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Abstract   

 

The conformation that polymer-drug conjugates form in solution have a significant effect on 

properties that are important for designing of drug delivery systems. For N-(2-

hydroxypropyl)methacrylamide (HPMA) copolymer conjugates it is known that aggregation 

number, size and shape affect the rate at which a drug is enzymatically cleaved from the polymer 

backbone. Investigation of conformational properties could lead to creation of polymeric systems 

with the ability to keep drug levels at biologically active and safe concentrations for desired period 

of time. This project is focused on establishing the required modeling methodologies to describe 

the solution configurations of HPMA based conjugates. Therefore structural properties such as 

size, shape and density distribution of a range of HPMA copolymers have been investigated. The 

suitability of atomistic force fields has been assessed against rotational barriers and relative 

conformational energies obtained from ab initio and DFT data for a monomer and dimer of HPMA.  

 

Following this, the AMBER99 parameter set was chosen for all molecular dynamics simulation. 

Radius of gyration (Rg), radial distribution function (RDF), shape, and density profiles of particular 

atom types were calculated for a range of HPMA homopolymers sizes from 4 to 200 repeat units 

(2 to 35 kDa). Results were interpreted in the context of Flory’s mean field approach, and 

compared with data obtained from small angle neutron scattering (SANS) experiments. Results of 

this study were used for investigation of HPMA conjugates with drug mimics. A range of linear 

amines (aminohexane(C6), aminooctane(C8), aminododecane (C12)), hydroxyl and fluoro 

terminated linear amines as well as aromatic aminoanthracene (ANC), aminocrysene (AC) and 

aminoanthraquinone (ANQ),  bound to the polymeric carrier via a tetrapeptide linker (glycine-

phenylalanine-leucine-glycine) (GFLG) (Mw ~ 30 kDa) were selected as model objects for study 

of the effect of drug type and loading on HPMA copolymer conformation.  

 
Using obtained results for further investigation we have progressed to more complex systems of 

mixed polymer conjugates containing drug-mimic parts with similar parameters of 

hydrophobicity, but different in terms of flexibility for drug-mimic chain. In order to provide 

corresponding comparison we have selected systems of Adamantane (Ad)/ANC, Ad/ANQ, 

methyl-Adamantane (AdMe)/C12, hydroxyl-Adamantane (AdOH)/C10OH and Ad/C10 conjugate 
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mixtures and investigated the effect of changing ratio of drug-mimic parts for these systems.  

Analysis of SANS data revealed how conformation can be affected by the drug mimic’s intrinsic 

volume variation, and allowed us to get closer to finding answers for questions that can increase 

effective use of polymer-drug therapeutics. SANS experimental scattering curves were compared 

with theoretical curves, predicted from molecular dynamics (MD) simulations. Parameters such as 

size and shape fitted to SANS data were compared with relevant simulated structures. Based on 

results of previous studies as well as additional polymer synthesis and characterization process we 

were able to develop reliable all-atom (AA) and coarse-gain (CG) computer models for simulation 

of HPMA polymer. Required tools and software were developed. Various methods were used to 

increase performance efficiency of Molecular Dynamics calculations. Among them highest 

practical impact has a domain decomposition parallelization strategy. 
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Chapter 1: Introduction 

1.1. Polymers for therapeutics 

1.1.1. Challenges of cancer treatment 

First documented in ancient Egypt, in 1500 BC [1], cancer still causes more than 7 million deaths 

worldwide every year [2].  Of course, methods of cancer treatment are far ahead of the 

cauterization (a method to destroy tissue with a hot instrument called "the fire drill") and nowadays 

effective treatment can achieve full recession in 17-75% of cancer cases [3]. However cancer 

remains one of the most common causes of death and is predicted to move ahead of heart diseases 

in the near future [4]. Cancer can be treated by surgery, chemotherapy, radiation therapy, 

immunotherapy, monoclonal antibody therapy or other methods. The choice of therapy depends 

upon the location and grade of the tumor and the stage of the disease, as well as the general health 

state of the patient. These methods have shown successful clinical results, but the price and the 

risk of negative effects with currently used therapeutics are reasons for development of new 

experimental cancer treatments.  

 

Among them are polymer therapy methods, developed in the second half of the 20th century, which 

can be considered as a key to finding a safer cure for different types of cancer [5]. These promising 

forecasts are based on distinct advantages, polymer-drug therapy have over conventional 

chemotherapy. These include: 

• passive tumor targeting owing to the enhanced permeability and retention (EPR) 

effect, a phenomenon that arises from the hyperpermeability of angiogenic tumor 

blood vessels [6] 

• the potential to bypass mechanisms of drug resistance after cellular uptake by the 

endocytic route [7,8] 

 

• the ability to target desired sites in the human body and localize drug action where is 

required [8-12] 

 

• the ability to keep drug levels at biologically active and safe concentrations for desired 

period of time [7-10] 
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In general, these features define principles for drug-delivery system design and application. The 

systematic study and development of such systems allowed introduction of more effective methods 

for cancer treatment, using known drugs but with decreased side-effects and enhanced activity. 

 

Figure 1.1. Schematic representation EPR effect for normal and tumor tissue [12]. 

In general, the EPR effect (Figure 1.1) can be described as passive targeting mechanism based on 

ability of low-molecular-weight compounds to diffuse into normal and tumour tissue through the 

cell layer of blood capillaries. Macromolecules, however, cannot pass through the capillary walls 

of healthy tissue. In contrast to the blood capillaries in most normal tissues, the endothelial layer 

of the capillaries in the tumour tissue is deformed so that macromolecules can pass, leading to 

passive targeting of tumour sites. The EPR effect is observed for macromolecules with molecular 

weights greater than 20 kDa [5]. It has been shown that the EPR effect is molecular weight 

dependent, and that higher molecular weight conjugates have greater passive targeting [13]. 

However, in order for the polymer to be excreted by the kidneys, the molecular weight must be 

below 45 kDa [14].  

Apart from passive targeting, introducing polymer to a drug-delivery system provides the potential 

for active intercellular and extracellular targeting by various mechanisms, such as: pH and 

enzyme-responsible side-chain groups, optional targeting groups, or a combination of them [13]. 
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Such selective action can be applied for direct improvement of biological activity for selected 

drugs and demands further investigation. 

 

Figure 1.2: Schematic representation of the endocytosis process [4].  

One mechanism of intercellular targeting often applied for polymer-drug delivery is endocytosis, 

a term first used by De Duve [15, 16]. Initiated by a receptor interaction, an adsorptive interaction 

with the cell wall, or via passive fluid phase, takes place in cell (Figure 1.2). The endosomal 

compartment will then traffic the conjugated drug to a primary lysosome containing proteolytic 

enzymes, which are naturally designed to degrade proteins [17]. Finally, the drug is released by 

enzyme interaction or break of pH-dependent linker. During this process pH will be changed from 

the 7.4 in the blood stream to the 6.5 in the primary endosome and 7.5 in the secondary endosome. 

Based on these principles, further application of this mechanism for polymer-drug delivery as 

cancer targeting lysosomotropic agents was proposed by Ringsdorf [18]. Later, experiments with 

14C labelled polymers injected into rats muscle tumors demonstrated that the tumor tissue had 

polymer uptake with a factor of 6 higher than the normal muscle tissue [19]. 
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1.1.2. Polymer-drug delivery systems development 

There are various systems related to the term “polymer therapeutics”. It is used for polymeric 

drugs, polymer–drug conjugates, polymer–protein conjugates, polymeric micelles to which drug 

is covalently bound, and multicomponent systems. (Figure 1.3) All are based on water-soluble 

polymers, either bioactive or as an inert functional part of a drug-delivery system for improved 

drug, protein or gene delivery. During the past two decades, an effective biological rationale has 

emerged for the design of each of the subclasses of polymer therapeutic based on progress in 

polymer, analytical, computational and soft-matter chemistry. New systems have been introduced 

and carried to different stages of clinical trials. Results of such trials show benefits of introducing 

of polymer therapeutics for cancer treatment and motivate research groups to further investigation. 

Polymeric materials for such systems can be extracted from plants, animals and seaweed, 

particularly polyanions and polysulphates. Or, like DIVEMA (pyran copolymer) and COPAXONE 

(random copolymer of L-alanine, L-lysine, L-glutamic acid and L-tyrosine), they can be a product 

of chemical synthesis [16].  

Figure 1.3. Different polymer therapeutics: (a) polymeric drugs, (b) polyplexels, (c) polymeric 

micells, (d) polymer-protein conjugates, (e) polymer-drug conjugates [5].  
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Polymer–protein and polymer–drug conjugates share many common features, but the biological 

principles for their design is quite different. Peptide-, protein- and antibody-based drugs were first 

used for therapy but had a range of limitations, crucial for clinical application. These often include 

a short plasma half-life, poor stability and immunogenicity. Such limitations created a need for 

future method development. In the 1970s research by Davis Abuchowski and colleagues 

introduced the so-called PEGylation technique, designed to increase protein solubility and 

stability, and to reduce protein immunogenicity [17]. The result was a need for less frequent dosing 

caused by prolonged plasma half-life. These method is still being used and its clinical value is now 

well established.  

 

At the same time another concept was introduced and described in the works of De Duve and 

Ringsdorf [16-18]. It was shown that covalent conjugation of a low molecular weight drug to a 

polymer backbone would alter drug pharmacokinetics at a cellular level by restricting uptake to 

the endocytic route. These opened a new area for research and allowed use of new polymers for 

drug-delivery. As well as new perspectives, new challenges arose, resulting in several important 

requirements for both drug and carrier. Whereas the linker binding the drug to the polymer chain 

must be stable when in circulation to ensure the EPR effect, at some point the drug must be released 

from the polymer backbone. As previously mentioned, this can be accomplished in two main ways: 

using a linker sensitive to the pH change of endocytosis or using an enzymatically degradable 

linker sensitive to the enzymes encountered within the lysosome [14, 15].  

 

In general, a polymer for drug delivery, and any of its metabolic products, should be: 

• non toxic 

• water-soluble 

• biodegradable 

• well characterized 

• protected from inactivation by plasma enzyme 

• macromolecules with a molecular weight in a range of 20-40 kDa 

• able to bind to the desired drugs  

• easily synthesized  
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Regarding these principles, several polymer carriers have been developed over the past 40-50 

years. Many of them were selected for usage in drug-delivery systems: poly(α-L-glutamic acid) 

(PGA) [6], polyethylene glucol (PEG) [7], poly(L-lysine) (PLL) [8]), poly(vinyl- pyrrolidone) 

(PVP) [20], poly(ethyleneimine) (PEI) [20], linear polyamidoamines, alternating cyclocopolymer 

of divinyl ether and maleic anhydride (DIVEMA) [20] and N-(2-hydroxypropyl)methacrylamide 

(HPMA) [9]. Several natural polymers have been successfully transferred to the clinic: (dextran 

(α-1,6 polyglucose), dextrin (α-1,4 poly- glucose), hyaluronic acid and chitosans [20]. 

 

However, despite all advantages and huge potential for usage in biochemistry, polymer therapies 

have some unsolved problems and unanswered practical questions. Among them are the undefined 

structure of some co-polymers, and details of polymer interaction with the cell and drug-release 

mechanism [4]. Another aspect should be pointed out: it is crucial to understand solution behavior 

of such polymeric systems and how it is linked to a conformation and drug-loading.  

 

1.1.3. Polymer-drug conjugates in current use 

There are various systems available for application in polymer-drug delivery. These include 

(Figure 1.4): 

i) Polymer–drug conjugate + low molecular weight drug or other type of 

therapy eg PGA paciltaxel  + Carboplatin [20, 21] 

ii) Polymer–drug conjugate (HPMA-GFLG-Dox, HPMA-GFLG-Gal-Dox [9]) 

iii) Polymer–drug conjugate + polymer–drug conjugate (HPMA- 

doxorubicin/mesochlorin [22]) 

iv) Single polymeric carrier carrying a combination of drugs (HPMA-GFLG-

Dox-AGM, PEG-Epi-NO, CPT-PEG(-LHRH)-BH3 [22-25]) 

Based on different strategies, these systems can enhance drug performance by introducing new 

features by selective action and complex release mechanisms. The presence of two or more 

therapeutic agents on a single polymeric chain opens new therapeutic possibilities but at the 

same time poses new challenges. 
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Figure 1.4. Different types of polymer-drug delivery systems 

 

Among the most promising candidates for polymeric carrier part for drug-delivery systems are 

HPMA polymer and its conjugates. It was shown that HPMA is both suitable as an model object 

for investigation and can be used as a component for medical treatment. They fulfill all 

requirements for drug-delivery system: they are highly hydrophilic, non-immunogenic, non-toxic, 

have a binding sites for drugs to be attached and reside well in the blood circulation. HPMA 

homopolymer was originally developed by Kopecek and colleagues as a plasma expander. 

Collaborative research with Duncan and colleagues in the early 1980s produced two HPMA 

copolymer–doxorubicin conjugates that subsequently progressed into I/II clinical phases [24].  

 

Using doxorubicin as a model drug, significant efforts at the preclinical level have also been 

invested in improving the passive targeting properties of the HPMA copolymers, as well as in 

enhancing drug delivery to tumor cells by active targeting [23]. As HPMA copolymers have 

already shown activity in chemotherapy refractory breast-cancer patients and this polymer has 

proven clinical safety [9]. Various HPMA-conjugates were studied within the Soft Matter 

Research Group so synthetic and characterization techniques are well known and successfully 

applied [19-20]. Conjugates are water soluble and can be obtained from parent a polymer by 
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substitution reaction relatively easily. For these reasons HPMA was chosen as the polymeric 

carrier for our investigation.  

 

1.1.4 Importance of linker, loading, conformation. 

The conformations that polymer-drug conjugates may form in solution have a significant effect on 

properties that are important for designing of drug delivery systems. In practice, these depend on 

drug type, loading and mixture rates. For example, it was demonstrated that for selected HPMA 

copolymer conjugates (Figure 1.5) the effect of these factors can be different for each system. 

Thus, for aminopropanol (Ap) increase of drug-loading from 5 to 10 mol % affects size, but not 

the overall shape of the molecule, keeping it spherical. For HPMA-co-MA-GFLG-para-

nitrophenol (ONp) the shape of the molecule adopted in solution will vary from sphere to a rod for 

5 and 10 mol% loading respectively. At the same time, for both 5 and 10 mol % dodecylamine 

(C12) conjugates scattering results suggest rod-like structure with change of length as loading 

increased (Figure 1.6) 

 

 

Figure 1.5: Structure of the HPMA-co-MA-GFLG copolymer where x defines the mole percent 

of GFLG-R side chain loading and R is the bound drug mimic: a) aminopropanol, x_Ap; b) 

para-nitrophenol, x_ONp, c) dodecylamine, x_hC12. 
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Further investigations suggested that as the size of the hydrocarbon increases, the conjugate 

conformation will change from a fully flexible Gaussian coil structure (Ap) to a more rigid chain 

structure (hexylamine-decylamine  (C6 – C10)) and finally to a rigid rod structure for larger 

alkanes (C12 – C18). Changes made in the hydrophobicity of the substituent demonstrated 

conclusively that hydrophobicity rather than chain structure is responsible for the conformation 

changes observed. Where the conjugates have been modified with aromatic substituents, the results 

follow the same trend: as the substituent increases in size, the flexibility reduces from a worm-like 

chain for aniline (An) to a rod for aminoanthracene (Anc) [24].  

 

Figure 1.6.: Schematic representation of the best-fit morphologies concluded from the SANS 

analysis. [24]  

In addition, it was shown that for HPMA copolymers conjugate aggregation as well as the size and 

shape adopted by the molecule in solution will affect the rate at which the drug is enzymatically 

cleaved via GFLG linker from the polymer backbone [21, 25]. As demonstrated by Ulbrich, a 

series of copolymer HPMA-GLFG conjugates containing 6.9, 3.3 and 1.5 mol % of p-nitroaniline 

(NAp) formed aggregates with association numbers of 5, 2, and 1 respectively [25]. The rate at 

which free NAp was released was measured using UV spectroscopy. It was found that the overall 

amount and speed of NAp released was lower for conjugates with higher association numbers i.e. 

higher loading (Figure 1-7 a). Aggregate formation and polymers coiled structure was suggested 

to act as shield from the active site of the enzyme. (Figure 1-7 b). 
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Figure 1.7. Influence of structural properties on biological behavior: (a) observed release 

kinetics for conjugates containing different mol % of GLFG-Nap side chains, (b) influence of the 

type of aggregates formed in solution on enzyme activity [25].  

 

It is also known that clinical performance related to parameters, such as maximum tolerated dose 

(MTD), may be linked to the conformation of a polymer-drug conjugate.[19] For example, Paul et 

el showed that for clinically tested antitumor therapeutics: PK1(FCE28068) and PK2(FCE28069) 

(Figure 1.8) differ in sizes of conjugates adopted in solution. Presence of Galactosamine (Gal) as 

a targeting group leads PK2 to a less compact structure (Rg = 10.5 nm) than PK1 (Rg = 7.8 nm), 

which corresponds to equivalent decreasing of the MTD for PK2 comparing to PK1 with a factor 

of two for almost at the same level of the drug content (Figure 1.8. a). AGM-Dox study also 

showed conformational difference for HPMA conjugates containing different mixed drugs [26]. 

 

These studies suggest that drug type and drug loading, as well as presence of side-groups, have an 

influence on solution conformation, drug-release mechanism and potentially to clinical 

performance, and hence lead to understanding of drug-delivery systems design. More in depth and 

systematic studies will provide the basis of design rules for next generation of conjugates, 

establishing a mechanism for a controlled delivery and release of drug or combination of drugs. 
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Figure 1.8. a. Results of clinical trials for seleched polymer-drug therapeutics; b. Chemical 

structure of the polymeric antitumor therapeutics: PK1 (left) and PK2 (right). 

 

 

 



12 
 

1.1.5 Solvent conjugate interactions 

In theory, structural parameters of a single polymer chain depends on the solvent [30]. For a good 

solvent the chain is more expanded while for a bad solvent the chain is coiled. In the limit of a 

very bad solvent the polymer chain collapses to form a hard sphere, while in good solvent the chain 

swells in order to maximize the number of polymer-solvent interactions [31]. For this case the 

radius of gyration, Rg, is approximated using Flory's mean field approach which yields a scaling 

for the radius of gyration of: 

 

Rg = R0 * Nυ 

(1.1) 

where R0 is the radius of gyration of the monomer unit, N is the number of repeated units and ν is 

a solvent factor. A good solvent will give υ ~ 2/3 while for bad solvent the tight spherical 

conformation leads to υ ~ 1/3. Therefore, polymer in good solvent has a larger size and behaves 

like a fractal object. In bad solvent it behaves like a solid sphere. In the so-called θ solvent, υ ≅ 

1/2, which is the result of simple random walk and the chain behaves as if it were an ideal chain. 

However, Rg provides only general information on conformation size and structure. Separate axes 

analysis for such systems can contribute more detailed characteristics of polymer-drug conjugate, 

such as shape, relative sizes, sphericity, etc. The inclusion of pendant linker groups greatly 

complicates the behavior due to the complex molecular structure and associated intra-molecular 

interaction caused by varying hydrophobicity of each part of the conjugate molecule. Advanced 

experimental techniques are often applied to determine conjugates structure and study solvent 

behavior of such systems. These techniques include viscosity, Dynamic light scattering (DLS) and 

Small Angle Neutron Scattering (SANS) measurement followed by data analysis [37].  

 

1.2 Experimental characterization of polymer solution conformation 

1.2.1 Small Angle Neutron Scattering (SANS) 

1.2.1.1. General information and application 

Small Angle Neutron Scattering (SANS) is a neutron scattering technique that provides accurate 

data for the study of materials on the nanometre to micrometre length scales. The experiment 

consists of a well collimated beam of neutrons being passed through a sample and detectors to 
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count the number of neutrons scattered as a function of angle and neutron wavelength. This data 

can then be used to extract information about the shape, size, arrangement, and interactions of the 

components of the sample. SANS studies date from the early works of A. Guinier in 1938 [29], 

and later publications by O. Kratky, W. Beeman, P. Schmidt, V. Luzzati where the theoretical 

basis and experimental techniques were described. In the 1960s, the method became increasingly 

important as it allowed one to get low-resolution structural information on the overall shape and 

internal structure of the studied system in the absence of crystals, making water-soluble polymers 

accessible for measurement and characterization [30].  

 

A breakthrough in SANS experiments came in the 1970s with development of new experiments 

using new powerful neutron source beams and advanced detectors as well as result analysis and 

model fitting evolution.  Further progress in this field was introduced by application of a contrast 

variation technique from available deuteration methods. Nowadays more than twenty neutron 

facilities are in operation worldwide including Grenoble (France), Oxfordshire (UK), Brookhaven 

(US), Risø (Denmark), Studsvik (Sweeden), and Julich (Germany) [31].  

 

The main challenge of SANS as a structural method yet remained the same;  to extract information 

about the three-dimensional structure of the system from the one-dimensional experimental data. 

Until method development, only overall particle parameters (e.g. volume, radius of gyration) of 

the macromolecules were directly determined from the experimental data, whereas three-

dimensional models were limited to simple geometrical shapes (e.g. ellipsoids, cylinders, 

etc.). Additional characterization methods such as electron microscopy were often used to obtain 

necessary parameters for building such models. In the 1980s, progress in structural methods led to 

the possibility of structural conclusions on studied systems based on trial-and-error models. Use 

of computers for such procedures allowed increased efficiency and allowed easier access to these 

methods. The result is a gradual expansion of studies in many directions.  

 

Currently SANS is used in a wide range of scientific fields, but finds particular use in studies of 

soft condensed matter, such as: molecular self-assembly and interactions in a range of systems, 

polymer solutions, gels and blends, colloids, micelles, and microemulsions as well biophysics (e.g. 

lipids and lipid-protein complexes), biology (e.g. solution structures of proteins) and hard 
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condensed matter (e.g. superconductors and magnetic materials) [37]. Specifically important for 

biological research it was previously shown that SANS characterization can be carried out under 

physiologically relevant conditions (body temperature, biological pH, ionic strength, and at a range 

of conjugate concentrations up to 50 mg mL-1). Besides, SANS is non-invasive, and does not rely 

on the use of chemical modification, for example. Another significant advantage of SANS is the 

possibility to obtain both overall and local structural information for macromolecules [36].  

 

1.2.1.1. SANS data analysis and fitting 

In order to obtain the required information on a system’s structure or properties, a fitting process 

is required as part of SANS characterization. The analysis requires application of least-squares 

methods, and the basic principles of linear and non-linear least squares methods are summarized 

with emphasis on applications in the analysis of small-angle scattering data. These include indirect 

Fourier transformation, square-root deconvolution, size distribution determinations, and 

modelling. For reasons of mathematical convenience, the scattering pattern is normally described 

by intensity (I) as a function of the amplitude of the scattering vector or momentum transfer, Q:  

 

� = 4πsinθ
	  

  

(1.2) 

where λ is the wavelength of the incident radiation, and θ is half the angle between the incident 

and scattered radiation. In the SANS experiment, λ is fixed and θ is small (typically <3°), so I(Q) 

versus Q is essentially the intensity as a function of scattering angle. Although I(Q) versus Q is 

related to the shape of the macromolecule in solution, the profile is not intuitively informative, and 

to interpret a scattering profile in terms of a structure, it is useful to Fourier transform the scattering 

profile to obtain the interatomic distance distribution function, P(R), of the scattering particle. 

 

In experimental conditions I(Q), from a polymer solution of volume fraction φp is given by 

Equation 1.3, where ∆F is the difference in scattering length density, F, between the scattering 

body (of volume Vp) and the solvent, and Binc is the background incoherent scattering. 
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I(Q) = φpVp(∆ρ)2 P(Q, R) + Binc  

(1.3) 

The form factor, P(Q, R), describes the size and shape, and form factors are known for a range of 

particle morphologies. These can be combined with appropriate contrast and scaling terms to 

model the scattering data.   

 

1.2.2 Previous studies of polymer-drug delivery systems in Cardiff Soft 

Matter Research Group 

Previously, the importance of polymer-conjugate conformation in solution for therapeutic outcome 

as well as application of SANS techniques to study the solution conformation of HPMA conjugates 

was investigated in work of Soft Matter Research Group of Cardiff School of Chemistry [11]. 

Focused on polymer mediated drug-delivery systems and physicochemical characterization of 

macromolecules in solution, various systems were studied and results of these research can be 

implemented for future investigations. It was shown that, for a range of HPMA copolymer 

conjugates, both drug type and drug loading have an influence on solution conformation, providing 

insight into overall drug release and release kinetics observed for HMPA-GFLG-

doxorubicin/aminoglutethimide conjugates [22, 23]. 

 

Intensive investigation of polymer conformation and morphology linked to drug-type and loading 

was carried out to explore the solution behavior of HPMA-conjugates and uncover the influence 

of side-chain on its properties. A wide range of alkane, aromatic, fluorinated and hydroxyl-

terminated conjugates were synthesized and characterized by NMR and SANS techniques. This 

led to important information on structure-property relationships for HPMA-conjugates, introduced 

some principles of polymer-drug design and established methodology for characterization process. 

Importance and effective usage of contrast variation experiment as well as application of SANS 

method was demonstrated [22, 23]. 

 

Results of this research were published in a number of articles and demonstrated the importance 

of HPMA-copolymers conformation in solution for their therapeutic outcome [11, 22, 23]. Despite 

progress to date, and many benefits demonstrated, SANS experiments are expensive, time 

consuming and difficult to perform, data interpretation can be a long and complex process. The 
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possibility of introducing molecular modelling approach to virtually “synthesize” new conjugates 

by screening their structure and solution behavior is therefore a highly desirable objective. 

 

1.3 All-atom modelling 

 1.3.1 Motivation and general strategy for computer modelling  

An all-atom (AA) model of a polymer contains all the atoms which are present in the real polymer. 

Their interactions are modelled as realistically as possible, using parameters for simulated systems 

that are compared with results of experiment or between various simulation conditions. AA 

simulations are powerful tools for investigation of various biological systems for a number of 

reasons. For example, experimental determination of chosen parameters for such systems is often 

time and money consuming process, that can be enhanced by introducing results of molecular 

dynamics (MD) simulation [38]. In biophysics and molecular biology, the method is frequently 

applied for ligand docking, simulations of lipid bilayers, homology modeling and ab initio 

prediction of protein structure by simulating folding of the polymer chain from random coil. MD 

is also frequently used to refine three-dimensional structures of proteins and other 

macromolecules based on experimental constraints from crystallography or spectroscopy [32]. 

 

Design of MD simulations should account for the available computational power and properties 

of system, chosen as object of research. Simulation size (number of particles, simulation box 

sizes), timestep and total time duration are important parameters to be taken in account for MD 

strategy and methodology development. However, the simulations should be long enough to be 

relevant to the time scales of the natural processes being studied. Parallel algorithms, such as 

domain decomposition and multiple CPU usage can increase effective simulation time and are 

often used as long with other methods, such as SHAKE [39] and other timestep-related algorithms. 

These and other methods will be discussed in more detail in Chapter 2.  

 

In general, use of these methods are often based of decreasing number of parameters calculated, 

such as number of particles in the system or timestep for simulation process, allowing to obtain 

required information while maintaining desired accuracy. For simulating molecules in a solvent, 

as we wish to do, a choice should be made between explicit solvent and implicit solvent. Explicit 

solvent particles (such as the TIP3P, SPC/E and SPC-f water models) must be calculated 
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expensively by the force field, while implicit solvents use a mean-field approach [58]. Using an 

explicit solvent is computationally expensive, requiring inclusion of roughly ten times more 

particles in the simulation. However, implicit solvent models are not always able to reproduce 

specific system properties, such as molecule-solvent interactions. These may lead to critical errors 

in system structure or require longer simulation times for equilibration. (Figure 1.9) Such 

limitations should be taken in account while performing simulations in solute conditions. 

 

  

 

Figure 1.9. Results of MD simulation for HPMA-64 polymer molecule. Left - implicit 

solvent model (Rg = 16 Å), right - explicit water solvent model (Rg = 33 Å). Time = 1 ns, T = 

310K 

 

Another important parameter that has a great influence on simulation process is sizes of simulated 

system. In MD, the simulation box size must be large enough to avoid boundary condition 

artefacts. Boundary conditions are often treated by choosing fixed values at the edges or by 

employing periodic boundary conditions in which one side of the simulation loops back to the 

opposite side, mimicking intramolecular forces.   

 

A molecular dynamics simulation requires the definition of a potential function, or a description 

of the terms by which the particles in the simulation will interact usually referred to as a force 

field. Interatomic potentials are mathematical functions used to describe the potential energy of 

a statistical mechanical model formed by a system of particles  Potentials and their form can be 

defined at many levels of physical accuracy and depends on available recourses as well as needed 
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level of details for simulation process. Different force fields are designed for different purposes. 

These include less detailed "united-atom" interatomic potentials and more accurate 

AA- interatomic potentials representation. Among them AMBER[40] (widely used for proteins 

and DNA) CHARMM[41] (widely used for both small molecules and macromolecules) OPLS[42] 

(developed and optimized for liquid simulations of organic molecules) and MMFF[43] (developed 

at Merck, for a broad range of molecules) along with many others.  

 

 1.3.2 Application for computer simulations to synthetic polymers studies 

The increasing number of papers on polymer-conjugate simulations in recent years indicates 

interest in this area. Growth of computational facilities available to implement techniques such as 

molecular mechanics, molecular dynamics, mesoscale and statistical mechanics has led to studies 

of various properties, such as solubility, sizes and shape of obtained structures, polymer chain 

collapse time, distribution of individual fractions and density distribution. Some studies, of 

polymer solvation and modelling of pH-sensitive drug release [44] discuss simulation results in 

comparison with experimental data. Correlations of calculated parameters with experimental 

observations suggest that computer modelling techniques can be used for accurate prediction of 

polymer behaviour, and that computational methods have potential use in screening polymeric 

systems prior to time consuming synthesis and experimental evaluation. 

 

Despite the increase of the interest in applying coarse-graining (CG) techniques (vide infra) for 

polymeric systems, all-atom models provide a detailed overview of intra- and intermolecular 

interactions, which can be used for subsequent mapping and adjustment of beads in CG models. 

Nevertheless, for short simulations or for systems of relatively small-size, AA simulations are 

often carried out. Both explicit and implicit water models can be used for solvent effects as well 

as vacuum simulations in selected systems. In addition, some of the specific parameters that are 

based on atoms’ geometry can be obtained from AA simulations more accurately than CG 

methods. However, reverse mapping tools are intensively developed so the geometry resulting 

from CG simulations can be afterwards transferred to AA representation [46].  

 

Mixed QM-MM modelling methods are also becoming more affordable and accessible for research 

purpose for highest level of details and can already handle hundreds of atoms [57]. The QM-MM 
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approach was introduced in the 1976 paper of Warshel and Levitt [45]. These methods open a wide 

range of applications for AA simulations to polymers of different nature to obtain desired 

parameters of model systems and such predict properties. In general, this method is based on 

separate handling of different groups of atoms at different levels of detail. (Figure 1.10). Most 

parameters can be obtained by highly-accurate quantum chemistry methods for selected atoms 

while the rest of the system interactions and dynamics will be carried via MD approach. The 

benefits of such a scheme are efficiency and the ability to explore both timescales and level of 

details beyond limits of other techniques. However currently QM-MM methods can be 

implemented only for a limited selection of systems and are not able to provide a realistic models 

of large-scale polymer molecules in solution. Future development of this approach might allow 

the study of such systems which will open a new possibilities for research and modeling. 

 

 

 

 

Figure 1.10. Schematic representation of QM-MM method 

 

A wide variety of polymers in a wide range of sizes and structure have been studied involving AA 

MD simulations for different research purposes. In recent decades, various techniques to handle 
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the problems of different size and time-scales have been developed. These techniques can be used 

for research porpoises in different problems like: role of hydrogen bonds in protein and polymer 

stability, analysis of polymer chain flexibility, polymer chain collapse time, distribution of 

individual fractions within the molecule and density distribution. AA computer simulations 

analysis can help in answering many questions regarding the time scale and the nature of process 

occurs in various systems. Such studies are aimed at understanding the coupling between the 

molecule and solvent dynamics, solution behavior and its likely influence on biological processes. 

 

1.4 Coarse-grained modelling 

1.4.1 Motivation and general strategy 

Computational modeling can be beneficial for understanding the dynamical and structural 

properties of molecular systems. However, AA MD simulations of relatively large systems 

(thousands to tens of thousands of atoms in solvent) such as polymers are computationally 

expensive and inefficient. Therefore, to minimize computational costs and time, coarse-grained 

(CG) models can be applied to reduce the amount of particles in the system, which leads to increase 

of simulation efficiency. By grouping atoms together, coarse graining reduces the number of 

degrees of freedom and, therefore, the computational cost. Moreover, due to the removal of high-

frequency motions, such as the vibrational movements of hydrogen atoms, larger steps can be 

made in MD simulations, allowing longer simulations (Figure 1.11). Examples of such CG MD 

approaches have been applied to a wide range of molecular events, such as investigating protein 

folding and elucidating protein–protein interactions. A large diversity of coarse graining 

approaches is available; they range from qualitative, solvent-free models via more realistic models 

with explicit but simplified water to models including chemical specificity. CG simulation 

methods for polymer systems include Monte Carlo methods, dissipative particle dynamics, and 

Brownian dynamics as well as conventional MD.  
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Figure 1.11. Schematic representation of multistate simulations. 

 

 

1.4.2 CG models of synthetic polymers   

An atomistic model of a polymer contains all the atoms which are present in the real polymer. At 

the other end of the detail scale are coarse-grained and lattice models. They can provide 

information on molecules structure from representation of atomic groups by beads or other objects. 

At the same time a list of requirements applied for conversion procedures and often reverse CG to 

AA conversion is required (Figure 1.12.). How effectively a CG model performs mainly depends 

on the chosen procedure: i) the model resolution (particles per CG bead), ii) the mapping procedure 

(reproducing the properties of groups of atoms into those of selected beads), iii) the potential 

energy function entering the CG Hamiltonian, and iv) the experimental and/or AA simulation 

properties against which the CG model is calibrated. CG models of polymer chains have improved 

our understanding of the general features of polymer structure and dynamics. Generic freely 

jointed, bead-spring and self-avoiding model chains are still the subject of computational and 

theoretical investigation. In general, two different strategies are commonly followed to define the 

effective interactions acting between the CG sites. In structure-based CG models, the CG 
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interaction parameters are tuned to reproduce accurately structural features of the system 

(typically, radial distribution functions) derived from all-atom MD simulations. 

 

 

 

Figure 1.12. Example of AA and CG representation of polymer chain. 

 

Compared to structure-based CG models, thermodynamics-based models rely on different coarse-

graining strategy. In the thermodynamics-based approach, interaction parameters are chosen in 

such a way as to reproduce selected thermodynamic properties of the system, and only a few 

structural properties. Therefore thermodynamics-based approaches have been often used for 

modeling biological environments. The model could be later combined with a structure-based CG 

description of hydrophilic groups, resulting in a CG model of amphiphilic molecules such as 

diblock copolymers (poly(ethyleneoxide)-poly(ethylethylene)) [32]. 

 

Different methodologies have been used in the development of CG models for polymers. One of 

the main advantage for introducing CG modelling in polymer studies is the ability to expand 

available molecule sizes for exploration as well as extend simulation time to polymer chain-

solution equilibrium state. Most of the development of CG models has so far been focused on 

typical benchmark chains like polycarbonates, polystyrene, polyamide, etc [32]. However, CG 

modelling was successfully applied in various polymer studies and more systems are now being 

adopted for CG simulations. These include poly(γ-glutamyl-glutamate) paclitaxel conjugates, such 

as PGG-PTX [32], PGG-PTX-PEG-npRGD [47], polyethylene glycol-based polymer conjugates 
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[48-49], Poly(ethylene oxide)−Poly(propylene oxide)− Poly(ethylene oxide) (PEO−PPO−PEO) 

Block Copolymers [48],  and amphipols (APols) [50]. 

 

1.4.3 MARTINI coarse-grained modelling method 

An example of thermodynamics-based CG models is the MARTINI force field, which was 

originally developed for lipids and then extended to proteins, fullerenes and carbohydrates and 

later extended for use with polymers, bi-layers and other systems [51-55]. In this approach, 

interaction parameters are determined by reproducing densities and free energies of partitioning. 

With respect to other methods, this offers a number of advantages. Parameterization of nonbonded 

interactions is based on experimental data, and thus does not rely entirely on AA results and its 

possible errors. Non-bonded interactions are modelled by simple Lennard-Jones and Coulomb 

functions, therefore, the parameters developed for new building blocks can be made compatible 

with existing MARTINI ones. However, introducing new groups requires parameterization of the 

developed model against known parameters. For example, parametrization of the bonded 

interactions for the copolymer chain can be performed using distance, angle, and dihedral 

distributions obtained from the atomistic simulations of the homopolymer chains. 

 

The MARTINI model is based on a four-to-one mapping, i.e. on average four heavy atoms are 

represented by a single interaction centre. The four-to-one mapping is often chosen as an optimum 

between computational efficiency on the one hand and chemical representability on the other hand. 

Mapping of water is consistent with this choice, as four water molecules are mapped to a CG water 

bead. Ions are represented by a single CG bead, which represents both the ion and its first hydration 

shell. Ring-like molecules are mapped with a higher resolution of up to two non-hydrogen atoms 

to one MARTINI particle. (Figure 1.13) 
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 Figure 1.13. MARTINI mapping examples A) Standard water particle representing four 

water molecules. (B) Polarizable water molecule with embedded charges. (C) DMPC lipid. (D) 

Polysaccharide fragment. (E) Peptide. (F) DNA fragment. (G) Polystyrene fragment. (H) 

Fullerene.  

 

Based on the chemical nature of relative structure, the CG beads are assigned a specific particle 

type with polar character. The MARTINI model has four main types of particle: polar (P), non-

polar (N), apolar (C), and charged (Q). Within each type, several sub-types are presented and can 

be described either by a letter denoting the hydrogen-bonding capabilities (d = donor, a = acceptor, 

da = both, 0 = none) or by a number indicating the degree of polarity (from 1 = low polarity to 5 

= high polarity), giving a total of 18 particle types or ‘building blocks’. Non-bonded interactions 

are described by a Lennard-Jones (LJ) 12-6 potential. The strength of the interaction, determined 

by the value of the LJ well-depth εij, depends on the interacting particle types i and j. The value of 

εij ranges from 5.6 kJ mol-1 for interactions between strongly polar groups to 2.0 kJ mol-1, 

mimicking the hydrophobic effect. The effective size of the particles is governed by the LJ 

parameter s = 0.47 nm for all normal particle types. For the special class of particles in ring-like 

molecules, slightly reduced parameters are defined to model ring–ring interactions: s = 0.43 nm, 
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and εij is scaled to 75% of the standard value. Detailed information on MARTINI mapping logic 

and parameter selection and validation can be found in Chapter 3. 

 

The MARTINI model has been thoroughly validated against experimental and all-atom simulation 

data on diffusivities, hydrodynamics, end-to-end-distances, bond lengths, angles, and dihedrals for 

a range of synthetic polymers [51-58]. Besides, MARTINI has been parameterized for a large 

number of chemical building blocks, which offers the possibility to build-up CG models of a wide 

range of molecules. MARTINI in many cases is comparable in accuracy to atomistic models, 

particularly in thermodynamics, but also has a number of limitations such as lack of electronic 

polarizability in the standard force field and inability to obtain parameters, such as particular atom 

distribution profile or information on some of the important interactions. For example, cation–π 

interactions or the strong electrostatically driven interactions between aromatic molecules are 

difficult to include in a coarse-grained force field to reproduce both the strength of these 

interactions and the geometries resulting from these interactions. However, the wide use of 

MARTINI and extensive testing in the original papers clearly shows the degree of agreement with 

experiments and atomistic simulations and allows an assessment of whether MARTINI is accurate 

enough for a particular application, such as polymer conjugates structure modelling and solvent 

behavior simulation 

 

Currently, there is a growing number of basic polymer systems for which parameters have been 

derived, including polyethyleneglycol (PEG), polystyrene, triblock copolymers 

polyethyleneoxide–polypropyleneoxide– polyethyleneoxide (PEO–PPO–PEO), polyurea, Nafion 

ionomers, polyester coatings composed of two dicarboxylic acids and a diol, esterified to neopentyl 

glycol monomers and crosslinked by hexa(methoxymethyl)melamine, polymer nanofibres 

composed of nylon-6 (polycaprolactam), PAMAM dendrimers, PEG-conjugated PAMAM 

dendrimers and amphipols [56]. At the same time HPMA copolymers haven’t been investigated 

using MARTINI-based models. This lack is one of the main motivations for this project as arising 

need in such research is now clear.  
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Clarification of project aims [added by supervisors] 

 

1.5 AIMS 

The goal of the research was to develop molecular modelling techniques to predict the 

conformation of complex substituted polymer structures in solution, focusing on polymer-

drug conjugates as a target system.  There were several discrete aims contributing to 

this:  

 1) The synthesis and characterization of the solution behaviour of HPMA-GFLG 

based polymer-drug mimic conjugates, using mixed drug-mimics to discern the 

cumulative effect on solution morphology adopted. 

 2) The development of appropriate molecular dynamics approaches to study large 

molecules in solution, including identification of the appropriate parameter sets, solvent 

models and analytical methods for data interpretation. 

 3) The comparison of experimental (particularly small-angle neutron scattering 

data) and modelling data in order to validate the modelling approach to determining 

solution conformation. 

 4) The translation of these tools to coarse-grained modelling of conjugates as a 

predicitive tool for conformation of novel conjugates. 
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Chapter 2: Methods 

 

2.1. Computer simulation methods 

2.1.1. Hartree–Fock method 

Hartree–Fock (HF) is a method of approximation for the determination of the wave function and 

energy of a many-body system in a stationary state, widely used to solve the time-independent 

Schrödinger equation for a multi-electron atom or molecule [1]. In order to do so the HF method 

introduces a series of approximations: the Born–Oppenheimer approximation assuming that the 

full molecular wave function is a function of the coordinates of each of the nuclei position, in 

addition to those of the electrons [2]. Second, relativistic effects are neglected. The momentum 

operator is assumed to be completely non-relativistic. The variational solution in HF is assumed 

to be a linear combination of a finite number of basis functions, where the finite basis set is 

assumed to be approximately complete. As well each energy eigenfunction is assumed to be 

describable by the single Slater determinant or by a single permanent of N spin-orbitals in the case 

of bosons. Finally, the mean field approximations are implied. Effects arising from electron 

correlation are completely neglected for the electrons of opposite spin, but are taken into account 

for electrons of parallel spin.  

 

The Hartree–Fock method is sometimes called the self-consistent field method (SCF) following 

the fact that the equations in HF are solved using a nonlinear method such as iteration due 

to nonlinearities introduced by the method’s approximation. In deriving the Hartree equation as an 

approximate solution of the Schrödinger equation, Hartree required the final field as computed 

from the charge distribution to be "self-consistent" with the assumed initial field. Thus, self-

consistency is a compulsory requirement of the solution.  Another basic approximation is known 

as so-called the Fock matrix. The Fock matrix is an approximation of the 

Hamiltonian operator which includes the effects of electron-electron repulsion as an average and 

does not take in count the electron correlation energy (2.1.).  The Fock matrix is defined by 

the Fock operator: 

   (2.1) 
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where: 

 

 is the Fock operator for the i-th electron in the system, 

 is the one-electron hamiltonian for the i-th electron, 

 is the number of electrons and    is the number of occupied orbitals in the closed-shell system, 

 is the Coulomb operator, defining the repulsive force between the j-th and i-th electrons in 

the system, 

 is the exchange operator, defining the quantum effect produced by exchanging two 

electrons. 

 

Now Finding the Hartree–Fock wave functions is equivalent to solving the following 

eigenfunction equation: 

 

 

(2.2) 

where  are a set of one-electron wave functions, called the Hartree–Fock molecular orbitals. 

Typically, in Hartree–Fock calculations, the one-electron wave functions are approximated by 

a linear combination of atomic orbitals (basis set) also called Slater-type orbitals [3].  Furthermore, 

in the interests of saving computation time it is common for the basis sets to be composed of a 

linear combination of one or more Gaussian-type orbitals (GTOs), rather than Slater-type orbitals 

[4]. Nowadays, there are hundreds of basis sets composed GTOs. The smallest of these are 

called minimal basis sets, and are composed of the minimum number of basis functions required 

to represent all of the electrons on each atom. The largest of these can contain hundreds of basis 

functions on each atom which makes them relatively more accurate but sometimes not affordable 

for particular system [5].  

 

Minimal basis sets are fixed and are unable to adjust to different molecular environments. So in 

order to obtain more accurate results it is common to represent valence orbitals by more than one 
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basis function, called split-valence. They arise from the work of John Pople and typically are 

represented as: X-YZG, where X represents the number of primitive Gaussians comprising each 

core atomic orbital basis function, and Y and Z indicate that the valence orbitals are composed of 

two basis functions each, the first one composed of a linear combination of Y primitive Gaussian 

functions, the other composed of a linear combination of Z primitive Gaussian functions [6].  

 

Of the five simplifications outlined above, the final one is typically the most important. Neglecting 

electron correlation can lead to large deviations from experimental results. A number of 

approaches also address the fact that HF methods neglect electron correlation are called post-

Hartree–Fock methods. For example, Møller–Plesset perturbation theory, described below, treats 

correlation as a perturbation of the Fock operator [7]. Others expand the true multi-electron wave 

function in terms of a linear combination of Slater determinants, such as multi-configurational self-

consistent field, configuration interaction, quadratic configuration interaction, and complete active 

space SCF (CASSCF). Still others (such as variational quantum Monte Carlo) modify the Hartree–

Fock wave function by multiplying it by a correlation function. Another alternative to Hartree–

Fock calculations is density functional theory, which treats both exchange and correlation energies 

using calculations that are a hybrid of the two methods.  

 

2.1.2 Density Functional Theory methods 

Density functional theory (DFT) is a quantum chemistry method, widely used in computer 

modelling to investigate the electronic structure of various many-body systems, such as atoms, 

molecules, and condensed phases. The method is based on calculation of total electronic density 

distribution as a means to calculate the electronic energy. In DFT the properties of a many-electron 

system can be determined by using functionals which describe energy as a function of spatially 

dependent electron density. Modern DFT is made possible by the existence of two theorems that 

were introduced and proven by Hohenberg and Kohn in 1964 [8, 9].  

 

Theorem I: For any system of interacting particles in an external potential Vext(r), the density is 

uniquely determined. These means the external potential is a unique functional of the density. 
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Theorem II: A universal functional for the energy E[n] can be defined in terms of the density. The 

exact ground state is the global minimum value of this functional. The correct density that 

minimizes the energy is then the ground state density. 

 

As any other first-principle method, DFT uses the many body Schrödinger equation and is solved 

using various approximations such as Born-Oppenheimer approximation, local-density 

approximation (LDA) or Generalized gradient approximations (GGA) depending on the chosen 

method. Nuclei generate a static external potential Vext. Therefore, a stationary electronic state is 

then described by a wavefunction satisfying the many-electron time-independent The Schrödinger 

equation of electron motion (2.3): 

 

                                  

(2.3) 

 

where, for the -electron system,  is the Hamiltonian,  is the total energy,  is the kinetic 

energy,  is the potential energy from the external field due to positively charged nuclei, is the 

electron-electron interaction energy, E is the total energy, Ψ is the wave function of the system,      

Vext (ri) is the potential of the nuclei,  is the second derivative of position, ħ is Planck’s constant 

over 2π and me is the mass of an electron. In DFT the particle density  for 

a normalized wavefunction is given by: 

 

 

(2.4) 

Therefore for a given ground-state density  it is possible, in principle, to calculate the 

corresponding ground-state wavefunction : 

 

 
(2.5) 
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Consequently the expectation value of an observable  in a ground state is a functional of : 

 
(2.6) 

In the particular case of ground-state energy: 

 

 
(2.7) 

where the contribution of the external potential Vext can be written explicitly for the ground-state 

density : 

 

 
(2.8) 

 

In the general case: 

 

 

 

(2.9) 

while the functionals  and  are called universal functionals,  depends on the 

particular system of interest and is called a non-universal functional. So we can now describe the 

system energy as:  

 

 
(2.10) 

By expressing the electron density in terms of single particle wavefunctions ψi  that reproduce the 

density  of the original many-body system we get an eigenvalue equation, which is the typical 
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representation of the Kohn–Sham equations named after Walter Kohn and Lu Jeu Sham, who 

introduced the concept at the University of California, San Diego in 1965 [9]:  

 

                                        
(2.11) 

Then the kinetic energy can be written as: 

 

 

                       (2.12) 

The potential energy can be further divided into coulombic electron-electron interactions and 

exchange-correlation energy: 

 

 

(2.13) 

where the second term denotes the so-called Hartree term describing the electron-electron 

Coulomb repulsion and EXC is the exchange-correlation energy. The Local Density Approximation 

(LDA) defines the exchange-correlation energy that depends only on the density at the coordinate 

where the functional is evaluated: 

 

 

                                    (2.14) 

where εXC is the exchange-correlation energy per unit volume of a uniform electron gas. The local 

spin-density approximation (LSDA) is a straightforward generalization of the LDA to include 

electron spin: 

 

 

  (2.15) 
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The Generalised Gradient Approximation (GGA) take into account the gradient of the density at 

the same coordinate: 

 

 

     (2.16) 

DFT can be considered as one of the most popular and versatile methods available in condensed-

matter physics and computational chemistry due to comparatively large systems it is able to 

evaluate within the range of quantum chemistry methods as well as relatively low cost of  

corresponding calculations compared to post-Hartree Fock methods. In many applications, hybrid 

DFT methods are used even more widely. They are based on a use of a combination of the HF 

exchange energy with LSDA exchange energy with a specified amount of the exact exchange 

mixture. One of the most widely used DFT methods is B3LYP (Becke, three-parameter, Lee-

Yang-Parr) [11]. This method operates a combination of exact exchange from Hartree-Fock theory 

with LSDA and Lee-Yang-Parr, LYP correlation energy. 

 

 

 

(2.17) 

where  , , and  ,  and  are generalized gradient 

approximations: the Becke 88 exchange functional and the correlation functional of Lee, Yang and 

Parr, and  is the local-density approximation to the correlation functional.  

 

       2.1.3 Ab initio methods 

In contrast to “simple” quantum chemistry methods, ab initio methods can be used to converge to 

the exact solution. Being more expensive in the computation terms than DFT, ab initio calculations 

provide more accurate data, treating the Schrödinger equation as an eigenvalue equation of 

the electronic molecular Hamiltonian, with a discrete set of solutions. There are several common 

classes of ab initio electronic structure methods: Hartree–Fock methods, Post-Hartree–Fock 

methods and Multi-reference methods. Among them one of the most popular are Møller–Plesset 

perturbation theory (MPn) [7], Configuration interaction (CI) [12] and Coupled cluster (CC) [13] 
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methods which belongs to Post-Hartree–Fock class.  They start with a Hartree–Fock calculation 

and subsequently correct for electron-electron repulsion, referred to also as electronic correlation. 

 

In Møller–Plesset perturbation theory  the basic idea is that the difference between the Fock 

operator and the exact Hamiltonian can be considered as a perturbation: 

 

(2.18) 

Corrections can be made to any order of the energy and the wavefunction (MP2, MP3, MP4, MP5): 

 

 

(2.19) 

One of the most popular methods is the lowest level of correction, MP2. 

 

 

(2.20) 

MP2 is relatively fast for investigating systems that consist of tens and even hundreds of particles. 

A disadvantage is that it is not variational, so the correlation energy can be overestimated. In 

practice MP2 must be used with a reasonable basis set (6-31G* or better). Subsequent MP-levels 

MP3, MP4 and MP5 are more complicated and much more time-consuming.  

 

   2.1.4. Molecular mechanics methods 

Molecular mechanics (MM) uses classical Newtonian mechanics to model molecular systems. The 

potential energy of all systems in molecular mechanics is calculated using force fields. In contrast 

to QM, electronic motion is neglected and energy is calculated as a function of nuclear positions 
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only. This approach is used to perform calculations on systems containing large number of atoms, 

where quantum methods can’t be applied.In general, MM can be described using “balls on springs” 

model, which is based on following statements: 

• Each atom (or group of atoms) has its own type and is represented by a single particle 

which is treated due to this type. 

• Each particle is assigned a radius (typically the van der Waals radius), polarizability, and 

charge.  

• Bonded interactions are treated as "springs" with an equilibrium distance equal to the 

experimental or calculated bond length 

A wide range of problems can be solved by implementing MM methods to evaluate parameters of 

investigated system. For example, search of the global minimum of the system can be performed 

using force field for the system’s energy. There are several force fields available for use in MM, 

among them: AMBER [14], CHARMM [15], GROMOS [16], OPLS [17], UFF [18], MMFF [19], 

MARTINI [20] and others. Selection of the most suitable force field should be made based on the 

system features as every force field is designed for use in particular systems. 

 

2.1.5. Force field selection 

In the context of molecular modelling, a force field is the set of parameters  used to describe 

the potential energy of a system of particles as a function of position of these particles. Force fields 

can be used both for all-atom and coarse-grained simulations. "All-atom" force fields provide 

parameters for every atom type in a system while the "coarse-grained" force fields, which are 

frequently used in long-time simulations of polymers and proteins, provide a more crude 

representations for increased computational efficiency treating a group of atoms as a single bead. 

A typical force field includes both covalent bonding and nonbonded or “non-covalent” terms that 

describe long-range electrostatic and van der Waals forces. The specific form of the terms depends 

on the chosen force field, but a general form for the total energy in an additive force field is  

 

 

(2.21) 
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where the components of the covalent and noncovalent contributions are given by the following 

summations: 

 

 

(2.22) 

Generally the bond and angle terms are defined as harmonic potentials centered near to equilibrium 

bond-lengths derived either from experimental data or theoretical calculations of electronic 

structure performed with more accurate benchmark methods. Parameter sets may also include 

"improper" dihedral terms, which function as correction factors for out-of-plane deviations (for 

example, they can be used to keep planar molecules such as benzene or cyclopropane in 

appropriate planar state). 

 

The non-bonded interactions are typically modeled using a "6–12 Lennard-Jones potential", which 

is based on idea of rapid fall of attractive van der Waals forces with distance as r−6 and repulsive 

forces rise as r−12, where r represents the distance between two atoms. Generally, a cutoff radius is 

used to speed up the calculation so that atom pairs whose distances are greater than the cutoff value 

will not nave non-bonded interaction. It is shown on Figure 2.1, where ε is the depth of the potential 

well, σ is the finite distance at which the inter-particle potential is zero, r is the distance between 

the particles and rm is the distance at which the potential reaches its minimum value. The 

electrostatic terms do not fall off rapidly with distance, so their basic functional form is 

the Coulomb potential, which falls off as r−1. A cutoff radius similar to that used for the van der 

Waals terms may be implemented, but in order to obtain more accurate simulation results more 

sophisticated and computationally intensive methods such as particle mesh Ewald (PME) and 

the multipole algorithm may be used. 
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Figure 2.1. Typical shape of 12-6 Lennard-Jones potential in MM 

 

 

As stated previously, different force fields are designed for different purposes. For example, MM2 

was developed by primarily for conformational analysis of small organic molecules [48]. It is 

designed to reproduce the equilibrium geometry of such molecules as precisely as possible. 

Another set, called CFF was developed by , Lifson and coworkers as a general method for unifying 

studies of energies, structures and vibration of general molecules and molecular crystals [49]. 

AMBER, CHARMM and GROMOS have been developed primarily for molecular dynamics of 

biomolecules, although they can be also applied to perform energy minimization. The term 

"AMBER force field" generally refers to the functional form used by the family of AMBER force 

fields originally developed by Peter Kollman's group at the University of California, San Francisco 

[14]. The functional form of the AMBER force field is quite common, and can be written as: 
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(2.23) 

OPLS (Optimized Potentials for Liquid Simulations) was developed by Jorgensen for treating 

interatomic forces in simulations of organic molecules and biopolymers [17]. Its functional form 

is similar to AMBER and can be written as: 

 

(2.24) 

Several sets of OPLS parameters have been published. Among them OPLS-ua (united atom), 

which includes hydrogen atoms next to carbon implicitly in the carbon parameters, and can be 

used to save simulation time and OPLS-aa (all atom) includes every atom explicitly. A distinctive 

feature of the OPLS parameters is that they were optimized to fit experimental properties of liquids, 

such as density and heat of vaporization, in addition to fitting gas-phase torsional profiles. 

 

2.1.6. Molecular dynamics simulations 

Molecular dynamics is a computer simulation method where the trajectories of atoms and 

molecules are determined by numerically solving the Newton's equations of motion (Eq. 2.25) for 

a system of interacting particles. Interaction forces between the particles and potential energy in 

MD simulations are typically defined by molecular mechanics force fields. The method was 
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originally developed within theoretical physics and was later implemented for computer 

calculation, and is applied today in chemical physics, materials science and biochemistry. First 

introduced by Alder and Wainwright in the late 1950's for study of the interactions between hard 

spheres, MD was continuously developed during these years [21]. The next major advance was in 

1964, when Rahman carried out the first simulation using a realistic potential for liquid argon [22]. 

Finally, the first molecular dynamics simulation of a molecular system was done by Rahman and 

Stillinger in their simulation of liquid water in 1974 [23].  
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(2.25) 

The first protein simulation was carried in 1977 on bovine pancreatic trypsin inhibitor (BPTI) [24]. 

Since then, the number of simulation techniques has greatly expanded; there exist now many 

specialized techniques for particular problems, including mixed quantum mechanical - classical 

simulations (QM/MM), coarse-grain MD simulations for complex biological systems, etc. There 

are several reasons for such an intensive development: one is the ability to evaluate behaviour of 

the systems that was not reachable within quantum chemistry techniques. Another is that results 

of MD simulations can be combined with experiments such as X-ray crystallography, SANS and 

NMR structure determination to obtain details on morphological properties of chosen systems. 

Despite these advantages, running long MD simulations for large structures (tens of thousands 

atoms or more) can be complicated and generate cumulative errors in numerical integration that 

must be minimized with proper selection of algorithms and parameter sets. 

 

Molecular dynamics simulations generate information about studied system at the microscopic 

level, which includes atomic positions and velocities. The conversion of parameters to 

macroscopic observables such as pressure, energy, heat capacities, etc., requires the use of 

statistical mechanics which provides mathematical expressions that relate macroscopic properties 

to the distribution and motion of the atoms and molecules of the N-body system. For a system with 

N atoms in a volume Ω, we can define its internal energy: E ≡ K +U, where K is the kinetic energy, 
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and U is the potential energy, 

 

'	 = '( ($(�)) 
(2.27) 

where  ($(�) denotes the collective of 3D coordinates x1(t), x2(t),  . . . , xN(t). During a process of 

MD simulation, the evaluation of the potential as a function of the internal coordinates of atoms 

can be considered as the most computationally intensive task, and the most expensive to evaluate 

is the non-bonded or non-covalent contributions to a total energy. This computational cost can be 

reduced by employing electrostatics methods such as Particle Mesh Ewald [25], P3M [26] or other 

spherical cutoff techniques. 

 

Another factor that impacts total CPU time required by a simulation is the size of the integration 

timestep chosen for the simulation.  It must be small enough to avoid discretization errors, which 

can occur if less than the fastest vibrational frequency in the evaluated system. Too small timestep 

will also have an influence on simulation speed so it tends to be as large as possible for particular 

simulation conditions. Typical timesteps for classical all-atom MD simulations are usually selected 

within the range of 1-2 femtoseconds, which can be extended by using algorithms such as SHAKE 

[27], which fix the vibrational movement of the fastest hydrogen atoms. Total simulation time 

should be long enough to be relevant to the timescales of the processes being studied: specifically, 

the simulated time should be enough for the system to reach its equilibrium state. For example, 

recent publications about the dynamics of proteins and DNA use data from simulations of 

nanoseconds (10−9 s) to microseconds (10−6 s). To obtain these simulations, several CPU-days to 

CPU-years are needed. Parallel algorithms, such as Domain Decomposition allow the calculations 

to be distributed among CPUs, allowing to massively increase simulation speed.  
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An important condition for running MD simulation is that the simulation box size must be large 

enough to avoid boundary condition artifacts, such as self-interaction. Boundary conditions are 

often treated by choosing fixed values at the edges or by implementing periodic boundary 

conditions (PBC) in which simulation box is repeated in all directions containing the same amount 

of particles with the same coordinates to mimic bulk phase conditions.  The minimum-image 

convention is a common form of PBC particle tracking in which each individual particle interacts 

with the closest image of the remaining particles in the system. 

 

2.1.6.1. Microcanonical ensemble (NVE) 

In the microcanonical, or NVE ensemble, the system is isolated from changes in moles (N), volume 

(V) and energy (E). It corresponds to an adiabatic process with no heat exchange. A 

microcanonical molecular dynamics trajectory may be seen as an exchange of potential and kinetic 

energy, with total energy being conserved. For a system of N particles with coordinates and 

velocities , the following pair of first order differential equations may be written in Newton's 

notation as 

 

 

 

(2.28) 

The potential energy function    of the system is a function of the particle coordinates . 

The first equation comes from Newton's laws; the force  acting on each particle in the system 

can be calculated as the negative gradient of  . For every timestep, each particle's 

position  and velocity  may be integrated with a symplectic method such as Verlet. The time 

evolution of  and  is called a trajectory. Given the initial positions (e.g. from theoretical 

knowledge) and velocities (e.g. randomized Gaussian), we can calculate all future (or past) 

positions and velocities. 

 

One frequent source of confusion is the meaning of temperature in MD. Commonly we have 

experience with macroscopic temperatures, which involve a huge number of particles. But 

temperature is a statistical quantity. If there is a large enough number of atoms, statistical 
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temperature can be estimated from the instantaneous temperature, which is found by equating the 

kinetic energy of the system to nkB
T/2, where n is the number of degrees of freedom of the system. 

A temperature-related phenomenon arises due to the small number of atoms that are used in MD 

simulations. For example, consider simulating the growth of a copper film starting with a substrate 

containing 500 atoms and a deposition energy of 100 eV. In the real world, the 100 eV from the 

deposited atom would rapidly be transported through and shared among a large number of atoms 

(  or more) with no big change in temperature. When there are only 500 atoms, however, the 

substrate is almost immediately vaporized by the deposition. Something similar happens in 

biophysical simulations. The temperature of the system in NVE is naturally raised when 

macromolecules such as proteins undergo exothermic conformational changes and binding. 

 

2.1.6.2. Canonical ensemble (NVT) 

In the canonical ensemble, moles (N), volume (V) and temperature (T) are conserved. It is also 

sometimes called constant temperature molecular dynamics (CTMD). In NVT, the energy of 

endothermic and exothermic processes is exchanged with a thermostat. A variety of thermostat 

methods are available to add and remove energy from the boundaries of an MD system in a more 

or less realistic way, approximating the canonical ensemble. Popular techniques to control 

temperature include velocity rescaling, the Nosé-Hoover thermostat, Nosé-Hoover chains, 

the Berendsen thermostat, the Andersen thermostat and Langevin dynamics. Note that the 

Berendsen thermostat might introduce the “flying ice cube effect”, which leads to unphysical 

translations and rotations of the simulated system. It is not trivial to obtain a canonical 

distribution of conformations and velocities using these algorithms. How this depends on system 

size, thermostat choice, thermostat parameters, time step and integrator is the subject of many 

articles in the field. 

 

2.1.6.3. Isothermal–isobaric (NPT) ensemble 

In the isothermal–isobaric ensemble, moles (N), pressure (P) and temperature (T) are conserved. 

In addition to a thermostat, a barostat is needed. It corresponds most closely to laboratory 

conditions with a flask open to ambient temperature and pressure. In the simulation of biological 

membranes, isotropic pressure control is not appropriate. For lipid bilayers, pressure control occurs 

under constant membrane area (NPAT) or constant surface tension "gamma" (NPγT). 
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2.1.6.4. Generalized ensembles 

There are several integration algorithm available for performing MD simulations. All the 

integration algorithms assume the positions, velocities and accelerations can be approximated by 

a Taylor series expansion: 

 

�(� + *�) = �(�) + �(�)*� + 1
2�(�)*�

� +⋯ 

�(� + *�) = �(�) + �(�)*� + 1
2,(�)*�

� +⋯ 

�(� + *�) = �(�) + ,(�)*� + ⋯ 

(2.29) 

Where r is the position, v is the velocity, a is the acceleration. To derive the Verlet algorithm one 

can write 

�(� + *�) = �(�) + �(�)*� + 1
2�(�)*�

� 

�(� − *�) = �(�) − �(�)*� + 1
2�(�)*�

� 

(2.30) 

Summing these two equations, we obtain 

 

�(� + *�) = 2�(�) − �(� − *�) + �(�)*��  

(2.31) 

The Verlet algorithm uses positions and accelerations of particles at time t and the positions from 

time t-dt to calculate particle’s coordinates at time t+dt. There is no explicit velocity in Verlet 

algorithm. Among the advantages of this method is the modest storage requirements and general 

simplicity. The disadvantage is that the use of the algorithm has only moderate precision. In the 

Leap-frog algorithm algorithm, the velocities are first calculated at time t+1/2dt; these are used to 

calculate the positions, r, at time t+dt. 

 

�(� + *�) = �(�) + �(� + 1
2*�)*� 
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� -� + 1
2*�. = � -� − 1

2*�. + �(�)*� 
(2.32) 

In this way, the velocities leap over the positions, then the positions leap over the velocities. The 

advantage of this algorithm is that the velocities are explicitly calculated, however, the 

disadvantage is that they are not calculated at the same time as the positions. The velocities at 

time t can be found from the relationship: 

 

�(�) = &
� [� /� −

&
� *�0 + � /� + &

�*�0] 

(2.33) 

Another integration algorithm is the Velocity Verlet algorithm. This algorithm yields positions, 

velocities and accelerations at time t. 

 

�(� + *�) = �(�) + �(�)*� + 1
2�(�)*�

� 

�(� + *�) = �(�) + 1
2 [�(�) + �(� + *�)]*� 

(2.34) 

The replica exchange MD (REMD) method is a generalized ensemble, also called parallel 

tempering, that was originally created to deal with the slow dynamics of disordered spin systems. 

REMD tries to overcome the multiple-minima problem by exchanging the temperature of non-

interacting replicas of the system running at several temperatures.  

 

2.1.6.5. Water Models 

There are different types of water models that can be used within the MD simulation. Water models 

can represent solvent explicitly or implicitly, mimicking solvation effects with mean field terms. 

In most explicit water models the water molecule is modelled as a three-centre flexible or rigid-

body model. To mimic solvent effect implicitly the general class of reaction field methods are 

used.  They are based on the idea that around each molecule there is a 'cavity' within which the 

Couloumb interactions are treated explicitly. Outside of this sphere the medium is assumed to have 

a uniform dielectric constant. First it was introduced by Barker and Watts in 1973 [28]. The 

effective pairwise potential in R-field is: 
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(2.35) 

where  is the cut-off radius. The reaction field in the center of the cavity is given by : 

 

 

(2.36) 

where    is the total dipole moment of all the molecules in the cavity. The polarizable 

continuum model (PCM) is a particular case of R-field method and is often used in quantum and 

MD simulations. There are two types of PCM that were introduced so far: dielectric PCM (D-

PCM) and conductor-like PCM (C-PCM) which treat the continuum as a polarizable dielectric or 

conductor-like. The molecular free energy of solvation is computed as the sum of three terms: 

 

 

(2.37) 

where  is electrostatic,  is dispersion-repulsion and  is cavitation free energy. 

 

      2.1.7. Coarse-graining techniques 

In order to minimize computational costs as well as accessing sizes of a “real” polymer and time 

scales, the number of calculated particles were reduced using coarse-grained (CG) techniques. 

Given the selected research object – HPMA polymer conjugates, as well as previous polymer 

studies that involve application of CG models, the MARTINI force field was selected for the CG 

parameterization. This has had success in application to proteins and various polymers by 

experimental validation of their structural properties, reasonable correlation with AA simulation 

results and the reproduction of polymers thermodynamics [20]. The MARTINI force field dictates 

that a group of roughly 4–5 atoms are represented as an interaction centre, or bead. These beads 

interact through a set of short-ranged Lennard-Jones potentials to reproduce characteristic 
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properties resulting from AA simulations. Charged groups interact via a Coulombic energy 

function, and bonded potentials are used to describe the chemical connectivity of the beads.  

 

      2.1.8. Software and methods 

Initial structures of HPMA monomer and dimer were generated using the polymer builder function 

in MOE 2009.10 [29] and DFT-optimized with B3LYP [30, 31] and 6-31G(d) basis set using 

Gaussian03 [32].  Ab initio and DFT calculations were performed using Turbomole 5.10 [33] and 

Gaussian03. Relative conformational energies were tested against MP2/def2-TZVP and MP2/aug-

cc-pVTZ data, while rotational energy barriers were tested against B3LYP/6-31G(d) and BP86/6-

31G(d) [34-37] data. Rigid potential energy scans, in which all geometrical parameters other than 

the one being scanned are fixed at their equilibrium geometry, were employed in the latter for 

better comparison with force field results. Ab initio data was generated in the gas phase only, 

whereas the effect of aqueous solvation on DFT data employed the polarizable continuum model 

(PCM) [38]. Force field tests were carried out using AMBER99 [14], MMFF94 [19] and OPLS-

aa [17] parameter sets in both gas-phase and reaction field model of aqueous solvation. 

 

Structures of larger HPMA oligomers and polymers were built using the Polymer Builder module 

of MOE. All polymers were constructed as a racemic mix of S- and R- monomers with random 

distribution of chirality. Atomic partial charges were assigned through MOE using parameters 

from AMBER99 force field, and built polymers were energy minimized with AMBER99 force 

field. MD simulations were carried out in DL-POLY 4 [39], starting from minimized structures. 

AMBER99 parameters were converted for DL-POLY using an in-house utility [40]. The 

conversion required was validated by comparing results of bond stretch, angle bending, dihedral, 

electrostatic and total energies calculated by DL-POLY with AMBER and MOE packages. 

 

Simulations in DL-POLY were performed using periodic boundary conditions in cubic boxes with 

sizes of 20x20x20 Å for smallest HPMA oligomers to a 600x600x600 Å for HPMA-265. Starting 

structures were equilibrated using zero-temperature minimization algorithm running MD 

simulation at 10 K for 0.2 ns. Both minimization and further MD simulation for implicit solvent 

models were run using isothermal-isochoric (NVT) Nose-Hoover ensemble with 0.5 ps relaxation 

constant [41]. For explicit solvents minimization were carried in isothermal-isobaric (NPT) 
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ensemble with both thermostat and barostat relaxation constants equal to 0.5 ps. After equilibration 

temperature was scaled to 310 K and MD simulation run with a timestep of 2 fs and all bonds 

constrained using the SHAKE algorithm [42]. Domain decomposition based on the link cell 

algorithm of Hockney and Eastwood was chosen as a parallelization technique for MD calculations 

[26]. Simulations were performed using 8 to 64 processors in a) vacuum, b) a reaction field 

representation and c) explicit water [43, 44]. Trajectory snapshots were saved every 1000 timesteps 

for later reprocessing.  Each cycle of the MD simulations was run for 0.2 - 2 ns and this step was 

repeated until equilibrium in Rg and ellipsoid semi-axis parameters was reached.  

 

      2.1.9. Development of programming tools 

MD simulations were analysed using the in-house “analyse_hist” tool [40], generating radius of 

gyration and radial distribution functions. In addition we have developed shape analysis based on 

moments of inertia. Here the moments of inertia matrix is calculated for each frame of the saved 

trajectory and diagonalised to give eigenvalues and three mutually perpendicular eigenvectors. 

These eigenvectors are then used as an axis system centred on the centre of mass of the polymer. 

The extent of the polymer in each of the three directions is found by calculating the furthest atom 

from the centre of mass in each direction. These distances are used to define an ellipsoid: 

 

 

(2.38) 

where a, b and c are the furthest atom distances in the x, y and z directions respectively.  

 

To produce a “density profile” we consider the volume occupied by the polymer to consist of a 

series of concentric ellipsoidal shells. The shell to which an atom belongs is identified by putting 

the atom co-ordinates relative to the centre of mass in the inertial axis system into the left hand 

side of the equation for the ellipsoid. The fractional result can be used to assign the atom to a 

particular shell. By carrying out this process on all atoms we arrive at a density profile and, 

provided the shape of the polymer has reached equilibrium, averaging over frames of the trajectory 

can improve the statistical significance of the profiles produced. Such profiles are used to discuss 
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structural aspects of the polymer system, for example if a core region exists in which one particular 

atom type is concentrated. All developed scripts and parts of code are provided in Appendix.  

 

2.2 Experimental methods and materials 

2.2.1 Materials 

 2.2.1.1. Poly N-(2-hydroxypropyl)methacrylamide parent polymer  

N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer precursors containing two different 

loadings of ortho-nitrophenol (ØNp) terminated Gly-Phe-Leu-Gly peptidyl side chains (Figure 

2.2) were purchased from Polymer Laboratories Ltd. U.K. The degree of side chain loading was 

found by UV spectroscopy (ε270 nm = 9500 L/mol/cm) to be 2.6 and 7.8 mol %. These values 

have been used throughout this work whenever side-chain concentrations have been needed. 

However, by convention, polymers are referred to hereafter by the original feedstock ratios of 5 

and 10 mol%. Molecular weights for the 5 and 10 mol % copolymers were 45770 g/mol and 38978 

g/mol respectively with polydispersities of 1.74 and 1.46 Mw/Mn.  

 

2.1.1.2. Linear amines  

1-aminohexane (C6), 1-aminooctane (C8), 1-aminodecance (C10), 1-aminododecane (C12) and 1-

aminotetradecane (C14) were purchased from Sigma Aldrich and used as received (> 99.5 % 

purity).  

 

2.1.1.3. Aromatic amines  

2-aminoanthracene (Anc, 99 %), 2-aminoanthraquinone  (Anq, 97 %) and 6-aminochrysene (Ac, 

97%) were purchased from Sigma Aldrich and used as received (> 99.5 % purity).  

 

2.1.1.4. Amino-alcohols 

1-Aminohexan-1-ol (C6-OH), 1-aminooctan-1-ol (C8-OH) and 1-aminodecan-1-ol (C10-OH) 

were purchased from Tokyo Chemical Industry. 1-aminododecan-1-ol (C12-OH) was purchased 

from Toronto Research Chemicals Inc. All were used as received (> 99.5 % purity) 
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2.1.1.5. Adamantane derivatives  

1 – Adamantine (Ad), 3-Aminoadamantan-1-ol (AdOH), 3- methyl - 1 – aminoadamantane 

(AdCH3) were purchased from Fluorochem. All were used as received (> 99.5 % purity) 

 

2.1.1.6. Other reagents 

1-Amino-2-propanol (Ap) and triethylamine were purchased from Sigma Aldrich and kept over 

molecular sieves. Dialysis tubing was benzoylated with a Mw cut-off of 2000 g/mol. All other 

solvents were purchased from Sigma Aldrich and used as received. Any water used was of 

Millipore Grade.  

 

     2.2.1. Methods 

2.2.1. Aminolysis reaction  

The nitrophenol group of the HPMA parent polymers above were substituted with a library of 

different amines using an aminolysis reaction described below (Figure 2.2) based on that utilised 

by Vicent et al. [45]. 

 

  2.2.1.1. Aminolysis reaction 

5 or 10 mol % HPMA copolymer precursor (1 eq. in respect to ØNp) was dissolved in a minimal 

volume of anhydrous dimethyl sulphoxide (DMSO) transferred into a round-bottom flask and 

flushed with nitrogen. The flask was placed in the oil bath and set to stir at 45°C with magnetic 

stirrer until polymer was completely dissolved.  1.1 eq  of chosen amine and 1 eq. of triethylamine 

were added to the reaction mixture, and stirred for three to five hours under nitrogen atmosphere 

at the same temperature with constant spectroscopic monitoring of evolution of free nitrophenol 

(λmax = 430nm).  After reaction was complete (level of nitrophenol constant) the mixture was 

quenched with 3 eq. of 2-aminopropanol  (1.028 uL) and left to stand for 1 hour. The obtained 

mixture was then precipitated into a 45 ml of vigorously stirred mixture of diethyl ether:acetone 

(8:1), the suspension filtered, the solid dissolved in minimal water and purified by dialysis against 

H2O (MW cut-off 2000 g*mol-1) for 2-3 days (6-8 water changes). Purified polymer was then 

freeze dried to give the conjugate as an off-white solid. Typical yields were 60 % based on polymer 



53 
 

starting weight. UV/VIS and 1H NMR in D2O were used to confirm complete substitution of the 

ONp groups. 

 

Figure 2.2: Reaction mechanism for the aminolysis reaction used to modify the parent copolymer 

HPMA.  

 

2.2.1.2. Ultra-Violet spectroscopy (UV-Vis) 

HPMA aminolysis reactions were followed by UV/Vis spectroscopy, using a Jasco V-570 dual 

beam spectrometer measuring between 200 and 500 nm. Samples were diluted in 99.9% pure 

DMSO, the spectrum plotted and peak intensities measured using Jasco Spectra Manager. An 

example data set for the reaction between 10 mol % HPMA starting polymer and dodecylamine is 
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shown in Figure 2.3. After the addition of dodecylamine, upon the occurrence of aminolysis, the 

bound nitrophenol peak visible for the parent polymer at λ = 270 nm is lost and replaced by a peak 

for unbound nitrophenol at λ = 430 nm. As the extinction coefficient of the bound nitrophenol on 

the parent polymer is known (ε(270 nm) = 9500 L/mol/cm), the concentration of nitrophenol being 

substituted could be measured and therefore the amount of amine content inversely known.  

 

Figure 2.3: UV spectra showing the 10 mol % HPMA parent polymer before (solid line) and after 

(dashed line) the addition of dodecylamine. (C James, thesis, 2011, Cardiff University).  

 

2.2.1.3. Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance (NMR) was performed on a Bruker DRX-500 MHz spectrometer 

using a solvent suppression pulse program to reduce the signal from any water present (δ = 4.8) 

[46]. Samples were prepared in D2O at concentration of 5 mg/ml. For conjugates modified with a 

linear amine, the rise of a peak relating to the amine terminal -CH3 group (δ = 0.79) follows the 

substitution process. For conjugates modified with an aromatic group, peaks relating to the 

aromatic amines NH (δ = 7.4 - 7.8). NMR spectra were predicted and plotted using g-NMR 

software package [47]. 
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2.2.2.4. Small-angle neurton scattering (SANS) 

 2.2.2.4.1. SANS instrumentation   

In a SANS experiment, the number of neutrons scattered as a function of the scattering vector, Q, 

is measured, where Q depends on the scattering angle and neutron wavelength (Appendix A 1). 

For this project, facilities of the D11 and LOQ diffractometers, located at the ILL and ISIS 

respectively, were used. D11 uses a fixed neutron wavelength and multiple detector distances to 

obtain a possible Q range between 0.00031 and 1 Å-1. At LOQ a white beam of neutrons (of 

wavelength range from 2.2 to 10 Å) is used in combination with time-of-flight methods to produce 

a Q range between 0.006 and 0.24 Å-1.      

 

2.2.2.4.2. SANS data analysis   

The intensity of neutrons scattered is determined by the number of particles (np), their volume 

(Vp), the particles’ scattering contrast with solvent (∆ρ), their shape (P(Q)),  interparticle 

interactions (S(Q)) and a contribution from any background incoherent scattering (Binc)  

 

I(Q) = φpVp(∆ρ)2 P(Q, R) + Binc 

(3.36) 

The first three terms Equation 3.36 are Q-independent, and refer to the absolute intensity of 

scattering. The FISH software used in this project groups these terms into one parameter, which 

“scales” the fit intensity to match the actual scattering data. Fitted parameters can be validated by 

comparing the reported scale factor, Sfit,, to one calculated, Scalc obtained from Equation 3.37.   

 

Scalc = Vρ φ(∆ρ2) 

(3.37) 

The particle volume, Vp, is calculated from the best fit parameters (e.g. rod length and radius of a 

cylinder). The volume fraction, ɸ, and scattering contrast, ∆ρ, are obtained by using the known 

sample experimental parameters.  
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2.2.2.4.3. FISH modelling   

FISH refers to the data fitting program developed by R. Heenan [51], used to obtain fitted 

parameters for known models from results of SANS results. FISH fitting procedure is based on the 

use of an iterative, linear least-squares process to fit known models containing the equations 

describing the scattering expected for different form factors, structure factors, contrast steps, 

polydispersities and background scattering to the experimental data. Parameters can be fixed 

manually and the program used to optimise the fit of the remaining parameters. All equations have 

been reproduced from the FISH manual. 

 

2.2.2.4.4. Used models 

HPMA conjugates have been studied previously and their scattering described as Gaussian coils, 

cylinders, and Kholodenko worm-like chains. These models were used for fitting procedures. 

Further evidence for a particular conjugate shape can be found by plotting the data in the Kratky 

representation of I(Q)*Q2 versus Q.  

 

2.2.2.4.5. SANS sample preparation   

HPMA-conjugates were dissolved at concentrations between 0.5 and 2 wt% in D2O (pH 5.5, 0.1M 

+ 0.02 phosphate buffer, PBS) and placed in quartz cells (Hellma) with a pathlength of 1 or 2 mm. 

Samples were thermostatted to 27-37°C. Typical measuring times were between 45 and 90 minutes 

per sample. Sample solution scattering was normalised for the scattering and transmission of the 

solvent and cell, and then placed on an absolute intensity scale by reference to a standard (D2O). 

Ap 100% was used as a standard sample for benchmark, as described in previous studies [50]. 
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Chapter 3: HPMA conjugates synthesis and characterisation 

 

   3.1. Introduction 

It is known for polymer-drug conjugates that solution behaviour derives from the polymer 

backbone properties as well as drug solubility, size and loading [1]. Exploring the influence of 

drug and carrier combinations by systematically changing the amount and properties of the drug 

part can yield useful information for controlling polymer-drug conformation, and thereby 

biological activity and clinical performance. Thus, various experimental and theoretical researches 

were held during recent years [2-5]. Among them, experimental investigation on mono-substituted 

HPMA polymer conjugates [1, 4] demonstrate the ability to change polymer-drug conjugate sizes 

and morphology changing the solubility and ratio of drug-mimic part. Results of this investigation 

showed both the degree of loading and the structure of the substituent have an extensive influence 

on the conformation of the conjugate in solution (Figure 3.1).  

 

Figure 3.1: Structure of the HPMA-co-MA-GFLG copolymer where x defines the mole percent 

of GFLG-R side chain loading and R is the bound drug mimic: a) aminopropanol, x_Ap; b) 

para-nitrophenol, x_ONp, c) dodecylamine, x_hC12. [4] 
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For selected loadings of parent polymer conjugate, modified by the addition of linear substituents, 

it has been shown that as the size of the hydrocarbon increases the conjugate conformation will 

change from a fully flexible Gaussian coil structure (aminopropanol (Ap)) to a more rigid chain 

structure (hexylamine-decylamine (C6 – C10)) and finally to a rigid rod structure for larger alkanes 

(C12 – C18). Changes made in the hydrophobicity of the substituent demonstrated conclusively 

that hydrophobicity rather than chain structure is responsible for the conformation changes 

observed. Where the conjugates have been modified with aromatic substituents, the results follow 

the same trend: as the substituent increases in size, the flexibility reduces from a worm-like chain 

for aniline (An) to a rod for aminoanthracene (Anc) [1]. 

Based on these results we were able to expand this research area, exploring combinations of drug-

mimics. Besides addressing the problem of general ability of producing desired structures, this 

also allowed us to investigate the influence of substituent’s structure and size on properties and 

solution behaviour of polymer-drug conjugates. In order to provide the required data for further 

analysis, we have chosen systems with highly-soluble and low- or non-soluble drug parts; aromatic 

and non-aromatic substituents; and rigid/flexible alkanes mixtures in selected ratios of 1:9, 1:3 and 

1:1. Therefore selected systems were first synthesised and purified and then characterised using 

SANS experiments and data analysis. Effective influence of ratio changes on the solution 

behaviour were tracked by changes in SANS curves and fitted parameters, compared with mono-

substituted polymer-conjugates and analysed for further conclusions.  

    3.2. Synthesis and purification 

     3.2.1 Conjugates with mono substituents 

HPMA-co-MA-GFLG-ONp (HPMA) parent polymer was described above in Chapter 2.2.1 was 

selected as precursor for all of the synthesized polymers in order to obtain comparable 

experimental results.   The nitrophenol group of the HPMA parent polymers were substituted with 

selected amines using an aminolysis reaction (shown in Figure 3.1). Both HPMA parent copolymer 

precursor with 5 mol% or 10 mol% loading of ONp were dissolved [1.2 mol equiv. agents in 

respect to nitrophenol groups] [1] in a minimal volume (5-10 ml) of anhydrous dimethyl 

sulphoxide (DMSO) in round-bottom flask and the system flushed with nitrogen. 
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The flask was heated to 45°C to ensure complete dissolution.  1.1 mol eq of chosen amine (RNH2) 

and 1 eq of triethylamine were added to the reaction mixture. Then solution was stirred for three 

to five hours under nitrogen atmosphere at 45°C, monitoring evolution of free nitrophenol 

concentration as well as substituent concentration (if possible) with UV/VIS. After reaction was 

completed (level of nitrophenol remains constant), the reaction was quenched by addition of 3 eq 

of 2-aminopropanol for 1 h. UV/VIS and 1H NMR in D2O were used to confirm complete 

substitution of the ONp groups with amine of choice. Results of characterization are provided in 

Supplementary Information. The conjugate was precipitated by dropwise addition of reaction 

mixture to a 450 ml of constantly stirred mixture of acetone:diethyl ether (8:1).  The crude product 

obtained by filtration was dissolved in a minimal volume of distilled water and purified by dialysis 

against H2O (MW cut-off 2000 g*mol-1) for 2-3 days (6-8 water changes per day). Purified 

polymer was then freeze dried and stored in the freezer.  

 

     3.2.2. Conjugates with mixed substituents 

Synthesis of mixed substituents is similar to that for mono-substitution. The difference is simply 

the need to perform synthesis in two stages in order to control the mixture ratio for substituted 

polymer. The first stage is reaction with substituent that was selected as a minor mixture 

component. Then, after reaction with first substituent is complete (progress can be evaluated by 

UV-Vis spectra), second substituent of choice is added. 

  

For the first stage, the selected first amine of choice (R1NH2) was added in reaction mixture with 

respect to required ratio (1 mol eq for 100%). Then 1 eq of triethylamine was added, and the 

solution was set to stir until reaction is considered to be complete. Progress was monitored by UV-

VIS spectroscopy, sampling reaction every 30 min. After the first reaction is completed, 3 eq of 

the second substituent were added to the mixture and stirred for 1 h. UV/VIS and 1H NMR in D2O 

were used to confirm complete substitution of the ONp groups with amine(s) of choice. Results of 

this conformation are provided in Supplementary information. The conjugate was precipitated by 

dropwise addition of reaction mixture to a 450 ml of constantly stirred mixture of acetone:diethyl 

ether (8:1).  The crude product obtained by filtration was dissolved in a minimal volume of distilled 

water and purified by dialysis against H2O (MW cut-off 2000 g*mol-1) for 2-3 days (6-8 water 

changes per day). Purified polymer was then freeze dried and stored in the freezer. 
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Figure 3.2: The aminolysis reaction mechanism of parent HPMA copolymer modification. [3] 
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   3.3. Characterisation  

3.3.1. UV-Vis and NMR data analysis 

Aminolysis reactions were monitored using UV/Vis spectroscopy, using a Jasco V-570 dual beam 

spectrometer measuring between 200 and 600 nm. Samples were diluted in DMSO, the spectrum 

plotted and peak intensities measured using Jasco Spectra Manager. An example data set for the 

reaction between 10 mol% HPMA starting polymer and ANC is shown in Figure 3.3. Start of 

sampling (Figure 3.3 blue line) was made before aminoanthracene (ANC) was added to reaction 

mixture. After ANC was added Sample #1 was taken (Figure 3.3 orange line). Rising peak at λ = 

451 nm shows presence of free ANC which decreases after ANC substitution of o-nitrophenol 

(oNp) group. After the Sample #4, since no major difference was noticed between spectroscopy 

results, reaction can be considered as fully completed. 

 

 
 
Figure 3.3 UV spectra of aminolysis reaction progress of HPMA parent polymer with ANC 

 

As well as monitoring reaction progress with UV/Vis spectroscopy, NMR was used to confirm 

polymer’s structure. Example spectra are shown below in Figure 3.4 (predicted) and 3.5 
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(experimental). NMR spectra were analysed and compared with predicted peak shifts and ratios in 

order to complete the characterization process for synthesized polymers.  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

 

(e) 
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(f) 

 

(g) 

Figure 3.4 Predicted NMR spectra for a) HPMA, b) HPMA-ANC, c) HPMA-ANQ, d) HPMA-Ap, 

e) HPMA-C6, f) HPMA-C14 g) HPMA-ONp 

 

For mono-substituted polymers it was possible to provide conclusive results to show substitution 

of ONp group to amine of choice by comparing peaks ratio at selected intensities. In the case of 

substitution with aromatic drug-mimic parts (ANC, ANQ) new peaks at 10.6-10.8 ppm appeared 

(H atom on carbonyl) as well as ratio of peaks at 7.5-8.3 ppm increased due to contribution of 

hydrogens bonded with aromatic carbons.  



67 
 

 

(a) 

 

(b) 
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(c) 

Figure 3.5 Experimental NMR spectra for a) HPMA-ANC, b) HPMA-ONp, c) HPMA-C14 

polymer conjugates 

 

The same characterization methods were used for mixed conjugates as for mono-substituted 

polymer molecules. In order to characterize selected polymer conjugates we compared the ratio of 

protons in side-chain of polymer conjugate, for example signals from hydrogens bonded to 

aromatic carbons (~7.2 ppm) to signals from hydrogens, bonded to carbon with two carboxamide 

group (4.187 ppm). For 100% HPMA-ANC conjugates, the selected ratio is 7, for ANQ = 6, and 

for polymer-Alkane conjugates = 5/2. Applying these methods to experimental results from NMR 

data analysis we were able to charecterize mixed conjugates for future study, using advanced 

techniques such as SANS data analysis. However, for C6/C14 mixture it is not possible to obtain 

conclusive results due to a minor contribution of side-chain groups in the resulting spectra and 

inability to track changes in alkane intensities area. The robustness of the experimental 

methodology demonstrated with a wide range of compounds [1] suggests that the products are of 

the desired composition. 
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3.2.2. SANS data analysis 

Validating obtained polymers as desired products, we were able to proceed to structural 

characterisation. In order to obtain more information on the sizes and properties of the selected 

HPMA-conjugates, SANS technique was applied. This also provided us with the ability to carry 

out the direct comparison between experimental data and computer modelling results (discussed 

in Chapter 5). As well as allowing to fit direct dimensions for solubilised polymers, SANS was 

successfully used for characterization of polymer-drug conjugates [2-5], due to its ability to be 

carried out under normal physiological conditions (body temperature, biological pH, ionic strength 

of 0.1M (NaCl), conjugate concentration of 50 mg/ml used in clinical research) without destroying 

or interacting with target molecules. Characteristics SANS plots for each family of conjugates are 

given below. 

 

3.2.2.1. Mixed linear substituents 

C6 and C14 were chosen as model substituents due to noticeable difference in sizes of polymer 

molecules. Series of 1:9, 1:3 and 1:1 mixtures were synthesized, characterised and studied using 

SANS techniques. For 100% C14 and 100% C6 substituted conjugates, a difference of a factor of 

two in length of solubilised molecules was used for a comparison. As shown in Table 3.1, gradual 

increase of C14 forces the system to adopt a more compact shape with decreasing length of the 

polymer molecule but retaining similar radius for fitted cylinder. This shows the influence of 

changing ratio of drug-parts and can be explained by difference in solubility parameters for alkane 

substituents of different alkane chain length.  

 

3.2.2.2. Mixed aromatic substituents 

In order to investigate the contribution of aromatic substituents on overall shape and sizes of 

polymer conjugates, the same series of mixed systems were developed for ANQ/ANC series of 

polymers. For ANC and ANQ 100% substituted copolymers, shape and size difference is also well 

described and can be explained by difference in hydrophobicity for these aromatic molecules. 

Thus, 100% ANQ conjugate can be described as a cylinder with length of 200±10Å and radius of 

40±5Å and 100% ANC described as a cylinder with length of 118±10Å and radius of 37±5Å. 

Nevertheless, the scattering curves obtained from SANS experiment are similar for these two 



70 
 

systems and demonstrate rod-like shape on Kratky representation. However, mixed systems with 

these two aromatic substituents follow a similar trend, expanding with increasing ANQ presence 

in the mixture.  

 

In fact, polymer molecules with mixed aromatic substituents demonstrate another interesting 

feature – adding of another aromatic substituent changes affects the size of polymer molecule, 

expanding its length. For example, for ANQ/ANC 25/75% system the best fitted parameters are 

425±10Å length and 53±5Å radius, which is twice as long as obtained for pure ANQ and four 

times longer than 100% ANC fitted cylinder. These data can be explained by self-repulsion of 

these two parts within the polymer chain. 

 

3.2.2.3. Mixed linear/aromatic substituents 

For ANQ/C14 conjugates, results of SANS data analysis are different due to contribution of 

aromatic groups. However, transition from pure ANQ to pure C14 conjugates is noticeable and 

can be tracked both on Kratky and raw scattering data plots. For pure ANQ conjugates we can 

observe rod-like structure while for C14 substituted polymers results show spherical morphology. 

Increasing amounts of C14 substituent in the mixture gradually progresses from rod-like to 

spherical structures, which can be extremely useful both for research purpose as well as clinical 

application of produced drug-polymers. Being able to track changes and evaluate contribution of 

increasing hydrophobic/hydrophilic groups, we decided to progress to further investigation, 

comparing similar substituents in terms of chemical make-up but different in structure.  

 

3.2.2.4. Mixed adamantine substituents 

In order to obtain required information we have selected C10 and Ad substituens which have same 

properties and molecular formula but are different in structure and flexibility. For C10 substituent, 

the flexible alkane chain differs greatly from the rigid bonds in Ad. This defines difference both 

in enclosure volume and can have an effect on overall structure behavior. This difference was 

investigated using results of comparison between mixed systems of Ad/ANC, Ad/ANQ and 

Ad/C10 conjugates which are presented in Figure 3.6. 
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Figure 3.6 Scattering curves for ANC/ANQ ANQ/C14, Ad/ANC, Ad/C10 and Ad/ANQ polymer 
conjugates 
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3.3.2.2. SANS data analysis 

The data fitting program FISH was used to fit the whole of the scattering data to form factors for 

various shapes. Due to similarity of selected systems of mixed conjugates with mono-substituted 

HPMA-copolymers that was described in previous studies, the same data fitting technique was 

used for SANS data analysis [1]. Kholodenko worm-like chain model as an expansion of the 

Gaussian coil was used for fitting procedures as it was shown previously to be effective 

representation for HPMA-copolymers. Further evidence for a particular conjugate shape can be 

found by plotting the data in the Kratky representation of I(Q)*Q2 versus Q. In this plot, scattering 

data from a coil, rod and worm-like chain have distinctive forms.  

  

Experimental data was used for further analysis and fitted to model shapes. Results of best fits for 

cylinder model are provided in Table 3.1.  For selected series of conjugates gradual changes in 

sizes can be observed. For example, C6/C14 mixture retains similar radius as well as increased 

length with increasing amount of C6, which correlates with results for mono-substituted C6 and 

C14 conjugates. However, in some cases changes in parameters do not follow the same trend and 

no correlation found for mixture ratio and sizes of obtained structures. Despite that, SANS data 

analysis is able to provide information on changes of structure and morphology of polymer-drug 

conjugates with mixed substituents. Based on scattering curves for series of HPMA-copolymers it 

was shown that properties of mixed conjugates are defined both by types of drug-mimics and ratio 

of selected substituents. This allows us to use available data for known conjugates to predict 

possible parameters for mixed substituents, as well as to change the ratio in mixture to obtain 

desired structure with chosen sizes and preferred shape which links to biological performance. 
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Conjugates and ratio of 
substituents 

Rg, Å 
±5Å 

Length, Å 
±10Å 

Radius, Å 
±5Å 

C6 100% 80 171 27 
C14 100% 88 89 30 

C6/C14 50/50% 97 146 27 
ANC 100% 37 118 17 
ANQ 100% 40 200 20 

ANQ/ANC 25/75% 53 425 16 
ANQ/ANC 50/50% 47.5 203.5 16 
ANQ/ANC 75/25% 56 145 15 
C14/ANQ 10/90% 55 146 22 
C14/ANQ 25/75% 61 175 27 
C14/ANQ 50/50% 69.5 108 29 
C14/ANQ 75/25% 68.5 93 29.5 
ANQ/ANC 10/90% 49 165 17 

Ap 100% 33 100 14 
C14/C6 10/90% 72 204 23 
C14/C6 75/25% 67 101 30 
C14/C6 50/50% 97 146 27 
C14/C6 25/75% 63 115 25.5 

ANQ+ANC 75/25% 44 190 16 
C14 +ANQ 10/90% 50 128 21 
C14 +ANQ 50/50% 63 97 27 
C14 +ANQ 75/25% 75 92 29 

C14/C6 75/25% 81 100 29 
ANQ+ANC 50/50% 68 170 16 

 

Table 3.1. SANS fitting results* for selected HPMA-conjugates both for mono-substituted 

polymers and mixtures of drug-mimic parts. X/Y refers to poly-substituted polymer conjugate, 

X+Y refers to mixture of mono-substituted polymer-conjugates. [Note from AP: Table includes  

parameters from the ‘best fit’ to each model, but is not intended indicate which model 

gives the most appropriate fit to the data].  
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A

 

 

Fitted parameters 

Rax / Å 

(± 5 Å) 

n l / Å 

(± 10 Å) 

nl swse 

10 1 135 135 805 

10 2 78 156 786 

9 3 58 176 816 

9 4 48 194 852 

B  

 

 

 

Gaussian coil fit (pink line) 

Core/shell rod fit (blue line) 

 

Fitted parameters 

Gaussian Coil: Rg = 36 Å, SWSE = 1063 

Core Shell Rod: L= 135 Å, R= 14.68Å, 

SWSE=1237 
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C

 

 

Fitted parameters 

Rax / Å 

(± 5 Å) 

n l / Å 

(± 10 Å) 

nl swse 

11 1 143 143 639 

11 2 81 163 493 

10 3 61 184 442 

10 4 51 204 429 

D  

 

 

Gaussian coil fit (pink line) 

Core/shell rod fit (blue line) 

 

Fitted Parameters 

Gaussian Coil: Rg = 39 Å,  

SWSE = 914 

Core Shell Rod: L= 139 Å,  

R= 16 Å, SWSE=1585 

 

 

Figure 3.7. Representation of best fits in FISH software for 100% ANQ and 27/75 ANC/ANQ 

mixed conjugates.  
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3.4. Conclusions 

It is important to synthesize desired polymer-drug conjugates in controllable reactions, not only to 

develop novel therapeutic agents but also to provide reliable data against which modelling methods 

can be tested. Having a wide database of SANS experimental data and fitting for mono-substituted 

HPMA conjugates, we have started from reproducing previous results, and then proceeded to more 

complicated synthesis and SANS experiments on conjugates with mixed substituents.  

 

Our aim was to control solution behaviour of polymer-drug conjugates using information obtained 

from SANS data. Combining mixtures of various drug mimics, we have developed characterisation 

methodology as well as investigated influence of changing ratio of hydrophilic/hydrophobic drug 

mimics for mixed polymer conjugates. Thus, for systems containing aromatic/alkane substituent 

mixtures we were able to gradually change the overall structure and morphology of HPMA-

polymer conjugates from rod-like for aromatic substituents to a sphere-like for predominantly 

alkane mixtures.  

 

Further investigation of mixed polymer conjugates contained drug-mimics with similar parameters 

of hydrophobicity, but different in terms of flexibility. In order to provide corresponding 

comparison we have selected systems of Ad/ANC, Ad/ANQ and Ad/C10 conjugate mixtures and 

investigated an effect of changing ratio of drug-mimic parts for these systems.   

 

This allowed us to demonstrate the possibility to obtain desired polymer-drug molecules with 

variable ratio of selected drugs in situ controllable reactions, allowing us to proceed to the next 

research aims, i.e. computer modeling of desired structures which have various advantages among 

experimental variation approach but requires preliminary validation using known results. 
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Chapter 4: All-atom modelling of HPMA 

 

4.1. Introduction 

Experimentally, detailed studies of solution behaviour are time consuming and often complex, 

requiring synthesis and characterisation for numerous compounds to establish structure-property 

relationships using methods such as light, X-ray or neutron scattering, spectroscopic studies and 

viscosity measurements. Whilst a high level of insight into solution sub-structure can be obtained 

[2-4], these studies are undeniably expensive and time consuming. Development of modelling 

methodology techniques to accurately simulate solution conformation of polymer-drug systems 

would be a valuable tool for preliminary studies of unknown combinations of polymer carriers and 

drugs, as well as for more detailed investigation of experimentally characterised structures. The 

challenges of carrying out such calculations for polymer solutions, and in particular for the 

complex multi-component polymeric systems of interest in drug delivery are significant. AA 

simulation of systems of this size raises demands on code optimization and computational 

computational resources and requires substantial CPU time. As well as force field models, finding 

appropriate solvent models and development of specific software is an essential part of this 

research. Methods and tools developed can be used for polymer–drug studies, neutron scattering 

simulations and have wider application in various theoretical and experimental fields.  

 

In this work, HPMA homopolymers with a range of molecular weight (MW) from 2 kDa to 35 

kDa were built and studied via MD simulations. The results of MD simulation in explicit, R-field 

and distance dependent dielectric solvent models were interpreted using Flory mean field 

approach. As well as conventional parameters of interest, such as the radius of gyration Rg, the 

molecular volume, chain collapse time, radial distribution function (RDF) and direction dependent 

density profiles were investigated. These data were used to develop a model to describe the full 

range of shape variations with ellipsoidal parameters, which can be compared to results obtained 

from small-angle neutron scattering (SANS) experiments. After tools and methods validation, 

provided with this study and further implementation of new atom types presented in conjugates, 

we were able to procced to HPMA copolymer studies. Results of that investigation is presented in 

Chapter 5. 
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4.2. Force-field validation 

Three force fields available within MOE have parameters for all atoms in HPMA, namely 

MMFF94x, AMBER99 and OPLS-AA. Comparisons of each of these against DFT and ab initio 

methods were used to determine which parameter set was most suitable for our purpose.  Potential 

energies as a function of dihedral rotation for each of two flexible C-C bonds were calculated: 

Figure 4.1 shows the results of such calculations with various methods. This shows that OPLS-

AA and AMBER99 have similar energy profiles to that generated by DFT, whereas MMFF94 

shows different number and position of minima and markedly different energy barriers to the DFT 

results. 

 

A systematic conformational search of HPMA dimer then was performed using OPLS-aa, 

AMBER99 and MMFF94 parameter sets with rejection energy of Van der Waals contacts set to 

10 kcal/mol. Relative energies of thirteen obtained conformations were calculated using DFT 

methods were compared with forcefield results, as shown in Figure 4.2. Ab initio calculations 

results were used as a benchmark and show good correlation with BP86 PCM results: mean square 

deviation in conformational energies for BP86 PCM and MP2/def2-TZVP were found as 0.89 kcal 

and for BP86 PCM and MP2/aug-cc-pVTZ 1.01 kcal. 
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(b) 

 

 

(c) 

Figure 4.1 Dihedral energies plots obtained from AMBER99, OPLS-AA, MMFF94 and  DFT (B3LYP) 

calculations for a) C-C bond 1, b) C-C bond; c) – representation of both bonds. 

 

As shown in Figure 4.2, relative energies obtained by BP86, AMBER99 and MMFF94x are 

similar, whereas OPLS-aa results in significantly different energy ordering of conformations, mean 

square deviations from results of BP86 PCM calculations for the following force fields in 

kilocalories are Bond 1: 1.92, 2.62, 1.62 and Bond 2: 1.11, 3.12, 1.22 for AMBER99, MMFF94 

and OPLS-aa respectively. Considering the results of these tests, AMBER99 was chosen as the 

most appropriate force field parameter set for further investigation of HPMA copolymers. 
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Figure 4.2. Results of total energies calculations for DFT and ab-initio methods 

 

4.3. Solvent model selection 

HPMA molecules with sizes from 4 to 265 monomers were built with random distribution of 

R-HPMA and S-HPMA fragments in racemic mixture. In order to select a solvent model suitable 

for polymeric HPMA, Rg obtained for explicit water and two implicit solvent models were 

compared using a Flory mean field approach (Figure 4.3.). It is well known that the size of a 

polymer chain depends on the solvent. In a “good” solvent the chain expands to allow polymer-

solvent contacts, whereas in a “bad” solvent the chain segments stay close to each other. From the 

Flory approximation Rg = R0*Nν, where R0 is Rg of the monomer unit, N is the number of repeated 

units and ν is a solvent factor. For good solvent, ν ≈ 3 / 5, while for bad solvent, ν ≈ 1 / 3 [5, 6].  
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Figure 4.3. Comparison of different solvent models for a range of HPMA-copolymers. Lines are 
calculated fits to a power law, parameters of fits are shown above.  
 

This theory was implemented for HPMA polymers (Figure 4.3) and the obtained data show striking 

differences between solvent models. It is evident that Rg resulting from explicit water and R-field 

solvation are in reasonable agreement, whereas the distance-dependent dielectric solvation model 

leads to much smaller values of Rg. Adding lines of best fit with the same form as Flory 

approximation, i.e. power law, results in fitted value of ν is close to the ideal value of 0.60 for 

“good” solvents, with 0.59 for explicit solvent and 0.54 for R-field, and identical R0 values of 2.2 

Å. Extrapolating the power law best fit line to N = 265 allows comparison with experimental data 

of SANS experiment, which yields Rg = 75±3 Å[7]. Values of Rg obtained were 66±4 Å for 

explicit water and 49±4 Å for R-field, and hence both models can be used for further investigation 

of “real” polymers. 
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4.4. Data analysis 

  4.4.1. General concept 

MD simulations were analysed using our own C code which allows for the analysis of trajectories 

for geometric data relevant to the system being studied. Data generated in this case includes Rg 

and radial distribution functions (RDF). We also examined the shape of polymers by calculating 

enclosing ellipsoids. This was done based on the moment of inertia matrix, calculated for each 

frame of the saved trajectory. This matrix was diagonalised to give eigenvalues and mutually 

perpendicular eigenvectors centred on the centre of mass. The eigenvectors correspond to the axes 

of rotation for the polymer as a whole, the axis corresponding to the smallest eigenvalue is the axis 

requiring the lowest torque to rotate the polymer as a rigid body. For a rod-like molecule, this 

naturally identifies the direction in which the polymer is elongated, i.e. the rod direction, in a way 

that is independent of the polymer orientation in space. The extent of the polymer in each of the 

three directions was then found using the polymer centre of mass as the origin and taking the 

component of each atom’s position vector along the eigenvector directions. 

 

 

 

 

a) b) c) 

Figure 4.4. Representation of ellipsoid characterization approach for evaluation in time for MD 

trajectories of a) “rod-like”, b) “disc-like”, and c) spherical conformations for structures of 

different HPMA-conjugates sizes 100-120 monomer units. 

 

The component furthest from the centre of mass in each direction was then used to define the semi-

principal axes {a, b, c} of the enclosing ellipsoid. The ratio of these axes can then be used to define 
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molecule’s shape. For example, “rod-like” or described as prolate spheroids with ratio of axes Rx 

≅ Rz < Ry in a ratio of 1:2.5-4 (Figure 4.4.a). “Disk-like” molecules can be represented as oblate 

spheroids with Rx ≅ Rz > Ry (Figure 4.4.b) and for spheres axes will be nearly equal Rx ≅ Rz ≅ 

Ry (Figure 4.4.c). This approach is complementary to the use of the Rg to describe polymer shape 

[8]. Indeed, for polymers with uniformly distributed mass the eigenvectors of the moment of inertia 

matrix and those of the Rg tensor will have the same directions [9,10]. This has lead to the 

assumption that the two approaches are interchangeable [11].The main difference is the inclusion 

of the atomic masses in the moment of inertia matrix, which means that the heavier atoms have a 

greater influence on the matrix elements, whereas Rg tensor did not originally contain the atomic 

masses and simply defines the geonmetric shape of a polymer based on the co-ordinates of the 

monomer units [9]. Results for structures simulated using R-field solvent model are presented in 

Table 4.1 and suggest no systematic influence of tacticity of the initial linear polymer structure on 

results of MD simulations and corresponding parameters. 
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Monomer Tacticity Rg (Å) STD Average Rg (Å) Rx (Å) Ry (Å) Rz (Å) Ratio  Vol (Å3) 

HPMA-20 

isotactic 8.7 0.15 

8.5 ± 0.2 

11.2 13.6 11.9 1.2 7557.3 

atactic 8.3 0.19 10.5 13.8 11.8 1.2 7111.9 

syndiotactic 8.4 0.22 9.1 14.0 12.2 1.3 6543.7 

HPMA-40 

isotactic 15.4 0.07 

15.0 ± 0.4 

12.9 16.0 12.9 1.2 11167.2 

atactic 14.6 0.06 11.7 21.2 13.8 1.7 14237.5 

syndiotactic 15.2 0.10 11.8 18.0 14.5 1.4 12950.6 

HPMA-60 

isotactic 19.6 0.10 

19.1 ± 0.5 

15.6 20.6 16.5 1.3 22232.0 

atactic 18.4 0.12 13.1 24.2 19.0 1.5 25150.2 

syndiotactic 19.4 0.05 14.9 20.4 15.4 1.3 19661.9 

HPMA-80 

isotactic 25.7 0.19 

25.0 ± 2.5 

15.0 31.8 15.1 2.1 30059.0 

atactic 27.0 0.14 13.9 26.1 22.7 1.4 34431.9 

syndiotactic 22.4 0.06 17.1 20.1 17.7 1.2 25509.4 

HPMA-100 

isotactic 26.3 0.07 

27.8 ± 2 

17.0 29.8 18.6 1.7 39479.5 

atactic 29.4 0.13 17.4 30.6 18.7 1.7 41683.1 

syndiotactic 27.7 0.11 16.8 30.8 24.8 1.5 53596.5 

HPMA-120 

isotactic 28.2 0.08 

29.1 ± 2 

19.4 25.1 19.6 1.3 39957.1 

atactic 27.7 0.13 17.5 35.9 19.8 1.9 51905.8 

syndiotactic 31.3 0.09 21.3 28.1 23.0 1.3 57615.1 

HPMA-140 

isotactic 30.3 0.06 

31.6 ± 2 

21.3 29.9 28.8 1.2 76734.6 

atactic 31.7 0.12 19.2 33.0 25.8 1.5 68398.4 

syndiotactic 33.0 0.09 21.6 31.2 23.7 1.4 67130.3 

 
Cont/// 
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Monomer Tacticity Rg (Å) STD Average Rg (Å) Rx (Å) Ry (Å) Rz (Å) Ratio  Vol (Å3) 

HPMA-160 

isotactic 37.0 0.06 

35.0 ± 2 

17.2 34.4 29.7 1.5 73236.5 

atactic 32.7 0.16 18.2 35.3 25.7 1.6 69182.5 

syndiotactic 35.3 0.10 29.5 37.1 18.5 1.5 84810.4 

HPMA-180 

isotactic 39.6 0.05 

38.9 ± 1 

23.9 31.9 27.2 1.2 86891.8 

atactic 38.7 0.19 19.7 57.7 24.7 2.6 117248.5 

syndiotactic 38.3 0.07 20.3 33.9 34.4 1.2 98862.1 

HPMA-200 

isotactic 40.7 0.12 

42.5 ± 3 

22.3 45.3 26.3 1.9 111624.0 

atactic 45.7 0.19 22.4 37.1 29.5 1.4 102741.3 

syndiotactic 41.3 0.17 25.6 36.3 30.8 1.3 120233.9 

HPMA-220 

isotactic 44.7 0.13 

44.0 ± 2 

23.3 39.7 28.3 1.5 109798.9 

atactic 43.6 0.10 24.2 38.4 28.1 1.5 109463.8 

syndiotactic 42.3 0.06 25.3 42.3 25.7 1.7 115258.0 

HPMA-265 

isotactic 45.5 0.05 

49.0 ± 4 

31.3 42.9 29.5 1.4 165614.0 

atactic 47.4 0.10 35.7 50.3 50.1 1.2 376274.3 

syndiotactic 42.1 0.07 25.2 58.9 40.0 1.8 247750.8 

 

Table 4.1. Results of HPMA copolymers MD simulations.  Obtained parameters are averaged over 200 000 timesteps over several simulations for each 

build parameters and calculated for equilibrated structures. STD – standard deviation, Rx,Ry,Rz – distances to a furthest atom in appropriate direction, 

where Ry – always largest and ratio is calculated from Ry/((Rx+Rz)/2)   
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4.4.2. Ellipsoid-based characterisation 

As well as common methods of trajectory analysis, results were interpreted using an ellipsoid 

model which can provide more detailed characterization of polymer shape. This is achieved due 

to the separate axis analysis which makes it possible to obtain a unified density distribution profile 

for both spherical and non-spherical molecules. The ratio of distances to a furthest atom in the 

appropriate direction can be used to describe a wide range of molecules of different shape. Linear 

unfolded polymers can be described as a prolate spheroids with ratio of Rx ≅ Rz < Ry of 1:2.5-4 

(Figure 4.5a); disc shape molecules can be presented as a oblate spheroids with Rx ≅ Rz > Ry 

(Figure 4.5b) or a tri-axial ellipsoid with Rx>Rz>Ry, where Ry is largest semi-axis of ellipsoid. 

Spherical shape can be assigned to cases when distances are equal or approximately equal for all 

directions (Figure 4.5).  

 

 
 

 

 

 

Figure 4.5. Ellipsoid parameters evaluation in 

time for MD trajectories of a) “rod-like”, b) 

“disc-like”, and c) spherical conformations of 

different HPMA-conjugates sizes 100-120 

monomer units. 
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It was found that results of analysis for polymer chain collapse show that ellipsoid model is able 

to screen equilibration time more accurate and provide detailed analysis of changes in molecular 

shape and size then conventional Rg analysis (Figure 4.6.). While Rg time dependent plot flattens 

after 200 ps, separate axis analysis shows shape changes from 0 to 9 ns. 

 

 

 

Figure 4.6: Comparison of separate axis analysis with Rg results for the same run of HPMA-120 

homopolymer a) Rg evaluation in time 0-5 ns b) distances to the furthest atom in axis directions 

for 0-10 ns. 
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4.4.3. Density distribution 

In addition to the overall shape of the polymer we wish to describe the distribution of atom types 

within the ellipsoid. This is an important aspect of polymers for drug delivery applications since 

positioning of the drug compound deep within the volume of the polymer will restrict accessibility 

and so a change of conformation in response to environment can be important in the delivery 

process. To probe this, we produce a density profile for a chosen atomic species through the 

volume occupied by the polymer. To do this we consider a series of ellipsoidal shells within the 

volume. The shell to which an atom belongs is identified by putting the atom co-ordinates relative 

to the centre of mass in the inertial axis system into the equation for the ellipsoid. The fractional 

result can be used to assign the atom to a particular shell. For practical purposes we use 100 shells 

with atoms binned into the nearest appropriate shell so that a histogram can be produced to show 

the distribution of any atom type through the volume occupied by the polymer. By carrying out 

this process on all atoms we arrive at a density profile and, provided the shape of the polymer has 

reached equilibrium, averaging over frames of the trajectory improves the statistical significance 

of the histograms produced. Such histograms display structural aspects of the polymer, for example 

whether a core region exists in which one particular atom type is concentrated.  

 

Absolute distances from the molecular centre can be obtained by scaling to the value of the largest 

axis. Results can therefore be interpreted as an atom density distribution from the center of mass, 

or center of scattering length, in all directions within the ellipsoid. Density profiles for HPMA-

265, shown in Figure 4.7 exhibit a main peak in density distribution 0-3 Å from the center of the 

mass, which can be explained by relatively smaller sizes of bin volume, and is followed by drop 

in the number of atoms per volume and a series of peaks in 9-27 Å. As well 87.7% of the overall 

mass of the polymer is allocated in half of the ellipsoid space from the center of the mass (0-30Å).  
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(c) 

(d) 
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(e) 

(f) 

 

Figure 4.7: Density distribution profiles averaged from MD trajectory of equlibrated HPMA-265 

polymer fitted in ellipsoid with dimensions 31.3 Å, 42.9 Å and 29.5 Å for a) all atoms, b) 

Nitrogen atoms, c) Hydrogen in hydroxylic group, d) Oxygen in carbonyl group, e) Carbon in 

carbonyl group, f) Carbon in polymer backbone.  
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4.4.4. Radial distribution function 

Radial distribution functions for selected atoms were calculated from MD trajectories of HPMA-

265. Results of the N-H...O=C distance distribution are shown in Figure 4.8.a, and indicate the 

presence of both cis- and trans- isomers of the peptide group in the folded polymer, with a ratio of 

trans to cis isomers of 5.5:1. The side group of HPMA can also take on two distinct conformations, 

an internal hydrogen bond between the alcohol and carbonyl groups gives a “coil” like 

conformation while in the alternative extended form the alcohol and amine groups are in relatively 

close proximity. For the H-O...O=C and N-H...O-H radial distribution functions (Figure 4.8.b,c) 

the results indicate that the extended form of the HPMA monomer is preferred within the polymer 

chain with a ratio of extended conformation to coiled of 2.5:1. This corresponds to the relative 

calculated energies for the monomer unit which gave a difference between conformations of 2.2 

kcal/mol (AMBER99). Results for the N-H...O=C radial distribution function (Figure 4.8.d) also 

suggests the presence of intermonomer bonding for 1/4 of total number of monomer units. In 

general, results of RDF calculations indicate the presence of hydrogen bonding both within 

monomer units and between different monomers within the polymer chain. 

(a) 

g(
r)
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      (d) 

 

Figure 4.8. Radial distribution function of a) N-H...O=C b) H-O…O=C c) N-H…O-H and d) H-

N…O=C as above bonds obtained from MD trajectories and averaged over 200,000 conformations 

of equilibrated structure of HPMA-265. 

 

4.5. Discussion 

In order to select a solvent model suitable for polymeric HPMA, Rg was obtained for explicit water 

and two implicit solvent models; reaction field (R-field) and distance-dependent dielectric. While 

the explicit water model would be expected to give the most accurate model of the solvated 

polymer, the large system sizes required for the higher molecular weight polymers become 

prohibitively expensive in terms of computer time. The R-field and distance-dependent dielectric 

solvent models are implicit and so involve only minor computational overheads compared to 

simulation of the HPMA polymer alone. 

 

Figure 4.3 shows Rg data for HPMA polymers from MD simulation in different solvent models, 

and demonstrates striking differences between these models. It is evident that Rg resulting from 

explicit water simulation is the largest for a given value of N, while that from the R-field model is 

significantly smaller and the distance-dependent dielectric solvation model leads to much smaller 

values of Rg. Lines of best fit with the same power law form as the Flory approximation results in 

fitted values of ν of 0.63 for explicit solvent and 0.58 for R-field. These values are close to the 

ideal of 0.60 for “good” solvents. However, the distance dependent dielectric constant approach 

to solvent simulation yields ν=0.40. This indicates that simulations using a distance dependent 

dielectric constant representation of the water solvent would lead to a much more compact HPMA 

g(
r)
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conformation than using an explicit water model, whereas the R-field approach gives rather more 

expanded polymer that is in better agreement the explicit water results. Best fit values of R0 are 

1.88, 1.92 and 2.76 Å for explicit water, R-field and distance dependent dielectric models, 

respectively. These compare with an average over all conformations of HPMA monomer of 2.50 

Å, indicating that in realistic solvent models each repeat unit is more compact in the polymer. 

 

For N = 265 experimental SANS data is available which gives the value of Rg = 70±5 Å. For the 

explicit water calculations computer resources limit us to a maximum chain length of N = 180, 

corresponding to ca. 72,000 water molecules. However, extrapolating the power law best fit line 

yields an estimated value of 62 Å in explicit water. The R-field results for N = 265 give Rg averaged 

from five independent simulations as 49±4 Å, while extrapolation of the power-law fit gives 48 Å. 

In contrast, the distanc edependent dielectric model extrapolates to just 26 Å. Thus, it is clear that 

the implicit solvent models considered in this work give rise to significantly more compact 

structures than does explicit solvation, and that the latter is in markedly better agreement with 

experiment than the former. However, simulation of the full N = 265 polymer in explicit solvent 

is beyond our current computational resources. An alternative to all-atom MD simulation is to use 

coarse-grained methods, which will be discussed in Chapter 6. 

 

Results for oligomers and polymers of various sizes, simulated using R-field solvent model, are 

presented in Table 4.1 and suggest no systematic influence of tacticity of the initial linear polymer 

structure on results of MD simulations and corresponding parameters. It was found that overall 

shape of the molecule changes with polymer size from approximately spherical for smaller 

molecules to more elongated for larger structures. Data for the final entry in Table 4.1. for HMPA-

265 also indicate that the atactic form is rather more spherical than either iso- or syndiotactic forms, 

as evidenced by a smaller ratio of long: short axis. Moreover, the value of separate axis analysis is 

clear in this data, since structures with quite different overall shape may have similar Rg values. 

 
4.6. Conclusions 

MD calculations were performed for model HPMA conjugates and methods refined to obtain 

reproducible results. After a number of tests AMBER99 force field was proven to be suitable for 

HPMA modelling. An explicit solvent model shows Rg close to the SANS experimental result, but 
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long simulations of larger polymers requires excessive computing resources. The reaction field 

implicit solvent model showed good results in both efficiency and accuracy so it was chosen for 

further investigation. A distance-dependent dielectric model of solvation was found not to be 

accurate for MD simulations, as it gives rise to too small radius of gyration, with the polymer chain 

forming a hard sphere. Along with running MD simulations, shape analysis tools were developed 

to determine the overall shape of the polymers in solution. Distribution functions were obtained 

based on an ellipse model, using i) overall atom distribution; ii) distribution of atom type; iii) 

specific labelled atoms (e.g. locate drugs or linkers). Adapting this approach for calculating 

scattering length density profiles will allow us to predict SANS data and compare with that 

obtained from experiments. Obtained data and established methodology can be now expanded to 

be applied for investigation of hetero-polymers, such as HPMA-GFLG-copolymers with mono or 

mixed drug parts conjugated. 
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Chapter 5: All-atom modelling of conjugates 

 

5.1. Introduction 

The conformations that polymer-drug conjugates may form in solution have a significant effect on 

properties that are important for designing of drug delivery systems, and can lead to the ability to 

keep drug levels at biologically active and safe concentrations for desired period of time [1]. It is 

also known that conformations of polymers formed in solutions depend on type and amount of 

side chains [2]. Based on Chapters 3 and 4, we are in a position to model polymer conjugates with 

various drug-mimics and compare computer modelling with experimental data. Methodology 

established in Chapter 4 was used to prepare and perform simulations, with additional atom types 

and parameters for drug-mimics introduced and tested. We have chosen a range of both hydrophilic 

and hydrophobic side-chains, based on previous studies of conjugates carried out in the Soft Matter 

research group. Results of experimental data analysis were compared with parameters predicted 

by computer simulation. Based on this comparison, we were able to make conclusions on the 

adequacy of chosen models as well as develop tools that can be useful for further investigations.  

5.2. Previous studies 

This project builds on the experimental studies of structural dependence for HPMA conjugates on 

side chain type and loading reported in Chapter 3. Trying to replicate experimental results, we 

have also investigated changes in hydrophobicity for both linear and aromatic systems with the 

same drug mimics and degree of loading as in experiments. Polymer conjugates were modelled 

using random distribution of side chains within the molecule. Following Chapter 4, we adopted 

analysis tools to compare shape and size parameters rather than simply calculating Rg. Counting 

the fact that shapes in SANS models are represented as a combination of geometrical forms, such 

as sphere, rod, coil, etc. we have used ellipsoid-based characterization tools. This allowed us to 

compare experimental results of SANS fitting with computer simulation results, obtained from 

trajectory analysis. This comparison will be shown and discussed later in this chapter.  

In general, the results from previous structure and morphology study were used to help correlate 

modelling to real measurements, so that a suitable methodology for MD simulations can be 
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developed. Per contra, some of the modelling results suggest that experimental results can be 

clarified with theoretical predictions, based on these results. Although there are differences in data 

obtained from SANS experiment fitting and MD simulations, it is clear that introducing modelling 

techniques to drug discovery projects can be beneficial for refining existing theoretical models as 

well as better understanding of experimental data, and ultimately will allow us to establish 

intelligent approach in drug-polymer conjugates design. 

5.3. Polymer-drug conjugates modelling 

It is known that combining molecular modelling techniques with experimental methods data 

analysis can provide reliable model for polymer-drug conjugate characterization [4]. Proven to be 

a reliable tool for morphology investigation [5], molecular modelling of polymer behavior is 

demanding for computer resources as well as complicated in establishing and validating of 

developed model. Among the challenges are the size of molecules and simulated systems (tens of 

thousands atoms of polymer as well as hundreds of thousands solvent molecules), necessity to 

parameterize custom atom and bond types and a need to choose or introduce relevant parameters 

for comparison. Despite these difficulties, increasing amounts of research of polymers involve 

computer simulations and more publications on polymer-drug conjugates modeling were 

introduced recently [6]. 

One of the main reasons for such an intensive interest in involving computational chemistry 

methods for medical studies are effective decrease of investigation time – while being highly 

accurate, experimental methods often involve use of rare and expensive equipment. Another 

concern is low effectiveness for overall process of drug discovery, which requires improvement; 

on average, about 35% of discovery projects succeed in delivering experimental drugs suitable for 

clinical testing. The project stages of target identification and screening, hit-to-lead, lead 

optimization, and preclinical candidate selection have individual success rates ranging from 69 to 

85% [7]. This leads to a conclusion that ability to predict chosen properties before time and money 

consuming process of testing and trials can be a major advantage. 

Some recent publications focus on polymer-drug characterization using multiscale modelling tools 

along with experimental data techniques. [6, 10, 11]. PEG and PGG are mainly chosen as polymer 

carriers in such research, which shows correlation between theoretical and experimental 
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parameters. Proving the concept of computer simulations being able to predict specific properties, 

these projects also reveal trends for future drug discovery process. In such research, where there 

is a need to work with massive database of combinations, it is crucial to have an instrument that 

can provide preliminary data analysis to define pathways for further investigation. For example, 

reference [6] explored how the shape and size of poly-γ-glutamyl-glutamate paclitaxel (PGG-PTX) 

can be controlled by varying hydrophobic and hydrophilic loadings. In order to do so, all-atom 

MD simulations of PGG-PTX were run and then continued as coarse-grained (CG) simulation. 

Results show that a PGG-PTX molecule has a strong tendency to form coil shapes, regardless of 

the PTX loading fraction and spatial PTX arrangement, although globular shape was found for 

certain conditions. This is valuable information for drug-delivery purposes, suggesting PGG-PTX 

may confer a long circulation half-life and result in significant accumulation of the drug at the 

tumor site. As well as obtaining useful data for comparison and investigations, all-atom MD 

simulations allowed mapping and collection of other information on coarse-grained models of 

simulated polymer conjugates. Following these steps we have used obtained data to progress to 

CG modelling which will be discussed in the next chapter (Chapter 6).   

5.3.1. MD simulations of HPMA conjugates 

Following Chapter 4, the AMBER99 parameter set was chosen for all molecular dynamics 

simulation. Reaction field (R-field) was chosen as a suitable solvent model based from solvent 

model comparison. Added atom types were tested to match AMBER99 force field parameters. 

This approach was used for investigation of HPMA conjugates with drug mimics. A range of linear 

amines (aminohexane(C6), aminooctane(C8), aminododecane (C12)), hydroxyl and fluoro 

terminated linear amines as well as aromatic aminoanthracene (ANC), aminocrysene(AC) and 

aminoanthraquinone (ANQ),  bound to the polymeric carrier via a tetrapeptide linker glycine-

phenylalanine-leucine-glycine (GFLG), which is cleaved by lysosomal cathepsins at low pH and 

was identified as a suitable spacer, were selected as model objects for study of the effect of drug 

type and loading on HPMA copolymer conformation. For 5% loading, 6 co-polymer-GFLG-R 

fragments were randomly incorporated into the HPMA molecule, and for 10% loading 17 

fragments were randomly distributed within the polymer chain along with a random mixture of 86 

R- and S- optical isomers of HPMA fragments.  SANS experimental scattering curves were 

compared with theoretical curves, predicted from MD simulations. Parameters such as size and 
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shape fitted to SANS data were compared with relevant simulated structures. Results of MD 

simulation in R-field solvent model are presented in Table 5.1. Table 5.2 contains relative results 

for SANS best fitted models. Numbers in conjugate names correspond to loading percentage.  

Ellipsoids 

Conjugate Rg, Å a, Å b, Å c, Å 
 Volume  

(× 10-19 cm3) 
Aspect 
ratio 

HPMA-ANC-10 22.80 25.39 47.29 23.42 1.138 1.91 

HPMA-ANQ-10 21.43 23.64 45.56 28.99 1.320 1.73 

HPMA-AC-10 21.13 19.82 71.60 32.80 1.252 2.80 

HPMA-AP-10 20.18 24.75 35.74 28.79 1.066 1.33 
HPMA-C12-5 20.27 24.56 37.85 30.74 1.196 1.37 
HPMA-C12-10 21.04 26.49 36.49 33.45 1.353 1.22 

HPMA-C6-5 19.49 22.79 41.11 31.25 1.226 1.52 
HPMA-C6-10 21.28 24.49 35.06 29.26 1.052 1.30 

HPMA-C6-F-10 23.24 19.16 49.12 32.36 1.275 1.91 
HPMA-C8-F-10 20.15 22.00 36.45 30.34 1.018 1.39 

HPMA-C6-OH-10 22.15 24.62 41.94 25.96 1.122 1.66 
HPMA-C8-OH-10 25.16 22.5 43.8 29.87 1.232 1.67 

 

Table 5.1: MD simulation results for chosen conjugates, where a,b,c – enclosing ellipsoid semi-

axis and aspect ratio is main axis to averaged remaining semi-axis ratio. 

 Sphere Cylinder    Volume (× 10-

19 cm3) 
Aspect 
ratio Conjugate Radius, Å Length, Å Radius, Å 

HPMA-ANC-10 - 105±5 25 2.060 2.10 
HPMA-ANQ-10 45 - - 3.815 1 
HPMA-AC-10  130±5 25 2.551 2.60 
HPMA-AP-10 - - - -  - 
HPMA-C12-5 - 385±5 25 7.556 7.70 
HPMA-C12-10 - 145±5 32 4.662 2.26 
HPMA-C6-5 89 - - 29.515 1 
HPMA-C6-10 - 155±5 23 2.575 3.36 

HPMA-C6-F-10 - 140±5 15 0.989 4.69 
HPMA-C8-F-10 - 160±5 25 3.140 3.20 

HPMA-C6-OH-10 - 135±5 16 1.085 4.22 
HPMA-C8-OH-10 - 140±5 15 0.989 4.69 

 

Table 5.2: SANS fitting results for chosen conjugates, where Length and Radius are relevant 

length and radius of fitted cylinders or spheres, aspect ratio is length to radius ratio. [12] 
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Our ellipsoid analysis tool allowed us not only to unify experimental data with MD simulation 

results by comparing shapes of obtained molecules, but also to analyze morphology. Both for all 

and particular atom types, density distribution within the structure is valuable information for 

morphology investigation, as shown in figure 5.1. Ultimately this will allow screening of drug 

distribution or, for example, solvent molecules’ density profile which can be compared with 

experimental data. These data can help to explain changes in solvent behavior of polymer-drug 

conjugates based on variation of drug part and loading ratio.  

a) 

 

  

b) 
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c) 
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e) 

 

 

 

 

(f) 

Figure 5.1: Density distribution profiles averaged from MD trajectory of HPMA-GFLG-ANC for 

a) all atoms, (b) Oxygen in hydroxyl, (c) Oxygen in carbonyl, (d) Carbon in carbonyl, (e) backbone 

C atom, (f) aromatic Carbon (drug-mimic atoms) 
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5.3.2. Result analysis 

Results presented in Table 5.1 and 5.2 represent data obtained by SANS and MD simulation for 

replicated structures after equilibration. All conjugates were fitted to cylinder model and can be 

also described as elongated ellipsoids. To match these shapes we have applied ellipsoid base model 

and obtained a range of ellipsoids from sphere-like to rod-like. For linear amine (C6 and C12) 

conjugates, both for 5% and 10% loading we find that MD simulation suggests oblate spheroid 

shapes for equilibrated structures (a ~ b > c ). Experimental data shows more rod like shape for 

corresponding conjugates. We have also noticed differences in volumes for obtained structures – 

for both C6 and C12 conjugates with 5% side chain loading these differences are more striking, 

but even for 10% loading the predicted volume is several times larger than experimental results. 

While having volumes calculated as 1.05-1.35 × 10-19 cm3 for MD simulated structures, SANS 

results suggest 2.5 – 29.5 × 10-19 cm3 for linear C6 and C12 amines. Meanwhile, aspect ratios for 

ellipsoid/cylinder dimensions are also quite different, reaching a maximum of 7.70 for HPMA-C8-

F-10 from experimental data fitting with corresponding 1.196 result from modelling results [12]. 

For HPMA conjugates with Hydroxyl and Fluoro-terminated amines, MD generally predicts 

similar oblate and prolate spheroids as for linear amine substituents, though predicted volumes 

mostly match experimental data (except HPMA-C8-F-10, where SANS fitting suggests 3.140  × 

10-19 cm3 ) slightly overestimating values of SANS fitting results. 

For both ANC and AC, simulation follows experimental data reasonably well, showing similar 

aspect ratio (1.91 and 2.80 from MD; 2.10 and 2.60 from SANS for ANC and AC respectively) 

but different volumes (1.138 × 10-19 cm3 and 1.252 × 10-19 cm3 against 2.060 × 10-19 cm3 and 2.551× 

10-19 cm3). In general, both MD and SANS data analysis suggest a shape of elongated ellipsoid for 

ANC and AC substituents, but for HPMA-ANQ-10 experimental results demonstrate sphere-like 

structure, where computer simulation predict cylindrical shape. However, dimensions of “real” 

molecules are underestimated by computer simulations with a factor of 2-4 by difference in volume 

of obtained structures.  

There are various factors that can contribute to this major difference in volumes between computer 

simulated and suggested by best fits of SANS data. First, simulations were carried with a single 

polymer conjugate molecule and there are evidence of aggregation of HPMAconjugate molecules 

in solvent which will be discussed later in this Chapter. Secondly, SANS suggested structures are 
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able to describe variation of shapes for evaluated molecules but from ellipsoid model which is 

used for computer simulation data analysis – obtained volumes represent enclosed ellipsoid 

volume for a molecule. So, for example, the same molecule would be interpreted with a different 

models and results for volume would be different. Third reason is accuracy, there are limits on 

how precise data obtained from experiment, including both instrumental and chosen error, but 

from computer simulations obtained dimensions are extremely precise. Finally, selected solvent 

model can require additional changes in order to prevent polymer molecules for rapid collapse or 

overfolding. Explicit solvent simulations are suggested as alternative source of data generation. 

However, MD simulations provided valuable data and suggested important information for both 

experimental and modelling future studies. For example, modelling can provide information on 

changes in volumes within the simulation and suggest structures which have similar volume to 

SANS data. Such comparison is provided for HPMA-ANC-10 simulated and experimentally 

obtained structures (Figure 5.2). For HPMA-C6-5 conjugate it is shown that single molecule 

cannot represent SANS provided data which suggest an evidence of aggregation or error in 

analysis of experimental data (Figure 5.3). 

 

Figure 5.2: Volume comparison between SANS and MD simulation data for HPMA-ANC-10 
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Figure 5.3: Volume comparison between SANS and MD simulation data for HPMA-C6-5 

Density profiles analysis provided ability to screen distributions of various atoms within the 

molecule. In general, atoms tend to localize near to the center of mass. Approximately, 50-55% of 

atoms for all obtained results for HPMA-copolymers were allocated within a 25% of the ellipsoids 

volume, which is surrounding the center. At the same time hydroxyl atoms show even more core-

shell like behavior, allocating ~ 90% of this atom type within the nearest 10% to the center of 

mass. This can be explained by relatively strong hydrogen bonds that are formed and might be 

investigated further with explicit solvent model MD simulations. For both atoms from carbonyl 

group we can observe similar behavior with most atoms distributed evenly within the 50% of 

ellipsoid volume. 

One of the most desirable features of this method is the ability to screen distribution of drugs or 

drug-mimic parts within the molecule, crucial information for investigating drug-polymer 

properties. Being able to obtain information on whether atoms are mainly shielded from the solvent 

or localized on the surface of the molecule is a useful tool for polymer-drug characterization and 

modelling results analysis. From results of MD simulation, shown on Figure 5.1f for CA atom 

type, which corresponds to aromatic carbon atoms in ANC group, we can observe some evidence 

for core-shell like structure, with 60% of atoms allocated in 30% of ellipsoid space around center. 

This is followed by a drop of density, demonstrating similar behavior to other atoms.  This 

corresponds to low solubility of aromatic groups and follows available experimental data. 
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5.5. Conclusions 

Computational simulation of polymer-drug conjugates has a practical application in obtaining 

details on morphological information of polymer structure, and can be combined with 

experimental techniques to provide a view of solution behaviour. This allows design of new 

materials for drug delivery, characterization of known biological agents and investigation of 

structure dependence on copolymer types and drug loading in conjugate systems. Results for 

aromatic drug conjugates showed better agreement with experiment than linear amines, and 

suggest evidence of aggregation for some structures. Designed tools can be used for various MD 

simulation result analysis, including particular atom or group of atoms position screening, density 

profile and sizes in time evaluation. This leads to deeper understanding of obtained modelling data 

for particular HPMA-polymers study, as well as any other MD simulation data analysis in various 

fields. However, more simulations are required for full investigation, which includes explicit 

solvent simulations, expanding database of simulated structures, including mixed conjugates and 

obtaining comparison for other available SANS data. 
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Chapter 6: Coarse-grained modelling of HPMA 

6.1. Introduction 

AA simulations of HPMA and its conjugates were carried in various solvent models obtain 

methodology for HPMA-polymer simulation and prove concept of calculation reliability. 

However, there are some limitations for AA-simulation, especially time limitation – some 

processes can occur on a time scale that is too long to be studied by atomistic simulations. These 

include the dynamics of full-scale biopolymers in explicit solvent or, for example, self-assembly 

of biological materials. Despite the variety of optimization techniques and methods suitable for 

evaluating molecular systems of various size, AA MD simulations of a relatively large systems 

can require enormous CPU power which makes it unreasonable to perform.  

Coarse-grained (CG) molecular modeling allows simulations to be run on length and time scales 

that are 2–3 orders of magnitude larger compared to AA ones, by treating evaluated systems as 

separate “beads” consisting of multiple atoms, rather than individual atoms. This has a massive 

impact on CPU requirements, contributed by decreasing number of particles for simulation, 

especially explicit solvent [1]. For example, MARTINI force field is known to accelerate the 

dynamics of water by approximately a factor of 4 [8]. Longer simulation times can be reached for 

each system by use of larger time steps for stable simulation systems. For example, typical time 

steps used are tens of femtoseconds for MD, and >100 femtoseconds for dissipative particle 

dynamics (DPD), compared with 1–4 femtoseconds employed in AA MD. Another factor that 

makes CG models faster is the reduced number of degrees of freedom (DOF) which leads to 

smothering of the potential energy surface and reducing friction between particles [12]. These 

factors make CG simulations a powerful tool for biological simulations.  

Even though setting up CG model and validating selected parameters for simulations need 

additional time and require specific tools to be developed, such advantages as increase in 

simulation speed and longer simulation time available makes them beneficial for research in many 

areas of molecular simulation. However AA modelling is still required for examining molecules 

in detail, as well as establishing initial models and can be combined with CG, as well as QM/MM 

data to provide fully multiscale modelling of objects of interest. 

 



114 
 

6.2. Model and methods 

  6.2.1. Force field selection 

Following previous reports [1-7], we have chosen the MARTINI force-field as a suitable approach 

for CG molecular modeling, as it was successfully applied for numerous biological simulations 

including protein and polymer simulations. In order to perform simulations we have established 

initial mapping of interaction centers or beads, then compared result analysis for AA and GC 

simulations of relatively small HPMA fragments (8-32 monomer units). Comparing such 

parameters as radius of gyration (Rg) as well as bond distance and angle distribution between 

interaction centers, we were able to set initial parameters for MD simulations of HPMA polymers 

using MARTINI model approach. Following this comparison, as well as interaction matrix and 

beads type assigning logic from building blocks’ thermodynamical properties [8], we have defined 

possible variations for beads in HPMA-homopolymer and compared results of CG simulations for 

chosen parameter sets with AA simulation results.  

6.2.2 Beads mapping  

     6.2.2.1. Interaction sites types and mapping principles 

The MARTINI model is based on a four-to-one mapping, i.e., on average four heavy atoms are 

represented by a single interaction centre. Four main types of interaction sites are presented in 

force field: polar (P), nonpolar (N), apolar (C), and charged (Q). Each bead type has a number of 

subtypes which are either distinguished by a letter indicating the hydrogen-bonding capabilities (d 

= donor, a = acceptor, da = both, 0 = none), or by a number that corresponds to the degree of 

polarity (from 1, which corresponds to low polarity, to 5, high polarity). In order to provide initial 

mapping based on AA structures, bead centres were allocated in centres of mass for corresponding 

group of atoms that make up a bead.  

																								23 = 1
4��


$


%&
�
3  

(5.1) 
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where i is an atom index and j is an index for x,y,z and M is the total molecular mass of atoms 

included in atomic group representing bead.  

6.2.2.2. Mapping results 

In general, a single HPMA monomer unit consists of 24 atoms (11 heavy atoms) and can be 

represented as three beads: an apolar group which represents backbone (B), a polar bead 

mimicking carbonyl amide group (N) and a polar bead for terminating hydroxypropyl group (C), 

as shown in Figure 6.1. These groups correspond to selection of available beads: B can be 

represented by SC1-SC3 (typical apolar beads used for alkane fragment descriptions with 3 carbon 

atoms) interaction center, N is interpreted as SP4-SP5 (polar groups corresponding to physical 

parameters, fitted from similar molecules like acetic acid, methylformamide, etc.) bead type and 

C can be defined by a wide range of types, both “normal” and “small” or “cycle” P1-P5 and SP1-

SP5 (beads selection and mapping will be discussed further in these chapter). To obtain the best 

representation of HPMA polymer behavior we have provided a series of validation procedures 

which will be discussed later in this Chapter.  An example of MARTINI mapping for a separate 

HPMA monomer unit is presented in Figure 6.1. 

 

Figure 6.1. General principle for MARTINI CG mapping for a separate HPMA monomer unit 
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6.2.2.3. Conversion validation 

Converting tools developed were validated using build in check for Rg value and center of mass 

position for AA molecule and CG converted structure. For all converted structures values match.  

6.2.2.4. Parameters selection 

In MARTINI force field, bond lengths are defined by a harmonic potential and angles are typically 

defined using a cosine harmonic potential. Bonded interactions can be described by the following 

set of potential energy functions interacting between bonded sites i, j, k with equilibrium 

distance db and angle a  

 

                                          (2) 

 

                         (3) 

 

 

 

where Kb is the harmonic force constant and Ka is the angle force constant.  

The bonded potential Vb is used for chemically bonded sites and the angle potential Va represents 

chain stiffness. For most cases [8] Ka is weaker, inducing flexibility of the molecule at the coarse-

grained level. The improper dihedral angle potential as well as proper dihedrals can be included 

for more accurate polymer backbone behaviour, but would also had an impact on calculation time 

and for this level of detail was considered to be unnecessary at this stage of research. The 

parameters of the bonded interactions for CG HPMA model were tuned so as to reproduce the 

distributions of bonds and angles obtained from AA simulations. Trajectories of HPMA polymers 

obtained from simulations were used to provide benchmark data. We tracked the trajectories of the 

center of mass of each bead type and analysed the distributions of the CG bonded interactions 

afterwards, based on previous mapping. In this way we refined our CG parametrization of bonded 

interactions using a trial-and-error procedure to achieve the best agreement between the CG 
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distributions and the target AA distributions. HPMA-8 was chosen as suitable benchmark model 

for adjusting both bonded and non-bonded interactions. 

MARTINI CG beads were originally parameterized to reproduce the free energy of transfer 

between water and oil for a set of 18 selected chemical compounds. All particle pairs i and j at 

distance rij interact via a Lennard-Jones (LJ) potential: 

                       (5.4) 

 

The strength of the interaction, determined by the value of the well depth εij, depends on the 

interacting particle types. Values range from 5.6 kJ/mol for interactions between strongly polar 

groups to 2.0 kJ/mol for interactions between polar and apolar groups mimicking the hydrophobic 

effect. The effective size of the beads can be adjusted by defining the LJ parameter σ. All normal 

size particles will have σ = 0.47 nm. For groups referred as small reduced LJ parameters were 

used: σ = 0.43 nm and εij is scaled to 75% of the standard value.  

CG simulations were performed with the GROMACS simulation package, version 4.6.5 [9]. Initial 

structures were generated from AA simulations, applying mapping principles described above. 

Scripts to generate topologies of CG structures from AA simulations were developed and written 

using awk programming language.  

 

Figure 6.2. Example of beads mapping for HPMA-32 polymer chain. 
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The polymers were solvated in a box containing SPC [11] water beads to mimic explicit solvent, 

adjusting the number of solvent particles and box size to match water density of 1 g/ml. Periodic 

boundary conditions were applied in all directions. All CG simulations were run in similar manner 

as AA simulations – preliminary optimization were followed by long-run simulation. The pressure 

was set to 1 bar and temperature to 310 K and the NPT ensemble was used for optimization stage 

and NVT ensemble for MD run. A time step of 40 fs was chosen for optimization stage and 25 fs 

for MD simulation. Optimization stage was carried for 200000 steps and simulations were set to 

run 80000000 steps and continued for multiple repeats until reaching equilibrium state, which can 

be justified by changes in sizes, Rg and other calculated parameters’ deviation from the average 

within the selected timescale. For the range of HPMA polymers from HPMA-8 to HPMA-64 being 

simulated, total simulation time varies 200 ns to 0.2 ms. For each structure 3-4 independent runs 

were performed with different starting trajectory.  

 

The LJ potential falls steadily from a distance of rshift = 0.8 nm to rcut = 1.2 nm. To mimic the 

effect of a distance-dependent screening in chosen algorithm the electrostatic potential is shifted 

from rshift = 0.0 nm to rcut. The neighbor list for all non-bonded interactions was updated every 

10 steps using a neighbor list cutoff equal to rcut. Simulation parameters used are as follows: 

temperature was kept constant at 310 K using the Berendsen temperature coupling algorithm [10] 

with a time constant of 1 ps. Semi-isotropic pressure coupling was applied using the Berendsen 

algorithm with a pressure of 1 bar independently in the plane of the membrane and perpendicular 

to the membrane. A time constant of 4.0 ps and a compressibility of 2 × 10−5 bar−1 was used. 

Following MARTINI force field principles [7, 8], the mass of the CG beads is unified as 72 amu 

for all beads, except for small beads, for which the mass is set to 45 amu. This approximation was 

made for a reasons of computational efficiency - using this setup allows us to run stable MD 

simulations with selected time step and lower CPU time.  
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6.3. Data analysis 

Rg was used to describe the sizes of the polymer chain in equilibrated systems. This can be directly 

compared with previous AA MD results as the same equations were used in analysis tools [12] 

described in chapter 3. Rg for CG MD simulation analysis was calculated with the g_gyrate 

GROMACS utility [13]. Tracking of particular bonds and angles during simulation time, were 

carried using the program g_bond to calculate the distribution of the bond length in time and 

g_angle to calculate the distribution of angles [13]. Both CG and converted AA trajectories were 

analysed with the same set of tools. Converting scripts were developed and written using awk. 

 

6.4. Results 

  6.4.1. Parameter selection 

In order to establish the primary parameterization, HPMA-8 was used as a model for both bond 

and angle distribution. Trajectory from equilibrated AA MD simulation was used as a benchmark. 

Results of CG simulations for BB, NC, BN bonds as well as BBB, BBN and BNC angles were 

compared with corresponding data for centers of mass of selected atom groups. After fitting, some 

parameter sets were found to be satisfactory for the established model and remained fixed 

afterwards. With this “trial and error” method we were able to obtain a set of parameters for further 

research. Results of this fitting presented in Table 6.1. By changing the equilibrium angle or the 

equilibrium bond distance we were able to tune the position of peaks. At the same time, altering 

the force constant effectively changed distribution peaks in shape, i.e. the probability of obtaining 

average value near selected equilibrium constant. Appropriate plots for BB, NC, BN bonds 

distances and BBB, BBN and BNC angles are presented in Figure 6.3.  
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Set 
name 

Beads 
selectio

n 
Bond 

Equilibrium 
distance, 

nm 

Force 
constant 
Kb, (kJ 
mol−1 
nm−2) 

Angle 

Equilib
rium 
value, 

deg 

Force 
constant 
Ka, (kJ 
mol−1) 

Distribution results 

Rg, nm 

Bond 

Avera
ge 

bond 
distan
ce, nm 

Angle 
Averag
e angle, 

deg 

AA   

BB 0.28 BBN 107 

0.651 BN 0.25 BNC 120 

NC 0.245 BBB 145.5 

martini1 
SC1-

SP4-P1 

BB 0.28 3000 BBN 128 12 BB 0.3 BBN 111.5 

0.612 BN 0.24 4000 BNC 150 35 BN 0.28 BNC 123.5 

NC 0.248 2000 BBB 108 250 NC 0.24 BBB 139 

martini2 
SC1-

SP4-P1 

BB 0.28 3000 BBN 128 12 BB 0.29 BBN 112 

0.589 BN 0.24 4000 BNC 150 35 BN 0.26 BNC 127.5 

NC 0.248 2000 BBB 108 250 NC 0.255 BBB 141.5 

martini3 
SC1-

SP4-P1 

BB 0.28 3000 BBN 128 12 BB 0.285 BBN 112 

0.613 BN 0.24 4000 BNC 150 35 BN 0.255 BNC 127.5 

NC 0.248 2000 BBB 108 250 NC 0.25 BBB 141.5 

martini4 
SC1-

SP4-P2 

BB 0.28 3000 BBN 128 12 BB 0.29 BBN 110 

0.624 BN 0.24 4000 BNC 150 35 BN 0.2585 BNC 127.5 

NC 0.248 2000 BBB 108 250 NC 0.25 BBB 143.5 

martini5 
SC1-

SP4-P3 

BB 0.28 3000 BBN 128 12 BB 0.2875 BBN 110.5 

0.621 BN 0.24 4000 BNC 150 35 BN 0.2575 BNC 127 

NC 0.248 2000 BBB 108 250 NC 0.25 BBB 145.5 

martini6 
SC1-

SP4-P4 

BB 0.28 3000 BBN 128 12 BB 0.295 BBN 109 

0.632 BN 0.24 4000 BNC 150 35 BN 0.2525 BNC 129.5 

NC 0.248 2000 BBB 108 250 NC 0.245 BBB 142 
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martini11 
SC1-

SP4-P5 

BB 0.28 3000 BBN 128 12 BB 0.29 BBN 109.5 

0.657 BN 0.24 4000 BNC 150 35 BN 0.26 BNC 127.5 

NC 0.248 2000 BBB 108 250 NC 0.245 BBB 145 

martini7 
SC1-

SP5-P1 

BB 0.28 3000 BBN 128 12 BB 0.2875 BBN 109.5 

0.631 BN 0.24 4000 BNC 150 35 BN 0.2575 BNC 128 

NC 0.248 2000 BBB 108 250 NC 0.2475 BBB 146.5 

martini8 
SC1-

SP5-P2 

BB 0.28 3000 BBN 128 12 BB 0.29 BBN 110 

0.633 BN 0.24 4000 BNC 150 35 BN 0.255 BNC 131 

NC 0.248 2000 BBB 108 250 NC 0.25 BBB 144 

martini9 
SC1-

SP5-P3 

BB 0.28 3000 BBN 128 12 BB 0.29 BBN 106 

0.636 BN 0.24 4000 BNC 150 35 BN 0.2525 BNC 127.5 

NC 0.248 2000 BBB 108 250 NC 0.2475 BBB 145.5 

martini10 
SC1-

SP5-P4 

BB 0.28 3000 BBN 128 12 BB 0.295 BBN 109.5 

0.619 BN 0.24 4000 BNC 150 35 BN 0.26 BNC 127.5 

NC 0.248 2000 BBB 108 250 NC 0.245 BBB 142.5 

martini12 
SC1-

SP5-P5 

BB 0.28 3000 BBN 128 12 BB 0.2925 BBN 109.5 

0.627 BN 0.24 4000 BNC 150 35 BN 0.2475 BNC 127.5 

NC 0.248 2000 BBB 108 275 NC 0.2475 BBB 145 

martini13 
SC1-

SP4-P2 

BB 0.28 5000 BBN 128 12 BB 0.29 BBN 108 

0.639 BN 0.24 4000 BNC 150 35 BN 0.2575 BNC 132 

NC 0.248 2750 BBB 108 25 NC 0.25 BBB 147 

martini14 
SC1-

SP4-P3 

BB 0.275 5000 BBN 128 12 BB 0.28 BBN 127 

0.625 BN 0.245 4000 BNC 150 35 BN 0.265 BNC 130 

NC 0.248 7500 BBB 130 25 NC 0.2375 BBB 148.5 

martini15 
SC1-

SP5-P1 

BB 0.275 5000 BBN 128 12 BB 0.285 BBN 128.5 

0.653 BN 0.245 4000 BNC 150 35 BN 0.2575 BNC 129.5 

NC 0.235 7500 BBB 130 25 NC 0.23 BBB 140 

             



122 
 

martini16 
SC1-

SP5-P2 

BB 0.275 5000 BBN 128 12 BB 0.28 BBN 122.5 

0.623 BN 0.245 4000 BNC 150 35 BN 0.265 BNC 133 

NC 0.235 7500 BBB 130 25 NC 0.235 BBB 146 

martini17 
SC1-

SP5-P3 

BB 0.275 5000 BBN 128 12 BB 0.2825 BBN 126 

0.629 BN 0.245 4000 BNC 150 35 BN 0.265 BNC 132.5 

NC 0.235 7500 BBB 130 25 NC 0.2325 BBB 150 

martini18 
SC1-

SP4-P3 

BB 0.275 5000 BBN 128 12 BB 0.2775 BBN 130 

0.633 BN 0.245 4000 BNC 150 35 BN 0.2675 BNC 128.5 

NC 0.235 7500 BBB 130 25 NC 0.2375 BBB 148 

martini19 
SC1-

SP4-P1 

BB 0.275 5000 BBN 128 12 BB 0.2825 BBN 124.5 

0.631 BN 0.245 4000 BNC 150 35 BN 0.265 BNC 130.5 

NC 0.235 7500 BBB 130 25 NC 0.235 BBB 146 

martini20 
SC1-

SP4-P3 

BB 0.275 5000 BBN 128 12 BB 0.28 BBN 127 

0.646 BN 0.245 4000 BNC 150 35 BN 0.2675 BNC 130 

NC 0.235 7500 BBB 130 25 NC 0.2375 BBB 148.5 

martini21 
SC1-

SP4-P1 

BB 0.282 3500 BBN 128 12 BB 0.2875 BBN 110 

0.622 BN 0.248 3000 BNC 155 35 BN 0.255 BNC 130.5 

NC 0.238 4000 BBB 108 280 NC 0.2525 BBB 146 

martini22 
SC1-

SP5-P2 

BB 0.285 3500 BBN 128 12 BB 0.295 BBN 109.5 

0.628 BN 0.248 3000 BNC 160 35 BN 0.25 BNC 128.5 

NC 0.236 4000 BBB 130 285 NC 0.2475 BBB 145.5 

martini23 
SC1-

SP5-P2 

BB 0.287 3000 BBN 128 12 BB 0.2925 BBN 108 

0.621 BN 0.248 4000 BNC 155 40 BN 0.25 BNC 128 

NC 0.234 4000 BBB 130 290 NC 0.2475 BBB 147.5 

martini24 
SC1-

SP5-P2 

BB 0.282 3500 BBN 128 12 BB 0.29 BBN 106.5 

0.62 BN 0.248 4500 BNC 150 40 BN 0.255 BNC 126.5 

NC 0.238 5000 BBB 130 295 NC 0.245 BBB 144.5 
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martini25 
SC1-

SP5-P2 

BB 0.287 5000 BBN 128 12 BB 0.295 BBN 107.5 

0.612 BN 0.248 3500 BNC 150 45 BN 0.2475 BNC 129 

NC 0.234 6000 BBB 130 300 NC 0.2525 BBB 148 

martini26 
SC1-

SP5-P2 

BB 0.287 5500 BBN 108 12 BB 0.29 BBN 109 

0.611 BN 0.248 3500 BNC 160 45 BN 0.2475 BNC 132 

NC 0.234 7500 BBB 128 305 NC 0.2525 BBB 145 
 

Table 6.1. Results of HPMA-8 simulation with various parameter set selection 
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Figure 6.3. Distribution of BB, NC, BN bonds distances and BBB, BBN and BNC angles degrees 

obtained from AA and CG simulations of HPMA-8. 
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6.4.2. Radius of gyration 

Results of explicit water AA and CG simulations Rg are presented in Figure 6.4 

 

Figure 6.4: AA and CG explicit water simulations comparison 

 

There was a minor change between the average Rg values of the different parameter sets for smaller 

polymers (8-64 monomer units). However for larger polymer chains changing the bead type and 

polarity had a massive influence on the size of the equilibrated structures. Results for HPMA-265 

show how parameter variation influences Rg of polymer chains are presented in Table 6.2, and can 

be compared with experimentally obtained value for this structure (Rg = 75±3 Å[14]). The key 

parameter for polymer chain stiffness is considered to be BBB angle, which defines backbone 

flexibility, so other parameters were fixed. 
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Selected beads type 
BBB parameter settings 

Rg, Å 
Angle, degrees Force constant 

SC3-SP5-P1 130 25 45.3 

SC3-SP5-P1 130 50 52.1 

SC3-SP5-P3 130 25 27.9 

SC3-SP5-P3 130 50 41.8 

SC3-SP5-SP1 130 25 56.4 

SC3-SP5-SP3 130 50 66.5 

SC3-SP5-SP1 130 25 69.7 

SC3-SP5-SP3 130 50 81.3 

 

Table 6.2. Rg results for various MARTINI parameter sets 

It is clear that increasing force constant of backbone angle makes polymer chain less flexible, and so 

will prevent it from colliding and effectively increases Rg. Another way to control polymer chain 

stiffness is to introduce torsion rotation parameters. However, these will increase calculation time as 

well as affect on other parameters and require additional time for configuration and adjusting. As well 

as changing parameters, varying of bead types have an effect on a polymer sizes due to both changing 

polarity and beads effective sizes. Replacing “normal” bead with “small” as well as increasing 

polarity of terminal bead affected structure, increasing Rg of equilibrated molecule and meaning that 

the polymer structure remains more rod-like. 

At the end of extensive paramaterisation, including comparison of CG with AA bond length and angle 

distributions as well as estimates of Rg for different parameter sets, the final set of MARTINI 

parameters that we propose for CG description of HPMA polymers are reported in Table 6.3. 
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Bond 
Equilibrium 

distance 
/ nm 

Kb /  
kJ mol−1 

nm−2 
Angle 

Equilibrium 
value / °°°° 

Ka /  
kJ mol-1 
°

-1 

BB 0.275 5000 BBN 128 12 

BN 0.245 4000 BNC 150 35 

NC 0.235 7500 BBB 130 50 

 

Table 6.3.: All bonded interaction parameters of our final CG model of HPMA polymer. 

 

6.5. Conclusions 

Due to various advantages of CG MD simulations for investigation of polymer behaviour in explicit 

water, it was important to establish initial mapping and parameterization scheme, based on previous 

AA MD simulation results as well as experimental data available. We were able to develop the 

necessary tools and perform fitting process for all bonded parameters and introduced preferable beads 

types for HPMA polymer GC simulations with MARTINI force field. In this chapter, development 

and validation of the established model was described, as well as results of GC MD simulations for 

HPMA polymers of different sizes with various parameters. These results will ultimately allow 

researchers to develop models for HPMA-conjugates that are applicable to full scale, long time 

simulations, and hence allow to obtain information on solution behavior and properties of desired 

polymeric drugs with faster rate and lower CPU cost. 
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Chapter 7: Overall conclusions and further work 

 

7.1. Conclusions 

This project was dedicated to developing and combining various methods and techniques in order to 

investigate novel drug-delivery systems, particularly N-(2-hydroxypropyl) methacrylamide (HPMA) 

conjugates. Prior to this study it was known that there is a strong link between a polymer-drug 

conjugate properties, such as drug type and loading, and conformation adopted in solution. Structure 

and morphology of the adopted conformation will define behaviour and biological activity of such 

systems. Despite detailed experimental work on this problem, there was a need for more in-depth 

study of these relationships, and ultimately to provide a way to control drug behaviour on its early 

development stages prior to clinical studies. 

 

The key aim of this project was to combine experimental and computer modelling approaches in order 

to obtain more detailed information on studied polymer-drug delivery systems and provide reliable 

methodology for future study.  Therefore, structural properties such as size, shape and density 

distribution of a range of HPMA copolymers have been investigated. The suitability of atomistic force 

fields has been assessed against rotational barriers and relative conformational energies obtained from 

ab initio and density functional theory (DFT) data for a monomer and dimer of HPMA.  

 

Following this, the AMBER99 parameter set was chosen for all molecular dynamics simulation. 

Radius of gyration (Rg), radial distribution function (RDF), shape, and density profiles of particular 

atom types were calculated for a range of HPMA homopolymers sizes from 4 to 200 repeat units (2 

to 35 kDa).  Results are interpreted in the context of Flory’s mean field approach, and compared with 

data obtained from small angle neutron scattering (SANS) experiments. Results for a set of solvent 

models and simulation conditions showed suitability of selected force field in combination with 

selected explicit and implicit solvent models.  

 

This methods was then used for investigation of HPMA conjugates with drug mimics. A range of 

linear amines (aminohexane (C6), aminooctane (C8), aminododecane (C12)), hydroxyl and fluoro 

terminated linear amines as well as aromatic aminoanthracene (ANC), aminocrysene (AC) and 

aminoanthraquinone (ANQ), bound to the polymeric carrier via a tetrapeptide linker (glycine-

phenylalanine-leucine-glycine) (GFLG) (Mw ~ 30 kDa) were selected as model objects for study of 

the effect of drug type and loading on HPMA copolymer conformation. SANS experimental 
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scattering curves were compared with theoretical curves, predicted from MD simulations. Parameters 

such as size and shape fitted to SANS data were compared with relevant simulated structures.  

 

Finally, results obtained from AA simulations as well as available experimental data were used to 

build and adjust a coarse-grained (CG) model for HPMA polymers. Non-bonded and bonded 

parameters were provided from comparison against AA data, and bead mapping was developed for 

HPMA homopolymer chains. Applying this model allowed efficient simulation of polymer chains 

and provided a powerful tool for further investigations.  

 

Summarizing the results of this project, it is important to mention its practical impact. New mixed 

HPMA polymer-drug conjugate systems were introduced and characterized. Combining mixtures of 

various drug mimics, we have developed characterisation methodology as well as investigated 

influence of changing ratio of hydrophilic/hydrophobic drug mimics. Thus, for systems containing 

aromatic/alkane substituent mixtures we were able to gradually change the overall structure and 

morphology of HPMA-polymer conjugates from rod-like for dominantly aromatic substituents to a 

sphere-like for predominantly alkane mixtures.   

 

Building on these results, we have progressed to more complex systems of mixed polymer conjugates 

containing drug-mimic parts with similar parameters of hydrophobicity, but different in terms of 

flexibility for drug-mimic chain. In order to provide corresponding comparison we have selected 

systems of Adamantane (Ad)/ANC, Ad/ANQ, methyl-Adamantane (AdMe)/C12, hydroxyl-

Adamantane (AdOH)/C10OH and Ad/C10 conjugate mixtures and investigated the effect of varying 

ratio of drug-mimics for these systems.  Results of SANS data analysis revealed how conformation 

can be affected by the drug-part’s intrinsic volume variation, and allowed us to get closer to finding 

answers for questions that can increase effective use of polymer-drug therapeutics.  

 

In summary, it was demonstrated that computational simulation of polymer-drug conjugates has a 

practical application in obtaining details on morphological information of polymer structure, and can 

be combined with experimental techniques to provide a view of solution behaviour. This will allow 

design of new materials for drug delivery, characterization of known biological agents and 

investigation of structure dependence on copolymer types and drug loading in conjugate systems. 
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7.2 Future work 

Further understanding of the processes and principles behind polymer-drug behaviour in solution is 

required for future progress. These can be achieved by more in-depth studies of HPMA-based systems 

using the tools developed herein. Force field potentials, bead mapping and other information obtained 

for CG model can be now applied for the next stages of research, alongside AA results, to provide a 

multi-scale tool for investigation of specific sites in polymer-drug molecules.  

 

In general, preliminary studies were made for mixed systems; these can be continued with more 

intense study to uncover new information on polymer-drug solution behaviour. New systems can be 

designed and studied using developed methods in order to obtain information on contribution of 

various factors on solution behaviour, such as hydrophobicity and intrinsic volume of the drug part 

or variation of drug mimic ratio for mixed systems. This would only become possible after 

preliminary study and proof of concept which have been demonstrated in this project.  

 

It is obvious that systematic approach is required for further studies. Having a wide database of 

polymer-drug conjugates, structure analysis combined with a way to predict properties of as yet non-

existing systems is a key for intelligent experimental design and can increase efficiency of such 

studies.  Application of these advanced approaches that combine experimental data analysis with 

computer modelling techniques should ultimately provide a reliable control mechanism for drug-

conjugate behaviour in the body.  
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Appendix Software developed 

 

Mol2 to car format convertor 

BEGIN { printf ("!BIOSYM archive 3\nPBC=OFF\ncar file generated from g98 
co-ords\n") 
        printf ("!DATE Mon Jul  3 20:49:24 1995\n") 
     
      maxatoms=1000 
      for (iatom=0; iatom<=maxatoms; iatom++) 
        { 
          num_neigh[iatom]=0 
        } 
      natom=0 
      found_struct = 0 
      found_bond   = 0 
      } 
 
{ 
#$1 ~ /TRIPOS/ && $2 ~/ATOM/ { found_struct=1 } 
 
#  if( found_struct == 1 && (NF == 9 || NF == 10) ) 
   if( NF == 9 || NF == 10 ) 
   {  
              foundff=0 
              natom++ 
              fftype[natom]="UNKNOWN" 
              if ($6 ~ /C.3/)  
                { 
                   fftype[natom] = "CT" 
                   foundff=1 
                } 
              else if ($6 ~ /C.2/)  
                { 
                   fftype[natom] = "C" 
                   foundff=1 
                } 
              else if ($6 ~ /H/)  
                { 
                   fftype[natom] = "HC" 
                   foundff=1 
                } 
              else if ($6 ~ /O.2/)  
                { 
                   fftype[natom] = "O" 
                   foundff=1 
                } 
              else if ($6 ~ /O.3/)  
                { 
                   fftype[natom] = "OH" 
                   foundff=1 
                } 
              else if ($6 ~ /N.am/)  
                { 
                   fftype[natom] = "N" 
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                   foundff=1 
                } 
 
              if ($2 ~ /A/) 
                   label[natom] = "H" 
       else 
                   label[natom] = $2 
 
              x[natom] = $3  
              y[natom] = $4  
              z[natom] = $5  
              q[natom] = $9 
 
              if  (foundff == 0)  
            printf("PROBLEM : Atom ff type %s not known\n", $6) 
  } 
 
 
#$1 ~ /TRIPOS/ && $1 ~/BOND/ { found_struct=0  
#                              found_bond=1 } 
#found_bond == 1 && NF == 4  {  
  if (NF == 4) 
  { 
#               printf("Found bond info %s %s %s %s\n", $1, $2, $3, $4) 
                num_neigh[$2] = num_neigh[$2]+1 
                neigh[$2,num_neigh[$2]]=$3 
 
                num_neigh[$3] = num_neigh[$3]+1 
                neigh[$3,num_neigh[$3]]=$2 
   } 
} 
 
END { 
         for (iatom=1; iatom <= natom; iatom++) 
          { 
            for (ineigh=1; ineigh<= num_neigh[iatom]; ineigh++) 
              { 
                neigh_index = neigh[iatom,ineigh] 
 
                for (jneigh=1; jneigh<=num_neigh[neigh_index]; jneigh++) 
                  { 
 
                  if (fftype[iatom] == "HC") 
                  { 
                   if ( label[neigh[iatom,ineigh]] ~ "O") 
                      fftype[iatom] = "HO" 
                   else if ( label[neigh[iatom,ineigh]] ~ "N") 
                        fftype[iatom] = "H" 
                   else if ( fftype[neigh[iatom,ineigh]] ~ "CT") 
                   {      
#                    printf(".......%d %s is a neighbour of this 
neighbour!\n", 
#                            neigh[neigh_index,jneigh], 
fftype[neigh[neigh_index,jneigh]]); 
                    if (fftype[neigh[neigh_index,jneigh]] ~ "O" || 
fftype[neigh[neigh_index,jneigh]] ~ "N" ) 
                        fftype[iatom] = "H1" 
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                  } 
                  } 
                 } 
              } 
         
           if (label[iatom] ~ "H1" || label[iatom] ~ "H2" || label[iatom] 
~ "H3" ) 
              label[iatom] = substr(label[iatom],1,1) 
                 
/* Change fftype according to H tests before here */ 
            printf("%-5s %14.9f %14.9f %14.9f GROU 1      %3s     %2s  
%6.3f\n" , 
                  label[iatom], x[iatom], y[iatom], z[iatom], 
fftype[iatom], label[iatom], q[iatom]) 
          } 
         printf ("end\nend\n") 
    } 
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Force field population script for MARTINI HPMA model 

BEGIN { 
jatom=0 
beadcount=1 
maxbeads=0 
i1=1 
i2=4 
nmonomer=16 
#natoms is the number of CG beads times 3 
#printf("natom= %d\n", natom) 
printf("[BB]\n") 
 for (jatom = 0; jatom < nmonomer-1; jatom++) { 
printf("%d     %d\n", i1, i2) 
i1=i1+3 
i2=i2+3 
 } 
} 
END { 
} 

 

BEGIN { 
jatom=0 
beadcount=1 
maxbeads=0 
i1=1 
i2=4 
i3=7 
nmonomer=16 
#natoms is the number of CG beads times 3 
#printf("natom= %d\n", natom) 
printf("[BBB]\n") 
 for (jatom = 0; jatom < nmonomer-2; jatom++) { 
printf("  %d      %d     %d\n", i1, i2, i3) 
i1=i1+3 
i2=i2+3 
i3=i3+3 
 } 
} 
END { 
} 

 

BEGIN { 
jatom=0 
beadcount=1 
maxbeads=0 
i1=1 
i2=4 
i3=5 
nmonomer=16 
#natoms is the number of CG beads times 3 
#printf("natom= %d\n", natom) 
printf("[BBN]\n") 
 for (jatom = 0; jatom < nmonomer-2; jatom++) { 
printf("  %d      %d     %d\n", i1, i2, i3) 
i1=i1+3 
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i2=i2+3 
i3=i3+3 
 } 
} 
END { 
} 

 

BEGIN { 
jatom=0 
beadcount=1 
maxbeads=0 
i1=1 
i2=2 
nmonomer=16 
#natoms is the number of CG beads times 3 
#printf("natom= %d\n", natom) 
printf("[BN]\n") 
 for (jatom = 0; jatom < nmonomer; jatom++) { 
printf("%d     %d\n", i1, i2) 
i1=i1+3 
i2=i2+3 
 } 
} 
END { 
} 

 

BEGIN { 
jatom=0 
beadcount=1 
maxbeads=0 
i1=1 
i2=2 
i3=3 
nmonomer=16 
#natoms is the number of CG beads times 3 
#printf("natom= %d\n", natom) 
printf("[BNC]\n") 
 for (jatom = 0; jatom < nmonomer-1; jatom++) { 
printf("  %d      %d     %d\n", i1, i2, i3) 
i1=i1+3 
i2=i2+3 
i3=i3+3 
 } 
} 
END { 
} 

 

BEGIN { 
jatom=0 
beadcount=1 
maxbeads=0 
i1=2 
i2=3 
nmonomer=16 
#natoms is the number of CG beads times 3 
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#printf("natom= %d\n", natom) 
printf("[NC]\n") 
 for (jatom = 0; jatom < nmonomer; jatom++) { 
printf("%d     %d\n", i1, i2) 
i1=i1+3 
i2=i2+3 
 } 
} 
END { 
} 
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RDF calculation for bonds and angles 

#!/bin/bash 
 
/usr/local/gromacs/bin/g_bond -s traj -f traj -n index_CN.ndx -d bonds_CN 
/usr/local/gromacs/bin/g_bond -s traj -f traj -n index_NC.ndx -d bonds_NC 
/usr/local/gromacs/bin/g_bond -s traj -f traj -n index_BB.ndx -d bonds_BB 

 

#!/bin/bash 
 
/usr/local/gromacs/bin/g_angle  -f traj.xtc -type angle -n index_CNC -od 
angle_CNC 
/usr/local/gromacs/bin/g_angle  -f traj.xtc -type angle -n index_BBB -od 
angle_BBB 
/usr/local/gromacs/bin/g_angle  -f traj.xtc -type angle -n index_BBN -od 
angle_BBN 
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AA to CG mapping tool 

BEGIN{ 
 template="%4s  %5i %4s %3s  %4i    %8.3f%8.3f%8.3f%6.2f%6.2f    \n" 
 atom_count_SC1=0 
 atom_count_SP5=0 
 atom_count_P1=0 
  
 i=0 
        amass=0 
        xc_o_m = 0 
        yc_o_m = 0 
        zc_o_m = 0 
        txc_o_m = 0 
        tyc_o_m = 0 
        tzc_o_m = 0 
        xc_o_m_cg = 0 
        yc_o_m_cg = 0 
        zc_o_m_cg = 0 
        txc_o_m_cg = 0 
        tyc_o_m_cg = 0 
        tzc_o_m_cg = 0 
        bead = 1 
        beadcount=1 
 groupIdentifierCounter=0 
 firstMonomersAtom=1 
    maxatoms=1000 
      for (iatom=0; iatom<=maxatoms; iatom++) 
        { 
          num_neigh[iatom]=0 
    natom=0 
    found_struct = 0 
    found_bond   = 0 
        } 
#/** init()  **/ 
      } 
 
 function init() { 
        groupIdentifierCounter=0 
              bmass_SC1 = 0 
              bmass_SP5= 0 
              bmass_P1= 0 
              xb_SC1 = 0 
              yb_SC1 = 0 
              zb_SC1 = 0 
              xb_SP5 = 0 
              yb_SP5 = 0 
              zb_SP5 = 0 
              xb_P1 = 0 
              yb_P1 = 0 
              zb_P1 = 0 
              t_xb_SC1 = 0 
              t_yb_SC1 = 0 
              t_zb_SC1 = 0 
              t_xb_SP5 = 0 
              t_yb_SP5 = 0 
              t_zb_SP5 = 0 
              t_xb_P1 = 0 
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              t_yb_P1 = 0 
              t_zb_P1 = 0 
               
 }  
 
 
 
{ 
 if($10 == "BACKBONE") {  
   i++ 
 } 
 if(i == 3) { 
  execute() 
  init() 
  i=1 
  
                   } 
  
    if( NF == 9 || NF == 10 ) {  
              foundff=0 
              natom++ 
              fftype[natom]="UNKNOWN" 
              btype[natom]="UNKNOWN" 
     if ($6 ~ /H/ || $2 ~ /A/ ) { 
                   mass[natom]=1.007 
                   amass=amass+mass[natom] 
     } else if ($6 ~ /C/) { 
                   mass[natom]=12.011 
                   amass=amass+mass[natom] 
       groupIdentifierCounter++ 
     } else if ($6 ~ /N/) { 
                   mass[natom]=14.007 
                   amass=amass+mass[natom] 
     } else if ($6 ~ /O/) { 
                   mass[natom]=15.999 
                   amass=amass+mass[natom] 
     } else if ($2 ~ /A/) { 
                   mass[natom]=1.007 
                   amass=amass+mass[natom] 
                } 
    if(groupIdentifierCounter < 4) { 
     btype[natom] = "SC1" 
    } else if(groupIdentifierCounter < 5) { 
     btype[natom] = "SP5" 
    } else { 
     btype[natom] = "P1" 
    } 
     x[natom] = $3  
              y[natom] = $4  
              z[natom] = $5  
          } 
                          
  } 
#/****start of rgyr****/ 
 function center_aa() 
 { 
   for (iatom = 0; iatom <= natom; iatom++) 
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          { 
             xc_o_m = xc_o_m + x[iatom] * mass[iatom] 
             yc_o_m = yc_o_m + y[iatom] * mass[iatom] 
             zc_o_m = zc_o_m + z[iatom] * mass[iatom] 
          } 
txc_o_m = xc_o_m / amass 
tyc_o_m = yc_o_m / amass 
tzc_o_m = zc_o_m / amass 
 
 } 
  function calcrgyr_aa() 
  { 
   for (iatom = 0; iatom <= natom; iatom++) 
          { 
            dist_aa_atom = mass[iatom] * ((x[iatom] - txc_o_m) ^ 2 + 
(y[iatom] - tyc_o_m) ^ 2 + (z[iatom] - tzc_o_m) ^ 2) 
            dist_aa = dist_aa + dist_aa_atom 
          } 
   rgyr_aa_2 = dist_aa/amass 
   rgyr_aa = sqrt(rgyr_aa_2) 
  } 
#/*****end of the rgyr****/ 
function execute() { 
          for (iatom = firstMonomersAtom; iatom <= natom; iatom++) 
          { 
                   if (btype[iatom] ~ /SC1/) 
                    {   
        atom_count_SC1++ 
                       bmass_SC1 = bmass_SC1 + mass[iatom] 
                       xb_SC1 = xb_SC1 + x[iatom] * mass[iatom] 
                       yb_SC1 = yb_SC1 + y[iatom] * mass[iatom] 
                       zb_SC1 = zb_SC1 + z[iatom] * mass[iatom] 
                    } 
                   else if (btype[iatom] ~ /SP5/) 
                    { 
        atom_count_SP5++ 
                       bmass_SP5= bmass_SP5 + mass[iatom] 
                       xb_SP5 = xb_SP5 + x[iatom] * mass[iatom] 
                       yb_SP5 = yb_SP5 + y[iatom] * mass[iatom] 
                       zb_SP5 = zb_SP5 + z[iatom] * mass[iatom] 
                    } 
                   else if (btype[iatom] ~ /P1/) 
                    { 
        atom_count_P1++ 
                       bmass_P1= bmass_P1 + mass[iatom] 
                       xb_P1 = xb_P1 + x[iatom] * mass[iatom] 
                       yb_P1 = yb_P1 + y[iatom] * mass[iatom] 
                       zb_P1 = zb_P1 + z[iatom] * mass[iatom] 
                    } 
                   
          } 
 firstMonomersAtom = natom + 1 
#/** printf("......%d is a mass of SC1\n", bmass_SC1) **/ 
#/** printf("......%d is a mass of SP5\n", bmass_SP5) **/ 
#/**  printf("......%d is a mass of P1\n", bmass_P1) **/ 
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t_xb_SC1 = xb_SC1 / (bmass_SC1 * 10) 
t_yb_SC1 = yb_SC1 / (bmass_SC1 * 10) 
t_zb_SC1 = zb_SC1 / (bmass_SC1 * 10) 
    
t_xb_SP5 = xb_SP5 / (bmass_SP5 * 10) 
t_yb_SP5 = yb_SP5 / (bmass_SP5 * 10) 
t_zb_SP5 = zb_SP5 / (bmass_SP5 * 10) 
 
t_xb_P1 = xb_P1 / (bmass_P1 * 10) 
t_yb_P1 = yb_P1 / (bmass_P1 * 10)  
t_zb_P1 = zb_P1 / (bmass_P1 * 10) 
 
             xc_o_m_cg = xc_o_m_cg + t_xb_SC1  * bmass_SC1 
             yc_o_m_cg = yc_o_m_cg + t_yb_SC1  * bmass_SC1 
             zc_o_m_cg = zc_o_m_cg + t_zb_SC1  * bmass_SC1 
 
             xc_o_m_cg = xc_o_m_cg + t_xb_SP5  * bmass_SP5 
             yc_o_m_cg = yc_o_m_cg + t_yb_SP5  * bmass_SP5 
             zc_o_m_cg = zc_o_m_cg + t_zb_SP5  * bmass_SP5 
 
             xc_o_m_cg = xc_o_m_cg + t_xb_P1  * bmass_P1 
             yc_o_m_cg = yc_o_m_cg + t_yb_P1  * bmass_P1 
             zc_o_m_cg = zc_o_m_cg + t_zb_P1  * bmass_P1 
 
#/* Change fftype according to H tests before here */ 
            printf("%5i%4s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n" , 
                  bead,"HPMA", "SC1", beadcount, t_xb_SC1, t_yb_SC1, 
t_zb_SC1, "0.00", "0.00", "0.00") 
                       beadcount = beadcount + 1 
                       cgmass=cgmass+bmass_SC1 
        atom_count_SC1=0  
            printf("%5i%4s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n" , 
                  bead,"HPMA", "SP4", beadcount, t_xb_SP5, t_yb_SP5, 
t_zb_SP5, "0.00", "0.00", "0.00") 
                       beadcount = beadcount + 1 
                       cgmass=cgmass+bmass_SP5 
        atom_count_SP5=0 
            printf("%5i%4s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n" , 
                  bead,"HPMA", "P2", beadcount, t_xb_P1, t_yb_P1, 
t_zb_P1, "0.00", "0.00", "0.00") 
                       beadcount = beadcount + 1 
                       cgmass=cgmass+bmass_P1 
        atom_count_P1=0 
bead=bead+1 
} 
 
END { 
        center_aa() 
        calcrgyr_aa() 
 execute() 
        init() 
 
txc_o_m_cg = xc_o_m_cg / cgmass 
tyc_o_m_cg = yc_o_m_cg / cgmass 
tzc_o_m_cg = zc_o_m_cg / cgmass 
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      printf ("10.00 10.00 10.00\n") 
#/**      printf("Total mass from aa = %5f\n", amass) **/ 
#/**      printf("Total mass from cg = %5f\n", cgmass) **/ 
#/**      printf("Center of mass from aa = O1 ( %5f %5f %5f )\n", 
txc_o_m, tyc_o_m, tzc_o_m) **/ 
#/**      printf("Center of mass from cg = O2 ( %5f %5f %5f )\n", 
txc_o_m_cg, tyc_o_m_cg, tzc_o_m_cg) **/ 
#/**      printf("Rgyr from aa = %5f\n", rgyr_aa) **/ 
 
} 
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Analyse_hist in-host tool modifications 

#include <stdio.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <math.h> 
#include <limits.h> 
#include "maxima.h" 
#include "data.h" 
 
/* routine to assign atomic scattering factor according to element type 
label */ 
 
double atomic_bscat_list( char *element ) 
{ 
 
int iloop; 
 
for (iloop = 0; iloop < NUM_ELEMENTS; iloop++) 
   { 
      if ( *element ==  period_table[iloop].elem[0]  
        && *(element+1) == period_table[iloop].elem[1] ) return 
period_table[iloop].bscat ; 
   } 
 
return -100.0; 
 
} 
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Build ellipsoid  

#include <stdio.h> 
#include <math.h> 
 
#include "maxima.h" 
#include "ewald.h" 
#include "structures.h" 
 
void build_ellipse(atom *p_ellipse_atoms, int num_ellipse_atoms,  
                   double aaa, double bbb, double ccc, 
                   double *p_axis1, double *p_axis2, double *p_centre) 
{ 
atom *p_atom; 
int iii, iatom; 
double xxx[3], yyy[3], centre[3]; 
double theta, dtheta; 
 
   printf("\nbuilding ellipse using %d atoms\n", num_ellipse_atoms);  
   printf("aaa= %10.6f bbb= %10.6f ccc=%10.6f\n",aaa,bbb,ccc); 
   printf("axis 1: %10.6f  %10.6f  %10.6f \n", *p_axis1, *(p_axis1+1), 
*(p_axis1+2)); 
   printf("axis 2: %10.6f  %10.6f  %10.6f \n", *p_axis2, *(p_axis2+1), 
*(p_axis2+2)); 
 
   p_atom = p_ellipse_atoms; 
 
   for (iatom=0; iatom < num_ellipse_atoms; iatom++) 
     { 
        sprintf(p_atom->group,"DRAW"); 
        sprintf(p_atom->group_no,"1");  
        sprintf(p_atom->pot,"dr"); 
        sprintf(p_atom->elem,"H"); 
        p_atom->mass = 1.0; 
        p_atom->part_chge=0.0;    
 
        p_atom++; 
     } 
 
   xxx[0]= *p_axis1; 
   xxx[1]= *(p_axis1+1); 
   xxx[2]= *(p_axis1+2); 
 
   yyy[0]= *p_axis2; 
   yyy[1]= *(p_axis2+1); 
   yyy[2]= *(p_axis2+2); 
 
   centre[0] = *p_centre; 
   centre[1] = *(p_centre+1); 
   centre[2] = *(p_centre+2); 
 
   printf("Have xxx %10.6f %10.6f %10.6f\n", xxx[0], xxx[1], xxx[2]); 
   printf("Have yyy %10.6f %10.6f %10.6f\n", yyy[0], yyy[1], yyy[2]); 
   printf("Have centre %10.6f %10.6f %10.6f\n", centre[0], centre[1], 
centre[2]); 
   printf("Have aaa %10.6f bbb %10.6f ccc %10.6f\n", aaa, bbb, ccc); 
 
   p_atom = p_ellipse_atoms; 
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   theta= 0.0; 
   dtheta= two_pi/NUM_ELLIPSE_DOTS; 
   for (iii=0; iii< NUM_ELLIPSE_DOTS; iii++) 
     { 
       sprintf(p_atom->label,"%s%d","H",iii+1); 
 
       theta += dtheta; 
       p_atom->x=   xxx[0] * aaa * ccc * cos(theta) 
                  + yyy[0] * bbb * ccc * sin(theta);  
 
       p_atom->y=   xxx[1] * aaa * ccc * cos(theta) 
                  + yyy[1] * bbb * ccc * sin(theta);  
 
       p_atom->z=   xxx[2] * aaa * ccc * cos(theta) 
                  + yyy[2] * bbb * ccc * sin(theta);  
 
       p_atom->x += centre[0]; 
       p_atom->y += centre[1];  
       p_atom->z += centre[2];  
 
       p_atom++; 
     } 
 
return; 
} 
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Build line  

#include <stdio.h> 
#include <math.h> 
 
#include "maxima.h" 
#include "ewald.h" 
#include "structures.h" 
 
void build_line(atom *p_line_atoms, int num_line_atoms,  
                double aaa, double *p_line, double *p_centre) 
{ 
atom *p_atom; 
int iii, iatom; 
double xxx[3], centre[3]; 
double dx, scale; 
 
   printf("\nbuilding line using %d atoms\n", num_line_atoms);  
   printf("aaa= %10.6f \n",aaa); 
   printf("direction 1: %10.6f  %10.6f  %10.6f \n", *p_line); 
 
   p_atom = p_line_atoms; 
 
   for (iatom=0; iatom < num_line_atoms; iatom++) 
     { 
        sprintf(p_atom->group,"DRAW"); 
        sprintf(p_atom->group_no,"1");  
        sprintf(p_atom->pot,"dr"); 
        sprintf(p_atom->elem,"H"); 
        p_atom->part_chge=0.0;    
 
        p_atom++; 
     } 
 
   xxx[0]= *p_line; 
   xxx[1]= *(p_line+1); 
   xxx[2]= *(p_line+2); 
 
   centre[0] = *p_centre; 
   centre[1] = *(p_centre+1); 
   centre[2] = *(p_centre+2); 
 
   p_atom = p_line_atoms; 
   dx = aaa/NUM_LINE_DOTS; 
   scale=0; 
   for (iii=0; iii< NUM_LINE_DOTS; iii++) 
     { 
       sprintf(p_atom->label,"%s%d","H",iii+1); 
 
       p_atom->x=   xxx[0] * scale; 
       p_atom->y=   xxx[1] * scale; 
       p_atom->z=   xxx[2] * scale; 
 
       p_atom->x += centre[0]; 
       p_atom->y += centre[1];  
       p_atom->z += centre[2];  
 
       p_atom++; 
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       scale += dx; 
     } 
 
return; 
} 
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Moments of inertia based on mass 

#include <stdio.h> 
#include "maxima.h" 
#include "structures.h" 
 
/* protype list for this routine */ 
void move_molecule(atom *p_molecule, int num_atoms, double *move_vec); 
 
void cube_roots(double *p_coeffs, double *p_roots); 
 
/************************/ 
/**** DEBUG Routines ****/ 
 
void centre_of_mass(double *p_c_of_m, double *p_total_mass, atom 
*p_molecule, 
                    int num_atoms, int which_mol ); 
 
/**** DEBUG Routines ****/ 
/************************/ 
/*-----------------------------------------------------------------------
----*/ 
 
 
/* work out the moment of interia matrix for the molecule */ 
 
void moments_of_inertia(atom *p_molecule, int num_atoms, double 
*p_c_of_m,  
                           double *p_m_of_inertia, double *p_eigenvals ) 
{ 
  int icomp,this_atom; 
  atom *p_atom; 
 
  double atomic_mass; 
  double *p_comp0, *p_comp1, *p_comp2, *p_comp3, *p_comp4, *p_comp5, r2; 
  double vec[3]; 
 
  double cubic_coeffs[3]; 
 
/*************************/ 
/**** DEBUG Variables ****/ 
 
  double c_of_m_dum[3]; 
  double totm_dum; 
 
/**** DEBUG Variables ****/ 
/*************************/ 
/*-----------------------------------------------------------------------
-----*/ 
 
/****** Zero moment of inertia matrix *******/ 
 
   p_comp0= p_m_of_inertia; 
   p_comp1= p_m_of_inertia+1; 
   p_comp2= p_m_of_inertia+2; 
   p_comp3= p_m_of_inertia+3; 
   p_comp4= p_m_of_inertia+4; 
   p_comp5= p_m_of_inertia+5; 
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   *p_comp0 =0.0; 
   *p_comp1 =0.0; 
   *p_comp2 =0.0; 
   *p_comp3 =0.0; 
   *p_comp4 =0.0; 
   *p_comp5 =0.0; 
 
/****** move molecule to centre of mass *****/ 
/*  printf("Moving molecule to centre of mass at %10.6f %10.6f %10.6f\n",  
                                                *p_c_of_m, *(p_c_of_m+1), 
*(p_c_of_m+2)); */ 
  vec[0]= - *p_c_of_m; 
  vec[1]= - *(p_c_of_m+1); 
  vec[2]= - *(p_c_of_m+2); 
  move_molecule(p_molecule, num_atoms, &vec[0]); 
 
/********************************************/ 
/****** debug *******************************/ 
 
  centre_of_mass(&c_of_m_dum[0], &totm_dum, p_molecule, num_atoms, -1 ); 
  printf("Centre of mass for shifted molecule:  %10.6f %10.6f %10.6f\n", 
                           c_of_m_dum[0], c_of_m_dum[1], c_of_m_dum[2]);   
   
/****** debug *******************************/ 
/********************************************/ 
 
/****** Calculate M_of_I matrix *************/ 
 
   p_atom= p_molecule; 
   for (this_atom=0; this_atom <= num_atoms; this_atom++) 
     { 
       atomic_mass = p_atom->mass; 
/*       printf("Atomic mass of %s (elem >>%s<< = %10.6f ", p_atom-
>label,  
                                                                 p_atom-
>elem, atomic_mass);     */ 
/*       printf("position: %10.6f %10.6f %10.6f\n", p_atom->x, p_atom->y, 
p_atom->z);            */ 
 
       r2= p_atom->x * p_atom->x + p_atom->y * p_atom->y + p_atom->z * 
p_atom->z; 
 
/************************************************************************
******/ 
/*** Store as a triangular array since the moment of inertia matrix is 
********/ 
/*** symmetric so you can use the elements :                           
********/ 
/***                                                                   
********/ 
/***             0  1  2                                               
********/ 
/***                3  4                                               
********/ 
/***                   5                                               
********/ 
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/************************************************************************
******/ 
   
       (*p_comp0) += atomic_mass * (r2 - p_atom->x * p_atom->x);           
/* 0 */ 
   
       (*p_comp1) -= atomic_mass * p_atom->x * p_atom->y;                  
/* 1 */ 
   
       (*p_comp2) -= atomic_mass * p_atom->x * p_atom->z;                  
/* 2 */ 
   
       (*p_comp3) += atomic_mass * (r2 - p_atom->y * p_atom->y);           
/* 3 */ 
   
       (*p_comp4) -= atomic_mass * p_atom->y * p_atom->z;                  
/* 4 */ 
   
       (*p_comp5) += atomic_mass * (r2 - p_atom->z * p_atom->z );          
/* 5 */ 
 
       p_atom++; 
     } 
 
/****** move molecule back from centre of mass *****/ 
 
   move_molecule(p_molecule, num_atoms, p_c_of_m);  
 
/****** Work out eigen vectors of matrix, easy in this case as it is 3x3 
so *******/ 
/****** use standard form from Handbook                                     
*******/ 
/****** Assumes cubic term coefficient is 1                                 
*******/ 
/****** So cubic_coeffs[2]= sq coeff, [1]= linear and [0]= constant term    
*******/ 
 
/*************************/ 
/****** DEBUG DEBUG ******/ 
   
/*  *p_comp0=  1.0; */ 
/*  *p_comp1=  1.0; */ 
/*  *p_comp2=  2.0; */ 
/*  *p_comp3=  1.0; */ 
/*  *p_comp4= -1.0; */ 
/*  *p_comp5=  1.0; */ 
      
/****** DEBUG DEBUG ******/ 
/*************************/ 
 
  printf("DEBUG>> Matrix formed in moments_of_inertia.c : \n");          
  printf("%10.6f %10.6f %10.6f\n", *p_comp0, *p_comp1, *p_comp2); 
  printf("%10.6f %10.6f %10.6f\n", *p_comp1, *p_comp3, *p_comp4);  
  printf("%10.6f %10.6f %10.6f\n", *p_comp2, *p_comp4, *p_comp5);   
 
  cubic_coeffs[2] = -*p_comp0 - *p_comp3 - *p_comp5; 
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  cubic_coeffs[1] = -*p_comp4 * *p_comp4 - *p_comp1 * *p_comp1  
                                         - *p_comp2 * *p_comp2; 
 
  cubic_coeffs[1]+= *p_comp0 * *p_comp3 + *p_comp0 * *p_comp5  
                                        + *p_comp3 * *p_comp5; 
 
  cubic_coeffs[0] =      -*p_comp0 * *p_comp3 * *p_comp5   
                    -2.0* *p_comp1 * *p_comp2 * *p_comp4 
                       +  *p_comp0 * *p_comp4 * *p_comp4 
                       +  *p_comp3 * *p_comp2 * *p_comp2 
                       +  *p_comp5 * *p_comp1 * *p_comp1; 
 
/*  printf("\nGives cubic coeffs:  %10.6f %10.6f %10.6f\n",  
                  cubic_coeffs[0], cubic_coeffs[1], cubic_coeffs[2]);   
*/ 
/**** Test roots ***/ 
/*   cubic_coeffs[0]=-56.0; */ 
/*   cubic_coeffs[1]=-22.0; */ 
/*   cubic_coeffs[2]=  5.0; */ 
/*******************/ 
  cube_roots(&cubic_coeffs[0], p_eigenvals); 
 
/*  printf("cubic equation coefficients 0= %10.6f 1=%10.6f 2=%10.6f\n", 
                                  cubic_coeffs[0], cubic_coeffs[1], 
cubic_coeffs[2]); */ 
 
/*  printf("eigenvalues of moment of inertia tensor are : %10.6f %10.6f 
%10.6f\n", 
                                  *p_eigenvals, *(p_eigenvals+1), 
*(p_eigenvals+2));   */ 
 
return; 
} 
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Moments of inertia based on bscat 

#include <stdio.h> 
#include "maxima.h" 
#include "structures.h" 
 
/* protype list for this routine */ 
void move_molecule(atom *p_molecule, int num_atoms, double *move_vec); 
 
void cube_roots(double *p_coeffs, double *p_roots); 
 
/************************/ 
/**** DEBUG Routines ****/ 
 
void centre_of_bscat(double *p_c_of_b, double *p_total_mass, atom 
*p_molecule, 
                    int num_atoms, int which_mol ); 
 
/**** DEBUG Routines ****/ 
/************************/ 
/*-----------------------------------------------------------------------
----*/ 
 
/* work out the moment of interia matrix for the molecule based on SANs 
bscat parameters */ 
 
void moments_of_inertia_bscat(atom *p_molecule, int num_atoms, double 
*p_c_of_b, 
                              double *p_m_of_inertia_b, double 
*p_eigenvals_bscat ) 
{ 
  int icomp,this_atom; 
  atom *p_atom; 
 
  double bfact; 
  double *p_comp0, *p_comp1, *p_comp2, *p_comp3, *p_comp4, *p_comp5, r2; 
  double vec[3]; 
 
  double cubic_coeffs[3]; 
 
/*************************/ 
/**** DEBUG Variables ****/ 
 
  double c_of_b_dum[3]; 
  double totb_dum; 
 
/**** DEBUG Variables ****/ 
/*************************/ 
/*-----------------------------------------------------------------------
-----*/ 
 
/****** Zero moment of inertia matrix *******/ 
 
   p_comp0= p_m_of_inertia_b; 
   p_comp1= p_m_of_inertia_b+1; 
   p_comp2= p_m_of_inertia_b+2; 
   p_comp3= p_m_of_inertia_b+3; 
   p_comp4= p_m_of_inertia_b+4; 
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   p_comp5= p_m_of_inertia_b+5; 
 
   *p_comp0 =0.0; 
   *p_comp1 =0.0; 
   *p_comp2 =0.0; 
   *p_comp3 =0.0; 
   *p_comp4 =0.0; 
   *p_comp5 =0.0; 
 
/****** move molecule to centre of mass *****/ 
/*  printf("Moving molecule to centre of mass at %10.6f %10.6f %10.6f\n",  
                                                *p_c_of_b, *(p_c_of_b+1), 
*(p_c_of_b+2)); */ 
  vec[0]= - *p_c_of_b; 
  vec[1]= - *(p_c_of_b+1); 
  vec[2]= - *(p_c_of_b+2); 
  move_molecule(p_molecule, num_atoms, &vec[0]); 
 
/********************************************/ 
/****** debug *******************************/ 
 
  centre_of_bscat(&c_of_b_dum[0], &totb_dum, p_molecule, num_atoms, -1 ); 
  printf("Centre of bscat for shifted molecule:  %10.6f %10.6f %10.6f\n", 
                           c_of_b_dum[0], c_of_b_dum[1], c_of_b_dum[2]);   
   
/****** debug *******************************/ 
/********************************************/ 
 
/****** Calculate M_of_I matrix *************/ 
 
   p_atom= p_molecule; 
   for (this_atom=0; this_atom <= num_atoms; this_atom++) 
     { 
       bfact = p_atom->bscat; 
/*       printf("Atomic mass of %s (elem >>%s<< = %10.6f ", p_atom-
>label,  
                                                                 p_atom-
>elem, atomic_mass);     */ 
/*       printf("position: %10.6f %10.6f %10.6f\n", p_atom->x, p_atom->y, 
p_atom->z);            */ 
 
       r2= p_atom->x * p_atom->x + p_atom->y * p_atom->y + p_atom->z * 
p_atom->z; 
 
/************************************************************************
******/ 
/*** Store as a triangular array since the moment of inertia matrix is 
********/ 
/*** symmetric so you can use the elements :                           
********/ 
/***                                                                   
********/ 
/***             0  1  2                                               
********/ 
/***                3  4                                               
********/ 
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/***                   5                                               
********/ 
/************************************************************************
******/ 
   
       (*p_comp0) += bfact * (r2 - p_atom->x * p_atom->x);           /* 0 
*/ 
   
       (*p_comp1) -= bfact * p_atom->x * p_atom->y;                  /* 1 
*/ 
   
       (*p_comp2) -= bfact * p_atom->x * p_atom->z;                  /* 2 
*/ 
   
       (*p_comp3) += bfact * (r2 - p_atom->y * p_atom->y);           /* 3 
*/ 
   
       (*p_comp4) -= bfact * p_atom->y * p_atom->z;                  /* 4 
*/ 
   
       (*p_comp5) += bfact * (r2 - p_atom->z * p_atom->z );          /* 5 
*/ 
 
       p_atom++; 
     } 
 
/****** move molecule back from centre of mass *****/ 
 
   move_molecule(p_molecule, num_atoms, p_c_of_b);  
 
/****** Work out eigen vectors of matrix, easy in this case as it is 3x3 
so *******/ 
/****** use standard form from Handbook                                     
*******/ 
/****** Assumes cubic term coefficient is 1                                 
*******/ 
/****** So cubic_coeffs[2]= sq coeff, [1]= linear and [0]= constant term    
*******/ 
 
/*************************/ 
/****** DEBUG DEBUG ******/ 
   
/*  *p_comp0=  1.0; */ 
/*  *p_comp1=  1.0; */ 
/*  *p_comp2=  2.0; */ 
/*  *p_comp3=  1.0; */ 
/*  *p_comp4= -1.0; */ 
/*  *p_comp5=  1.0; */ 
      
/****** DEBUG DEBUG ******/ 
/*************************/ 
 
  printf("DEBUG>> Matrix formed in moments_of_inertia_bscat.c : \n");          
  printf("%10.6f %10.6f %10.6f\n", *p_comp0, *p_comp1, *p_comp2); 
  printf("%10.6f %10.6f %10.6f\n", *p_comp1, *p_comp3, *p_comp4); 
  printf("%10.6f %10.6f %10.6f\n", *p_comp2, *p_comp4, *p_comp5); 
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  cubic_coeffs[2] = -*p_comp0 - *p_comp3 - *p_comp5; 
 
  cubic_coeffs[1] = -*p_comp4 * *p_comp4 - *p_comp1 * *p_comp1  
                                         - *p_comp2 * *p_comp2; 
 
  cubic_coeffs[1]+= *p_comp0 * *p_comp3 + *p_comp0 * *p_comp5  
                                        + *p_comp3 * *p_comp5; 
 
  cubic_coeffs[0] =      -*p_comp0 * *p_comp3 * *p_comp5   
                    -2.0* *p_comp1 * *p_comp2 * *p_comp4 
                       +  *p_comp0 * *p_comp4 * *p_comp4 
                       +  *p_comp3 * *p_comp2 * *p_comp2 
                       +  *p_comp5 * *p_comp1 * *p_comp1; 
 
  printf("\nGives cubic coeffs:  %10.6f %10.6f %10.6f\n",  
                  cubic_coeffs[0], cubic_coeffs[1], cubic_coeffs[2]);  
/**** Test roots ***/ 
/*   cubic_coeffs[0]=-56.0; */ 
/*   cubic_coeffs[1]=-22.0; */ 
/*   cubic_coeffs[2]=  5.0; */ 
/*******************/ 
  cube_roots(&cubic_coeffs[0], p_eigenvals_bscat); 
 
/*  printf("cubic equation coefficients 0= %10.6f 1=%10.6f 2=%10.6f\n", 
                                  cubic_coeffs[0], cubic_coeffs[1], 
cubic_coeffs[2]); */ 
 
 printf("eigenvalues of moment of inertia tensor are : %10.6f %10.6f 
%10.6f\n", 
                                                       
*p_eigenvals_bscat,  
                                                       
*(p_eigenvals_bscat+1),  
                                                       
*(p_eigenvals_bscat+2));  
 
return; 
} 
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Rg calculator 

#include <stdio.h> 
#include <math.h> 
#include "maxima.h" 
#include "structures.h" 
 
/* protype list for this routine */ 
 
void min_image( double *x, double *y, double *z); 
 
/*-----------------------------------------------------------------------
----*/ 
 
void radius_gyration(atom *p_molecule, int num_atoms, double *p_c_of_m,  
                     double total_mass, double *p_rgyr ) 
{ 
  int icomp, iatom; 
  atom *p_atom; 
 
  double vec[3], dist2; 
 
  double cubic_coeffs[3]; 
 
/****** Zero rgyr value *******/ 
 
   *p_rgyr=0.0; 
 
   p_atom=p_molecule; 
   for (iatom=0; iatom<=num_atoms; iatom++) 
     { 
/*** get atom to centre of mass vector ***/ 
       vec[0] = p_atom->x - *p_c_of_m; 
       vec[1] = p_atom->y - *(p_c_of_m+1); 
       vec[2] = p_atom->z - *(p_c_of_m+2); 
 
       min_image( &vec[0], &vec[1], &vec[2]); 
 
       dist2= vec[0]*vec[0]+vec[1]*vec[1]+vec[2]*vec[2]; 
 
       *p_rgyr += p_atom->mass * dist2; 
 
       p_atom++; 
     } 
 
   *p_rgyr = sqrt(*p_rgyr / total_mass); 
 
   printf("Make this molecule's radius of gyration %10.6f Angstroms\n", 
*p_rgyr); 
 
return; 
} 
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