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Abstract

Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their
clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals
whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells
both in vitro and in vivo has been demonstrated in HTLV-1 infection. However, T-cell clonality in HTLV-2 infection has not
been rigorously characterized. In this study we used a high-throughput approach in conjunction with flow cytometric
sorting to identify and quantify HTLV-2-infected T-cell clones in 28 individuals with natural infection. We show that while
genome-wide integration site preferences in vivo were similar to those found in HTLV-1 infection, expansion of HTLV-2-
infected clones did not demonstrate the same significant association with the genomic environment of the integrated
provirus. The proviral load in HTLV-2 is almost confined to CD8+ T-cells and is composed of a small number of often highly
expanded clones. The HTLV-2 load correlated significantly with the degree of dispersion of the clone frequency distribution,
which was highly stable over ,8 years. These results suggest that there are significant differences in the selection forces
that control the clonal expansion of virus-infected cells in HTLV-1 and HTLV-2 infection. In addition, our data demonstrate
that strong virus-driven proliferation per se does not predispose to malignant transformation in oncoretroviral infections.
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Introduction

The retroviruses HTLV-1 and HTLV-2 diverged from each

other more than one million years ago [1] before becoming

established in humans. They are similar in several crucial respects,

with homologous genome structures that encode a number of

regulatory proteins, including the pro-proliferative gene tax [2,3].

Both viruses are transmitted by transfer of infected lymphocytes

via breast feeding, blood transfusion and sexual contact [4].

However, their geographical distributions are quite different.

HTLV-1 is endemic in particular regions of Japan, sub-Saharan

Africa, the Caribbean and South America [5], whereas HTLV-2 is

primarily endemic in indigenous populations in Africa and the

Americas, although it can also be found among injection drug

users in Europe and the United States [4].

HTLV-1 causes both inflammatory and lymphoproliferative

diseases. In contrast, HTLV-2 causes little disease. By following a

large cohort of HTLV-1/2-infected and seronegative individuals

for almost two decades, the HTLV Outcomes study (HOST)

detected myelopathy and other neurologic abnormalities among

HTLV-2-infected subjects [6,7], a finding supported by other

studies [8]. HTLV-2 was also associated with an increase in both

all-cause and cancer-related mortality [9], as well as persistently

elevated lymphocyte and platelet counts, suggesting chronic low-

level inflammation [10]. However, no mechanistic inferences can

yet be drawn.

An important distinction between HTLV-1 and HTLV-2 lies in

their host cell predilection. Although they use the same cellular

receptors [11], HTLV-1 preferentially infects CD4+ T-cells,

whereas HTLV-2 favours CD8+ T-cells [12,13]. The biological

basis for this difference is not clear. In vitro evidence suggests that

the relative cell surface density of two host receptors, heparan

sulphate proteoglycans and glucose-transporter 1 [14], determines

host cell tropism. However, in vivo studies suggest that both T-cell

lineages are efficiently infected by both viruses, and that

subsequent proliferation of CD4+ or CD8+ T-cells driven by

HTLV-1 or HTLV-2, respectively, leads to differential expansion

of the two T-cell subsets [15].

It is known that HTLV-2, like HTLV-1, can immortalize

human lymphocytes in culture [16,17]. Both HTLV-1 [18,19] and

HTLV-2 [20,21] have also been shown to cause selective

proliferation of certain infected T-cell clones in vivo. Although

the molecular pathways by which the viral proteins drive cellular

proliferation are well described [22], the mechanistic basis of

selective clonal proliferation is not understood. We have recently

shown that the genomic integration site and transcriptional
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orientation of the provirus relative to the nearest host gene play

important roles in determining selective HTLV-1 clonal abun-

dance in vivo [23,24]. However, the total number of infected

clones in a single host has not been accurately determined until

recently. It was previously estimated that the number of clones in a

typical HTLV-1-infected host was of the order of 100 [25], and

that individuals with the inflammatory disease HAM/TSP had a

smaller number of more abundant clones, i.e. a more oligoclonal

distribution. However we have shown [23,24] (Laydon et al.,

manuscript submitted) that the total number of clones is in fact

100-fold to 1,000-fold greater (median 28,000), and that patients

with HAM/TSP differ from asymptomatic carriers in that they

have a larger number of clones rather than a more oligoclonal

distribution. In HTLV-2 infection, neither the number nor the

absolute or relative abundance of infected T-cell clones has been

quantified. It has been suggested that the greater in vitro IL-2

dependency of HTLV-2-infected cells might lead to decreased

clonal proliferation in vivo, which might in turn explain the

difference in oncogenic potential between the two viruses [26].

In this work, we investigated natural HTLV-2 infection by

quantifying the viral burden in CD4+ and CD8+ T-cells, comparing

the clonal distribution of HTLV-2-infected peripheral blood mono-

nuclear cells (PBMCs) to that observed in HTLV-1, and examining

the genomic environment of integrated HTLV-2 proviruses. For

these purposes, we adapted our recently described high-throughput

method for the identification, mapping and quantification of

retroviral integration sites, which we have used previously to study

host factors associated with clonal abundance, proviral expression

and disease progression by tracking infected clones using the

genomic coordinates of retroviral integration sites [24,27–29]

(Hodson et al., manuscript submitted). This method also allows us

to calculate, using the Gini index [30], the degree of oligoclonality

and the relative in vivo clonal expansion of infected clones.

Results

HTLV-2 is largely restricted to CD8+ T-cells
To determine the relative contributions of CD4+ and CD8+

T-cells to the HTLV-2 proviral load, PBMCs from 28

HTLV-2-seropositive carriers were sorted by flow cytometry into

separate CD3+ CD4+CD82 and CD3+CD42CD8+ populations.

Integration sites were then mapped and quantified in DNA

extracted from both sorted and unsorted cells using our previously

described [23] method.

We assumed that HTLV-2 infects a single-positive CD4+CD82

or CD42CD8+ T-cell, and attributed the integration sites found in

the unsorted sample to either CD4+ or CD8+ cells based on the

sorted sample in which they were found more frequently. Across

all samples, 50% of sites (representing .99% of proviruses) could

be attributed in this manner.

Although the number of CD4+ cells isolated by flow sorting

exceeded the number of CD8+ cells in the majority of samples,

HTLV-2 was identified chiefly in the CD8+ fraction, whether

quantified as the number of sequencing reads or the number of

proviruses (Supplementary Figure S1). In 15 out of 16 patients

(those with sufficiently high numbers of detected proviruses) the

HTLV-2 load was almost wholly confined to CD8+ cells

(mean = 96.3%,median = 98.7%); a mean of only 0.3% (medi-

an = 0%) was positively attributed to CD4+ cells (Figure 1). In the

remaining individual, the majority of the HTLV-2 load was found

in CD4+ cells.

The genomic environment of integrated HTLV-2 provirus
We analysed proviral integration sites in PBMCs isolated from

28 HTLV-2-infected individuals and 16 HTLV-1-infected indi-

viduals without malignant disease. At the nucleotide level, the

consensus sequence flanking HTLV-2 genomic integration sites

was very similar to that reported for HTLV-1 infection [31], with

bias towards GT at positions -3 and -2, respectively, and AC at

positions 8 and 9, respectively, across the 6 base repeat

(Supplementary Figure S2). The chromosomal distribution of

integration sites was similar for HTLV-1 and HTLV-2 (Figure 2A):

Figure 1. HTLV-2 infection is found almost exclusively in CD8+

T-cells. Cryopreserved PBMCs from 28 HTLV-2-infected individuals
were sorted by flow-cytometry into separate CD3+CD4+CD82 and
CD3+CD42CD8+ cell populations. Integration site content was deter-
mined by high-throughput sequencing for both sorted populations and
unsorted PBMCs. In the unsorted cells, integration sites were positively
assigned to CD4+ or CD8+ cells based on the sorted fraction in which
the same sites were found. The proportion of the load was calculated as
the sum of the relative frequencies of the clones. Unknown –
proportion of the load made up by clones that were not resampled
in either the CD4+ or CD8+ fraction. Since the redetection of clones is
most unlikely if proviral load is very low, only individuals in whom .100
proviruses were found are shown here.
doi:10.1371/journal.ppat.1004006.g001

Author Summary

The two human retroviruses HTLV-1 and HTLV-2 are similar
in their structure, replication cycle and the manner
through which they spread between and within individ-
uals. They differ in their preferred host T-cell type and in
their possible clinical outcomes. HTLV-2 has not been
linked with a specific disease, whereas HTLV-1 infection
can cause leukemia and profound neuropathology. It is
well established that HTLV-1-infected cells undergo clonal
expansion in infected individuals, but little is known about
clonality in HTLV-2 infection. In this work, we demonstrate
that the extent of HTLV-2-infected cell expansion signifi-
cantly exceeds that of HTLV-1-infected cells in healthy
carriers, approximating instead to that observed in
patients with HTLV-1-associated leukemia. Furthermore,
we show that HTLV-2 characteristically resides in a small
number of expanded clones that persist over time, and
that the degree of oligoclonality significantly correlates
with viral burden in HTLV-2-infected individuals. These
results highlight the distinction between in vivo clonal
proliferation and malignant transformation, and suggest
that the infected cell type may be a more important
determinant of clinical outcome in retroviral infections.

Clonality of HTLV-2 in Natural Infection
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In each case the frequency of integration sites detected in certain

chromosomes in vivo was remarkably greater (e.g. chromosome

13) or lower (e.g. chromosome 10) than expected by chance.

HTLV-1 and HTLV-2 were also similar with respect to features

of the genomic environment flanking the provirus. In particular,

activating and repressive histone marks were similarly enriched at

integration sites compared to random expectation for both viruses

(Figure 2B). Previously, we found that HTLV-1 integration was

significantly more frequent than expected on a random basis in

proximity to ChIP-seq-verified binding sites for certain transcrip-

tion factors and chromatin modifying proteins, most notably

STAT-1, p53 and HDACs [24]. In vivo, proviruses also lie near

these binding sites more frequently than expected by chance. In

the present study, we reproduced this observation in an

independent cohort of HTLV-1-infected individuals, and observed

a similar integration targeting preference for HTLV-2 (Figure 2C).

Although the magnitude of bias toward these genomic sites was

very similar for both viruses, statistical significance was lower in

the case of HTLV-2, most likely owing to the lower number of

total integration sites.

HTLV-2 integration is characterized by small numbers of
expanded clones

In an earlier study, we showed that HTLV-1 infection is

characterized by very large numbers of clones (over 4,000 unique

integration sites [UIS] have been observed in 10 mg of PBMC-

derived DNA) and that much of the load (in non-malignant cases)

is composed of low abundance clones [23]. We confirmed this

observation here for HTLV-1, but the clonal distribution in

HTLV-2 infection showed several marked differences (Figure 3A).

Significantly lower numbers of unique integration sites were

identified in samples from HTLV-2-infected individuals (median

16 UIS) than those from HTLV-1-infected individuals (median

766 UIS; Figure 3B). Using the recently developed biodiversity

estimator ‘DivE’ (Laydon et al., manuscript submitted), HTLV-1-

infected subjects were estimated to carry a median of 31,710

distinct clones in the blood (consistent with previous estimates for

HTLV-1), whereas HTLV-2-infected subjects were estimated to

carry a median of only 976 clones (p,0.001, Mann-Whitney test;

Figure 3C).

The distribution of proviral load across identified clones also

differed significantly between HTLV-1 and HTLV-2. To compare

the two viruses, we used the oligoclonality index [23], a parameter

based on the Gini index, as a measure of dispersion describing the

magnitude of unevenness of a frequency distribution. The

oligoclonality index ranges between 0 and 1, where a value of 0

represents a distribution in which each clone constitutes an equal

share of the proviral load, and 1 represents an upper bound where

the load is effectively made up by a single clone. A median

oligoclonality index of 0.34 was observed in non-malignant

HTLV-1 carriers, consistent with our previous findings. In

contrast, the oligoclonality index was remarkably variable between

HTLV-2-infected individuals, and on average significantly higher

than in HTLV-1-infected individuals (median 0.73, p,0.001,

Mann-Whitney test; Figure 3D). Furthermore, the proportion of

singletons (clones identified only once) was significantly lower in

HTLV-2 infection (median = 1.96%) than in HTLV-1 infection

(median = 37.17%, p,0.001, Mann-Whitney test; Figure 3E).

Features of clonal expansion and proviral load in HTLV-2
infection

The difference in clonal distribution between HTLV-1 and

HTLV-2 was also apparent when measuring the absolute

abundance of each clone as copies per 10,000 PBMCs

(Figure 4A). In particular, highly expanded clones (i.e. those that

each made up more than 0.1% of PBMCs) represented 20% of all

HTLV-2 clones but only a fraction of all HTLV-1 clones (0.18%).

We reported previously that the genomic environment flanking

the integration site appears to play a role in determining the

equilibrium abundance of a given clone in vivo [23,24]. The

positive effect of integration within 10 kb of a RefSeq transcription

start site on the abundance of HTLV-1 clones was observed here

again (p = 0.04, chi-squared test for trend), but there was no

correlation between the abundance of HTLV-2 clones and the

proximity of a RefSeq gene (Figure 4B).

Whereas there was no significant correlation between the

oligoclonality index and the proviral load in HTLV-1 infection

(p = 0.681, rho = 0.112, Spearman’s test), we observed a highly

significant positive correlation (p = 0.0015, rho = 0.599, Spear-

man’s test) between these parameters in HTLV-2 infection

(Figure 4C). In contrast, the proviral load in HTLV-1 infection

was more strongly correlated with the total number of clones

(p,0.001, rho = 0.785, Spearman’s test) compared to that in

HTLV-2 (p = 0.0019, rho = 0.578, Spearman’s test; Figure 4D).

Clonal distribution in HTLV-2 infection does not change
over time

To test whether the expanded clones observed in HTLV-2

infection were long-lived, we analysed integration site content in

samples collected at an earlier time point (range = 7.5 to 14.4

years, median = 9.9 years) from 10 of the HTLV-2-infected

individuals in our cohort. The vast majority of the load

(median = 96%) at the later time-point was represented by clones

already present at the earlier time-point (Figure 5A). These clones

did not change significantly in terms of their relative abundance;

those representing .1% of the load at the later time-point were

significantly more likely to make up .1% of the load at the earlier

time-point and vice versa (p,0.001, OR = 7.73, Fisher’s exact test;

Figure 5B).

Discussion

Both HTLV-1 and HTLV-2 infect the susceptible host by the

same routes, and propagate within the host by the same two non-

mutually-exclusive routes: the infectious route, which results in

proviral integration at a new genomic site; and the mitotic route,

where the provirus is replicated passively when the infected cell

undergoes DNA replication and mitosis. It therefore benefits these

viruses to drive proliferation of the infected cell. Indeed, the Tax

proteins from both HTLV-1 and HTLV-2 have been shown in

vitro to accelerate progression through the cell cycle, inhibit

apoptosis and transform cells [3,32,33]. Consistent with these in

vitro observations, we showed previously using metabolic labelling

that cells spontaneously expressing the HTLV-1 Tax protein

ex vivo proliferate faster in vivo [34].

HTLV-1 infection causes a chronic or acute T-lymphocytic

malignancy in up to 5% of infected individuals [35,36]; however,

HTLV-2 is not unequivocally linked to a T-cell malignancy.

Compared with the HTLV-1 Tax protein, HTLV-2 Tax is more

dependent on IL-2 for the transformation of cells in culture [37].

This observation led to the suggestion that HTLV-2 would cause

less in vivo proliferation of infected cells than HTLV-1, which in

turn would decrease the oncogenic potential of the virus [26].

However, two lines of evidence go against this model. The first is

the recent finding that HTLV-2 Tax has a greater in vitro

immortalization capacity than HTLV-1 Tax in primary human T

cells [38,39]. The second is the finding reported here that

Clonality of HTLV-2 in Natural Infection
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Figure 2. HTLV-1 and HTLV-2 integrate in similar genomic environments. Cells from 28 HTLV-2-infected and 16 HTLV-1-infected subjects
were tested for genomic integration site preferences. (A) The ratio of the proportion of sites found in each chromosome (out of the total integration
sites found for each virus) to the proportion of randomly generated (in silico) sites in the same chromosome. The yellow dashed line represents
random sites (ratio = 1). (B) The number of histone marks (post-translational modifications) in three given windows across integration sites (for
example, the 2k window incorporates 1,000 bases on either side of an integration site) compared to the number of histone marks in the same
window across random sites. Statistical significance was assessed using the two-tailed Mann-Whitney test (* ,0.05, ** ,0.01, *** ,0.001). (C) The
odds ratio of integration within 1 kb of given ChIP-seq sites compared to random sites. The terms upstream and downstream here refer to the 59 and
39 sides of the integrated provirus, respectively. Statistical significance was assessed using Fisher’s exact test (* ,0.05, ** ,0.01, *** ,0.001).
doi:10.1371/journal.ppat.1004006.g002

Clonality of HTLV-2 in Natural Infection

PLOS Pathogens | www.plospathogens.org 4 March 2014 | Volume 10 | Issue 3 | e1004006



HTLV-2 infection in vivo results in a small number of highly

expanded T-cell clones (Figure 3). Although non-malignant

HTLV-1 infection can result in the preferential expansion of

certain clones, including clones that contain the provirus at

genomic sites with particular characteristics [23,24], HTLV-2

infection is capable of driving infected T-cells to proliferate

selectively, generating clones which are often more highly

expanded than those observed in non-malignant HTLV-1

infection (Figure 4A). The resulting clone frequency distribution

in HTLV-2 infection is more similar to that observed in Adult

T-cell Leukemia/Lymphoma (ATLL) patients than in non-

malignant HTLV-1 infection (compare, for example, Figure 3D

here with Figure 2B in [23]). That is, HTLV-1 infection is

characterized by a large number of distinct clones in the

circulation, while HTLV-2 infection is confined to a small number

of highly expanded clones (Figure 3)

The host genomic environment flanking HTLV-2 integration

sites in vivo closely resembles that of HTLV-1 integration sites.

Similarities are evident at the nucleotide and the chromosome

levels, and when examining particular genomic features known to

be more frequent in proximity to HTLV-1 integration sites than

expected by chance [24] (Figure 2). This observation is likely to

result from the similarity between the HTLV-1 and HTLV-2

integrases, leading to shared targeting preferences during initial

infection and integration. Since the samples analysed here (for

both viruses) were drawn from patients infected for many years,

this result suggests that there are also similar selection forces acting

upon the infected cells in vivo in the two respective infections; the

major selection force that differs between infected individuals is

likely to be the acquired immune response, in particular cytotoxic

CD8+ T-lymphocyte (CTL) activity [40].

The selection forces that act upon HTLV-1-infected clones have

been the subject of many previous studies [41]. Two principal

opposing forces govern the abundance of each clone in vivo: the

ability of the clone to proliferate (e.g. through Tax-mediated cell

proliferation or through antigen-mediated activation), and the

susceptibility of the clone to elimination by CTL-mediated cell

killing. We recently demonstrated that the genomic environment

at the proviral integration site is associated with the clonal

expansion in HTLV-1-infected individuals and with the tendency

of a given clone to express the HTLV-1 Tax protein [23,24].

Further, cells that spontaneously expressed the HTLV-1 Tax

protein belonged more frequently to low-abundance clones in vivo

compared with non-Tax-expressing cells, suggesting that the

expression of this dominant T-cell immunogen [42,43] limits

proliferation in vivo. We suggest that this limited proliferation of

Tax-expressing cells is due to counter-selection by the abundant,

chronically activated Tax-specific CTLs.

The immune response to HTLV-2 proteins is less well

understood. Oliveira and colleagues showed that high frequencies

of CTLs specific for HTLV-2 Tax can be found in the circulation

of HTLV-2 carriers [44]. Thus, while the genomic site preferences

for HTLV-1 were mirrored in HTLV-2 infection, it is surprising

Figure 3. HTLV-2 integration is highly oligoclonal, character-
ized by small numbers of expanded clones. (A) Clonal distribution
in representative subjects with HTLV-1 or HTLV-2 infection. The lowest
observed, median and highest observed oligoclonality index values are
shown. Each pie slice represents a single clone, proportional to relative
abundance. Subjects with .100 proviruses identified are shown.
OCI = oligoclonality index. (B) The observed number of clones in each
subject with HTLV-1 or HTLV-2 infection (p,0.001, Mann-Whitney test).
(C) The total number of clones in the blood was estimated using the
DivE estimator (Laydon et al., manuscript submitted). Only samples

containing sufficient information are shown. For each subject, the
population size of infected cells in the blood was estimated based on
the proviral load and average PBMC count. The estimated total number
of clones in the blood was between 1 and 2 orders of magnitude lower
in HTLV-2-infected subjects than in HTLV-1-infected subjects (p,0.001,
Mann-Whitney test). (D) The oligoclonality index across all HTLV-1 -
infected subjects compared to HTLV-2-infected subjects (p,0.001,
Mann-Whitney test). (E) The percentage of the load maintained by
clones observed only once compared between HTLV-1 and HTLV-2
(p,0.001, Mann-Whitney test).
doi:10.1371/journal.ppat.1004006.g003

Clonality of HTLV-2 in Natural Infection
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that the integration site plays a lesser role as a determinant of

clonal expansion in HTLV-2-infected individuals (Figure 4B).

Although abundant clones (absolute abundance .10 cells per

10,000 PBMCs) represent only a small fraction of all infected clones

in HTLV-1 infection, they represented approximately 20% of all

HTLV-2 clones in this study (Figure 4A). There are two possible

explanations for this discrepancy: either HTLV-2 clones are not

controlled as efficiently as HTLV-1 clones by the immune response,

or there is an unidentified driver (in addition to the virus itself) that

determines the proliferation of HTLV-2 clones. One potential

additional driver is antigenic stimulation of the infected cells.

Regardless of the forces that drive this vigorous clonal

proliferation of HTLV-2-infected cells, the observed correlation

between the oligoclonality index and proviral load in HTLV-2

infection (a correlation not observed in non-malignant HTLV-1

infection, see Figure 4C) suggests that clonal proliferation plays a

greater role in determining the viral burden of HTLV-2 than it

does in HTLV-1. Conversely, in HTLV-1 infection, the total

number of clones is more important as a determinant of viral

burden (Figure 4D), consistent with previous observations [23,28].

We conclude that the proviral load in HTLV-1 infection – and

therefore the risk of both inflammatory and malignant disease – is

determined primarily by the extent of infectious spread of the

virus, and that oligoclonal proliferation per se, contrary to previous

belief, does not contribute to HTLV-1-associated diseases. It

remains an important question whether infectious spread is mainly

confined to the early stages of infection or whether it persists

indefinitely, with continual formation and destruction of many

low-abundance clones. Work is now in progress to quantify the

ratio of infectious spread to mitotic spread in these two infections.

Given the observations that HTLV-2-infected clones proliferate

to a greater extent than many HTLV-1-infected clones in vivo,

and that HTLV-2 shows transformation potential in vitro [3,45], it

is puzzling that HTLV-2 is not associated with a T-cell

malignancy. One potential explanation is that the expansion of

HTLV-2 clones in vivo is short-lived, and that major clones

succeed each other over time. To test this possibility, integration

sites and clonal distribution in PBMCs taken at an earlier time-

point in the infection were compared to those identified ,10 years

later in 10 HTLV-2-infected individuals. Although there was no

significant difference in the oligoclonality index or the total

number of clones after correcting for the different numbers of

proviruses detected (not shown), the bulk of the load at the later

time-point (median = 96%, Figure 5A) belonged to clones already

present at the earlier time-point, and that these clones principally

maintained their expanded state over that period of time

(Figure 5B). A similar observation was made in HTLV-1 infection

by Gillet et al [23]. These observations reinforce the conclusion

reached above that oligoclonal proliferation of infected T-cells in

vivo does not in itself predispose to malignant disease in these

retroviral infections.

To determine the proportion of the proviral load carried by

CD4+ and CD8+ T-cells, we analysed the relative contribution of

each identified clone to the load to calculate the cumulative

contribution of each cell type. Using this method we found that

HTLV-2 was primarily restricted to CD8+ T-cell clones

Figure 4. HTLV-2 integration site and clonal expansion. (A) The
distribution of integration sites according to clonal abundance.
Abundance was quantified by the number of copies estimated in a
clone per 10,000 PBMCs (based on relative abundance and proviral
load). Abundance bins are defined on a logarithmic scale. (B) The
proportion of sites within 10 kb of a RefSeq gene for each abundance
bin. A significant positive trend (p = 0.04, chi-squared test for trend) was
detected for HTLV-1 but not for HTLV-2. (C) Oligoclonality index (OCI)
versus log10(proviral load) for each virus. A strong positive correlation
(p = 0.0015, Spearman’s test) was detected between these parameters
for HTLV-2 but not for HTLV-1(p = 0.681, Spearman’s correlation). (D)
The total number of unique integration sites (UIS) identified in each
PBMC sample versus log10(proviral load) for each virus (p,0.001 for
HTLV-1, p = 0.0019 for HTLV-2, Spearman’s test).
doi:10.1371/journal.ppat.1004006.g004

Figure 5. HTLV-2 expanded clones are long-lived and stable.
Integration sites identified in PBMCs from an early time-point (T1,
median = 9.9 years) were compared to those identified in the same
HTLV-2-infected subjects at the present time-point (T2). (A) The
percentage of proviral load (cumulative relative abundance) at each
time-point represented by clones also present at the other time-point.
(B) For clones found at both time-points, expanded clones (.1% of
load) at any one time-point were significantly more likely to be
expanded at both time-points (p,0.001, Fisher’s exact test).
doi:10.1371/journal.ppat.1004006.g005
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(mean = 96.3%; Figure 1). The main limitation of this method is

the sampling probability - i.e. the chance of redetection. If a clone

is detected in unsorted PBMCs but not in the sorted sample it is

not possible to attribute the clone to either CD4+ or CD8+ cells,

or to distinguish the lack of redetection by chance from the

possibility that the load is present in a different cell type (e.g. B

cells [46]). However, since more abundant clones are more likely

to be redetected in repeated experiments (N. Gillet and H.

Niederer, unpublished observations), the fact that 70% of high-

abundance clones (each constituting .1% of the load) were

redetected compared with only 40% of low-abundance clones

(each constituting ,1% of load) in one of the cell-sorted

populations suggests that low clone abundance, rather than an

untested cell type, was responsible for the small fraction of the

load not identified within either the CD4+ or CD8+ T-cell

compartments.

It remains unclear what controls the proliferation of HTLV-2

clones in vivo, and what mechanisms underlie the difference in

oncogenic potential of the two viruses. Possible factors include

differences between HTLV-1 and HTLV-2 in the actions of the

respective Tax protein [47] or the antisense proteins HBZ

(HTLV-1) and APH-2 (HTLV-2) [48]. Also, CD4+ and CD8+
T cells may differ in their susceptibility to malignant transforma-

tion. A useful insight may be found by examining the clonal

distribution of CD8+ cells infected with HTLV-1. A comparison

between the clonal distribution of HTLV-1 and HTLV-2 in CD8+

cells may enable a distinction between effects due to infected cell

phenotype and effects due to the differences in viral genome. This

project is currently underway.

In summary, we report a comprehensive analysis of integration

site preferences and clonal distribution in HTLV-2 infection. By

comparison with similar data from HTLV-1-infected individuals,

our results suggest an important distinction between virus-driven

cell proliferation and virus-driven malignancy, and strengthen the

conclusion that oligoclonal proliferation per se does not predispose

to malignant transformation.

Methods

Ethics statement
UK blood samples were obtained through the Communicable

Diseases Tissue Bank at Imperial College, approved by the UK

National Research Ethics Service (NRES reference 09/H0606/

106). Samples, with data linkage, were donated by HTLV-1 or

HTLV-2-infected subjects attending the National Centre for

Human Retrovirology, St Mary’s Hospital, Imperial College

Healthcare NHS Trust, London after giving written informed

consent. HOST Study approved by the University of California

San Francisco Committee on Human Research.

Patients and cells
Cryopreserved PBMCs from 16 HTLV-1-infected and 28

HTLV-2-infected individuals were used in this study (Supplemen-

tary Table S1). Twenty-six HTLV-2-infected subjects were

recruited to the HOST cohort, a long-term study of outcomes of

HTLV-1 and HTLV-2 infection [49]. Two HTLV-2 and all 16

HTLV-1-infected subjects were Communicable Diseases Tissue

Bank donors. Proviral load data on the HTLV-1-infected

individuals were reported previously [50]. Genomic integration

sites in 6 of the 16 HTLV-1-infected individuals were also

studied previously, albeit at a distinct time-point in each case

[23].

All DNA extractions were carried out using a DNeasy Blood

& Tissue Kit (Qiagen) according to the manufacturer’s protocol.

Quantification of proviral load
HTLV-2 proviral load was quantified as reported elsewhere

[51]. We used the proviral load for each patient at the nearest

available time-point, because the proviral load was not always

known for each at the same time-point at which clonality was

analysed, and because HTLV-2 proviral load is reported to be

stable over time [52]. Consistent with this assumption, our findings

were not qualitatively altered by using a proviral load measure-

ment from a different time-point.

Cell sorting
Cells were thawed and washed, then surface-stained with

directly-conjugated monoclonal antibodies specific for CD3, CD4

and CD8. Flow cytometric sorting was conducted to high purity

(.98%) using a custom-modified FACSAria II (BD Biosciences).

Lymphocytes were pre-gated on CD3, then sorted as CD4+CD82

and CD42CD8+ populations. Data were analysed with FACSDiva

v6 software (BD Biosciences). For each sample, DNA was

extracted from both sorted populations and from a separate

aliquot of unsorted PBMCs.

Integration site analysis
Ligation-mediated polymerase chain reaction (LM-PCR) primer

binding site sequences were determined from Sanger-sequenced

PCR amplicons (HTLV-1 primers: 5LTRfw –CTCGCATCT-

CTCCTTCACG, 5LTRrev – CTGGTGGAAATCGTAACTG-

GA; HTLV-2 primers: H2LTRfw – GACTCACCTTGGGGA-

TCCAT, H2LTRrev – TTAGCCAAATGGGCGTTTTA). Iden-

tification of integration sites was performed via LM-PCR followed

by high-throughput sequencing as described previously [23], using

the HTLV-2-specific forward primers: H2B3 – AAGGGCTAG-

GGCTTCCTGAACCTC and H2B5 – CTATAGGCAGGCC-

CGCCCCAGGAG (or variants thereof according to defined LTR

polymorphisms).

Prepared libraries were mixed and sequenced using either a

Genome Analyzer II or a HiSeq System (Illumina). The resulting

sequences were aligned to the human genome reference (hg18,

excluding haplotypes, randoms and mitochondrial DNA) and

HTLV-1/2 upstream sequence using the eland_pair implementa-

tion of CASAVA 1.8.2 (Illumina).

Bioinformatics
Integration sites were quantified by enumerating unique shear

sites as described previously [23]. Bins of absolute clonal abundance

were determined by the number of copies per 10,000 PBMCs (i.e.

relative clonal abundance multiplied by proviral load). In flow-

sorted samples, clones were attributed exclusively either to the

CD4+ or CD8+ cell population. Six clones were initially detected in

both CD4+ and CD8+ cells; in these cases the clone was ascribed to

the cell type with the greater number of proviruses of that clone.

In silico sites were derived by random selection of 190,000 sites

from the human genome (hg18). To eliminate any potential bias

due to alignment limitation, the DNA sequences at those sites were

generated using Galaxy [53,54] and back-aligned to the human

genome using the same pipeline.

Annotations to the human genome (hg18) were retrieved as

described previously (see Table S3 in [24]) and compared to

integration sites using the R package hiAnnotator (http://

malnirav.github.com/hiAnnotator), kindly provided by Nirav

Malani and Frederic Bushman (University of Pennsylvania,

Philadelphia, USA).

The DivE estimator was used to estimate the total number of

clones, in addition to those observed. DivE involves fitting many
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mathematical models to individual-based rarefaction curves

(Laydon et al., manuscript submitted). Here, individual-based

rarefaction curves depict the expected number of clones against

the number of infected cells sampled. Four numerical criteria are

used to score each model in terms of how consistently it

reproduces the total observed rarefaction curve from nested

subsamples thereof. Using the geometric mean, estimates from the

best-performing models are aggregated to produce the final

estimate. Samples with near-linear rarefaction curve (i.e. where the

curvature was less than 0.1(Laydon et al., manuscript submitted)

were excluded from the analysis. Such curves imply a (biologically

impossible) linear relationship between the number of infected

cells and the number of clones, which is indicative of severe under-

sampling. Prohibitively small sample sizes of less than 150

proviruses were also excluded from the analysis. DivE requires

an estimate of the number of cells in the blood Nblood, for which

we assume: (i) a circulating blood volume of 5L; (ii) a PBMC count

of 36109 L21; and (iii) each infected T-cell carries a single copy of

the provirus [55]. The number of PBMCs is thus assumed to

be 5636109. Proviral load (PVL) is defined as the number of

viral copies per 100 PBMCs. Therefore, Nblood is given by

PVL65636109.

Statistics
Statistical analysis was carried out using R version 2.15.2

(http://www.R-project.org/). The Gini coefficient was calculated

using the reldist R package ([56]; http://CRAN.R-project.org/

package = reldist). Two-tailed non-parametric tests including the

Mann-Whitney and Fisher’s exact test were used for all

comparisons.

Supporting Information

Figure S1 Experimental output per tissue type. High-

throughput sequencing analyses of integrated HTLV-2 proviruses

are shown for each tissue type. CD4+/CD8+ cells – PBMCs from

28 HTLV-2-infected subjects were sorted by flow-cytometry into

distinct CD3+CD4+CD82 and CD3+CD42CD8+ populations.

PBMCs – unsorted PBMCs from 28 HTLV-2-infected individuals.

PBMC early – unsorted PBMCs isolated previously from 10 of the

HTLV-2-infected subjects. (A) The total number of sequencing

reads for each HTLV-2 sample. (B) The total number of infected

cells (distinct proviruses) identified in each HTLV-2 sample. (C)

The total number of unique integration sites identified in each

HTLV-2 sample.

(TIF)

Figure S2 Integration bias at the sequence level.
Nucleotide sequences at the genomic sites of HTLV-2 integration

are summarized by position and base. The arrow denotes the

position of proviral integration. Base 1 is the first nucleotide

following the integrated provirus. For each position, the relative

proportion of sites containing each base is noted. Remarkably

favoured (red) or disfavoured (blue) bases compared to random (in

silico) sites are highlighted.

(TIF)

Table S1 Details of subjects in study.

(DOCX)
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