as AraC. As a 

follow up to this finding, a sample of AML patients included in the overall cohort was examined to 

specifically analyse whether the degree of FLT3 expression at the cell surface has any influence on 

pacritinib sensitivity as this is a factor that potentially negates the effect of whether or not the 

receptor is structurally normal. 

Previous methods used to quantify FLT3 expression include Western blotting, autoradiography using 

125I-labelled FLT3 ligand (FL) and flow cytometry (Grafone T et al, 2008). Flow cytometry is a 

relatively quick and simple technique which can give rapid quantification of cell surface FLT3 

expression (CD135) on both malignant blasts and normal haematopoietic cells. The antibody binds to 

FLT3 at the cell surface, the advantage of this technique over Western blot analysis is that it requires 

minimal cell numbers (<1 x 105)  from patient samples to generate a result, the technique is much 

less complex and time consuming as it can be completed in less than 3 hours,  and sub-populations 

of cells can be distinguished by co-labelling with surface markers such as CD34 and CD45 (Grafone T 

et al, 2008;Grafone T et al, 2008).  
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In addition, one group has previously suggested that FLT3 phosphorylation status and its response to 

drugs can be monitored by intracellular flow cytometry techniques where results have been shown 

to correlate with western blot and colorimetric cytotoxicity assays (Grafone T et al, 2008) using both 

FLT3 WT (HL-60), ITD mutated (MV4-11) cell lines and also in primary AML samples. In this technique 

leukaemic cells are incubated with anti-CD135-PE antibody then washed with PBS and fixed with 

100µl Fixative Reagent (BIOE Laboratories). Cells were then washed again and permeabilised with 

90% methanol to allow the antibody to Tyr591 P-FLT3 (CS) to be taken up intracellularly which 

potentially gives the advantage of measuring change in internal p-FLT3 status in response to drug 

treatment rather than that measured at the cell surface. Although this technique appears 

encouraging the data in the paper appears to be limited by the relatively low maximum signal 

intensity achieved (102 on log scale) which is similar to the background reading; also the lack of 

additional publications employing the same techniques supports the impression that the method is 

unreliable and in our experience would require 1x106 cell load per condition which makes it 

prohibitive for drug readout. 

4.2 Methods 

4.2.1: Flow cytometric methods 

Antibody staining was carried out as described in chapter 2 using primary AML mononuclear cells 

and anti-CD34 PE (BD 345802) IgG PE (BD 340270), anti-CD45 FITC (Biolegend 304038) IgG FITC 

Biolegend 400108 and anti-CD135 APC (Biolegend 313308) IgG APC Biolegend 400120. The gating 

strategy used was CD45/Side Scatter to separate the debris (CD45-/SSC-) and lymphocyte 

(CD45+/SSC-) populations from the AML mononuclear cells (CD45+/SSC+). Next 7-amino-

actinomycin D (7-AAD which has high DNA binding constant and is excluded by cells which have an 

intact membrane) staining was used to assess viability with a maximum cut off of <104 to define the 

viable population. In addition the percentage of primitive blasts was analysed using the 

CD34/Forward scatter (FSC) gate and finally FLT3 surface expression using CD135/FSC. 
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Figure 4.1: Gating strategy for primary AML mononuclear cells to determine percentage CD135 

(surface FLT3) expression.  

4.2.2 Western blotting methods 

The effect of pacritinib on FLT3 signalling and downstream target activity was assessed using 

western blotting. As described in chapter 2, AML primary mononuclear cells or the MV4-11 cell line 

(which carries an ITD mutation) were suspended at 3 x106/ml (primary samples) and 8 x 105/ml per 

ml (cell lines) and treated with varying concentrations of pacritinib or DMSO as a vehicle control. For 

the cell line experiments the doses used were untreated (DMSO 0.01% as vehicle control), 50nM, 

200nM and 500nM pacritinib. For the primary AML experiments the dose range was untreated 

(0.01% DMSO), 100nM, 300nM and 1000nM pacritinib. These ranges were designed to give a spread 

of doses above and below the mean EC50 for the given cell type (derived in Chapter 3) with the 

maximum dose being several fold higher to facilitate a maximal possible level of target inhibition. 

The plates were incubated 37°C, 5% CO2 for 1, 24 or 48 hours.  

Following electrophoresis and transfer, membranes were probed overnight with a range of different 

primary antibodies. Initially the MV4-11 gel was probed with rabbit anti-phosphoFLT3 (#3464 1/3000 

dilution) followed by rabbit anti-total FLT3 (santa cruz S18 #480 1/5000 dilution) and mouse anti-

beta actin (1/3000). Separate gels were then made for cell line and primary cell sample lysates and 

probed using rabbit anti-phospho STAT5 tyr694 (CST#C11C5 1/3000 dilution).These membranes 

were subsequently re-probed for the following antibodies anti-total STAT5 (Rabbit CST#9363P 
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1/5000 dilution), Rabbit anti-p42/44 MAPK (phospho-ERK CST#4370BC, 1/3000 dilution) and anti-

total ERK (p44-42 MAPK CST#9102, 1/5000). Duplicate gels were run for phosphorylated and total 

proteins separately. Finally beta actin (1/30000) mouse monoclonal antibody was used to assess 

uniformity of loading. 

4.3 Results of Flow Cytometry Experiments 

4.3.1: FLT3 surface expression on AML blasts 

Flow cytometric FLT3 surface expression assays were performed on cryopreserved mononuclear 

cells from a total of 13 AML patients, after thawing 8 of which showed sufficient viability and cell 

numbers to be included in the analysis. Among these patients, blast surface FLT3 expression ranged 

from 0%-20.5% (mean 8.5% Table 4.1) which refers to the percentage of blast cells in each given 

patient sample which gave a positive signal as measured by C-Flow software. The 8 cases examined 

included 3 with FLT3 ITD mutations ranging in size from 66 base pairs to one sample with 3 different 

ITD mutations of 21bp (36%), 132bp (9%) and 147bp (9%). The other 5 samples included expressed 

only WT FLT3 (by gene scanning). There was no significant difference between WT and ITD FLT3 

CD135 expression: Mean Fluorescence Intensity WT 1127, ITD 731 (p=0.6 unpaired t test). 

Sample FLT3 status CD45+ (%) CD34+ (%) CD135+ (%) MFI EC50/nM 

1. 15-0611 WT 80 85 4.8 629 25 

2. 15-3067 WT 75 79 8.9 834 32 

3. 15-3429 WT 74 55 0 0 415 

4. 15-2913 ITD 90 40 0 0 94 

5. 15-1299 WT 69 6 20.5 2826 336 

6. 15-3223 ITD 84 74 16 1491 660 

7. 16-5418 ITD 80 11.7 5.3 701 330 

8. 16-1296 WT 72 85 12.5 1346 115 



94 
 

Table 9: Details of patients used in CD135 expression cohort, values for each cell marker quoted 

refer to % CD45+/FSC+ to identify the AML mononuclear cells, then % CD34+/FSC- to identify the 

primitive blast population and finally % CD135+/FSC- as a proportion of this population to give the 

level of surface FLT3 expression. MFI refers to Mean Fluorescence Intensity of the CD135+ 

population 
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Figure 4.2: Scatterplot showing CD135 expression (Mean Fluorescence Intensity) in 8 primary AML 
samples analysed by Flow cytometry and stratified by FLT3 mutation status. Gating strategy: CD45+, 
CD135+ (FL-4 vs. FSC). MFI ITD mutated sample (n=3)  731 vs WT samples (n=5) 1127 p=0.6. 

FLT3 ITD mutations are proposed to be preferentially linked to a primitive ‘leukaemic stem cell’ 

phenotype (Parmar A et al, 2011)  and therefore, the association between CD34+ and CD135+ 

surface expression can be specifically analysed.  The scatterplot below in figure 4.3 analyses the 

relationship between CD34+ and CD135+ expression which gives an indication of FLT3 receptor 

expression level at the surface of the AML blasts.  
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Fig 4.3: Scatterplot for CD135 vs CD34 percentage expression in 8 primary samples (Spearman 

correlation p=0.86) 

The data shown in figure 4.2 shows that there was no significant correlation between CD34 and 

CD135 expression in the 8 samples tested (Spearman correlation p=0.86). 

4.3.2: Correlation of FLT3 expression with FLT3 inhibitor response measured by in vitro cytotoxicity 

Results from the Cell Glo cytotoxicity experiments using pacritinib treatment for the 8 patients were 

correlated with FLT3 percentage surface expression. Figure 4.4 below, illustrates the mean cytotoxic 

dose response as measured by EC50 versus CD135 Median Fluorescence Intensity.  
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Figure 4.4: Pacritinib efficacy using cell glo technique for 8 samples included in analysis of CD135 
expression.  

The data shown in figure 4.4 shows that there was no significant correlation between CD135 

expression and EC50 in the 8 samples tested (Spearman correlation p=0.9). 

4.4: Results of Western Blotting Experiments 

4.4.1: MV4-11 cell line FLT3 inhibition 

To assess the in vitro effect of pacritinib on FLT3 receptor phosphorylation, MV4-11 cells   were 

exposed to variable concentrations of pacritinib (as described above) for 1 & 24 hours and probed 

for phosphorylated FLT3 and total FLT3 protein.  

 

 

 

 

 

 

Fig 4.5: This shows dose dependent inhibition of phosphorylated FLT3 protein following treatment 

with pacritinib, with a more pronounced effect at 24 hours. There was no effect on FLT3 total 
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protein signal when inconsistency of loading in the outer two lanes (Unt 1 hour and 500nM 24 

hours) is taken into consideration (gels run by conventional western blotting method).  

4.4.2: MV4-11 cell line downstream pathways 

As previously described, two of the main downstream signalling pathways of FLT3 are STAT5 and 

Raf/MEK/ERK. These were, therefore, specifically analysed in the western blotting experiments. 

Downstream of FLT3, the MEK/MAPK pathway plays a central role in regulation of cellular 

proliferation and differentiation (Swords R et al, 2012). There are in vitro data to show that 

inhibition of the MEK pathway leads to a reduction in growth of the FLT3-ITD mutated cell line MV4-

11 and can also promote apoptosis in primary AML blasts. Further exploration of this effect has 

suggested that MEK inhibition allows these primitive cells to differentiate and thus become more 

sensitive to treatment with FLT3 inhibitors. 

 There was a dose dependent reduction in phospho-STAT5 signalling seen by 24 hours with a 

suggestion of inhibition of STAT5 total protein by 48 hours. Dose dependent reduction in phospho-

ERK expression was seen at 1 hour and also at 48 hours although total ERK signal was largely 

sustained.  

 

 

Figure 4.6: Effect of pacritinib on FLT3 downstream signalling in MV4-11 cell lines, doses are in nM. 
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The data show rapid inhibition of pSTAT5 signal from 1 hour onwards which is not unexpected, the 

relative decrease in total STAT5 signal is likely to be largely an artefact of uneven sample loading as 

shown by the actin result. 

4.4.3: Primary AML samples downstream pathways 

Similarly to MV4-11 cell lines there was rapid attenuation of phospho-STAT5 activity observed within 

1 hour of treatment and sustained over the time course for both FLT3 ITD mutated and WT samples. 

Very little reduction in total STAT5 expression was seen following one hour of treatment with 

pacritinib. 

 

 

 

 

 

  

 Figure 4.7: Four primary AML samples treated with Pacritinib for 1 hour. Dose range untreated, 
100nM, 300nM, 1000nM (except 15-2913 which just shows untreated, 300nM, 1000nM). 

Further western blotting experiments were subsequently carried out in the co-culture setting using a 

mouse stroma (MS-5) monolayer. These will be described in chapter 5. 

4.5: Discussion 

Flow cytometry experiments in this chapter have shown no evidence of increased CD135 expression 

in primary AML blasts which carry a FLT3 ITD mutation as compared to WT samples. This is not an 
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unexpected finding as it has been reported by other authors elsewhere (Knapper S et al, 2006b) . 

One possible explanation which has been proposed in the past is that the constitutive activation of 

the FLT3 receptor as a result of the ITD mutation leads to dimerisation and internalisation of the 

surface protein and therefore a reduction in the level of surface expression as measured by CD135 

signal intensity. A cell with high surface FLT3 expression may, therefore,  actually be less reliant on 

this pathway than  a cell with a high proportion of activated FLT3 (such as those which harbour the 

constitutively activating FLT3-ITD mutation) which may have a reduced quantity of detectable 

membrane-bound FLT3. Antibody suitability is also an issue, with poor performance and signal 

strength limiting flow cytometry for use in activated/phosphor flt3 detection. 

 Surface expression in primary samples that have been previously frozen and thawed may also be 

affected by the temperature change which could lead to degradation of the protein in some of the 

receptors; this can possibly be reduced by adjusting the reagents included in the freezing medium 

(Sasnoor L et al, 2005), or using fresh primary AML samples. Further analysis of the cohort of 

samples used for the CD135 expression experiments has shown a small but non-significantly 

increased mean CD135 expression in the WT samples compared to ITD mutated samples (mean 

fluoresence 2826 WT vs 1491 ITD p=0.6 student’s t test). This did not correlate with increased 

sensitivity to pacritinib. Rather the mean EC50 in the WT samples was higher than the ITD mutated 

samples using the Cell Glo technique amongst the cohort of 8 samples used for the CD135 flow 

cytometry experiments and also in the overall cohort as described in chapter 3. This suggests that 

the level of surface expression of the FLT3 receptor is not a major driver of sensitivity to the drug; 

binding and activity of the drug is not significantly affected by receptor frequency or density at the 

cell surface as expected. Pacritinib in common with most FLT3 TKIs targets the ATP binding pocket 

on the FLT3 molecule and it is known that FLT3 activating mutations exert a direct influence over the 

physical properties of this binding site (Pratz K & Levis M, 2008). The ITD mutation imparts 

constitutive activation of the receptor which leads to ligand independent activation, dimerisation 

and exposure of the ATP binding pocket (Pratz K & Levis M, 2008). It is logical to conclude that this is 
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a more significant driver of drug sensitivity than the magnitude of expression of a structurally normal 

(wild type) receptor.  

As an alternative method, FLT3 RNA expression can be quantified by real time PCR in comparison to 

house- keeping genes S14. Previous authors have failed to show any significant difference (or trend) 

in FLT3 RNA expression between patients that harboured FLT3 ITD mutations and WT patients 

(Knapper S et al, 2006b). Further work in development of intracellular flow cytometry as a method 

to screen for phospho-FLT3 which is known to correlate with functional activity will be of interest to 

monitor drug responses (Grafone T et al, 2008). Intracellular flow cytometry was not carried out as 

part of this project but has been done by other members of the group in the setting of the medium 

term co-culture assay (Dr Gareth Edwards). 

In summary more than one method of quantifying the level of FLT3 expression in primary AML 

samples have failed to provide a means to predict sensitivity to treatment with FLT3 inhibitors, 

which is likely to be a function of receptor activity rather than quantity. An alternative explanation is 

that it is the level of FLT3 inhibition induced by the drug which is more critical and this may be 

measured by means of the plasma inhibitory assay (PIA). This technique has shown a direct 

relationship between the degree of FLT3 inhibition (as measured by de-phosphorylation of the FLT3 

protein) achieved and drug efficacy. Reduction of residual FLT3 phosphorylation below a threshold 

level of 15% compared to baseline correlates reliably with clinical response. Data presented in this 

chapter used western blotting as an alternative method to the PIA to examine downstream effect of 

FLT3 inhibition in response to pacritinib treatment. The result in MV4-11 cell lines showed dose 

dependent inhibition of phosphorylated FLT3 protein, most marked after 24 hours of culture. There 

was no effect on FLT3 total protein in the western blotting experiments as has been described 

elsewhere for other FLT3 TKIs such as SU5614 (Parmar A et al, 2011) and crenolanib (Zimmerman E 

et al, 2013).   
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In further western blotting experiments,  inhibition of pSTAT5 signal was seen in MV4-11 cells 

following 24 hours of treatment with pacritinib and at doses above 200nM (fig 4.6). After one hour 

of treatment very little effect was observed and at the 50nM dose there was also minimal inhibition 

seen at any time point. This correlates with some previous cell line data where inhibition of pSTAT5 

signal in MV4-11 cells was seen with a dose of 125nM pacritinib following 24 hours of treatment  

with no data shown for lower doses or shorter time points (Novotny-Diermayr V et al, 2012).This is 

likely to be due to the STAT5 pathway being less critical to survival of this cell line which has been 

artificially ‘immortalised’. A redundant pathway may require a higher dose of drug to inhibit to the 

degree that cell survival is affected.  

 In contrast dose dependent, rapid and sustained inhibition of pSTAT5 signalling was more 

pronounced in primary AML samples. There was very little difference between the magnitude of the 

effect seen in the primary samples, with all 4 showing almost complete inhibition of pSTAT5 signal  

at the lowest dose of pacritinib tested (Fig 4.7). There was a suggestion of basal increase in pSTAT5 

signal in the untreated lanes of 2/3 primary samples (16-2864 and 15-2913) both of which carried a 

FLT3 ITD mutation compared to the WT sample,  supporting the observation that constitutive 

activation of the FLT3 receptor leads to increased signalling through this pathway. A previous similar 

study looking at the in vitro effects of treatment of 65 primary AML diagnostic samples with two 

other compounds CEP701 and PKC412 has suggested that cytotoxic efficacy correlates with 

inhibition of signalling through STAT5 (Knapper S et al, 2006b).  

STAT5 is a cytoplasmic transcription factor which exists as two homologous proteins known as 

STAT5a and STAT5b (Stirewalt DL & Radich JP, 2003) . Activation of FLT3 up-regulates the activity of 

STAT5 which forms part of the proliferative response to FLT3 signalling in normal cells. Within the 

western blot readout the pSTAT5 antibody detects both STAT5a and STAT5b; some AMLs have more 

top band signal (STAT5a) which was seen most clearly for this cohort in sample 15-2913 (Figure 4.7). 

It is also known that STAT5 protein exerts differential DNA binding effects depending on whether it is 
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activated by WT FLT3 or ITD mutated FLT3 (Stirewalt DL & Radich JP, 2003). In addition,  STAT5a and 

STAT5b isoforms exert different mechanisms to bind DNA; the former by means of a tetramer 

whereas STAT5b molecules form dimers (Lin J-X & Leonard W, 2000), this may also affect binding 

affinity. In reality, however, it is often difficult to distinguish the isoforms through separation on the 

gels although interestingly in this experiment sample 15-2913 appears to show more marked 

reduction in the STAT5a (top band) compared to STAT5b (lower band) (figure 4.7) suggesting that 

pacritinib can exert differential effects on the two isoforms in individual patients.  

Cells harbouring FLT3-ITD mutations have a high level of STAT5 phosphorylation (correlating with the 

increased basal pSTAT5 signal seen here in 2/4 samples) and this is associated with the ability to bind 

to DNA (Stirewalt DL & Radich JP, 2003)  and influence cellular growth and survival.    Activation of 

STAT5 targeted genes has been shown to distinguish FLT3-ITD from FLT3-WT signalling in a mouse 

model (Kharazi S et al, 2011) although from the 4 examples seen in figure 4.7, pacritinib appears to 

exert equally potent inhibition of pSTAT5 in both FLT3 WT and ITD mutated samples, regardless of 

drug sensitivity as measured by EC50.  

 A further knock on effect of activation of STAT5a via FLT3 is thought to be increased production of 

reactive oxygen species (ROS). These are unstable entities which can induce DNA double strand 

breaks (DSBs) and negatively impact on DNA repair mechanisms (Takahashi S, 2013), leading to 

genomic instability, and likely contributing to the overall poor prognosis of FLT3 ITD mutated AML. 

FLT3 activation via STAT5a also has an influence on the control of apoptosis as it prevents up-

regulation and expression of genes that can induce apoptosis such as MCL1, cyclin D1, c-myc and 

p21 (Kindler T et al, 2010).  FLT3, however, remains the proximal link in the chain and an ITD 

mutation therefore results in an enhanced ability for the cell to both proliferate and evade 

mechanisms of programmed cell death.  

In contrast to the effect seen on phospho-STAT5 activity, there was a much weaker effect on total 

STAT5 signal seen in ¾ primary AML samples analysed (the exception being sample 15-2913), 
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although there was some inhibition seen in MV4-11 cells at 500nM dose (figure 4.6). This may also 

be an artefact given that MV4-11 cells are generally very sensitive to pacritinib. At the 500nM dose 

the majority of cells are dead and hence protein loading is compromised (also shown by actin result).  

In contrast to the MV4-11 data shown in figure 4.6 following treatment with pacritinib, relative lack 

of inhibition of STAT5 total protein has been shown in response to other FLT3 TKIs in MV4-11 cell 

lines including ponatanib (Gozgit JM et al, 11 A.D.) and crenolanib (Galanis A et al, 2013) (Piloto O et 

al, 2007) showed a similar effect in both ITD mutated and FLT3 WT-expressing cell lines and 

suggested that this uncoupling of response to phosphorylated STAT5 and its total protein is 

observed as a result of other unidentified signalling proteins which may play a role in cell 

proliferation and survival through this pathway. Breakdown of total protein also requires activation 

of the proteosome and a degradation process which requires up to 72 hours for completion. This 

must also be preceded by inhibition of phosphorylated (active) protein. In addition, a more rapid 

response is associated with a phosphorylation site that is more essential to stability of the total 

protein; the above data suggest that pSTAT5 is essential for the stability of the MV4-11 cell line 

(hence additional total STAT5 response) to a greater degree than in primary AML cells. 

Pacritinib has a dual inhibitory effect on both FLT3 and JAK2 mediated signalling, with both pathways 

converging on STAT5. Each of the four member proteins of the JAK family can recruit and 

phosphorylate (activate) STAT5 following cytokine engagement principally of the IL-2 family 

(Hatzmichael E et al, 2013;Lin J-X & Leonard W, 2000) which suggests that, to effectively silence this 

pathway, dual inhibition of both FLT3 and JAK2 may be required.  Nevertheless, gain-of function 

mutations of JAK2 (V617F) which result in over-activation of the proliferative JAK2-STAT pathway are 

rare in AML although there is some association with one of the core binding factor mutations 

(t(8,21) (Dohner K et al, 2006). For this reason (and limitations with antibodies for these assays), the 

effect of pacritinib on JAK2 signalling was not specifically analysed as part of this project.  Hart et al 

have previously shown that pacritinib can induce dose dependent inhibition of phosphorylation of 
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JAK2, STAT3 and STAT5 in 293T (human embryonic kidney cells) with inhibition of phosphorylation of 

STAT5 seen in murine Ba/F3-JAK2V617F cells which are of B lymphoid origin (Hart S et al, 2011a). A 

reduction in pSTAT5 in SET2 and HEL92.1.7 cell lines, both of which carry a JAK2V617F mutation was 

also seen. 

The other main downstream effector of FLT3 analysed in this work was the MEK/ERK pathway. Here 

there was a similar effect on p-ERK signalling in cell lines and in a primary AML sample cultured alone 

in IMDM medium. In summary, inhibition of p-ERK signal was seen in MV4-11 cells at 1, 24 and 48 

hours following treatment with 500nM pacritinib and a lesser effect with the 200nM dose (Fig 4.6). 

There was no real effect on total ERK signal in MV4-11s. 

The work described in this chapter confirms that pacritinib is a drug which can inhibit 

phosphorylation of FLT3 in ITD mutated (MV4-11) cell lines and that this effect then translates into a 

knock on reduction in pSTAT5 and also pERK signalling. In primary AML samples, similar inhibition of 

pSTAT5 signal was seen. No correlation was seen between FLT3 expression, as quantified by cell 

surface expression, and pacritinib sensitivity which suggests that the mechanism of action of the 

drug is more complex than binding affinity for a normal receptor.  The next step was to analyse how 

well pacritinib can perform in a co-culture setting, using a stroma monolayer since this property is 

likely to define its potential clinical superiority over and above that of existing FLT3 inhibitors. 
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Chapter 5: The in vitro effect of stroma on sensitivity to pacritinib in primary AML samples 

5.1 Introduction:   

 

The leukaemic clone is organised as a hierarchy (Parmar A et al, 2011), and leukaemic stem cell (LSC) 

behaviour is modulated by interactions and signals received within the BM microenvironment (Tabe 

Y & Konopleva M, 2014). This niche  provides a supportive microenvironment (Parmar A et al, 2011) 

for normal and malignant haemopoeitic cells and regulates their survival via a cycle of proliferation 

and differentiation (Wilson A & Trumpp A, 2006). LSCs within the BM niche are felt to derive 

‘sanctuary’ in this environment which allows them to evade death in response to conventional 

cytotoxic agents, in contrast to circulating myeloblasts. As described in chapter 1 there are a variety 

of characteristics of the bone marrow microenvironment in terms of its physical and chemical 

properties which govern how it interacts with normal and malignant myeloid progenitors. These will 

be briefly repeated in the introduction to this chapter but for a comprehensive description the 

reader is referred back to chapter 1 (1.8-1.10). 

5.1.1 The difference between normal and malignant marrow stroma 

In patients with AML the normal BM niche may be exploited by malignant progenitors as many of its 

components contribute to LSC engraftment, survival and drug resistance. Altered signalling within 

the leukaemic stroma, leads to suppression of re-growth of normal progenitors and the creation of 

leukaemia niches containing small numbers of quiescent LSCs. These mechanisms directly impact on 

patient outcome, for example via infective complications due to prolonged periods of cytopenia 

following induction chemotherapy which are a common cause of death. Brisk relapse following a 

period of very slow count recovery (also a common clinical feature) may reflect dual benefit from a 

return to ‘stroma recovery’ for both normal and malignant stem cells alike. Data from mouse models 

has shown that certain genetic mutations, such as DNMT3a mutations, provide a competitive 

repopulation advantage to pre-leukaemic  haemopoeitic stem cells (HSCs) over non-mutated HSCs 

which allows them to expand in patients at diagnosis and during presumed periods of ‘remission’ 
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(Schlush L et al, 2014). This provides evidence that there is an ancestral clone of pre-leukaemic HSCs 

which can persist during remission and may therefore be resistant to induction chemotherapy 

(Schlush L et al, 2014). Such clones most probably reside within the bone marrow microenvironment 

in order to evade conventional cytotoxic agents and thus require specific targeting, with drugs that 

can overcome the protective effect of the stroma.   

5.1.2: Use of therapeutic agents to overcome stroma-induced protection 

As has been described above and previously in Chapter 1, the modification and exploitation of 

stromal signalling leads to persistence of LSCs in the bone marrow after chemotherapy and is 

thought to be a major factor in the dismally high level of relapse seen in patients with acute myeloid 

leukaemia (Alvares C et al, 201)) . The durability of this population within the bone marrow 

microenvironment makes the identification of agents which can overcome this stroma-induced 

protection of LSCs and increasingly popular area for therapeutic development. One such drug, which 

has been tested in vitro and in vivo in this context is plerixafor, a competitive antagonist of the 

CXCR4-CXCL12 axis (Uy G et al, 2012). Plerixafor has shown the ability to mobilise blasts into the 

peripheral blood in a mouse AML model and has also shown a similar effect in phase1/2 studies in 

humans with associated favourable remission rates. The combination of plerixafor with conventional 

induction chemotherapy was recently studied in the NCRI AML18 Pilot study, but the further clinical 

development of the agent in this clinical setting has recently been abandoned for commercial 

reasons.  

 FLT3 ITD mutations have been shown to be present in primitive human CD34+CD38- cells, including 

those with strong expression of PKH26 which are known to be non-cycling or quiescent (Alvares C et 

al. 457-65). This shows that the mutation can occur at a very primitive level of differentiation, within 

the haematopoietic stem cell compartment (Levis M et al, 2005) and in a paediatric setting it has 

been shown that detection of the FLT3 mutation within this sub-population of the disease clone 
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confers a poor prognosis. Targeting FLT3 ITD may, therefore, offer a means of eradicating this 

leukaemia stem cell population and thus reducing the risk of relapse. 

The effect of FLT3 TKIs on the interaction between leukaemic FLT3 ITD+ stem/progenitors and the 

bone marrow niche has been previously investigated for several agents including SU5614 (Parmar A 

et al, 2011), Sorafenib  and Quizartinib (Yang X et al, 2014)  . The effectiveness of these drugs on 

AML cell lines or primary AML mononuclear cells co-cultured on murine stoma has been previously 

studied by these authors including the comparison of activity between FLT3-ITD mutated and FLT3-

WT primary samples. Differential effects have been observed depending on FLT3 status, for example 

a lack of inhibition of pSTAT5 signal on stroma in FLT3-ITD + primary cells treated with SU5614 in 

comparison to FLT3-WT (Parmar A et al, 2011). Another observation noted by the same authors was 

an increased fraction of non-dividing cells following treatment with SU5614 regardless of FLT3 

status, however, this effect was reversed by co-culture with EL08-1D2 stroma in FLT3 WT cells but 

not in FLT3 ITD mutated cells. This suggests the presence of a specific interaction between the FLT3 

ITD mutated cells and the stroma which blocks cell division, or amplification of a pro-differentiation 

signal in the WT cells. Cell cycle analysis showed an increase in the fraction of non-dividing cells in 

response to drug treatment for both subgroups off stroma and, importantly, in the co-culture setting 

specifically for the FLT3 ITD mutated group; therefore cell cycle arrest was proposed as a possible 

mechanism of resistance. 

An unexpected finding of the work by Parmar et al was that stroma support appeared to contribute 

to the maintenance of the primitive long term progenitors (LTC-CFCs) as measured in a 6 week 

colony formation assay where the number of colonies per 1000 CD34+ cells was seen to increase in 

the co-culture setting following treatment with SU5614 compared to DMSO vehicle control. The 

FLT3 status of these progenitors was confirmed using PCR and the same observation was not seen 

for FLT3 WT samples. Overall, the conclusion was that although inhibition of aberrant FLT3 signalling 

and disruption of downstream pathways may be achievable; this does not automatically correlate 
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with eradication of the earliest stem/progenitor cells responsible for disease propagation. This 

observation may be because this population is not dependent on mutant FLT3 for signalling and 

survival or because the potency of the drugs tested is inadequate to overcome enduring FLT3 

activation (despite short term inhibition of pFLT3 being seen). One such explanation for this is that 

any drug which actively targets stages of the cell cycle (such as AraC which targets p21 induction) 

(Radosevic N et al, 2001)  will inherently lack efficacy in non-cycling cells such as those which 

populate the stroma niche. 

The differential effect seen in FLT3 ITD mutated and WT samples suggests the existence of some 

kind of specific survival or renewal signal emanating from the bone marrow niche which can only be 

utilised by ITD mutated cells. Although FLT3 WT cells may gain some benefit,  Yang et al proposed 

that this may in part be related to exogenous production of FLT3 ligand (FL) to which FLT3 ITD+ 

progenitors are more  sensitive and may impair the activity of FLT3 inhibitors (Yang X et al, 2014).  

Sorafenib has a differential inhibitory effect to SU5614 and the expansion of malignant LTC-CFCs 

from the stroma niche was not seen following treatment with this drug using the same AML samples 

using a 6 week long term culture assay using culture on the FBMD-1 stromal cell line in the presence 

of TPO and FL (Parmar A et al, 2011). Using a different technique to assess potency, namely the 

MTT/proliferation assay, however,  it has been shown that both stroma and FL conferred a 

protective effect against both sorafenib and quizartinib using FLT3-ITD mutated Molm14 cell lines 

cultured on human stroma cells donated by healthy volunteers (Yang X et al, 2014). An increase in 

the EC50 from 0.6nmol/l for cells in suspension to 4.8nmol/l for cells on stroma with the addition of 

FL was observed. What is clear from all of this earlier work is that even some of the most tested 

second generation FLT3 inhibitors appear to have questionable activity against FLT3-ITD+ 

progenitors within the bone marrow niche which justifies the exploration of this therapeutic target 

with emerging molecules such as pacritinib. 
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5.1.3: Rationale for the use of pacritinib against stroma induced protection 

  

Intracellular signal transduction pathways are connected through a network of protein kinases and 

deregulation of their activity has been reported in the majority of cancers (Weisberg E et al, 2012). 

The pathways relevant to FLT3-ITD-derived survival advantage have been described in chapter 4 but 

can be summarised as the PI3K/AKT pathway, the RAS/MEK/ERK pathway and the JAK/STAT 

pathway. To further complicate matters, certain kinases can communicate or ‘cross-talk’  between 

pathways such as MAP kinase pathway, non-receptor TKIs (Src) and FLT3 itself to produce feedback 

in response to drug treatment and a complex interaction with the stroma niche which may warrant 

the use of multi-targeted agents to overcome both residual disease and drug-induced resistance 

(Weisberg E et al, 2012).  

FLT3 ITD mutations lead to constitutive activation of STAT5 and this latter downstream target may 

also be activated by JAK. Since the end result of this pathway is enhanced cellular proliferation there 

is a strong rationale for combining the two targets via a drug which can inhibit both FLT3 and JAK.  

High levels of IL-6 secreted by stroma are known to activate JAK (Weisberg E et al, 2012;Novotny-

Diermayr V et al, 2012) which may enhance the significance of this kinase within the bone marrow 

microenvironment. Combination of the FLT3 inhibitor PKC412 with several selective JAK inhibitors 

including ruxilotinib and AZD-1480 has been shown to induce synergy against primary AML cells 

cultured on HS-5 stroma and in the presence of stroma culture medium (SCM), although the activity 

was noted to be diminished against MV4-11 (ITD mutated) cells (Weisberg E et al, 2012). There are 

as yet minimal published data looking at pacritinib alone in this context which justifies exploration of 

this question as will be described below. 

 

5.2        Methods 

 5.2.1  48 hour co-culture model using Cell Glo technique 
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In this experiment each individual primary AML patient sample was cultured with the same drug in 

three different conditions which included standard IMDM medium, cytokine enriched Long Term 

Culture Medium (LTC) medium and finally LTC medium in a 96-well plate previously seeded with a 

monolayer of mouse (MS5) stroma cells. The latter condition was used to represent an in vitro 

model of the bone marrow microenvironment to enable assessment of whether AML cells are 

similarly sensitive to pacritinib when supported by a stroma layer. MS-5 cells were chosen as they 

are robust and grow well in standard culture conditions. Their non-human origin also makes them 

easy to distinguish from human AML cells in co-culture experiments as they lack CD45 expression by 

FLOW cytometry. For experiments, cells were seeded in 96-well plates at a seeding density of 1500 

cells/well (final volume 200ul/well), or at 7.6 x10^4 cells/well in 6 well plates (final volume 3ml/well) 

for western blot set up and incubated for 24 hours prior to the addition of AML primary cells. 

As a control, additional plates were set up in parallel with each experiment containing just MS-5 cells 

and drug at the same concentration. This was necessary to assess the effect of the drugs on the MS-

5 cells in isolation, for example a potent cytotoxic effect at 48 hours would suggest that the micro-

environmental model was not robust. Also, by subtraction of the luminescence readings for MS5 

cells alone from that of the combination of MS-5 and AML cells a reading of the signal relating to just 

the AML (and therefore their individual sensitivity on stroma) may be derived. 

5.2.2  Patient characteristics of stroma cohort 

Results pertaining to a total of 7 primary samples are available for analysis using this model. The 

patient characteristics of the 7 samples analysed and details of their presentation, disease 

phenotype and FLT3 status are detailed in the Table 5.1. 
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Sample Age 

(years) 

Gender Cytogenetics ITD TKD NPM1 De novo CR post #1? 

15-0611 17 M Int WT WT WT Y Y 

15-2857 43 F Int Mut Mut WT Y Y 

17-2661 27 M Poor t(3,5) Mut WT WT Y Y 

15-3063 65 M Int Mut WT WT Y No 

Resistant 

disease 

17-3549 42 F Int Mut WT Mut Y Y 

17-3392 66 M Int Mut Mut Mut Y Y 

17-3872 55 M Int WT Mut Mut Y  No 

Allograft 

5.3  Table 10: F=Female, M=Male, Int=Intermediate risk cytogenetics, Poor=Poor risk 

cytogenetics, WT=Wild type, Mut=Mutant, De novo=no prior MDS, AML or other 

malignancy, CR post #1=remission status post course 1 where CR = <5% blasts by 

morphology and no detectable MRD markerResults 

5.3.1  In-vitro cytotoxic response according to culture medium 

Mononuclear cells from the 7 evaluable patients were incubated for 48 hours with a range of 

concentrations of pacritinib as described above. Figure 5.1 shows the mean Cell Glo dose response 

curves for this cohort stratified by culture medium for all 7 samples. The AML only curve refers to 

cells cultured in bare 96-well plates suspended in IMDM. The MS5- curve represents the result for 

the value derived from subtracting the readings from the MS-5 and drug only plates from that for 
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the ‘combination’ plates (MS-5 monolayer plus AMLs). The MS5 plates were cultured in LTC 

and the effect of LTC vs IMDM in the absence of stroma is discussed later in this section. 
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Figure 5.1: Mean cytotoxic dose response to pacritinib in 7 primary samples cultured independently 
(AML only) or in combination with MS-5 stroma cells. The graph shows a higher % survival in the co-
culture setting compared to IMDM only which was statistically significant at low doses <95nM 
(*=p<0.05 Mann Whitney U test).   

Further analysis of these data shows that, for doses of pacritinib <100nM, there is a statistically 

significantly increased cytotoxic response (measured as reduction in % cell survival) when cultured in 

IMDM compared to that seen on a MS5 stroma layer, suggesting a protective effect of the stroma. 

At doses of >100nM the difference in cytotoxic response was not statistically significant between 

IMDM and MS5 conditions which is in line with the mean EC50 for ITD mutated samples. Initially it 

was thought that this may be due to a toxic effect of pacritinib on the MS5 stroma at higher doses. 

Data from these experiments does not, however, support this hypothesis. Figure 5.2 shows the 

mean cytotoxic dose response for MS5 cells from 7 experiments and clearly shows that pacritinib has 

minimal effect on their survival.  

A

n

t

i

-

F

L

T

3 

E

C

5

0

 

3

1

n

M 

-

1

7

1

8

 

I

T

D 

p

S

T

A

T

5 

A

c

t

i

n 

E

R

K 

E

C

5

0

 

4

2

9

n

M 

1

7

-

1

3

5

2

 

W

T 

 

* * *

t

       

5

0

         

2

0

0

       

5

0

0

             

U

n

t

       

5

0

          

2

0

0

        

5

0

0

               

U

n

t

        

5

0

         

2

0

0

       

5

0

0

     

  

1

 

H

O

U

R

                                         

2

4

 

H

O

U

R

S

                                                  

4

8

 

H

O

U

R

S 

*

c

t

i

n 

* 

* * 
* 

* 
* 



114 
 

-2 .5 -2 .0 -1 .5 -1 .0 -0 .5 0 .0 0 .5

0

2 0

4 0

6 0

8 0

1 0 0

L o g D o s e  (n M )

R
e

la
ti

v
e

 c
e

ll
 n

u
m

b
e

r 
(%

)

 

Figure 5.2: Mean cytotoxic dose response of MS5 cells to pacritinib treatment in 7 experiments 
showing no effect on survival below the maximum dose (3µM) 

 

The histogram below (Fig 5.3) shows comparative EC50s in individual patient samples cultured in the 

two culture conditions and allocated according to FLT3 mutation status. 

IT
D

T
K

D

IT
D

+
T

K
D

W
T

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

F L T 3  s ta tu s

M
e

a
n

 E
C

5
0

/n
M

IM D M

M S 5 -

 

Figure 5.3: Histogram showing EC50 for AML primary samples cultured either in isolation or in 
combination with MS-5 stroma cells stratified by FLT3 mutation status. The data shows comparison 
for same sample cultured in isolation (IMDM) or on stromal layer (MS5-). ITD samples n=2 mean 
value given (sample 15-3063 excluded as resistant), WT n=1, TKD n=1. ITD+TKD n=2 (mean). 

The data above suggest that the stroma layer supports the AML cells and makes them less sensitive 

to the effect of pacritinib, as shown by the consistently higher EC50 for culture on MS5 stroma 
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compared to IMDM medium alone. Suprisingly, the single WT sample appears to be more sensitive 

than any other subtype, but as a single example this likely represents individual variation and is sadly 

a reflection of the small sample size.  

The next question to address is to what extent the composition of the culture medium itself impacts 

on sensitivity to pacritinib.  As described in chapter 2 the LTC medium differs markedly from IMDM 

including the addition of cytokines (TPO, IL-3 and GCSF) and also a different base medium (α-MEM 

with supplements).  

-2 .5 -2 .0 -1 .5 -1 .0 -0 .5 0 .0 0 .5

0

2 0

4 0

6 0

8 0

1 0 0

L o g  D o s e  (n M )

IM D M

LTC

R
e

la
ti

v
e

 c
e

ll
 n

u
m

b
e

r
 (

%
)

 

Fig 5.4: Mean dose response curve for 7 primary AML samples cultured in IMDM versus LTC medium. 
The graph shows higher survival in the LTC medium compared to IMDM which is most marked at low 
doses of pacritinib, the effect being absent at the 3µM and 1.5µM dose (lines converge). No 
significant differences found at any dose. 

The results shown in Fig. 5.4 suggest that the LTC medium exerts a considerable positive impact on 

survival of AML cells in 48 hours culture even in the absence of stroma support. These 48 hour co-

culture experiments were carried out using the Cell Glo technique. As discussed in chapter 3 the 

readout from cytotoxicity assays cannot be reliably interpreted as confirmation that cell death has 

occurred. Confirmation that living cells are no longer viable requires additional assays looking at 

induction of apoptosis such as the Annexin V Binding Assay (see chapter 3). This was carried out 

using AML mononuclear cells from 3 individual patients, all of whom harboured a FLT3 ITD mutation. 
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The primary cells were cultured on and off MS-5 stroma and the results of these experiments are 

shown in Figure 5.5 (48 hour culture) and 5.6 (7 day culture) below.  

                 

 

 

 

 

 

 

Figure 5.5: 48 hour Annexin V/PI response in primary AML cells treated with pacritinib or DMSO 
vehicle control in the presence and absence of MS-5 stroma (data from Mrs Michelle Lazenby) 
**p<0.001 *p<0.01 

 

 

 

 

 

 

 

Figure 5.6: 7 day AnnexinV/PI response in primary AML cells treated with pacritinib of DMSO vehicle 
control in the presence and absence of MS-5 stroma (data from Mrs Michelle Lazenby) **p<0.001 
*p<0.01 
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The results above show marked reduction in late apoptotic induction in primary AML cells cultured 

on stroma compared to IMDM culture medium. This was seen throughout the dose range at 48 

hours. At 7 days a greater than 50% Annexin V/PI ++ response was only seen at the 1000nM dose in 

the co-culture setting. 

5.3.2  Western blotting results: effect of stroma on downstream signalling 

As described in chapter 4, pacritinib has a variable effect on signalling pathways downstream of the 

FLT3 receptor tyrosine kinase seen in in vitro experiments performed in the absence of a stroma 

monolayer. In order to explain why primary AML cells appear less sensitive to pacritinib in the co-

culture setting it is necessary to analyse whether there is any differential effect on downstream 

signalling pathways when cells are cultured on stroma, which could potentially highlight a source of 

disease resistance.  

Western blot experiments were carried out in the co-culture setting using six well plates pre-seeded 

with a MS-5 mono-layer. The aim of this was to analyse any difference in signalling response to 

pacritinib treatment when AML cells are cultured on stroma which is caused by the stroma itself. The 

six well plates were seeded with MS5 cells at a density of 7.5x105 per well with AML cells and drug 

dilutions added following an initial 24 hour incubation. The samples were harvested after the 

desired time period and divided into two separate populations: suspension and adherent cells. The 

‘suspension’ population contains those AML cells which are floating whereas the adherent 

population contains those cells that have attached to the stroma layer, these cells being removed by 

the addition of trypsin to each well after the suspension fraction had been removed. Results 

suggested that amongst the stroma adherent population there was a reduced effect on phospho-

STAT5 signalling in comparison to that seen in the suspension fraction. 
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Figure 5.7 Sample 15-2913 (FLT3 ITD mutated) pSTAT5 and STAT5 signalling on and off stroma 
monolayer (loading adjusted in light of actin result) at 24 hours. 

The blots above show similar levels of pSTAT5 inhibition in the stroma co-culture setting to those 

seen in AML cells cultured in isolation although the pSTAT5 signal was basally increased in co-culture 

and the effects of pacritinib were mildly attenuated amongst the adherent cell population. There 

was some inhibition of total STAT5 signal seen, more so than in the previous samples although this 

may be affected by the uneven actin loading. Interestingly however, the pSTAT5 signal was basally 

increased in co-culture setting and the effects of pacritinib were mildly attenuated amongst the 

adherent cell population. Also, the actin result shows uneven loading in the adherent cells for the 

untreated lane therefore if loading were equal, this effect may have been more marked. There was 

also a less pronounced effect on total STAT5 signal seen 

As described, previous authors have shown that cytokine-activated ERK rather than STAT5 appears 

to be the most important downstream signalling protein mediating the protective effect on 

leukaemic blasts in a co-culture setting (Yang X et al, 2014). The blots from this experiment were, 

therefore, re-probed using anti-phosphoERK and anti-total ERK antibodies without the need for 

membrane stripping as the proteins have different molecular weights (pSTAT5 90kDa pERK 1+2 

42/44 kDa doublet). Figure 5.8 shows the results of this same experiment using pERK/ERK 

antibodies. 
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Figure 5.8: Sample 15-2913 (FLT3 ITD mutated) pERK and ERK signalling on and off stroma 
monolayer. 

The result here shows striking up-regulation of pERK and ERK signalling amongst the stroma co-

culture suspension and adherent cells in untreated samples. This was largely overcome by 1000nM 

pacritinib dose in the suspension cells but the adherent cell signal was effectively maintained even 

up to the maximum dose used. Off stroma there was inhibition of pERK signal seen with pacritinib 

treatment but no effect on total ERK. 

5.4  Discussion 

The experiments described in this chapter have shown that at 48 hours, AML cells are less sensitive 

to pacritinib if cultured on a monolayer of mouse stroma cells, using media enriched with cytokines 

compared to when they are grown in isolation using IMDM; a lower EC50 is seen for culture in IMDM 

compared to in the co-culture setting.  This suggests that the stroma has an effect on survival, which 

may either be because it in some way inhibits the effect of the drug, or because  it generates signals 

that can activate resistance pathways to allow the leukaemic cells to survive. This effect was 

statistically significant for doses of ≤95nM Pacritinib: using Wilcoxon Signed Rank test the p value for 

an increased cytotoxic response in IMDM as compared to culture on MS5 stromal cells was 

consistently <0.05. Another interesting observation from comparing the survival curves on and off 

stroma shown in Figure 5.1 is that the stroma appears to give a survival advantage to untreated cells 

given that the greatest divergence between the curves is seen at the lowest doses of the drug. This is 

likely be due to basal up regulation of pSTAT5 and pERK signalling on stroma as observed in the 
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western blotting experiments (Fig 5.7 and 5.8).  The data also show that the enriched LTC medium 

confers a survival benefit even in the absence of stroma (Fig 5.4) which was most marked in the 

middle part of the dose range but seemed to be abrogated at very high or low doses of pacritinib. 

The maximum divergence of the curves across the middle part of the dose range seen in Fig 5.4 is 

likely to be due to the effect of cytokines in the medium which provide support and up-regulate pro-

survival pathways sufficiently to improve survival around the threshold of the EC50 but cannot 

overcome the inhibitory effect of very high doses of pacritinib and is not required by effectively 

untreated cells at low doses in the absence of stroma. There was limited sensitivity to pacritinib seen 

in MS5 cells cultured in isolation (Fig 5.2) which suggests that they are not reliant on FLT3 signalling 

for survival. 

When considering the 7 samples used for the stroma co-culture experiments, there were two 

samples with atypical results which effectively translated as resistance in both IMDM and MS5 

conditions with no significant difference between the two. One of these patients (15-3063) carried a 

FLT3 ITD mutation. The other patient (17-3872) harboured a FLT3 TKD point mutation at diagnosis 

and went on to have clinically resistant disease, having failed to achieve remission following the first 

course of chemotherapy.  These findings likely relate to a lack of reliance on FLT3 signalling in these 

samples despite the fact that both harboured a form of FLT3 mutation. This supports the theory that 

the link between the structure of the FLT3 receptor and sensitivity to FLT3 inhibitors is complex 

which limits the effectiveness of single agent treatment with pacritinib. Clearly with such small 

numbers it is difficult to draw meaningful conclusions and to improve the robustness of this data, 

additional samples would be required. 

In addition to a reduction in the cytotoxic response to pacritinib seen when AML cells are cultured 

on stroma, the data described above suggest this effect is due to inhibition of apoptotic induction in 

this setting compared to culture in IMDM alone. Figures 5.5 and 5.6 show that >50% late apoptotic 

induction on stroma was only achieved following 7 days of culture in the 1000nM dose level. This 
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offers a plausible explanation for apparent resistance seen on stroma after 48 hours of culture using 

the Cell Glo technique. Outside of this dose and time point late apoptotic cell levels of <10% were 

seen and the difference between stroma and IMDM plates was highly significant (p<0.0001).  The 

finding of potent FLT3 inhibition which does not result in clearance of bone marrow blasts has been 

described elsewhere (Yang X et al, 2014) and was previously attributed to the occurrence of  cell 

cycle arrest rather than induction of apoptosis. Cytotoxicity assays which measure ATP generation 

are limited by the lack of ability to distinguish viable cells from ‘static’ cells. 

When assessing the reliability of these findings it is prudent to analyse how well the experimental 

conditions reflect the climate in vivo. Clearly the use of a mouse stromal cell line (MS5) rather than 

human stroma immediately makes the culture model less akin to conditions within the patient’s own 

microenvironment. Human stroma however, is often less robust and difficult to culture reliably in a 

high throughput drug assay.  Also it takes around 6 weeks to grow human stroma to a level of 

confluence and it can only be passaged once which is limiting from a practical laboratory 

perspective. 

The experiments above used different culture media, namely IMDM and LTC. The latter contains 

additional cytokines including IL-3, IL-6, Thrombopoeitin (TPO) and Granulocyte Colony Stimulating 

Factor (GCSF) which are of human origin and may be more advantageous in terms of leukaemic cell 

survival in vitro than the mouse stroma. All of these cytokines may  independently affect response to 

the microenvironment; for example, IL-6 is known to activate STAT5 via JAK and this may confer 

additional resistance properties for the adherent/suspension primary AML mononuclear cell 

population which would not have been seen had the MS5 cells been maintained in IMDM or alpha-

MEM without the addition of cytokines. In a study of other myeloid malignancies such as Chronic 

Myeloid Leukaemia and AML it has been shown that certain cytokines such as IL-6 and GM-CSF may 

play a role in stroma-mediated cytoprotection of TKI treated disease (Weisberg E et al, 2012). 



122 
 

The data comparing IMDM and LTC in the absence of stroma suggest that the enriched medium 

exerts a protective effect. The IL-3/6 data suggest that this is purely a beneficial influence; the role of 

G-CSF is, however, more controversial. Granulocyte Colony Stimulating Factor is a glycoprotein 

growth factor for myeloid cells which stimulates proliferation, differentiation of neutrophils and 

their precursors. The effect of G-CSF in a drug treatment model partly depends on the cell cycle 

effects of the drug(s) involved. G-CSF is, for example, commonly used as part of a standard 

chemotherapy regimen used to treat AML (Fludarabine-AraC-G-CSF FLAG) where it must be given 21 

hours prior to the other two agents for maximal impact on leukaemic cell survival to be observed in 

an in vitro setting. In contrast sequential exposure to GCSF and fludarabine lead to improved survival 

suggesting a negative impact on drug efficacy. The effect of continuous exposure to G-CSF in a 48 

hour in vitro model is, therefore, difficult to predict.  

In addition, conventional cytotoxic drugs such as fludarabine and AraC exert their effect by means of 

‘bulk kill’ with generic cytotoxic effects on all cells (e.g. interruption of base sequencing in DNA). 

Modern targeted agents such as FLT3 TKIs, however, have a more specific mode of action. In the 

context of FLT3 there is, as previously discussed, an association between FLT3 ITD expression and 

CD34+ phenotype especially within the non-cycling stroma-niche population. It has been shown that 

cytokine cocktails (IL-1beta, IL-3, IL-6, SCF, GM-CSF) can reduce the amount of CD34+ progenitors in 

acute myeloid leukemia (AML) (Braun SW et al, 2001). This was then shown to translate into a 

reduction in CD34+ colony formation which was also associated with a better clinical prognosis. 

There may, however, be a potential negative effect on the efficacy of a drug such as pacritinib as a 

result of cytokine induced differentiation, if the loss of CD34 expression is linked to a real time 

reduction in FLT3-ITD mutant phenotype and behaviour. 

To formally answer the question regarding the presence of an independent effect of the medium it 

would have been necessary to compare LTC medium with and without cytokines to specifically 

analyse whether the cytokines provide a survival benefit to the AML cells. Once this has been 
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established it would then be possible to look at any additional benefit derived from the MS-5 cells,  

over and above the effect of the medium. This was beyond the scope of this work which was run 

over the course of one year, working part time in the laboratory and with some on-going clinical 

commitments. It would certainly form part of future work to be carried on in this project if time was 

available. 

Overall these experiments suggest that a short term culture model and survival/resistance at 48 

hours is probably less relevant to disease relapse than when a longer term culture model is used. 

Other members of this group have carried out additional medium and longer term culture 

experiments which suggest that pacritinib may be able to suppress leukaemic outgrowth from the 

stroma after 14 days of culture and suppresses colony formation after 5-6 weeks of growth using a 

cobblestone technique. I am grateful to Dr Gareth Edwards and Dr Caroline Alvares for their 

assistance with these techniques. 

Reduction in the ability to target pathways downstream of FLT3 is part of the explanation for the 

lack of efficacy seen following treatment of AML cells on stroma with FLT3 TKIs.  Previous work in 

the MV4-11 cell line using SU5614 was shown to reduce phosphorylation of FLT3 and its 

downstream markers STAT5 and ERK when co-cultured with the murine cell line EL08-1D2. The same 

authors found a lesser reduction in activated (phosphorylated-STAT5) in primary AML cells treated 

with SU5614 which was similar in both FLT3-ITD mutated and WT samples. Interestingly, uncoupling 

of FLT3-ITD from STAT5 signalling in primary CD34+FLT3-ITD+ cells in the presence of TKI was seen 

(Parmar A et al, 2011) and may be attributed to isolated inhibition of FLT3 at the plasma membrane 

level having less effect on intra-cytoplasmic signalling. This lends weight to the argument for a 

therapeutic role for agents which can target STAT5 via a dual-pronged approach.  

The co-culture western blotting data presented here is limited to that derived from using a single 

primary AML sample, from a patient who harboured a FLT3 ITD mutation. Although the conclusions 

drawn from this work are interesting, it should be emphasised that this is still only a single example 
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and therefore further repetitions are required to corroborate the evidence presented here, given 

the heterogeneity of AML patients.  This would have required significantly more time in the 

laboratory than was available within the constraints of this project in order to repeat the experiment 

in a minimum of 3, ideally 5, patient samples including a mixture if FLT3 ITD mutated and WT cases. 

This would however, form a large part of any future development of this project.  

In the stroma co-culture setting, basal phosphorylated and total STAT5 signal was increased in both 

the suspension cells and in the adherent population (Fig. 5.7). In addition, there was some 

attenuation in the pSTAT5 response seen in the adherent AML cells compared to suspension cells or 

the same sample cultured off stroma (in IMDM).  

Previous authors have looked at the relative importance of the STAT5 pathway in in vitro 

experiments looking at the efficacy of FLT3 inhibitor therapy on and off stroma (Yang X et al, 2014). 

Although its role is controversial (Parmar A et al, 2011) one interesting paper demonstrated that 

inhibition of STAT5 phosphorylation did not correlate with cytotoxicity in FLT3-ITD positive blasts on 

stroma  using the MTT method (Yang X et al, 2014).  Yang also confirmed that IL-3 activates STAT5 

independently of FLT3 in Molm14 cells on or off stroma; this is relevant because the LTC medium 

used for the stroma plates in these experiments was supplemented with cytokines including IL-3, 

TPO and GCSF. This offers a possible explanation for the basal up-regulation of both p-STAT5 and the 

total STAT5 signal seen in these cells, but not seen in the IMDM culture conditions. Adherent 

fractions however, displayed increased p-STAT5 compared to suspension cells in the same medium 

which suggests that the increased signal seen on stroma is independent of the effect of the LTC 

medium. 

The other main downstream effector of FLT3 analysed in this work was the MEK/ERK pathway which 

was also tested in the co-culture setting, albeit in a single patient sample. There was inhibition of 

ERK phosphorylation above the 300nM dose in the IMDM condition where as on stroma this effect 

was reduced. The adherent cells showed no inhibition of p-ERK signal even using the maximal 
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1000nM dose and the suspension cells were only sensitive at the 1000nM dose (Fig 5.8). This has 

also been reported elsewhere (Yang X et al, 2014) and, interestingly, this reduction in activity against 

components of the ERK pathway when AML cells are cultured on stroma suggests that this may be a 

mechanism of potential resistance to Pacritinib (and other TKIs) in the stroma-adherent population. 

Once again, phosphorylation of ERK (in a similar fashion to STAT5) appears to be basally increased in 

these experiments (Fig 5.8) in the co culture setting. This has been previously reported (Yang X et al, 

2014)  along with reports that ERK phosphorylation cannot be fully inhibited even at doses of other 

TKIs (quizartinib and sorafenib) which were sufficient to inhibit auto-phosphorylation of FLT3 using 

Molm14 cells cultured on human stroma. This is supported by the observation of a similar effect 

using primary AML mononuclear cells on mouse stroma (Fig 5.8).  Yang et al hypothesise that this 

protective effect is due to multiple cytokines released by the stroma, to direct contact between the 

stroma and the AML cells and to the influence of FLT3 ligand. They showed that ERK remained 

phosphorylated despite inhibition of FLT3 autophosphorylation in cell lines and suggested that 

persistent activation of ERK confers resistance to FLT3 inhibitors.  

In summary, there are some preliminary data here to suggest that attenuation of the pSTAT5 effect 

and minimal impact on ERK/MAPK pathway signalling may contribute significantly to the mechanism 

of resistance to pacritinib both on and off stroma. Although pacritinib can target pERK signalling in 

the absence of stroma, this effect appears to be reduced in the co-culture setting (Fig 5.8). The latter 

observation adds weight to the hypothesis that dual targeting of ERK using a MEK inhibitor in 

combination with pacritinib may enhance the cytotoxic effect. No previous studies have specifically 

looked at ERK signalling in the context of pacritinib treatment; however, this preliminary finding 

justifies the exploration of the synergistic relationship between Pacritinib and a MEK inhibitor 

(PD035901) as will be described in chapter 6. 
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Chapter 6: The role of synergy in overcoming stroma-derived protection of the leukaemic clone 
 

6.1 Introduction: 

Combination therapy is standard practice in the treatment of acute myeloid leukaemia and virtually 

all haematological malignancies. In the chemotherapy era anthracycline drugs (daunorubicin, 

idarubicin) in combination with cytosine arabinoside (AraC) have formed the backbone of treatment 

for many years. AraC is a cytotoxic antimetabolite with structural similarity to deoxycytidine that 

rapidly converts to cytosine arabinoside triphosphate in leukaemia cells. Cytosine is a base that 

normally combines with a different sugar, deoxyribose, to form deoxycytidine which is incorporated 

into DNA. The substitution of deoxycytidine for arabinose acts as a trigger for apoptosis via inhibition 

of the cell cycle S phase (synthesis of DNA).  Clearly, any new drug intended for use in treating 

patients with AML must not hinder the effect of existing standard therapies such as AraC, as they are 

unlikely to be given as single agents, certainly in the setting of induction therapy. 

 A combination of agents is required to provide a multi-targeted attack against a leukaemic clone 

equipped with several innate and adaptive mechanisms to limit the effectiveness of drug therapy. In 

the more recent era of so called ‘novel therapies’, FLT3 inhibitors have been used in combination 

with standard chemotherapy in several large phase II and a smaller number of phase III studies 

(Knapper S, 2011) and in the laboratory they have been combined with a variety of other agents 

including MEK inhibitors (Yang X et al, 2014), HDAC inhibitors (Novotny-Diermayr V et al, 2012). 

Other authors have combined first and second generation FLT3 TKIs (Zhang W et al, 2014). 

FLT3 is one of several mutationally-activated kinases which defines a clinically-validated target for 

cancer drug therapy (Wilson TR et al, 2012). Treatment of a variety of haematological and solid 

organ tumours with such kinase inhibitors has, however, been somewhat thwarted by the 

emergence of innate and acquired resistance mechanisms as barriers to effective therapy. One 

overriding theme of this process is that the cancer cell responds to blockade of a central receptor 

tyrosine kinase such as FLT3 by engaging other downstream pathways which may have been 
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previously redundant (Wilson TR et al, 2012) or quiescent in the context of the molecule involved. As 

illustrated in previous chapters, leukaemic blasts express multiple receptor tyrosine kinases which 

transduce signals via several key downstream ‘hubs’ crucial for survival of the cell. Notable examples 

include phosphatidylinositosol-3-OH kinase (Pi(3)k) and mitogen-activated protein-kinase 

(MAPK)/extracellular-signal-regulated kinase (ERK) (Stirewalt DL & Radich JP, 2003) see chapter 1 

figure 1.1.   

The relative up-regulation of ERK signalling in the mouse stroma cell (MS-5) co-culture model as 

opposed to culture in IMDM alone hypothesised from western blotting experiments in the previous 

chapter provided a rationale to explore potential combination effects between pacritinib and 

PD0325901,  a small molecule inhibitor of MEK that has previously been investigated elsewhere in 

combination with alternative FLT3 TKIs with some encouraging results (Yang X et al, 2014). In 

essence, the ERK pathway is not thought to be critical to the enhancement of proliferative signals in 

normal myeloid progenitors or in leukaemic blasts cultured off stroma. In cell lines, however,  AKT 

and/or  MAPK signalling proteins remain phosphorylated following FLT3 TKI treatment in resistant 

lines even when FLT3 is inhibited (Piloto O et al, 2007); this is part of the mechanism that renders 

them FLT3 independent. As would be expected,  in primary AML cells this effect is more variable and 

less predictable with some patient samples showing consistent activation of AKT etc and others not. 

In response to ‘stress’ from upstream inhibition of FLT3 the small population of leukaemic blasts 

within the bone marrow niche may up-regulate the activity of the FLT3 pathway, possibly through 

both soluble and membrane-bound factors secreted by the stroma which activate downstream ERK 

(Yang X et al, 2014). This may then act as an escape mechanism facilitating survival of a sub-

population of cells within the bone marrow niche,  justifying the testing of combination therapy to 

eradicate this ‘minimal residual disease’ population. 
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6.1.1: Previous experience with MEK inhibition in AML  

Constitutive activation of the RAF/MEK/ERK pathway is frequently observed in haematological  

malignancies and is sufficient to transform mammalian cells and several upstream-acting oncogenes, 

leading to a change in cell phenotype (Ricciardi MR et al, 2014). RAF/MEK/ERK activation has been 

identified as a potential therapeutic target given that it has been shown to convey an adverse 

prognosis (Ricciardi MR et al, 2014) Altered regulation of MAPK has been shown to lead to an 

aggressive, therapy-resistant behaviour in acute leukaemias. PD0325901 is a small molecule, ATP-

non-competitive, MEK inhibitor which has been previously studied in the treatment of human and 

murine acute myeloid leukaemia (Ricciardi MR et al, 2014) (Burgess MR et al, 2014) (Yang X et al, 

2014). It inhibits phosphorylation of ERK (with no corresponding effect on FLT3) in Molm14 cells 

both in suspension culture and in co-culture with stroma (Yang X et al, 2014).  

Treatment with PD0325901 in a primary mouse leukaemia model where the mice carry an induced 

NRAS mutation was shown to prolong their survival and reduce proliferation of the leukaemic clone. 

There was, however, no direct increase in apoptosis or differentiation seen (Burgess MR et al, 2014) 

Elsewhere it has been shown that in a cell line model PD0325901 produced marked inhibition of ERK 

phosphorylation and growth of AML cell lines and around 70% of primary AML samples as measured 

by inhibition of ERK phosphorylation by western blotting. Growth arrest was also seen, due to G1-

phase arrest and induction of apoptosis measured by AVB assay (Ricciardi MR et al, 2014;Piloto O et 

al, 2007) Piloto et al identified that activating RAS mutations were present in FLT3-TKI resistant cell 

lines and that treatment of these cells with MEK inhibitors and/or PI3k inhibitors combined with 

increasing concentrations of FLT3 inhibitors CEP-701 or CEP-5214 could restore sensitivity to the 

FLT3 TKIs in MTT assays (Piloto O et al, 2007). In a myeloma cell line model use of KRAS inhibition 

has been shown to target all cell lines regardless of RAS mutational status in contrast to the effect 

seen with isolated inhibition of ERK or MAPK within the same stroma co-culture setting (Aronson L, 

2014). There was, however, considerable toxicity to the bone marrow stroma layer was seen which 
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suggests that selective targeting of RAS may be too fundamental to normal as well as malignant cells 

to be clinically feasible or safe. In contrast, ERK occupies a more distal position in the signalling 

cascade and also sits at a convergence point for several key pathways which makes it an attractive 

and more clinically tolerable therapeutic target. 

6.1.2: Basic rules of drug synergy  

The primary goals of drug combination regimens may be summarised as: 

1. Achievement of synergistic therapeutic effect and avoidance of antagonism 

2. Reduction of toxicity (often through dose reduction) 

3. Prevention of development of drug resistance 

It has been suggested that points 2 & 3 above may actually occur due to the effect of synergy 

alone(Chou T-C, 2010). There are many different definitions of synergism and methods for its 

determination, up to 13 having been quoted in one review from 1995 (Greco WR et al, 1995).  

Moreover, significant variation and disagreement between some models exists, which can lead to a 

lack of clarity regarding the evidence provided by clinical trials and scientific literature. This could 

ultimately compromise patient outcome and safety, given that this data is used to design the 

composition of drug regimens that must be both safe and effective.  

The method of Chou & Talalay published in 1983 & 1984 which introduced the scientific term 

Combination Index (CI) to quantitatively depict synergism remains one of the most widely accepted 

methods to determine synergism. This model is based on the law of mass action where the median 

value serves as a link between single and multiple entities in the setting of first order or higher order 

dynamics (dose effect curve hyperbolic or sigmoidal respectively) (Chou T-C, 2010). This general 

equation is derived from several formulae including the Michaelis-Menten, Hill, Henderson-

Hasselbach and Scatchcard equations in biochemistry and biophysics. Synergism is defined by CI<1, 

antagonism by CI>1 and if CI=1 this is known as an additive effect (although the range of this may be 
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extended to include CI values from 0.9-1.1). A CI value <0.3 is said to be strongly synergistic and >3.3 

strongly antagonistic although, in reality, extreme values are generally thought to be unreliable.   

6.1.3: Combination of drugs with differing modes of action 

Drugs which have a mechanism of action which is totally independent of each other are known as 

‘mutually nonexclusive’ and give a hyperbolic dose-effect curve when combined. An example of this 

would be the combination of a FLT3 inhibitor (pacritinib) with a cytotoxic antimetabolite (AraC). 

Under these conditions, the summation of effects of the two drugs can be calculated by multiplying 

the residual fraction of the activity unaffected by each drug individually. 

For example:   

Drug X inhibits a process by 20%  

 Fraction affected (fa) = 0.2     Fraction unaffected (fu) = 1 –fa = 0.8 

  

Drug Y inhibits same process by 40% 

 

 fa = 0.4    fu=0.6 

According to the fractional product model, these two drugs would be called ‘additive’ if their 

combination leaves 48% (60% of 80%) unaffected. 

 

(i.e.)  (fu)X,Y = (fu)X x (fu)Y  

For non-mutually exclusive drugs with different modes of action, the CI is derived by: 

 CI = (D)X/ (Dx)X + (D)Y / (Dx)Y  + (D)X(D)Y / (Dx)X (Dx)Y 
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Where the numerator refers to combination dose of drug: denominator to single agent dose of drug 

that results in an inhibitory effect of x%. 

6.1.4: Combination of drugs with identical modes of action 

The method described above cannot be applied if the two drugs have the same mechanism of 

action, e.g.  two different FLT3 inhibitors, even though it is logical to expect some potential synergy if 

the two drugs have subtly different modes of action through inhibition of different targets within the 

FLT3 molecule. An example of this would be the combination of a type I TKI such as crenolanib with a 

type II inhibitor such as sorafenib as previously studied (Zhang W et al, 2014).  The reason the same 

principle cannot be applied is because, in this situation, the growth effect curve no longer follows 

the Michaelis-Menten (first order) kinetics/dynamics with m=1 and therefore both the potency (the 

Dm or EC50 value) and the shape of the curve (m value) must be taken into account (Chou T-C, 2010). 

All of the synergy experiments in this work used combinations of drugs with completely different 

mechanisms of action; therefore, the alternative situation will not be described in further detail 

here. 

6.2  Results  

6.2.1 Cytotoxicty of Pacritinib in combination with cytarabine 

Cell Glo assessment of the combination of pacritinib and AraC was performed using 29 primary AML 

samples, including 10 from the initial cohort of 63 samples described in chapters 3&4 and an 

additional 19 samples processed by other members of the team (Mrs M Gilmour and Mrs C Guy). 

Three fixed ratios of pacritinib:AraC were chosen based on the previously-established pacritinib 

mean EC50 in primary samples of 92nM for ITD mutated samples  and mean AraC EC50 of 3.3µM. 

Serial dilutions of these fixed ratios were set up; it was soon shown that the most effective 

pacritinib:AraC ratio was 1:100  and this was prioritised later in the experiment. 

Figure 6.1 shows the variation in combination indices between pacritinib and AraC that were 
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obtained at each of the chosen fixed drug ratios.  
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Figure 6.1: Scatter graph for CI values of combination of pacritinib with AraC at 3 different ratios in 

primary AML cells using cell glo technique: 1:10 n=9, 1:50 n=9, 1:100 n=29 

 

Overall the results show moderate synergy between pacritinib and AraC. The median CI values for 

the 1:10, 1:50 and 1:100 ratios were 1.34, 0.87 and 0.63 respectively suggesting maximum synergy 

for the 1:100 ratio; with an antagonistic effect at a 10-fold lower ratio of 1:10. This lower ratio would 

not be feasible at a clinical level, given that AraC forms part of the therapeutic backbone of virtually 

all chemotherapy regimens used to treat AML and the pacritinib concentrations required would far 

exceed those clinically achievable. As expected for primary samples, the results show a relatively 

wide spread of high and low values for each ratio (for example 0.04-1.7 for 1:100 ratio) which 

reflects variable inter-patient sensitivity to both drugs- particularly AraC. 

6.2.2  Cytotoxicity of pacritinib in combination with MEK inhibitor 

As suggested in chapter 5, up-regulation of the ERK signalling pathway may be seen following 

treatment with pacritinib when AML cells are cultured in combination with MS5 stroma cells. This 

suggests that this pathway may be part of the mechanism of survival for the stroma-adherent AML 

population and may partly explain why these cells are more resistant to therapy than are AML cells 

in the peripheral circulation. This rationale was used to justify combination of pacritinib with a MEK 
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inhibitor PD0325901 which is a selective, non-ATP competitive inhibitor of MEK. Initially three 

combinations were tested (10:1, 5:1 and 2:1) which was based on the 10 fold higher EC50 in MV4-11 

cell lines for pacritinib compared to PD0325901 (80nM vs 8nM). It soon became apparent that two 

of these combination ratios were more effective and therefore these were tested (5:1 and 2:1) in a 

total of 26 primary samples (2:1 n=21, 5:1 n=26) and the scatterplot results for the combination 

ratios are shown in figure 6.2. 
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Figure 6.2: Scatterplot for CI value for pacritinib and PD0325901 in primary AML samples using cell 
glo technique 

 

The median CIs were 0.38 and 0.25 for the 2:1 and 5:1 ratios respectively, the result for 5:1 is 

described as a good synergistic effect (median CI<0.3). There was a clustering of CI results <1.0 for 

both ratios, more marked for the 5:1 ratio where the range of CI values was from 0.007-1.9. 

Figure 6.3 gives an example of the individual dose response to the combination of pacritinib and 

PD0325901 at the 5:1 ratio 
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Figure 6.3: CI vs fa for sample 15-1718 showing good synergy (CI) with all points <1.0 for EC50, EC75 

and EC90.  

This shows that synergy is maintained across the dose range for the given combination of pacritinib 

and PD0325901. 

 

6.4: Discussion 

The experiments described in this chapter have analysed the impact of combining pacritinib with 

both conventional cytotoxic chemotherapy (AraC) and another novel agent (MEK inhibitor). This 

aspect of the drug’s potential as a viable part of the therapeutic armamentarium against FLT3 ITD 

mutated AML is important to characterise for several reasons. Firstly it is not yet known where in the 

therapeutic algorithm FLT3 TKIs are best employed, for example, as part of induction chemotherapy 

or as part as salvage treatment for relapsed disease. In the former case pacritinib would inevitably 

be given at the same time as a drug such as AraC and therefore it is important to establish a ‘non-

antagonistic’ effect when the two drugs are given in combination. Initially the effect of combining 

pacritinib with AraC was analysed and it was shown that a synergistic effect (defined by median CI 

<1.0) was shown for 2 ratios of 1:50 and 1:100 with the best result for the 1:100 ratio with a median 

CI of 0.63 (range 0.004-1.7 n=29). In these experiments the maximum doses of each drug used were 
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500nM for pacritinib and 50µM for AraC, the pacritinib dose being slightly higher than that which 

can be achieved in vivo with conventional drug dosing although in reality, given that the second and 

third doses of 250 and 125nM respectively still give a fraction affected of approximately 70%, 

synergy would still be observed if the starting dose was below the EC50. 

In the relapsed setting however, the biology of the FLT3 ITD mutated disease is likely to alter. We 

know that AML is a polyclonal disease and that potentially those clones which drive relapse may 

have acquired ‘treatment emergent’ changes either in the structure of the FLT3 receptor or in 

signalling pathway activation which can drive disease resistance. It was shown in chapter 4 that 

there is up-regulation of ERK signalling in AML blasts cultured on MS-5 stroma which was not fully 

overcome by pacritinib treatment alone especially in the stroma adherent population, suggesting 

that a combination of FLT3 TKI + MEK inhibitor may be able to overcome this effect. In this case it is 

important to establish whether the two drugs enhance cytotoxic efficacy in the non-co-culture 

setting first in order to justify further exploration in, for example, a phase 1 clinical trial. The data 

shown in figure 6.2 demonstrates a good synergistic effect for the combination of pacritinib with 

PD0325901 at 2 fixed ratios with the best result for the 5:1 ratio giving a mean CI of 0.25 with a 

range of 0.007-1.9. It is not unexpected to see a fairly broad range of CI results within a cohort of 26 

samples tested as this will inevitably contain individual patient samples which are either strongly 

sensitive or resistant to either drug. Some authors have shown that the  effect of  MEK inhibition has 

been shown to be predominantly that of cell cycle arrest rather than significant increase in apoptotic 

induction (Piloto O et al, 2007).  There was, however, a fairly marked segregation of results showing 

CI <1.0 for both ratios tested which was more prominent for the 5:1 ratio. There were two samples 

which were obvious outliers from this cluster. The first was an ITD mutated sample which had a low 

EC50 for pacritinib (46nM) but was much more resistant to PD0325901.  

Again, the drug doses required for a synergistic effect were clinically acceptable, pacritinib as 

described above and for PD0325901 the maximum dose used for the 5:1 ratio was 400nM. A phase 1 
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study has shown that this level of PD0325901 is easily achievable at oral dosing above 2mg BD which 

was also well tolerated in patients with solid tumours including advanced breast cancer, colorectal 

cancer, non-small cell lung cancer or non-ocular melanoma refractory to standard therapy ((Yang X 

et al, 2014;LoRusso P et al, 2010). 

In addition there is some rationale to support the hypothesis that combined, small molecule 

inhibitor therapy (such as FLT3 TKI + MEK inhibitor) if given at induction may be able to prevent the 

emergence of so called ‘environment mediated’ or ‘treatment emergent’ resistance mutations. 

Again it is necessary to fully establish the in vitro efficacy of such inhibitors used as a combination 

before this rationale can be tested in the clinical setting. It may ultimately also be necessary to carry 

out work looking at the triple combination of FLT3 TKI + MEK inhibitor + conventional chemotherapy 

(AraC) to first prove a non-antagonistic effect and then explore optimal synergistic ratios. 

A previous study by Novotny-Diermayr et al (2012) looked at the combination of pacritinib with 

pracinostat (a pan-Histone-Deacetylase Inhibitor) in a variety of in vitro (cell line) and in vivo (mouse) 

models. HDACis alter the acetylation status of both histone and non-histone proteins, impacting on 

cellular processes such as activation of transcription, cell proliferation, survival and angiogenesis 

mechanisms. AML cells are among the most sensitive cancer cells to HDAC inhibition (Novotny-

Diermayr V et al, 2012). Although the pathways involved are multiple, one common link between 

JAK2 signalling and FLT3 signalling is the heat shock protein 90 molecular chaperone protein. HDACis 

such as pracinostat in combination with JAK2 inhibitors have previously shown synergistic effects 

which were explained by a reduction in the chaperone function of HSP-90, leading to increased 

proteosomal degradation on the JAK2 protein (Wang Y et al, 2009). Also, in relation to FLT3 

signalling the ITD mutated form of the receptor is known to be overly reliant on HSP-90 support 

compared to the WT counterpart  (Oshikawa G et al, 2011) and it was therefore fitting that a 

reduction in FLT3/STAT5 protein levels was seen in the study by Novotny-Diermayr et all following 
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treatment with the combination of pacritinib and pracinostat in the FLT3 ITD mutated AML cells to a 

much greater extent than in WT samples. 

One recurrent observation from clinical trials using FLT3 TKIs has been the achievement of relatively 

transient clinical responses. The inability of these drugs to sustain a cytotoxic effect on leukaemic 

blasts may be explained by the emergence of resistant cell populations due to mutations in the 

structure of the FLT3 receptor following prolonged exposure to FLT3 TKIs (Moore AS et al, 2012). An 

alternative explanation however, is that prolonged treatment leading to adequate suppression of 

FLT3 phosphorylation may lead to activation of alternative pathways related to, but not dependent 

on, FLT3 activation for their activity. Piloto et al tested this hypothesis by treating leukaemic cell 

lines known to be sensitive to FLT3 TKIs with increasing concentrations of CEP-5214 or CEP-701 for 2-

4 months after which point they exhibited cross resistance. Western blot analysis showed that TKI 

treatment of these cells still resulted in adequate suppression of FLT3 phosphorylation suggesting 

that drug binding or uptake of drug across the plasma membrane was not the mechanism of 

resistance (Piloto O et al, 2007). Further western blot analysis of FLT3 TKI resistant cell lines and 

primary samples demonstrated that pathways such as PI3k/Akt and/or MEK/MAPK remained 

activated in this setting and that, if these pathways were inhibited, drug sensitivity was restored in 

many cases. The lack of a universal beneficial effect of combination treatment was explained by the 

occurrence of acquired N-Ras mutations in FLT3 TKI resistant cell lines that were not seen in the 

sensitive parent cells and N-Ras was the only mutant kinase or phosphatase found on screening cell 

lines and primary samples (Piloto O et al, 2007).  Although N-Ras mutations are rare at diagnosis in 

AML, Ras activation is very common in all cancers and, given its upstream location, targeting Ras 

remains an attractive theroretical, if clinically difficult, therapeutic goal. 

Finally it should be borne in mind that combination therapy may be more likely to be cytotoxic to 

normal cells that use these pathways for growth and survival (Piloto O et al, 2007) including bone 

marrow stroma cells. This becomes relevant when considering the degree to which normal or 
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malignant stroma function impacts on disease survival and recovery of normal haematopoeisis 

following treatment.  
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Chapter 7 
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Chapter 7: General Discussion 
 

Acute Myeloid Leukaemia remains a malignancy that is very difficult to treat effectively due largely 

to the heterogeneous nature of the disease and the lack of effective, targeted therapies. The finding 

that around 1/3 of patients harbour a mutation in the FLT3 receptor, most commonly of ITD subtype 

has fuelled the drive for over 10 years for the development of FLT3 tyrosine kinase inhibitors which 

has yielded sufficient data to justify the transition from bench to bedside. A variety of first and 

second generation drugs have been tested in vitro and also progressed as far as major international 

phase III clinical trials (Knapper S, 2011). 

Although there has been considerable progress, this promise has yet to be delivered in terms of a 

recognised standard of care. No single agent has been licensed for this indication and emerging 

therapies seem to become rapidly dogged by treatment acquired resistance mutations, as has been 

the case in tyrosine kinase inhibitor development in other malignancies such as chronic myeloid 

leukaemia. One perpetual feature of early clinical trials of FLT3 inhibitors was the failure to achieve 

sustained remission at a bone marrow level, and following the observation that non-cycling CD34+ 

AML cells retain FLT3 mutations, occupy the bone marrow niche and show relative insensitivity to 

tyrosine kinase inhibitors, (Alvares C et al, 201;Parmar A et al, 2011) the search for agents which can 

target the stroma-adherent population has begun in earnest. 

Pacritinib is a dual targeted TKI with equipotent inhibitory activity for FLT3 and JAK2 proteins. This 

makes it an attractive potential therapy for this indication given that constitutive activation of the 

FLT3 receptor (via an ITD mutation) generates cross talk between numerous protein kinases and 

suggests that a dual inhibitory agent will have a more potent knockdown effect on downstream 

targets. The ultimate aim of this is to overcome the proliferative advantage of the leukaemic clone 

carrying the ITD mutation, and drive the cell towards apoptosis. This advantage may be part of the 

explanation for why the stroma niche population has been shown to be less sensitive to 
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conventional or novel therapy to date, which has been described as ‘environment mediated 

resistance’. 

‘Environment mediated resistance’ refers to a form of de novo drug resistance which protects 

leukaemic cells from targeted therapy. Rather than being the result of inherent properties of the 

malignant clone, this is the result of features of the microenvironment which are either soluble 

(cytokines, chemokines and growth factors secreted by fibroblast-like tumour stroma cells) or 

mediated by cell adhesion mechanisms which govern the physical interaction between the tumour 

cell and extracellular matrix components (Meads MB et al, 2009). Previous authors have suggested 

that, in blasts on stroma, inhibition of FLT3 leads to cell cycle arrest rather than induction of 

apoptosis and that this effect is mediated through a combination of soluble factors and direct 

contact with the stroma niche cells (Yang X et al, 2014;Parmar A et al, 2011). Opinions are divided as 

to which pathway within the signalling cascade downstream of FLT3 is most responsible for this 

phenomenon and certainly there is a large degree of cross-talk between different links in the chain. 

It is known that many of the pathways downstream of FLT3 are up-regulated when myeloid blasts 

are in contact with stroma and this increased signal may form part of the mechanism of resistance 

seen in the stroma-adherent population which is not seen to the same extent amongst cells in the 

peripheral circulation (or, in in-vitro terms, in suspension). One of these key pathways is MAPK/ERK 

which is known to induce apoptotic resistance which can only be overcome with very high drug 

doses. 

With this in mind, the initial aim of this study was to analyse whether pacritinib could effectively 

target FLT3 ITD mutated cells over WT samples in both cell lines and primary patient samples. This 

was clearly demonstrated as shown in chapter 3, with the observation of significant cytotoxic effect 

in MV4-11 cell lines in contrast to NB4 or HL-60 (which carry WT FLT3). Next, cytotoxic response to 

pacritinib was assessed in 63 primary samples and a clear differentiation in terms of increased 

sensitivity in ITD mutated samples vs WT was shown (mean EC50 92.3 nM vs 292.1 nM p=0.01).  This 
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confirms that pacritinib is a drug that can effectively target FLT3 mutated disease, and also that 

there is no real role for treatment in those who express WT FLT3. 

The effect of FLT3 ITD to wild type allelic ratio on pacritinib sensitivity was also assessed, suggesting 

that the higher the mutated FLT3 alleleic ratio, the more effective the drug. This is in contrast to 

what has been shown with other FLT3 inhibitors e.g. AC220 (Zarrinkar P et al, 2009), although this 

may not be a fair comparison given that samples used in this in vitro diagnostic work were taken at 

diagnosis when dependence on FLT3 signalling may be lower than clinical studies in relapsed 

patients. If higher level mutant samples are more sensitive however, this is encouraging given that 

there is data to suggest that a higher allelic ratio is associated with a poorer clinical outcome due to 

an increased risk of relapse (Gale R et al, 2008). 

In terms of clinical correlation, as well as presence of an ITD mutation, higher presenting WBC was 

associated with increased pacritinib sensitivity (median EC50 WBC >100 x 109/l = 56nM vs 

WBC<50x109/l = 121nM p=0.005). This is to be expected given that FLT3 ITD mutated disease is 

generally deemed to be more proliferative and often presents with a high white cell count compared 

to wild type patients. Interestingly, the majority of patients in this cohort had standard risk 

cytogenetics (n=43 median EC50=111nM) which is a well known feature of FLT3 ITD mutated disease. 

Although the 3 cases where high risk features were present did show reduced pacritinib sensitivity 

(median EC50 732nM high risk n=3  vs 133nM good risk n=9 p value not significant as numbers small). 

Mechanism of cell death was assessed by means of the annexin V binding assay which suggested 

that in MV4-11 cell lines pacritinib exerts a cytostatic effect at 48 hours of treatment compared to a 

cytotoxic effect with more than 50% induction of apoptosis in FLT3 ITD mutated primary samples. 

Given that MV4-11 cell lines harbour a p53 mutation, apoptotic induction is delayed and not seen 

until 72 hours. This was not observed in primaries, which are heterogeneous and may retain p53 

activity, and thus apoptotic induction was seen at an earlier time point. These data were supported 
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by the cleaved caspase 3 western blot experiment where induction of CC3 was seen at 24 hours in a 

primary sample and, to a much lesser extent, at the same time period in MV4-11 cell lines.  

The results of this initial work support a link between FLT3 ITD mutation and increased pacritinib 

sensitivity. Nevertheless, the range of EC50 results was broad within both ITD and WT cohorts which 

may be explained by off target effects of the drug or up-regulation of signalling through a 

structurally normal receptor in wild type samples which leads to ‘false sensitivity’. Also, given that 

FLT3 has a crucial role in many regulatory and survival pathways of haemopoeitic cells (Stirewalt DL 

& Radich JP, 2003) it is essential to assess the impact of altered signalling both in terms of inhibition 

of the receptor and impact on downstream pathways. The latter factor may vary between patients 

carrying ITD mutations due to cross talk between other pathways which again may vary at the 

individual patient level. 

Two different techniques were used to directly analyse the relationship between pacritinib 

treatment and the FLT3 protein. Firstly flow cytometry was used to quantify the level of surface 

expression of the receptor, using CD135 expression. Secondly the western blotting technique was 

used to assess inhibition of phosphorylated (activated) FLT3 protein over time in response to 

different doses of pacritinib in MV4-11 cell lines which carry an ITD mutation. The flow cytometry 

data showed no difference between CD135 expression in ITD mutated or WT samples and no 

correlation between increased CD135 expression and pacritinib sensitivity (as measured by the EC50). 

This has been reported elsewhere for other FLT3 inhibitors (Knapper S, 2004) and suggests that 

binding affinity of the drug is not directly related to the FLT3 receptor frequency or density. 

The western blotting experiment using MV4-11 cell lines showed dose dependent inhibition of pFLT3 

signalling following treatment with pacritinib, initially after 1 hour and increasing by 24 hours. There 

was no effect on total FLT3 protein level which suggests that the drug blocks or downregulates 

activity of the receptor but does not lead to its destruction in a short term model.  
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Two of the key signalling pathways downstream of FLT3 are the Raf/MEK/ERK and STAT5 pathways 

and therefore their activity was looked at in the development of this work. In MV4-11 cell lines and 

primary AML mononuclear cells there was inhibition of pSTAT5 signal in a dose dependent manner 

from 1 hour of treatment. The effect in primary cells was similar across the 4 samples tested which 

included FLT3 ITD mutated cases and a FLT3 WT patient. The pERK pathway was also analysed in the 

MV4-11 cell lines where inhibition was seen for higher doses of pacritinib.  

This preliminary work established that pacritinib is a drug which can target FLT3 ITD mutated cells 

and that, in common with previously developed FLT3 TKIs, it exerts activity via inhibition of the 

major signalling pathways downstream of FLT3 such as STAT5. The next most important question 

which will likely define the future clinical effectiveness of FLT3 TKIs is whether these agents are able 

to target residual disease within the bone marrow microenvironment since it is known that the FLT3 

ITD mutation is seen within the CD34+/38- primitive stroma-adherent population (Alvares C et al, 

201) which is therefore a reservoir of resistant disease and may well be responsible for the high 

incidence of relapse. It is thought that signals derived from the stroma may block cell division 

(Parmar A et al, 2011) leading to their relative quiescence and this may underlie the relatively poor 

performance of drugs acting on the cell cycle (such as cytarabine) in targeting this population. In 

addition, although these cells may carry the FLT3 ITD mutation, they may be less dependent on FLT3 

signalling for survival compared to those at other stages of the disease which may explain the poor 

efficacy of other FLT3 TKIs such as sorafenib and AC220 in this context (Yang X et al, 2014). Pacritinib 

is, however, a multi-targeted agent that can potentially overcome the protective effect of cross-talk 

between several different survival pathways (Weisberg E et al, 2012). Pacritinib can target STAT5 via 

both FLT3 and JAK inhibition and also via up-regulation of IL-6 on stroma which is known to be 

activated via JAK (Novotny-Diermayr V et al, 2012). 

Initial results of short term cytotoxicity experiments using the Cell Glo technique and a mouse 

stroma layer (MS-5) showed that at 48 hours pacritinib could not overcome the protective effect of 
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the stroma. This was most marked for doses below 95nM where there was a greater cytotoxic 

response in the IMDM only culture setting compared to co-culture of AML with MS-5 cells; at higher 

doses this effect was not significant. For all samples tested the EC50 on stroma was higher than that 

seen when the cells were cultured in IMDM alone.  Data also showed that pacritinib is not toxic to 

the stroma layer at doses tested which suggests that the MS-5 cells are not reliant on FLT3 signalling 

for survival at AML toxic doses. One major beneficial factor relevant to the co-culture setting which 

may significantly impact on improved survival of AML cells was that the LTC medium is enriched with 

cytokines. This medium appeared to give a survival advantage compared to IMDM, most marked in 

the middle of the dose range around the EC50.  

A plausible explanation for the lack of a comparable cytotoxic effect in the co-culture setting 

compared to IMDM comes from the annexin V binding experiment carried out on stroma. Here 

marked apoptotic block was seen in the MS-5 co-culture setting at 48 hours and also after 7 days of 

culture where >50% annexinV/PI positivity was only seen for the 1000nM dose.  

Western blotting experiments were also carried out with the co-culture model using MS-5 stroma 

where, firstly, a basal increase in pSTAT5 signalling was seen, particularly amongst the stroma-

adherent population. Secondly, there was relative attenuation of pSTAT5 inhibition on stroma, most 

marked in the adherent population compared to the suspension cells. STAT5 is a transcription factor 

known to be activated by FLT3 ITD mutations (Spiekermann K et al, 2003) and data here suggest this 

may be partly related to a specific signal enhanced by contact with stroma. An additional effect of 

STAT5 activation via FLT3 relates to the control of apoptosis as it prevents up-regulation and 

expression of genes that can induce apoptosis such as MCL1, cyclin D1, c-myc and p21 (Kindler T et 

al, 2010) which may again contribute to relative FLT3 TKI insensitivity amongst the stroma adherent 

population. 

 Similarly, the MEK/MAPK pathway plays a crucial role downstream of FLT3 in regulation of cellular 

proliferation and survival (Swords R et al, 2012) and there are data to show that inhibition of this 
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pathway leads to suppression of growth in MV4-11 cell lines and may promote apoptosis in primary 

cells. Western blotting experiments described in chapter 5 showed relative preservation of pERK 

signalling on stroma compared to culture of primary cells in IMDM only and also basal up-regulation 

of pERK signal, again more marked amongst the adherent population. Pacritinib was unable to 

inhibit pERK signalling in the stroma adherent population, even at the 1000nM dose and this has 

been reported elsewhere for other FLT3 TKIs such as quizartinib and sorafenib. Other authors 

suggest this may be due to protective signals emanating from the stroma by means of cytokines or 

increased FLT3 ligand levels (Yang X et al, 2014). 

This observation lead to the rationale to combine pacritinib with a MEK inhibitor PD0325901 as 

described in chapter 6.  A common observation from the study of many cancers is that blockade of a 

central receptor tyrosine kinase may lead to engagement of downstream pathways, previously  

redundant in the context of cell survival (Wilson TR et al, 2012). It has been observed that ERK 

signalling is not essential to enhancement of proliferation signals when AML cells are cultured off 

stroma. If FLT3 is blocked or down regulated on stroma, however, ERK signalling may become more 

critical to survival and may also induce more aggressive disease behaviour. PD0325901 is a small 

molecule MEK inhibitor which has been previously studied in murine and human AML (Riccardi MR, 

2014;Burgess MR et al, 2014) Pacritinib was therefore combined with PD0325901 and a good 

synergistic effect was observed for two ratios of the drugs, the best result being median CI 0.25 for a 

5:1 ratio. This synergistic effect was observed across the dose range which is important for 

therapeutic scheduling.  

There are several experiments which would have been carried out as part of this project had further 

time been available and which would also form part of any future developmental work involving 

pacritinib in the laboratory. Firstly, in relation to the cytotoxicity experiments following the 

observation of a good cytotoxic response to pacritinib in MV4-11 cell lines at 48 hours with a lack of 

significant apoptotic induction as measured by AVB assay until 72 hours, we would carry out cell 
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cycle analysis experiments using MV4-11s and primary AML samples to look for any evidence of cell 

cycle arrest. There may also be some benefit in repeating the Cell Glo experiments in primary cells 

over a 72 hour culture period to see if the cytotoxic response is improved, however primary AML 

cells are difficult to support beyond 48 hours of culture. In regards to the cohort of 63 primary 

samples analysed, only 7 samples carried FLT3 TKD point mutations and 3 were ITD+TKD ‘double 

mutants’ so it would be prudent to increase the numbers in both these cohorts in order to 

strengthen the weight of any conclusions drawn over the efficacy of pacritinib in those subtypes of 

AML. Also, finally within the cytotoxicity chapter the number of primary AML samples for the 

cleaved caspase 3 western blotting experiment should be increased to at least 3 (from 1 at present). 

The work in this project analysing the effect of pacritinib on signalling pathways downstream of FLT3 

would be enhanced by firstly including more primary AML samples in the CD135 flow analysis; 

currently data from 8 samples is shown which would ideally be increased to 20-25 to make the 

conclusions more reliable. This is unlikely to show a different result to that which has been shown by 

this small sample cohort, that there is no clear association between FLT3 receptor expression at the 

cell surface and drug sensitivity but with such small numbers conclusions hold less statistical power. 

In addition, the western blotting gels looking at knock down of phosphorylated and total FLT3 

protein were only run using MV4-11 cells and should be repeated using a cohort of 3-5 primary 

samples. The reason this work was not carried out was that initially this work was run using the 

immunoprecipitation technique and although these experiments were completed with further 

primary samples and showed similar results, the loading was poor and the results were not deemed 

to be reliable enough to present here. This unfortunately led to a lack of time to carry out primary 

experiments once a decision had been made to use the conventional western blotting technique. 

Further primary samples would also be run to analyse the effect of pacritinib on ERK signalling off 

stroma and in the co-culture western blotting experiment using MS-5 stroma to increase the number 

in this cohort from 1 at present to 5. 
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With regard to the efficacy of pacritinib in the stroma co-culture setting (as described in chapter 5), 

the number of samples analysed in the basic Cell Glo cohort would be increased from 7 to a 

minimum of 10 and it would also be helpful to analyse the effect of LTC medium in isolation further 

both by Cell Glo and western blotting. Finally, regarding the combination of pacritinib with the MEK 

inhibitor PD0325901 it would be logical to carry out experiments in a stroma co-culture setting to 

see if the combination of the two drugs can overcome the short term protection seen in the 48 hour 

Cell Glo experiments. Confirmation of any downstream effects by western blot would help to 

ascertain whether the cytotoxic effect seen if stroma and potentially on stroma is associated with 

knock down of presumed targets such as ERK, STAT5 and ideally JAK or more peripheral effectors 

such as AKt. As mentioned previously, the risk of combination therapy is that inhibition of multiple 

targets simply leads to up-regulation of additional signalling targets (such as PI3k or AKt in the case 

of pacritinib combined with a FLT3 inhibitor) which could therefore lead to a situation of diminishing 

returns. 

In summary, AML is a heterogeneous, polyclonal disease which is still fatal in the majority of 

patients, outside of certain ‘good risk’ groups. The main thrust of the progress that has been made in 

treatment and survival of patients with AML over the last 10-15 years has been due to better 

supportive care and there remains a lack of effective targeted therapies to treat this disease. FLT3 

remains an attractive therapeutic target given its place at the top of the signalling hierarchy from cell 

surface to the nucleus and the fact that it is commonly mutated and these mutations can be shown 

to persist from diagnosis to relapse. Although many of the early FLT3 TKIs have performed rather 

poorly in the clinic due to a lack of sustained remissions or impact at a bone marrow level, there 

remains scope for the development of drugs in this class which can potentially target the minimal 

residual disease population within the bone marrow microenvironment and therefore reduce the 

risk of relapse.  This work has comprehensively analysed the in vitro cytotoxic effects of pacritinib 

and has shown that pacritinib actively targets FLT3 ITD mutated AML and exerts its effect by 

induction of apoptosis. Over a short term culture technique it was not able to overcome the 
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protective effect of a stroma model based on MS-5 fibroblasts and LTC medium. This was explained 

by enhancement of STAT5 and ERK signalling on stroma. Given that the drug combines effectively 

with a MEK inhibitor PD0325901 to give a good synergistic effect, it warrants further exploration 

with the aim of overcoming environment mediated resistance in FLT3 ITD mutated acute myeloid 

leukaemia and this justifies the development of such combinations in the clinical setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 
 

 

 

 

 

References 
  



152 
 

References 

 

Acute Myeloid Leukaemia Risks and Causes. Cancer Research UK 
http://www.cancerresearchuk.org/cancer-help/type/aml/about/acute-myeloid-leukaemia-
risks-and-causes. 2014.  

 
Abboud C. Another nail in the AML coffin. Blood 113, 6045-6046. 2009.  
 
Altman J, Foran J, Pratz K, Trone D, Gammon G, Cortes J, & Tallman M. Results of a phase 1 study of 

quizartinib (AC220) in combination with induction and consolidation chemotherapy in 
younger patients with newly diagnosed acute myeloied leukaemia. Blood , Abstract. 2013.  

 
Alvares C, Schenk T, Hulkki S, Min T, Vijayaraghavan G, Yeung J, Gonzalez D, So C, Greaves M, Titley I, 

Bartolovic K, & Morgan G. Tyrosine kinase inhibitor insensitivity of non-cycling CD34+ human 
acute myeloid leukaemia cells with FMS-like tyroisne kinase 3 mutations. British Journal of 
Haematology 154, 457-465. 201.  

 
Aronson L. Characterisation of RAS Alterations in Myeloma: Why direct targeting of RAS may be the 

most appropriate therapeutic apporach. Blood . 2014.  
 
Baker S, Zimmerman E, Yong-Dong W, Orwick S, Zatechka D, Buaboonnam J, & Neale G et al.  

Emergence of Polyclonal FLT3 Tyrosine Kinase Domain Mutations during Sequential Therapy 
with Sorafenib and Sunitinib in FLT3-ITD-Positive Acute Myeloid Leukaemia. Clinical Cancer 
Research 19, 5757-5768. 2014.  

 
Braun SW, Gerhartz HH, & Schmetzer HM. Influence of cytokines and autologous lymphokine-

activated killer cells on leukemic bone marrow cells and colonies in AML. Acta 
Haematologica 105, 209-221. 2001.  

 
Breitenbuecher F, Schnittger S, & Grundler R. Identification of a novel type of ITD mutations located 

in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood 113, 4074-4077. 
2009.  

 
Burgess MR, Hwang E, Firestone AJ, Huang T, Xu J, Zuber J, Bohin N, Wen T, Kogan SC, Haigis KM, 

Sampath D, Lowe S, Shannon K, & Li Q. Preclinical efficacy of MEK inhibition in Nras mutant 
acute myeloid leukaemia. Blood . 2014.  

 
Burnett AK. Treatment of acute myeloid leukaemia: are we making progress? Blood . 8-12-2012.  
 
Burnett AK, Hills RK, Wheatley K, Goldstone AH, Prentice AG, & Milligan D. A sensitive risk score for 

directing treatment in younger patients with AML. Blood 18. 2006.  
 
Chou T-C. Drug Combination Studies and Their Synergy Quantification using the Chou-Talalay 

method. Cancer Research 70, 440-446. 2010.  
 
Choudhary C, Olsen J, Brandts C, Cox J, Reddy P, Bohmer F, Gerke V, Schmidt-Arras D, Berdel W, 

Muller-Tidow C, Mann M, & Serve H. Mislocalised Activation of Oncogenic RTKs Switches 
Downstream Signaling Outcomes. Molecular Cell 36, 326-339. 2009.  

 

http://www.cancerresearchuk.org/cancer-help/type/aml/about/acute-myeloid-leukaemia-risks-and-causes
http://www.cancerresearchuk.org/cancer-help/type/aml/about/acute-myeloid-leukaemia-risks-and-causes


153 
 

Czabotar PE, Lessene G, Strasser A, & Adams J. Control of apoptosis by the BCL-2 family protein 
family: implications for physiology and therapy. Nature Reviews Molecular Cell Biology 15, 
49-63. 2014.  

 
Dash A & Gilland DG. Molecular Genetics of Acute Myeloid Leukaemia. Best Practice Research in 

Clinical Haematology 14, 49-64. 2001.  
 
Dohner H, Estey E, Amadori S, Appelbaum F, Burchner T, Burnett A, Dombret H, Fenaux P, Grimwade 

D, Larson R, Lo-Coco F, Nsoe T, & et al. Diagnosis and management of acute myeloid 
leukemia in adults: recommendations from an international expert panel, on behalf of the 
European Leukemia Net. Blood 115, 453-474. 2014.  

 
Dohner K, Du J, Cobacioglu A,S.C., Schlenk RF, & Dohner H. JAK2V617F mutations as cooperative 

genetic lesions in t(8,21)-positive acute myeloid leukaemia. haematologica 91, 1569-1570. 
2006.  

 
Galanis A, Ma H, Rajkhowa T, Ramachandran A, Small D, Cortes J, & Levis M. Crenolonib is a potent 

inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood 123, 94-
100. 2013.  

 
Gale R, Green C, Allen C, Mead A, Burnett A, Hills R, & Linch D. The impact of FLT3 internal tandem 

duplication mutant level, number, size and interaction with NPM1 mutations in a large 
cohort of young adults patients with acute myeloid leukemia. Blood 111, 2776-2784. 2008.  

 
Gerloff D, Grundler R, Wurm A, Brauer-Hartmann D, Katzerke C, Hartmann J-U, Madan V, Muller-

Tidow C, Duyster J, Tenen DG, Niederwieser D, & Behre G. NF-kB/STAT5/miR-155 network 
targets PU.1 in FLT3-ITD-driven acute myeloid leukaemia. Leukemia 29, 535-547. 2015.  

 
Gozgit JM, Wong MJ, Wardwell S, Tyner JW, Loriaux MM, Mohemmad QK, Narasimhan NI, 

Shakespeare WC, Wang F, Druker BJ, Clackson T, & Rivera VM. Potent activity of Ponatanib 
(AP24534) in Models of FLT-3 driven Acute Myeloid Leukaemia and other Haematologic 
Malignancies. Molecular Cancer Therapeutics 10(6), 1028-1035. 4-11-0011.  

 
Gozgit JM, Wong MJ, Wardwell S, Tyner JW, Loriaux MM, Mohemmad QK, Narasimhan NI, 

Shakespeare WC, Wang F, Druker BJ, Clackson T, & Rivera VM. Potent activity of Ponatanib 
(AP24534) in Models of FLT-3 driven Acute Myeloid Leukaemia and other Haematologic 
Malignancies. Molecular Cancer Therapeutics 10(6), 1028-1035. 2011.  

 
Grafone T, Palmisano M, Nicci C, Martelli A, Emanuela O, Storti S, Baccarani M, & Matinelli G. 

Monitoring of FLT3 phosphorylation and its response to drugs by flow cytometry in AML 
blast cells. Hematological Oncology 26, 159-166. 2008.  

 
Grafone T, Palmisano M, Nicci C, & Storti S. An overview on the role of FLT3-tyrosine kinase receptor 

in acute myeloid leukemia. Oncology Reviews 6, 64-74. 2012.  
 
Greco WR, Bravo G, & Parsons JC. The search for synergy: a critical review from response surface 

perspective. Pharmacological Reviews 47, 331-385. 1995.  
 
Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC, Madan B, Amalini C, Loh YK, Ong LC, 

William AD, Lee A, Poulsen A, Jayaraman R, Ong KH, Ethirajulu K, Dymock BW, & Wood JW. 



154 
 

SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid 
and lymphoid malignancies. Leukemia 25, 1751-1759. 2011a.  

 
Hart S, Goh KC, Novotny-Diermayr V, Tan YC, Madan B, Amalini C, Ong LC, Kheng B, Cheong A, & 

Zhou J. Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid 
leukaemia. Blood Cancer Journal 104, 1079-1084. 2011b.  

 
Haselsberger K, Peterson D, Thomas D, & Darling J. Assay of anticancer drugs in tissue culture: 

comparison of a tetrazolium-based assay and a protein binding dye assay in short-term 
cultrues derived from human malignant glioma. Anti-cancer drugs . 1996.  

 
Hatzmichael E, Georgiou G, Benetatos L, & Briasoulis E. Gene mutations and molecularly targeted 

therapies in acute myeloud leukemia. American Journal of Blood Research , 29-51. 25-1-
2013.  

 
Hatzmichael E, Tsolas E, & Briasoulis E. Profile of pacritinib and its potential in the treatment of 

hematological disorders. Journal of Blood Medicine 5, 143-152. 2014.  
 
Kharazi S, Mead A, Mansour A, Hultquist A, Boiers C, Luc S, Buza-Vidas N, Ma Z, Ferry H, Atkinson D, 

Reckzeh K, Masson K, Cammenga J, Ronnstrand L, Arai F, Sudo T, Nerlov C, Sitnicka E, & 
Jacobsen S. Impact of gene dosage, loss of wild type allele, and FLT3 ligand on FLT3-ITD-
induced myeloproliferation. Blood 118, 3613-3621. 2011.  

 
Kim H-G, Kojima K, Swindle CS, Cotta C, Huo Y, Reddy V, & Klug C. FLT3-ITD cooperates with inv(16) 

to promote progression to acute myeloid leukaemia. Blood 111, 1567-1574. 2008.  
 
Kindler T, Lipka D, & Fischer T. FLT3 as a therapeutic target inAML: still chalenging after all these 

years. Blood 116, 5089-5102. 2010.  
 
Knapper S. The clinical development of FLT3 inhibitors in acute myeloid leukaemia. Expert Opinion in 

Investigative Drugs , 1-19. 2011.  
 
Knapper S, Burnett AK, Kell WJ, Agrawal S, Chopra R, Clark R, Levis MJ, & Small D. A phase 2 trial of 

the FLT3 inhibitor lestaurtinib (CEP-701) a first-line treatment for older patients with acute 
meyloid leukaemia not considered fit for intensive chemotherapy. Blood 108, 3262-3270. 
20-7-2006a.  

 
Knapper S, Mills KI, Gilkes AF, Austin SJ, Walsh V, & Burnett AK. The effects of lestaurtinib (CEP701) 

and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependance on 
FLT3 signalling in both FLT3-mutated and WT cases. Blood 108, 3494-3503. 2006b.  

 
Knapper S,B.A.G.A.M.K.W.V. CEP-701 and PKC-412 predictably and reliably inhibit FLT3 

phosphorylation in primary AML blasts but their induction of a cytotoxic response appears to 
be much more variable (abstract). Blood , 95a. 2004.  

 
Kohl TM, Hellinger C, & Ahmed F. BH3-mimetic ABT-737 neutralises resistance to FLT3 inhibitor 

treatment mdiated by FLT3-independent expression of BCL2 in primary AML blasts. 
Leukemia 21, 1763-1772. 2007.  

 
Kottardis PD, Gale RE, Lanagbeer SE, Frew ME, Bowen DT, & Linch DC. Studies of FLT3 mutations in 

paired presentation and relapse samples from patients with acute myeloid leukaemia: 



155 
 

implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease 
detection and possible therapy with FLT3 inhibitors. Blood 100, 2393-2398. 2002.  

 
Lazenby M, Gilkes AF, Marrin C, Evans A, Hills RK, & Burnett AK. The prognostic relevance of FLT3 

and NPM1 mutations on older patients treated intensively and non-intensively: a study of 
1312 patients in the UK NCRI AML 16 trial. Leukemia , 1038. 27-2-2014.  

 
Levis M. FLT3/ITD AML and the law of unintended consequences. Blood . 2011.  
 
Levis M & Allebach J,T.K. A FLT3 targeted tyrosine kinase inhibitor is cytotoxic to leukaemia cells in 

vitro and in vivo. Blood 99, 3885-3891. 2002.  
 
Levis M, Murphy KM, Pham R, Kim KT, Stine A, Li L, & et al. Internal tandem duplications of the FLT3 

gene are present in leukaemia stem cells. Blood 106, 673-680. 2005.  
 
Levis M & Small D. Novel FLT3 tyrosine kinase inhibitors. Expert opinion in investigational drugs 12, 

1951-1962. 2003.  
 
Ley TJ et al. Genomic and Epigenomic Landscape of Adult De Novo Acute Myeloid Leukaemia. New 

England Journal of Medicine 368, 2059-2074. 2013.  
 
Lin J-X & Leonard W. The role of STAT5a and STAT5b in signaling by IL-2 family cytokines. Oncogene 

19, 2566-2576. 2000.  
 
LoRusso P, Krishnamurthi S, Rinehart J, Nabell L, Malburg L, Chapman P, DePrimo S, Bentivegna S, 

Wilner K, Tan W, & Ricart A. Phase 1 pharmacokinetic and pharmacodynamic study of oral 
MAPK/ERK Kinase inhibitor PD-0325901 in Patients with Advanced Cancers. Clinical Cancer 
Research 16(6), 1924-1937. 2010.  

 
Manshouri T, Estrov Z, Quintas-Cardama A, Burger J, Zhang Y, Livun A, Knez L, Harris D, Creighton C, 

Kantarjian H, & Verstovsek S. Bone marrow stroma-secreted cytokines protect JAK2V617F-
mutated cells from the effects of a JAK2 inhibitor. Cancer Research 71, 3831-3840. 201.  

 
Marshall N, Goodwin C, & Holt S. A critical assessment of the use of microculture tetrazolium assays 

to measure cell growth and function. Growth regulation 5, 69-84. 1995.  
 
Meads MB, Gatenby RA, & Dalton WS. Environment-mediated drug resistance: a major contributor 

to minimal residual disease. Nature 9, 665-674. 2009.  
 
Messinger Y, Chelstrom L, Gunther R, & Ukmi FM. Selective homing of human leukaemic B-cell 

precursors to specific lymphohematopoeitic microenvironments in SCID mice: a role for the 
beta 1 integrin family surface adhesion molecules VLA-4 and VLA-5. Leukemia and 
Lymphoma 23, 61-69. 1996.  

 
Mizuki M, Schwable J, & Steur C et al. Suppression of myeloid transcription factors and induction of 

STAT response genes by AML-specific FLT3 mutations. Blood 101, 3164-3173. 2003.  
 
Moore AS, Faisal A, & Gonzalez del castro Bavetsias V et al. Selective FLT3 inhibition of FLT3-ITD+ 

acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging 
clinical resistance patterns. Leukemia 26, 1462-1470. 2012.  

 



156 
 

Novotny-Diermayr V, Hart S, Goh K, Cheong A, Ong L-C, Hentze H, Pasha M, Jayaraman R, Ethirajulu 
K, & Wood J. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with 
the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer Journal 2, 
1-10. 22-3-2012.  

 
O'Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, & et al. SU11248 is a novel FLT3 

tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101, 3597-3605. 
2003.  

 
Ofran Y. Concealed dagger in FLT3/ITD+ AML. Blood 124, 2317-2319. 2014.  
 
Oshikawa G, Nagao T, Wu N, Kurosu T, & Miura O. c-Cbl and Cbl-b mediate 17-AAG-induced 

degradation of autophosphorylated FLT3-ITD through the ubiquitin proteosome pathway. 
Journal of Biological Chemistry 286, 30263-30273. 2011.  

 
Pagliacci M, Spinozzi F, Migliorati G, Fumi G, Smacchia M, Grignani F, Ricardi C, & Nicoletti I. 

Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of 
tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and 
survival. European Journal of Cancer 29A, 1573-1577. 1993.  

 
Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S, Dohner K, Peschel C, Oostendorp R, & 

Gotze K. Stromal Niche Cells Protect Early Leukemc FLT3-ITD+ Progenitor Cells against First-
Generation FLT3 Tyroisne Kinase Inhibitors. Cancer Research 71(13), 4696-4706. 5-5-2011.  

 
Paschka P, Du J, Schlenk R, Gaidzik V, Bullinger L, Corbacioglu A, Spath D, Kayser S, Schlegelberger B, 

Kruater J, Ganser A, Kohne C, Held G, Lilienfeld-Toal M, Kirchen H, Rummel M, Gotze K, Horst 
H, Ringhoffer M, Lubbert M, Wattad M, Salih H, Kundgen A, Dohner H, & Dohner K. 
Secondary genetic lesions in acute myeloid leukaemia with inv(16) ot t(16;16): a study of the 
German-Austrian AML study group (AMLSG). Bloood 121, 170-177. 2013.  

 
Percy L, Herledan G, Bounds D, Rodriguez-Justo M, Croucher P, & Yong K. The bone marrow stromal 

compartment in multiple myeloma patients retains the capability for osteogenic 
differentiation in vitro: defining the stromal defect in myeloma. British Journal of 
Haematology 167(2), 194-206. 2014.  

 
Piloto O, Wright M, Brown P, Kim KT, Levis M, & Small D. Prolonged exposure to FLT3 inhibitors leads 

to resistance via activation for paralell signalling pathways. Blood 109, 1643-1652. 2007.  
 
Pratz K & Levis M. Incorporating FLT3 inhibitors into acute myeloid leukaemia treatment regimens. 

Leukemia and Lymphoma 49, 852-863. 2008.  
 
Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa TR, & Levis M. FLT3-mutant allelic burden and 

clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115, 1425-1432. 
2010.  

 
Raaijmakers MH, Mukherjee S, Guo S, Kobayashi T, Schoonmaker JA, Ebert BL, & Al-Shahrour F. Bone 

progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852-
857. 2010.  

 



157 
 

Radosevic N, Delmer A, Tang R, Marie J-P, & Ajchenbaum-Cymbalista F. Cell cycle regulatory protein 
expression in fresh acute myeloid leukaemia cells and after drug exposure. Leukemia 15, 
559-566. 2001.  

 
Riccardi MR. Therapeutic potential of MEK inhibition in acute myelogenous leukaemia: rationale for 

"vertical" and "lateral" combination strategies.  2014.  
 
Ricciardi MR, Scerpa MC, Bergamo P, Ciuffreda L, Petrucci MT, Chiaretti S, Tavolaro S, Mascolo MG, 

Abrams SL, Steelman LS, Tsao T, Marchietti A, Konopleva M, Del Bufalo D, Cognetti F, Foa R, 
Andreeff M, McCubrey JA, Tafuri A, & Milella M. Therapeutic potential of MEK inhibition in 
acute myelogenous leukaemia: rationale for "vertical" and "lateral" combination strategies.  
2014.  

 
Rivera V. Ponatanib Preclinical data - FLT3 and AML. Ponatinib AML Clinical Advisory Board Ariad . 

2011.  
 
Rollig C, Muller-Tidow C, Brandts C, Kramer A, Schafer-Eckart K, Neubauer A, Krause S, Giagounidis A, 

Aulitzky W, Bornhauser M, Schaich M, Parmentier S, Thiede C, von Bonin M, Schetelig J, 
Kramer M, Serve H, Berdel W, & Ehninger G. Sorafenib versus placebo in addition to 
standard therapy in younger patients with newly diagnosed acute myeloid leukaemia: 
Results from 267 patients treated in the randomised placebo controlled SAL-Soraml trial. 
56th ASH Annual Scientific Meeting Oral Abstract Number 6 . 2014.  

 
Rowe J. The increasing genomic complexity of acute meyloid leukaemia. Best Practice & Research 

Clinical Haematology 27, 209-213. 2014.  
 
Sasnoor L, Kale V, & Limaye L. A combination of catalase and trehalose as additives to conventional 

freezing medium results in improved cryoprotection of human haematopoeitic cells with 
reference to in vitro migration and adhesion properties. Transfusion 45, 622-633. 2005.  

 
Savasan S, Buck S, Ozedmir O, Hamre M, Asselin B, Pullen J, & Ravindranath Y. Evaluation of 

cytotoxicity by flow cytometric drug sensitivity in childhood T-cell acute lymphoblastic 
leukemia. Leukemia and Lymphoma 6, 833-840. 2005.  

 
Schlush L, Zandi S, Mitchell A, Chen W, Brandwein J, Gupta V, Kenedy J, Schimmer A, Schuh A, Yee K, 

McLeod J, Doedens M, Medeiros J, Marke R, Kim H, Lee K, McPherson J, Hudson T, Brown A, 
Yousif F, Trinh Q, Stein L, Minden M, Wang J, & Dick J. Identification of pre-leukaemic 
haematopoeitic stem cells in acute leukaemia. Nature 506, 328-333. 2014.  

 
Shih L-Y, Huang C-F, Wu J-H, Lin T-L, Dunn P, Wang P-N, Kuo M-C, Lai C-L, & Hsu H-C. Internal tandem 

duplication of FLT3 in relapsed acute myeloid leukaemia: a comparative analysis of bone 
marrow samples from 108 adult patients at diagnosis and relapse. Blood , 2387-2392. 2002.  

 
Sims J & Plattner R. MTT assays cannot be utilised to study the effects of STI571/Gleevec on the 

viability of solid tumour cell lines. Cancer Chemotherapy and Pharmacology 64(3), 629-633. 
2009.  

 
Singer J, Al-Fayoumi S, Haiching M, Komrokji R, Mesa R, & Verstovsek S. Comprehensive Kinase 

profile of Pacritinib, a non-myelosuppressive JAK2 Kinase Inhibitor in Phase 3 development 
in Primary and Post-PV/ET Myelofibrosis. 56th ASH Annual Scientific Meeting Poster Abstract 
Number 1874 . 2014.  



158 
 

 
Smith BD,L.M.B.M.G.F.K.H.B.K.M.K.D.T.A.J.a.S.D. Single agent CEP-701, a novel FLT3 inhibitor, shows 

biologic and clinical activity patients with relpased or refractory acute myeloid leukaemia. 
Blood 103, 3669-3676. 15-5-2004.  

 
Smith C, Lasater E, Lin K, Wang Q, McCreery M, Stewart W, Damon L, Perl A, Jeschke G, Sugita M, 

Carroll M, Kogan S, Kuriyan J, & Shah N. Crenolanib is a selective type 1 pan-FLT3 inhibitor. 
Proceedings of the National Academy of Sciences of the United States of America 111, 5319-
5324. 2014.  

 
Smith C, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, & et al. Validation of ITD mutations in FLT3 

as a therapeutic target in human acute myeloid leukaemia. Nature 485, 260-263. 2012.  
 
Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, & Hiddemann W. Overexpression and 

Constitutive Activation of FLT3 Induces STAT5 Activation in Primary Acute Myeloid Leukemia 
Blast Cells. Clinical Cancer Research 9, 2140-2151. 2003.  

 
Srinivasan D, Sims J, & Plattner R. Aggressive breast cancer cells are dependent on activated Abl 

kinases for proliferation, anchorage independent growth and survival. Oncogene 27, 1095-
1105. 2008.  

 
Stanicka J, Russell EG, Woolley J, & Cotter T. NADPH Oxidase-generated Hydrogen Peroxide Induces 

DNA damage in Mutant FLT3-expressing Leukaemia Cells. Journal of Biological Chemistry 
290, 9348-9361. 2015.  

 
Stein E. AG-221, an oral, selective, first-in-class potent inhibitor of the IDH2 mutant metabolic 

enxyme, induces durable remissions in a phase 1 study in patients with IDH2 mutation 
positive advanced hematologic malignancies. 56th ASH Annual Scientific Meeting Oral 
Abstract Number 115 . 2014.  

 
Stirewalt DL & Radich JP. The role of FLT3 in Haematopoeitic Malignancies. Nature reviews 3, 650-

665. 2003.  
 
Stone RM, DeAngelo DJ, & Klimek V. Patients with acute myeloid leukaemia and an activating 

mutation in FLT3 respond to a small molecule FLT3 tyrosine kinase inhibitor PKC412. Blood 
105, 54-60. 2005.  

 
Swords R, Freeman C, & Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukaemia. 

Leukemia 26, 2176-2185. 2012.  
 
Tabe Y & Konopleva M. Advances in understanding the leukaemia microenvironment. British Journal 

of Haematology 164, 767-778. 2014.  
 
Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid 

leukaemia: biology and therapeutic implications. Journal of hematology and Oncology 4, 1-
10. 4-1-2013.  

 
Taylor SJ, Thien CB, Dagger SA, Duyvestyn JM, Grove CS, Lee BH, Gilliland DG, & Lagndon W. Loss of 

c-Cbl E3 ubiquitin ligase activity enhances the development of myeloid leukaemia in FLT3-
ITD mutant mice. Experimental Hematology 43, 191-206. 2015.  

 



159 
 

Uy G, Rettig M, Motabi I, McFarland K, Trinkas K, Hladnik L, Kulkami S, Abboud C, Cashen A, Stockerl-
Goldstein K, Vij R, Westervelt P, & DiPersio J. A phase 1/2 study of chemosensitisation with 
the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukaemia. Blood 
119, 3917-3924. 2012.  

 
van Engeland M, Nieland L, Ramaekers F, Schutte B, & Reutelingsperger P. Annexin V-Affinity Assay: 

A Review on an Apoptosis Detection System Based on Phosphatidyl Serine Exposure. 
Cytometry 31, 1-9. 1997.  

 
Wakita S, Yamaguchi H, Terada O, Manabe E, Ueda T, Kurosawa S, Lida S, Ibaraki T, Sato Y, Todoroki 

T, H, & i. Epigenetics-modifying gene mutations induce FLT3-ITD in relapsed AML. Leukemia 
27, 1044-1052. 2013.  

 
Wang Y, Fiskus W, Chong DG, Buckley KM, Natarajan K, Rao R, Joshi A, Balusu R, Koul S, Chen J, 

Savoie A, Ustun C, Jillella A, Atadja P, Levine R, & Bhalla K. Co-treatment with panobinostat 
and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signalling and exerts 
synergistic cytotoxic effects aginst humna myeloproliferative neoplasm cells. Blood 114, 
5024-5033. 2009.  

 
Wang Y, Zhao L, Wu C, Liu P, Shi L, Liang Y, Xiong S, Mi J, Chen Z, Ren R, & Chen S. C-KIT mutation 

cooperates with full length AML1-ETO to induce acute myeloid leukaemia in mice. 
Proceedings of the National Academy of Sciences of the United States of America 108(6), 
2450-2455. 2010.  

 
Weisberg E, Liu Q, Nelson E, Kung A, Christie A, Bronson R, & Sattler M et al. Using combination 

therapy to override stromal-mediated chemoresistance in mutant FLT3-positive 
AML:Synergism between FLT3 inhibitors, dasatanib/multi-targeted inhibitors, and JAK 
inhibitors. Leukemia 26(10), 2233-2244. 2012.  

 
Whitman SP, Archer KJ, & Feng L. Absence of the wild-type allele predicts poor prognosis in adult de 

novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication 
of FLT3: a cancer and leukemia group B study. Cancer Research 61, 7233-7239. 2001.  

 
William AD, Lee AC, & Blanchard S. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-

dioxa-5,7,26-triazatetracyclo(19.3.1.1(2,6).1(8,12)heptacosa-
1(25),2(26),3,5,8,10,12(27),16,21,23-decaene(SB1518), a potent Janus kinase 2/fms-
liketyrosine kinase 3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma. 
Journal of Medicinal Chemistry 54(13), 4638-4658. 2015.  

 
Williams K, Motiani K, Giridhar PV, & Kasper S. CD44 integrates signalling in normal stem cell and 

(pre)metastatic niches. Experimental Biology and Medicine , 324-338. 2013.  
 
Wilson A & Trumpp A. Bone marrow haematopoeitic-stem-cell niches. Nature Reviews Immunology 

6, 93-106. 2006.  
 
Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li 

J, Moffat J, Sutherlin D, Koeppen H, Merchant M, Neve R, & Settleman J. Widespread 
potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 
505-509. 2012.  

 



160 
 

Yang X, Sexauer A, & Levis M. Bone marrow stroma-mediated resistance to FLT3 inhibitors in FLT3-
ITD AML is mediated by persistent activation of extracellular regulated kinase. British Journal 
of Haematology 164, 61-72. 2014.  

 
Zarrinkar P, Gunawardane R, Cramer M, Gardner M, Brigham D, Belli B, Mazen W, Pratz K, Pallares G, 

Chao Q, Sprankle K, Patel H, & LevisM et al. AC220 is a uniquely potent and selective 
inhibitor of FLT3 for the treatment of acute myeloid leukaemia (AML). Blood 114[4]. 1-10-
2009.  

 
Zauli G, Celeghini C, Melloni E, Voltan R, Ongari M, Tiribelli M, Iasio M, Lanza F, & Secchiero P. The 

Sorafenib plus Nutilin-3 Combination Promotes Synegristic Cytotoxicity in Acute Myeloid 
Leukemic Cells Irrespective of FLT3 and p53 status. Hematologica 97, 1722-1730. 2012.  

 
Zeestraten EC, Benard A, Reimers MS, Schouten PC, Liefers GJ, van de Velde CJ, & Kuppen PJ. The 

prognostic value of the apoptosis pathway in colorectal cancer: a review of the literature on 
biomarkers identified by immunohistochemistry. Biomarkers in Cancer 5, 13-29. 2013.  

 
Zhang W, Gao C, & Konopleva M. Reversal of Acquired Drug Resistance in FLT3-Mutated Acute 

Myeloid Leukemia Cells via Drug Combination Strategies. Clinical Cancer Research 20(9), 
2363-2374. 11-3-2014.  

 
Zhang W, Konopleva H, & Shi YX et al. Mutant FLT3: a direct target of sorfaenib in acute 

myelogenous leukaemia. Journal of the National Cancer Institute 100, 184-198. 2008.  
 
Zheng R, Friedman A, Levis M, Li L, Weir E, & Small D. Internal tandem duplication mutation of FLT3 

blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 103, 
1883-1890. 2004.  

 
Zimmerman E, Turner D, Buaboonnam J, Hu S, Orwick S, Roberts M, Janke L, Ramachandran A, 

Stewart C, Inaba H, & Baker S. Crenolanib is active against models of drug-resistant FLT3-ITD-
positive acute myeloid leukemia. Blood 122, 3607-3615. 2013.  

 
Zirm E, Spies-Weisshart B, Heidel F, Schnetzke U, Bohmer F, Hochaus A, Fischer T, & Scholl S. 

Ponatanib may overcome resistance of FLT3-ITD harbouring additonal point mutations, 
notably the previously refarctory F691L mutation. British Journal of Haematology 157, 483-
492. 2011.  

 
Zorko N, Bernot K, & Caligiuri M. MLL partial tandem duplication and FLT3 internal tandem 

duplication in a double knock-in mouse recapitulates features of counterpart human acute 
myeloid leukemias. Blood 120(5), 1130-1136. 2012.  

 
 
 
 
 
 
 
 
 
 
 



161 
 

Publications/Presentations as a result of this work: 
 

 Pacritinib suppresses Leukemic Outgrowth from FLT3-ITD Positive Stroma-Adherent Primary 
AML Cells, Marrin CA, Edwards GOE, Knapper S, Burnett AK, Zabzkiewicz J, Alvares C, Oral 
Presentation #270, American Society of Hematology Annual Scientific meeting, San 
Francisco, December 2014 

  

 Pacritinib suppresses Leukemic Outgrowth from FLT3-ITD Positive Stroma-Adherent Primary 
AML Cells harbouring FLT3-ITD, Edwards GOE, Marrin CA, Knapper S, Burnett AK, Zabkiewicz 
J, Alvares C, Oral Presentation #10, British Society for Haematology Annual Scientific 
Meeting, Edinburgh. April 2015 
 

 Manuscript in preparation relating to the above, planned for submission to Leukemia 
 

 
 

 

 

 


