

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/78708/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Jones, Simon Arnett, Fraser, Donald James, Fielding, Ceri Alan and Jones, Gareth Wyn 2014. Interleukin-6 in renal disease and therapy. Nephrology Dialysis Transplantation 30 (4), pp. 564-574. 10.1093/ndt/gfu233

Publishers page: http://dx.doi.org/10.1093/ndt/gfu233

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Journal:	Nephrology Dialysis Transplantation
Article DOI:	gfu233
Article title:	Interleukin-6 in renal disease and therapy
First Author:	Simon A. Jones
Corr. Author:	Simon A. Jones

INSTRUCTIONS

- 1. Author groups: Please check that all names have been spelled correctly and appear in the correct order. Please also check that all initials are present. Please check that the author surnames (family name) have been correctly identified by a pink background. If this is incorrect, please identify the full surname of the relevant authors. Occasionally, the distinction between surnames and forenames can be ambiguous, and this is to ensure that the authors' full surnames and forenames are tagged correctly, for accurate indexing online. Please also check all author affiliations.
- 2. **Figures:** If applicable figures have been placed as close as possible to their first citation. Please check that they are complete and that the correct figure legend is present. Figures in the proof are low resolution versions that will be replaced with high resolution versions when the journal is printed.
- 3. Missing elements: Please check that the text is complete and that all figures, tables and their legends are included.
- 4. Special characters: Please check that special characters, equations, dosages and units, if applicable, have been reproduced accurately.
- 5. **Funding:** Please provide a Funding statement, detailing any funding received. Remember that any funding used while completing this work should be highlighted in a separate Funding section. Please ensure that you use the full official name of the funding body, and if your paper has received funding from any institution, such as NIH, please inform us of the grant number to go into the funding section. We use the institution names to tag NIH-funded articles so they are deposited at PMC. If we already have this information, we will have tagged it and it will appear as coloured text in the funding paragraph. Please check the information is correct.

Journal:	Nephrology Dialysis Transplantation
Article DOI:	gfu233
Article title:	Interleukin-6 in renal disease and therapy
First Author:	Simon A. Jones
Corr. Author:	Simon A. Jones

AUTHOR QUERIES - TO BE ANSWERED BY THE CORRESPONDING AUTHOR

The following queries have arisen during the typesetting of your manuscript. Please answer these queries by marking the required corrections at the appropriate point in the text.

Query No.	Nature of Query	Author's Response	
Q1	Please check that all names have been spelled correctly and appear in the correct order. Please also check that all initials are present. Please check that the author surnames (family name) have been correctly identified by a pink background. If this is incorrect, please identify the full surname of the relevant authors. Occasionally, the distinction between surnames and forenames can be ambiguous, and this is to ensure that the authors' full surnames and forenames are tagged cor- rectly, for accurate indexing online. Please also check all author affiliations.		
Q2	Details given in references [35] and [108] were same. Hence, reference [108] has been deleted and the references have been renumbered accordingly.	\square	
Q3	Details given in references [73] and [119] were same. Hence, reference [119] has been deleted and the references have been renumbered accordingly.		
Q4	Please check the in-text citation of Table 2.		
Q5	Please provide author name for 'unpublished data'.		
Q6	If references has more than 3 authors, then list the names of first 3 authors followed by et al.; otherwise, provide the names of all the authors.		
Q7	Please provide the volume number and page range for ref [83].	$\overline{\mathcal{O}}$	
Q8	Please update ref [111] and [121].		
Q9	Please provide the year of publication for ref [123].		

MAKING CORRECTIONS TO YOUR PROOF

These instructions show you how to mark changes or add notes to the document using the Adobe Acrobat Professional version 7.0 (or onwards) or Adobe Reader 8 (or onwards). To check what version you are using go to **Help** then **About**. The latest version of Adobe Reader is available for free from <u>get.adobe.com/reader</u>.

For additional help please use the **Help** function or, if you have Adobe Acrobat Professional 7.0 (or onwards), go to http://www.adobe.com/education/pdf/acrobat_curriculum7/acrobat7_lesson04.pdf

Displaying the toolbars

Adobe Reader 8: Select Tools, Comments & Markup, Show Comments and Markup Toolbar. If this option is not available, please let me know so that I can enable it for you.

Adobe Reader 10: To edit the galley proofs, use the Comment Toolbar (Sticky Note and Highlight Text).

Using Text Edits

This is the quickest, simplest and easiest method both to make corrections, and for your corrections to be transferred and checked.

- 1. Click Text Edits
- 2. Select the text to be annotated or place your cursor at the insertion point.
- 3. Click the **Text Edits** drop down arrow and select the required action.

You can also right click on selected text for a range of commenting options.

Pop up Notes

With *Text Edits* and other markup, it is possible to add notes. In some cases (e.g. inserting or replacing text), a pop-up note is displayed automatically.

To **display** the pop-up note for other markup, right click on the annotation on the document and selecting **Open Pop-Up Note**.

To **move** a note, click and drag on the title area.

To **resize** of the note, click and drag on the bottom right corner.

To **close** the note, click on the cross in the top right hand corner.

To **delete** an edit, right click on it and select **Delete**. The edit and associated note will be removed.

SAVING COMMENTS

In order to save your comments and notes, you need to save the file (**File, Save**) when you close the document. A full list of the comments and edits you have made can be viewed by clicking on the Comments tab in the bottom-lefthand corner of the PDF.

Full Review

Interleukin-6 in renal disease and therapy

Simon A. Jones¹*, Donald J. Fraser², Ceri A Fielding¹ and Gareth W. Jones¹

¹Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales, UK and ²Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales, UK

5 *Correspondence and offprint requests to: Simon A. Jones; E-mail: jonessa@cardiff.ac.uk

ABSTRACT

Interleukin (IL)-6 has become a major target for clinical intervention in various autoimmune conditions. Here, drugs including the humanized anti-IL-6 receptor (IL-6R) antibody 10 Tocilizumab emphasize the clinical importance of IL-6 in driving disease and poor patient outcomes. During the course of this review we will outline the biology surrounding IL-6 and will discuss the impact of IL-6 in renal disease and the clinical

complications associated with renal replacement therapies and 15 transplantation. We will also consider the merit of IL-6 measurement as a prognostic indicator and provide a clinical perspective on IL-6 blocking therapies in renal disease.

Keywords: cytokines, interleukin-6, renal disease, therapy

INTRODUCTION 20

Cytokines perform pivotal roles during infection, trauma, cancer and inflammation where they control cellular proliferation, differentiation, survival or death and cytokine specific gene expression. Here, cytokine-driven communication between

- immune cells and stromal non-haematopoietic cells enables 25 resolution of the condition and is part of the healing process [1]. However during chronic inflammatory conditions, appropriate regulation of the immune response is lost and drives disease progression. Under these circumstances, cytokines affect
- the development of autoimmunity, chronic inflammation and 30 deleterious tissue damage [1]. This has ultimately led to the design of biologic drug agents that target specific cytokines to prevent the rapid clinical progression of disease. For example, tumour necrosis factor- α (TNF α) blockers (e.g. the neutraliz-
- ing anti-TNFα antibodies Infliximab, Adalimumab, Golimumab, Certolizumab or the soluble TNF-R2 Fc-fusion protein

Etanercept) are broadly used to treat various autoimmune conditions, while interleukin (IL)-1ß inhibitors (e.g. the IL-1 receptor antagonist, Anakinra) have shown robust efficacy in auto-inflammatory conditions [2]. Although these agents are 40 effective treatments for many diseases, not all biologics work in all patients, and not all biologics work in all inflammatory conditions [1, 2]. Such observations are significantly influencing the way researchers consider cytokine involvement in disease. Emphasis is now placed on identifying alternative 45 cytokine targets and strategies for therapeutic intervention, while a greater attention to cytokine biology and signalling is providing opportunities to stratify patients with chronic disease for more appropriate treatment. Here, research is leading to a detailed understanding of how the cytokine network becomes 50 distorted to drive chronic inflammation instead of competent host defense. During the course of this review, we discuss the impact of IL-6 in renal disease and will describe aspects of its biology that affect disease onset and progression, prognosis and treatment decisions. 55

INTERLEUKIN-6 AS A CLINICAL TARGET

Interleukin-6 was first described as interferon β 2, hepatocyte stimulating factor, cytotoxic T-cell differentiation factor, B-cell differentiation factor and B-cell stimulatory factor-2, which reflects its capacity to regulate lymphocyte activation and the 60 acute phase response [3]. While these activities are markedly impaired in IL-6-deficient mice, it is important to remember that IL-6 also controls various homeostatic functions including glucose metabolism, the hypothalamic-pituitary-adrenal (HPA) axis, affecting mood, fatigue and depression and haem-65 atopoiesis [3,4]. In this regard, systemic elevations in IL-6 cause hyperthermia and leads to a general loss of activity and appetite [5]. As an inflammatory cytokine, IL-6 is one of the

most highly regulated mediators of inflammation (increasing

- from 1-5 pg/mL to several µg/mL in certain conditions) and 70 performs central roles in infection, autoimmunity and cancer [6-9]. While traditionally viewed as a downstream target of TNF α and IL-1 β activity, various other inflammatory stimuli induce IL-6 expression, and IL-6 forms part of an integrated cytokine network that controls innate and adaptive immunity 75
- [3, 8, 9]. As a consequence, IL-6 is a major target for therapeutic intervention and the complex nature of its biology has led to development of various therapies that target either the cytokine directly (e.g. Olokizumab, Clazakizumab) or the α -
- subunit of its receptor (e.g. Tocilizumab, Sarilumab) [9]. A full 80 list of blocking IL-6 strategies and the current status of their clinical development is shown in Table 1. This information covers specific IL-6 targeting agents and small molecule inhibitors that block intracellular proteins associated with (but
- not necessary exclusive to) IL-6 receptor signalling. Given that 85 cytokines, such as IL-6 contribute to the progression of renal disease and associated complications (e.g. vascular calcification, wasting, fatigue and cardiovascular risk), the potential applications of anti-cytokine targeted intervention deserves closer attention [16, 17]. For additional information on IL-6 90 targeted therapies the reader is directed elsewhere [2, 9, 18].

The IL-6 receptor complex consists of an 80 kDa cognate receptor (IL-6R, CD126) and a 130 kDa signal-transducing element (gp130, CD130) [8, 9]. Although IL-6R is largely confined to hepatocytes, certain leukocytes and some epithelial lining cells, IL-6 activity is also controlled by a naturally occurring soluble IL-6R (sIL-6R). The sIL-6R is a key regulator of IL-6 responses and forms a sIL-6R/IL-6 complex capable of activating cells via the ubiquitously expressed gp130 [3, 7-9, 19]. This process is called IL-6 trans-signalling, and activates IL-6-type responses in cells lacking IL-6R (e.g. vascular endothelial cells, peritoneal mesothelial cells and synovial fibroblasts). Interleukin-6 responses in vivo are therefore mediated by IL-6 activation of a membrane-bound IL-6R (classical IL-6R signalling) or via its soluble receptor (Figure 1). In both 105 cases, IL-6 activates gp130 associated cytoplasmic tyrosine kinases (Janus kinases; Jak1, Jak2 and Tyk2), which control the latent transcription factors STAT1 and STAT3, and signalling through the Ras-Raf cascade. For a more detailed overview of IL-6 signalling the reader is directed elsewhere [20].

110

FULL REVIEW

- From a clinical perspective, measurements of IL-6, its soluble receptor and indices of IL-6 bioactivity (e.g. STAT3 responses) are increasingly viewed as surrogate markers of inflammation, disease severity and valuable predictors of disease progression. During the course of this review we will consider
- 115 the impact of IL-6 biology in various aspects of renal disease, transplantation and therapy and detail potential avenues for future clinical translation (Table 1).

CONTROL OF IL-6 EXPRESSION BY 120 INFLAMMATION, GENETIC VARIATION AND MICRORNAS

In chronic inflammation and autoimmunity IL-6 plays roles in both local (e.g. control of chemokine-directed leukocyte

recruitment) and systemic inflammation (e.g. activation of the acute phase response). Here, IL-6 transcription is regulated 125 by various pro-inflammatory cytokines and growth factors (e.g. IL-1, TNFα and platelet derived growth factor; PDGF), increases in intracellular cyclic AMP and certain pattern recognition receptors following activation by microbial or endogenous ligands [1]. Interleukin-6 is rapidly expressed in a 130 highly transient manner during inflammation. Here, circulating sIL-6R concentrations act as a buffering system that helps to maintain the circulating half-life of IL-6. Thus, sIL-6R is a central regulator of IL-6 bioactivity and must be tightly controlled to limit overt IL-6 signalling (Figure 1). While circulat-135 ing levels of soluble gp130 (sgp130) selectively antagonize IL-6 trans-signalling, intracellular regulators of IL-6R-gp130 signalling (e.g. suppressor of cytokine signalling; SOCS proteins) prevent a prolonged activation by IL-6. Of equal importance are genetic factors, which substantially influence IL6 expres-140 sion. This is best illustrated by the identification of functional polymorphisms within the IL6 promoter. For example, a G > C (rs1800795) mutation found at position -174 bp upstream from the transcriptional start site leads to enhanced IL-6 expression [21]. Similar genetic variations up to 6 kb from 145 the start of transcription also correlate with serum and constitutive IL-6 levels. Patients displaying the rs1800975 mutation often show increased susceptibility to coronary artery disease, juvenile idiopathic arthritis and many other conditions typified by chronic inflammation or autoimmunity. Similar genetic 150 mutations also occur in the IL6R loci, with the rs2228145 variant affecting the proteolytic release of sIL-6R from cells. Significantly, the rs2228145 mutation in various ethnic populations has been linked to insulin resistance, an increase in body mass index, Type-II diabetes and diabetic nephropathy 155 [22-28].

Recent data show that microRNAs also govern IL-6 expression and activity. MicroRNAs are short endogenous RNA regulators of gene expression, the first of which was identified in the nematode Caenorhabditis elegans in 1993 160 [29]. MicroRNAs are present in all human cells, and each represses the expression of a specific set of genes. The let-7 family contains the first microRNAs to be identified in mammals [30]. Let-7 microRNAs, most notably let-7a, target and repress synthesis of IL-6 [31]. Let-7 microRNAs are 165 themselves down-regulated by Lin28B [31], which is induced following activation of nuclear factor- κB (NF- κB) to ensure optimal Il6 expression and cellular transformation [32]. Also, microRNA-23a targets and represses Il6r [33], meaning that cellular capacity to respond to IL-6 is also microRNA-170 regulated. MicroRNAs are also important effectors of IL-6 responses. For example, microRNAs-21 and microRNAs-181b-1 are induced by IL-6 activation of Stat3. These increase NF-KB activity via repression of their targets phosphatase and tensin homologue (PTEN) and CYLD (the human gene 175 associated with cylindromatosis) [34]. Finally, emerging data show that microRNAs may be released by cells, and serve as a mechanism for intercellular communication. A subset of these extracellular microRNAs can induce pro-inflammatory responses, including IL-6 secretion, by binding to and activating Toll-Like Receptors [35].

Table 1. Targeting IL-6 in disease

Targeting Strategy	Compound	Company	Specificity	Disease	Phase	ClinicalTrials. gov
Global IL-6 signaling Targeting soluble and membrane-bound Interleukin 6 receptor	Tocilizumab (ACTEMRA, RoACTEMRA)	Chugai, Roche	Humanized IL-6 receptor-specific mAb	Castleman's disease Juvenile idiopathic arthritis Systemic-onset juvenile idiopathic arthritis Rheumatoid Arthritis Adult's still disease Graves' ophthalmopathy Relapsing polychondritis Ankylosing spondylitis Tune II disbates and curreise	2005, Japan 2008, Japan 2008, Japan 2009, EMEA; 2010, FDA Phase II; 2009–11 Phase III; 2011–13 Phase II; 2010–12 Phase III; 2010–14 2010–12	Approved Approved Approved NCT01002781 NCT01297699 NCT01104480 NCT01209702 NCT01073826
	REGN88 (SAR153191)	Regeneron/ Sanofi-Aventis	Fully human IL-6 receptor-specific mAb	Rheumatoid arthritis	Phase II; 2010–12 Phase II + III; 2010–13 Phase III; 2010–15	NCT01217814 NCT01061736 NCT01146652
				Ankylosing spondynus	phase II; 2010–11 phase III; 2010–15	NCT01284569 NCT01118728
Global IL-6 signaling Targeting Interleukin 6	ALX-0061 CDP6038 (Olokizumab)	Ablynx UCB, Inc.,	IL-6 receptor-specific VHH IL-6 specific mAb	Rheumatoid arthritis Rheumatoid arthritis	Phase I + II; 2011–12 Phase I + II; 2009–10 Phase II; 2010–12	NCT01242488 NCT01009242 NCT01242488
	CNTO136 (Sirukumab) CNTO328 (cCLB, Siltuximab)	Centocor, Inc., Centocor, Inc.,	Fully human IL-6-specific mAb Chimeric IL-6-specific mAb	Rheumatoid arthritis Castleman disease Multiple myeloma [125]	Phase II; 2011–14 Phase II; 2008–11 Phase II; 2010–12 Phase II; 2006–12 Phase II; 2009–14 Phase III; 2010–14	NCT01296711 NCT00718718 NCT01024036 NCT00402181 NCT00911859 NCT01266811
				Prostate cancer	Phase I; 2005–10 Phase II; 2006–008 Phase II; 2007–09	NCT00401765 NCT00385827 NCT00433446
				Solid tumors Metastatic renal cell carcinoma Metastatic kidney cancer	Phase I + II; 2009–11 Phase I + II; 2005–10 Phase II; 2006–10	NCT00841191 NCT00265135 NCT00311545
	ALD518 (BMS-945429)	Alder Biopharm./ Bristol-Myers	Humanized IL-6-specific mAb, aglycosylated	Rheumatoid arthritis Non-small cell lung-cancer related	Phase II; 2008–09 Phase II; 2008–09	NCT00867516 NCT00866970
IL-6 Trans-signaling Targeting IL-6/sIL-6R	C326 FE301	Avidia Conaris/Ferring	anti-IL-6/anti-Fc avimer protein Soluble gp130-Fc fusion protein	Crohn's disease Crohn's disease	Phase I; 2006–07 Preclinical	NCT00353756
Downstream signaling Targeting janus kinases (JAKs) downstream of gp130/IL6ST	Tofacitinib	Pfizer	JAK1 and 2	Rheumatoid arthritis Kidney transplant Psoriasis Rheumatoid arthritis	Phase III; 2013 Phase II; 2006 Phase I-III; 2004–14 Phase I; 2012–13	NCT00661661 NCT00106639 NCT01519089 NCT01741493
	Ruxolitinib	Incyte/Novartis	JAK1 and 2	Multiple myeloma Myelofibrosis Plaque psoriasis	Phase II; 2010 Phase II; 2012–13 Phase II; 2009	NCT00639002 NCT01340651 NCT00820950
	Baricitinib (INCB-28050) GLPG-0634	Eli Lilly/Incyte Abbot/Galapagos	JAK1 and 2 JAK1	Rheumatoid arthritis Rheumatoid arthritis	Phase II; 2010 Phase I+ II; 2011–12	NCT00902486 NCT01384422 NCT01668641
	AC430	Ambit Biosciences	JAK2	Rheumatoid arthritis	Phase I, 2011	NCT01287858

FIGURE 1: Interleukin-6 and mechanisms for receptor signalling. Interleukin-6 activates cells through two distinct mechanisms termed classical IL-6R signalling and IL-6 trans-signalling. The receptor complex responsible for regulating IL-6 responses consists of a non-signalling cognate receptor (IL-6R, CD126), which binds IL-6 and dimerizes with the signal-transducing receptor subunit gp130. (**A**) Classical IL-6R signalling occurs in cell types that inherently express both IL-6R and gp130. (**B**) While expression of IL-6R has a restricted cellular expression (hepatocytes, leukocytes and certain epithelial cells), these cells also generate a soluble form of the IL-6R (sIL-6R) that retains cytokine-binding properties and mediates IL-6 responses in cell types that lack IL-6R, but expression gp130 (IL-6 trans-signalling). (**C**) In many instances, IL-6 trans-signalling regulates various inflammatory activities and must be tightly regulated. Here, a soluble form of gp130, which circulates at high serum concentrations acts as an antagonist of IL-6 trans-signalling and binds IL-6 only when bound to sIL-6R.

IL-6 IN GLOMERULONEPHRITIS, CHRONIC KIDNEY DISEASE AND ACUTE KIDNEY INJURY

- 185 Clinical and experimental studies suggest that IL-6 contribute to renal injury in glomerulonephritis and other forms of renal disease. For example, elevated IL-6 expression in kidneys and urine of patients with mesangial proliferative glomerulonephritis is often associated with poor outcome [36]. In this con190 text, IL-6 induces mesangial cell proliferation [36]. In murine
- models of lupus nephritis IL-6 activities promote tissue damage and disease severity [37–39], while transgenic mice displaying elevated levels of circulating IL-6 develop proteinuric nephropathy that culminates in death from renal failure [40].
- 195 Ultimately, the role of IL-6 in these conditions may relate to IL-6 involvement in fibrosis and tissue damage. In models of angiotensin-II induced renal disease, infusion of angiotensin-II induces IL-6 expression and renal fibrosis. This response is IL-6 dependent and IL-6-deficient mice remain resistant to
- 200 renal injury [41]. Mechanistically, IL-6 may contribute to renal disease by enhancing the signalling response of tubular epithelial cells to pro-fibrotic cytokines such as transforming growth factor- β (TGF β) [42]. However, data from other experimental models of renal injury show that IL-6 is not always

a key facet of progressive kidney damage [43–45]. What factors 205 contribute to these differences in disease outcome remain to be established, but may reflect differences in disease induction methods or protocols using cytokine-deficient animals versus direct manipulation of cytokine activity in wild type strains.

In patients with acute kidney injury (AKI), high circulating 210 levels of IL-6 are predictive of increased mortality [10]. This outcome is also seen in murine models of ischaemia reperfusion injury- and nephrotoxin-induced models of AKI [11, 46, 47]. In mercuric chloride-induced AKI, IL-6 deficient mice exhibit less kidney-associated inflammation, and have improved 215 outcome [47]. In the same study, IL-6 trans-signalling in tubular epithelial cells ameliorated injury and led to preservation of renal function. This led the authors to conclude that IL-6 simultaneously promotes an injurious inflammatory response and, through a mechanism involving IL-6 trans-signalling, 220 protects the kidney from further injury [47]. These studies are akin to the role of IL-6 and IL-6 trans-signalling in regulating homeostatic gut epithelia remodelling versus colitis-like inflammation [9]. Significantly, tocilizumab is not prescribed in patients with a history of diverticulitis [2, 9]. 225

Biologics against IL-6 are highly effective in autoimmune conditions including rheumatoid arthritis [1, 2]. To date, there is little data relating to IL-6 blockade in patients with renal disease. Case reports of tocilizumab use in patients with condi-

- tions where renal complications is an associated co-morbidity show promising improvements in urinary sediment, proteinuria and stabilization of renal function. These include the lymphoproliferative disorder multicentric Casteman's disease [48, 49], AA Amyloidosis [50, 51] and a subset of five patients with
- 235 renal dysfunction in a Phase I study of SLE [52]. While these studies endorse the potential clinical application of IL-6 targeted interventions in acute or chronic renal disease, definitive randomized controlled trials are lacking.

INTERLEUKIN-6 IN RENAL 240 TRANSPLANTATION

Renal transplantation is considered to be the 'gold standard' treatment for most patients with end stage renal failure. Benefits include improved patient survival, quality of life and healthcare cost [53]. Recent advances in treatment means that
the rate of acute clinical rejection (AR) has fallen. However, AR remains a determining factor for the development of chronic rejection and long-term allograft survival [53, 54].

Interleukin-6 has long been highlighted as a pro-inflammatory cytokine associated with renal allograft rejection. While IL-6 levels are low in the serum and urine of healthy individuals, renal transplant recipients display high serum and urinary IL-6 levels immediately post transplantation and during AR [55, 56]. For example, increased IL-6 mRNA transcripts have been identified in renal biopsies from patients undergoing AR

255 [57]. Notably, while AR episodes have been associated with increased serum and urine IL-6 levels, preventative rejection treatments stabilize IL-6 expression and return them to baseline [12, 58].

- Most studies have underlined the greater sensitivity of urinary IL-6, over serum measurements, as potential indicators of rejection. For example urinary actin, IL-6 and CXC-chemokine ligand 8 (CXCL8) have been proposed as biomarkers of sustained acute renal failure in allograft recipients [59]. Kwon *et al.* [59] observed elevated urinary IL-6 excretion in patients displaying sustained acute renal failure compared with those
- that went on to recover. For patients showing sustained failure, urinary IL-6 was increased on the day of transplant and also remained higher at postoperative Day 5. In a recent analysis of 90 transplant patients, stable allograft recipients showed
- 270 similar levels of serum IL-6 to healthy individuals. However patients undergoing allograft rejection displayed significant increases in circulating IL-6 [60]. Notably, higher IL-6 levels were observed in individuals undergoing chronic allograft rejection compared with patients in AR [60]. Interestingly, while
- 275 increases in serum and urinary IL-6 are associated with AR, sIL-6R levels do not correlate with rejection [12]. While the mechanisms affecting these outcomes are far from clear, they may relate to associated genetic factors. Meta-analysis of transplant patients shows that alterations in AR risk are associated
- 280 with individuals bearing the rs1800795 'high' IL-6 producing loci [61, 62]. Notably, in allogenic haematopoietic cell transplantation, the rs1800795 variant is linked with increased risk of developing acute graft-versus-host disease [62]. Therefore,

IL-6 donor genotype may be more important in graft rejection than recipient genotype. Here, IL-6 may serve as an immune 285 'danger signal' thereby disrupting allograft tolerance.

Mechanisms underpinning the role of IL-6 in allograft transplant rejection may hinge on its partnership with TGFB, which together balance the induction of T-cell tolerance versus pro-inflammatory effector responses. Regulatory T-cells 290 (T_{reg}) provide tolerance by suppression of allo- and autoimmune responses [63-65]. These cells are defined by their expression of transcription factor FoxP3, and are either thymus derived (natural Treg; nTreg) or can differentiate from naïve CD4⁺ T-cells activated in the presence of TGF β (induced T_{reg}; 295 iT_{reg} [66]. Such has been the impact of T_{reg} cells on allograft tolerance in experimental animal models, that recent studies have proposed FoxP3 as a prognostic marker for renal allograft outcome (see review [67]). Interestingly, IL-6 inhibits the TGFβ-mediated differentiation of iT_{reg} cells, instead favouring 300 the development of IL-17-producing CD4⁺ T-cells (T_h17 cells) [68, 69]. While T_{reg} cells provide tolerance, there is mounting evidence of a role for Th17 cells in allograft rejection. For example, allograft infiltrating Th17 cells were associated with hallmarks of chronic rejection including exacerbated vasculo-305 pathy and fibrosis in models of cardiac allograft rejection [70, 71]. In renal allografts, elevated IL-17 mRNA and protein has been demonstrated during AR in both clinical patients and experimental models [72-74]. Owing to the bias of IL-6 for inducing effector Th17 cells rather than regulatory Treg populations with tolerogenic properties in allogenic grafts, therapeutically targeting the IL-6 signalling pathway may prove beneficial to renal transplant outcomes in patients undergoing acute and chronic rejection.

THE BIOLOGY OF INTERLEUKIN-6 IN RENAL 315 REPLACEMENT THERAPY

Haemodialysis (HD) and peritoneal dialysis (PD) represent the two major renal replacement therapies available for patients with end-stage renal disease (ESRD). Both IL-6 and sIL-6R are considered important prognostic markers of clinical 320 outcome in ESRD patients. ESRD patients have elevated serum IL-6 levels prior to treatment [75, 76]. Impaired excretion due to reduced kidney function has been suggested as one reason for this elevation [77], although IL-6 mRNA is increased in the peripheral blood mononuclear cells of ESRD pa-325 tients [78]. PD treatment itself leads to increases in systemic and intraperitoneal IL-6 and sIL-6R levels [79]. Here, systemic elevations in circulating levels may reflect a consequence of persistent or episodic bouts of inflammation, patient comorbidities, genetic factors, obesity, alterations in metabolism, 330 infection incidence or other immunological events [80, 81]. However, raised serum IL-6 and sIL-6R levels at the beginning of treatment remain powerful predictors of mortality in both HD and PD patients [17, 75, 82, 83]. These changes may reflect the systemic inflammatory status of a patient, and often 335 corresponds to elevations in C-reactive protein [83, 84]. For example, high IL-6 levels contribute to dialysis associated malnutrition [13, 14] and are prognostic of cardiovascular risk

FULL REVIEW

[85], which is an adverse outcome of haemodialysis [15]. Here, systemic elevations in IL-6 likely arise from the liver, muscle and the inflammatory activation of stromal tissues or myeloid cells (Table 2).

Patients receiving PD often experience a number of clinical complications. These include: (i) susceptibility to recurrent

345 e p a

350

Q5

360

FULL REVIEW

375

380

episodes of peritonitis and (ii) changes in the structure of the peritoneal membrane resulting in loss of ultrafiltration capacity and treatment failure. PD-associated peritonitis is caused predominantly by Gram-positive *Staphylococcus* species (most commonly by *Staphylococcus epidermis* and *Staphylococcus aureus*), but also by Gram-negative bacteria (e.g. *Escherichia coli*) and fungi (e.g. *Candida albicans*) [86]. Here, IL-6 is essential for the appropriate control of acute inflammation and promotes bacterial clearance. Murine models of peritonitis have shown IL-6/sIL-6R signalling via STAT3 regulates leukocyte recruitment and activation [87–91], and IL-6-deficient mice are less able to clear a number of bacterial species [4, 92] (unpublished data). Interestingly, individuals with defects in IL-6 or STAT3 display an impaired immune defense against *Staphylococcal* infection [93, 94], implying IL-6 is an essential

part of the immune response to *Staphylococcus* species. Under these conditions, IL-6 is highly expressed by resident peritoneal leukocytes and mesothelial cells following microbial sensing by pattern recognition receptors [95–98]. Indeed elevated concentrations of IL-6 and sIL-6R are present in peritoneal dialysis effluent of patients during acute episodes of bacterial peritonitis [88].

Extended PD therapy is associated with functional and morphologic alterations to the peritoneal membrane and result in PD treatment failure [99]. These changes may be induced by uraemia, hyperglycaemia, prolonged exposure to bio-incompatible peritoneal dialysis fluids, age and recurrent episodes of peritonitis. Here, vascular alterations contribute to increased peritoneal solute transport [100]. IL-6 levels are also an important determinate of solute transport in PD [101]. Intraperitoneal IL-6 and sIL-6R levels significantly correlate with the baseline peritoneal solute transport (PSTR) observed in PD patients and are predictive of pro-angiogenic factors present in the dialysate (CCL2; CC-chemokine ligand 2 and VEGF; vascular endothelial growth factor) [102]. In this regard, plasma levels of IL-6 and VEGF are associated with a high PSTR [17]. Again, the rs1800795 genetic loci relate to intraperitoneal IL-6 levels and baseline PSTR [103], and represent an independent risk factor for mortality and treatment failure [104]. Regarding the role of IL-6 in fibrotic changes, IL-6 plays a clear role in normal wound healing [105] and fi-385 brogenesis in various organs (e.g. lung, skin and kidney) [41, 106,107]. Recently, we have found that IL-6 is essential for the development of peritoneal fibrosis following recurrent peritonitis in a murine model [108]. IL-6-dependent changes in peritoneal Th1 responses and IFN- γ and STAT1 activation within 390 the peritoneal membrane lead to alterations in the balance of matrix metalloproteinase to tissue inhibitors of matrix metalloproteinases. Collectively, these studies demonstrate a fundamental aspect of IL-6 involvement in inflammation and specifically emphasize its importance in governing the balance 395 between provision of competent host defense and inflammation-induced tissue injury.

INTERLEUKIN-6, COMORBIDITIES AND URAEMIA IN END-STAGE RENAL DISEASE

Considerable emphasis has been placed on the relationship 400 between IL-6 (and to a lesser extent sIL-6R) and C-reactive protein, cardiovascular risk and patient outcomes such as fatigue. However IL-6 also functions as a homeostatic regulator of catabolism, iron uptake and muscle wasting. The IL-6 control of these processes has a major bearing on patients with 405 ESRD and affects the incidence of anaemia, protein-energy wasting and muscle atrophy [16, 109–113]. For example, the hepatic control of hepcidin expression in response to systemic elevations in IL-6 disrupts iron homeostasis and leads to ironrestricted erythropoiesis and anaemia [114-116]. In patients 410 with rheumatoid arthritis, treatment with the blocking anti-IL-6R monoclonal antibody tocilizumab rapidly improves anaemia by reducing serum hepcidin [117]. In ESRD many of these processes are ultimately influenced by underlining alterations in uraemia. Studies show that uraemia is a contrib-415 uting factor in the control of increased plasma IL-6 concentrations [76, 118]. Thus, therapeutic control of IL-6 with selective anti-cytokine interventions in combination with a standard treatment for uraemia is likely to improve many compounding complications associated with the clinical management of 420 ESRD [112, 119, 120].

INTERLEUKIN-6 AND CLINICAL OUTCOMES

It is widely acknowledged that cytokines play an integral role in determining the course of disease and IL-6 is increasing

Factor	Condition	Associated outcome	Reference
IL-6	AKI	Mortality	[10]
	Ischaemia reperfusion injury	Unclear	[11]
	Chronic allograft rejection	Acute rejection	[12]
	Haemodialysis and peritoneal dialysis	Mortality	Pecoits-Filho et al. (2002) [17]
		Malnutrition	[13, 14]
		Vascular changes	[15]
IL-6R	Haemodialysis and peritoneal dialysis	Mortality	Pecoits-Filho et al. (2002) [17]

This table summarizes the published clinical and experimental studies linking the IL-6 pathway to renal disease, transplantation and renal replacement therapy, and its associated outcomes.

FIGURE 2: Clinical implications for IL-6 research. (A) Various therapeutic strategies are either in standard clinical practice or emerging through pre-clinical studies and early stage clinical trials. These include specific cytokine and cytokine receptor blockers and less selective inhibitors of signal transduction components. (B) Measurement of IL-6, sIL-6R and sgp130 are increasingly being viewed as prognostic indicators and inform clinical decisions ranging from the overall severity of inflammation to co-morbidities including cardiovascular risk. (C) An increased understanding of IL-6 signalling is identifying novel mechanisms for the involvement of IL-6 in autoimmunity, disease and cancer. Such research has also identified crosstalk between IL-6 signalling and other cytokines or immune sensing mechanisms.

- 425 viewed as major drug targets for therapy (Figure 2). The application of biologics in conditions such as rheumatoid arthritis emphasize that early therapeutic intervention is essential to ensure appropriate management of the condition and potential disease remission [2]. While certain biologics (e.g. bevaci-
- 430 zumab, a humanized monoclonal antibody to VEGF-A) have shown therapeutic efficacy in forms kidney cancer, their application in chronic renal diseases appears to have minimal appeal. This in part may reflect the success of renal transplantation. Instead, clinical assessments of cytokine expression or activities may be considered important prognostic or predict-
- 435 activities may be considered important prognostic of predictive biomarkers that forecast the course of disease and aid treatment decisions. For example, the monitoring of IL-6 in PD patients is providing valuable information on the loss of ultrafiltration capacity, fibrosis onset, the control of infection and
- treatment failures [17, 77, 79, 82, 83, 102]. Here, IL-6 activities not only predict local disease processes, but also provide valuable information on systemic inflammatory events and patient co-morbidities (Figure 2). For example, detection of serum IL-6 in PD patients significantly increases with time on dialysis
- 445 and, as seen in other chronic diseases, correlates with indices of cardiovascular risk [121]. Such findings offer a valuable addition to the standard measurement of C-reactive protein and provide additional information on the potential efficiency of treatment. While the clinical assessment of C-reactive pro-
- 450 tein is used to reflect the degree of systemic inflammation and potential cardiovascular risk associated with a patient's disease, the role of C-reactive protein in determining the underlining pathology is unclear [122]. Interleukin-6 is the principle driver

of C-reactive protein expression and may be viewed as a surrogate marker of IL-6 bioactivity. In this context, the clinical assessment of IL-6 may provide a more powerful prediction of inflammation burden in ESRD [123, 124].

The impact of chronic kidney disease on healthcare systems around the world is increasing. In response, it is essential for new clinical assessments to be applied to provide a more personalized approach to patient stratification, and improvements in treatment decisions. Studies emphasize that IL-6 and associated downstream signalling events may represent one such marker (Figure 2). However to identify the pathways contributing to chronic disease progression in patients with varying degrees of renal disease, we must understand how cytokines like IL-6 govern acute resolving inflammation and how their activities become distorted to drive chronic inflammation.

REFERENCES

- McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7: 429–442
- Choy EH, Kavanaugh AF, Jones SA. The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol 2013; 9: 154–163
- Kishimoto T. IL-6: from its discovery to clinical applications. Int 475 Immunol 2010; 22: 347–352
- 4. Kopf M *et al.* Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 1994; 368: 339–342
- 5. Schobitz B *et al.* Soluble interleukin-6 (IL-6) receptor augments central effects of IL-6 in vivo. FASEB J 1995; 9: 659–664

- 6. Waage A, Brandtzaeg P, Halstensen A et al. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 1989; 169: 333-338
- 7. Silver JS, Hunter CA. gp130 at the nexus of inflammation, autoimmunity, and cancer. J Leukoc Biol 2010; 88: 1145-1156
- 8. Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 2005; 175: 3463-3468
- 9. Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest 2011; 121: 3375-3383
- 10. Simmons EM et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int 2004; 65: 1357-1365
- 11. Lemay S, Rabb H, Postler G et al. Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia-reperfusion injury. Transplantation 2000; 69: 959-963
- 12. Waiser J et al. Interleukin-6 expression after renal transplantation. Nephrol Dial Transplant1997; 12: 753-759
- 13. Kaizu Y et al. Interleukin-6 may mediate malnutrition in chronic hemodialysis patients. Am J Kidney Dis 1998; 31: 93-100
- 14. Beberashvili I et al. IL-6 levels, nutritional status, and mortality in prevalent hemodialysis patients. Clin J Am Soc Nephrol 2011; 6: 2253-2263
 - 15. Stenvinkel P, Heimburger O, Jogestrand T. Elevated interleukin-6 predicts progressive carotid artery atherosclerosis in dialysis patients: association with Chlamydia pneumoniae seropositivity. Am J Kidney Dis 2002; 39: 274-282
 - 16. Stenvinkel P et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia-the good, the bad, and the ugly. Kidney Int 2005; 67: 1216-1233
 - 17. Pecoits-Filho R et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 2002; 17: 1480-1486
 - 18. O'Shea JJ, Laurence A, McInnes IB. Back to the future: oral targeted therapy for RA and other autoimmune diseases. Nat Rev Rheumatol 2013; 9: 173-182
 - 19. Rose-John S, Heinrich PC. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 1994; 300: 281-290
 - 20. Heinrich PC et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1-20
 - 21. Fishman D et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998; 102:1369-1376
 - 22. Esteve E et al. Polymorphisms in the interleukin-6 receptor gene are associated with body mass index and with characteristics of the metabolic syndrome. Clin Endocrinol 2006; 65: 88-91
 - 23. Hamid YH et al. Variation in the interleukin-6 receptor gene associates with type 2 diabetes in Danish whites. Diabetes 2004; 53: 3342-3345
 - 24. Hsieh CH et al. Interleukin-6 receptor gene 48892 A/C polymorphism is associated with metabolic syndrome in female Taiwanese adolescents. Genet Test Mol Biomark 2012; 16: 1376-1381
 - 25. Qi L, Rifai N, Hu FB. Interleukin-6 receptor gene variations, plasma interleukin-6 levels, and type 2 diabetes in U.S. Women. Diabetes 2007; 56: 3075-3081
- 26. Qi L, Zhang C, van Dam RM et al. Interleukin-6 genetic variability and adiposity: associations in two prospective cohorts and systematic review in 26,944 individuals. J Clin Endocrinol Metab 2007; 92: 3618-3625
 - 27. Song Y et al. The interaction between the interleukin 6 receptor gene genotype and dietary energy intake on abdominal obesity in Japanese men. Metab Clin Exp 2007; 56: 925-930
- 28. Wolford JK, Colligan PB, Gruber JD et al. Variants in the interleukin 6 540 receptor gene are associated with obesity in Pima Indians. Mol Genet Metab 2003; 80: 338-343
 - 29. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854
 - 30. Pasquinelli AE et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86-89
 - 31. Viswanathan SR et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41: 843-848

32. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-550 kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693-706

555

595

605

- 33. Zhu LH et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J 2010; 277: 3726-3734
- 34. Iliopoulos D, Jaeger SA, Hirsch HA et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010; 39: 493-506
- 35. Fabbri M et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 2012; 109: E2110-E2116 560
- 36. Horii Y et al. Involvement of IL-6 in mesangial proliferative glomerulonephritis. J Immunol 1989; 143: 3949-3955
- 37. Kiberd BA. Interleukin-6 receptor blockage ameliorates murine lupus nephritis. J Am Soc Nephrol 1993; 4: 58-61
- 38. Liang B, Gardner DB, Griswold DE *et al*. Anti-interleukin-6 monoclonal 565 antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 2006; 119: 296-305
- 39. Ryffel B et al. Interleukin-6 exacerbates glomerulonephritis in (NZB× NZW) F1 mice. Am J Pathol 1994; 144: 927-937
- 40. Fattori E et al. Development of progressive kidney damage and myeloma 570 kidney in interleukin-6 transgenic mice. Blood 1994; 83: 2570-2579
- 41. Zhang W et al. Interleukin 6 underlies angiotensin ii-induced hypertension and chronic renal damage. Hypertension 2012; 59: 136-144
- 42. Zhang XL, Topley N, Ito T et al. Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover 575 enhances TGF-beta1 signaling. J Biol Chem 2005; 280: 12239-12245
- 43. Eitner F et al. Role of interleukin-6 in mediating mesangial cell proliferation and matrix production in vivo. Kidney Int 1997; 51: 69-78
- 44. Karkar AM, Smith J, Tam FW et al. Abrogation of glomerular injury in nephrotoxic nephritis by continuous infusion of interleukin-6. Kidney 580 Int 1997; 52: 1313-1320
- 45. Yang J et al. Effect of interleukin 6 deficiency on renal interstitial fibrosis. PLoS One 2012; 7: e52415
- 46. Vaidya VS, Shankar K, Lock EA et al. Molecular mechanisms of renal tissue repair in survival from acute renal tubule necrosis: role of ERK1/2 585 pathway. Toxicol Pathol 2003; 31: 604-618
- 47. Nechemia-Arbely Y et al. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol 2008; 19: 1106-1115
- 48. Komaba H, Nakazawa T, Yamaguchi Y et al. Interleukin-6 receptor inhibition with tocilizumab in various renal involvements associated with 590 multicentric Castleman's disease: a report of three cases. NDT Plus 2008; 1:423-426
- 49. Maeshima A et al. Efficacy of tocilizumab, a humanized neutralizing antibody against interleukin-6 receptor, in progressive renal injury associated with Castleman's disease. CEN Case Rep 2012; 1: 7-11
- 50. Magro-Checa C et al. Successful use of tocilizumab in a patient with nephrotic syndrome due to a rapidly progressing AA amyloidosis secondary to latent tuberculosis. Amyloid 2011; 18: 235-239
- 51. Canas-Ventura A, Rodriguez E, Andreu M et al. Tocilizumab in amyloid-600 osis-associated kidney disease secondary to inflammatory bowel diseases. Dig Dis Sci 2013; 58: 2736-2737
- 52. Illei GG et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum 2010; 62: 542-552
- 53. Thiruchelvam PT, Willicombe M, Hakim N et al. Renal transplantation. BMJ 2011; 343: d7300
- 54. Goldfarb-Rumyantzev AS, Naiman N. Genetic predictors of acute renal transplant rejection. Nephrol Dial Transplant2010; 25: 1039-1047
- Van Oers MH, Van der Heyden AA, Aarden LA. Interleukin 6 (IL-6) in 610 55. serum and urine of renal transplant recipients. Clin Exp Immunol 1988; 71:314-319
- 56. Casiraghi F et al. Sequential monitoring of urine-soluble interleukin 2 receptor and interleukin 6 predicts acute rejection of human renal allografts before clinical or laboratory signs of renal dysfunction. Transplant-615 ation 1997; 63: 1508-1514
- 57. Vandenbroecke C et al. Differential in situ expression of cytokines in renal allograft rejection. Transplantation 1991; 51: 602-609

FULL REVIEW

525

520

535

545

530

500

505

510

515

495

485

- 58. Budde K, Waiser J, Neumayer HH. The diagnostic value of GM-CSF and
 IL-6 determinations in patients after renal transplantation. Transplant Int1994; 7: S97–S101
 - Kwon O, Molitoris BA, Pescovitz M et al. Urinary actin, interleukin-6, and interleukin-8 may predict sustained ARF after ischemic injury in renal allografts. Am J Kidney Dis 2003; 41: 1074–1087
- 625 60. Sonkar GK, Singh S, Sonkar SK *et al.* Evaluation of serum interleukin 6 and tumour necrosis factor alpha levels, and their association with various non-immunological parameters in renal transplant recipients. Singapore Med J 2013; 54: 511–515
- 61. Lv R *et al.* Association between IL-6 -174G/C polymorphism and acute
 rejection of renal allograft: evidence from a meta-analysis. Transplant Immunol 2012; 26: 11–18
 - Chien JW *et al.* Evaluation of published single nucleotide polymorphisms associated with acute GVHD. Blood 2012; 119: 5311–5319
- 63. Kendal AR *et al.* Sustained suppression by Foxp3+ regulatory T cells is
 vital for infectious transplantation tolerance. J Exp Med 2011; 208: 2043–2053
 - 64. Regateiro FS, Howie D, Cobbold SP *et al.* TGF-beta in transplantation tolerance. Curr Opin Immunol 2011; 23: 660–669
- 65. Faust SM, Lu G, Wood SC *et al.* TGFbeta neutralization within cardiac
 allografts by decorin gene transfer attenuates chronic rejection. J Immunol 2009; 183: 7307–7313
 - 66. Afzali B, Lombardi G, Lechler RI *et al.* The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and auto-immune disease. Clin Exp Immunol 2007; 148: 32–46
- 645 67. Zuber J *et al.* Prognostic significance of graft Foxp3 expression in renal transplant recipients: a critical review and attempt to reconcile discrepancies. Nephrol Dial Transplant 2013; 28: 1100–1111

650

655

665

685

- Bettelli E *et al.* Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235–238
- Chen X et al. Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease. Blood 2009; 114: 891–900
- Faust SM *et al.* Role of T cell TGFbeta signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. J Immunol 2009; 183: 7297–7306
- Yuan X et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 2008; 205: 3133–3144
- 660 72. Loong CC, Hsieh HG, Lui WY *et al.* Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197: 322–332
 - Van Kooten C *et al.* Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 1998; 9: 1526–1534
 - Hsieh HG, Loong CC, Lui WY *et al.* IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection. Transplant Int 2001; 14: 287–298
- 75. Kimmel PL *et al.* Immunologic function and survival in hemodialysis
 patients. Kidney Int 1998; 54: 236–244
 - Herbelin A, Urena P, Nguyen AT *et al*. Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int 1991; 39: 954–960
- Pecoits-Filho R, Barany P, Lindholm B *et al.* Interleukin-6 is an inde pendent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transplant 2002; 17: 1684–1688
 - Yamaguchi T *et al.* IL-6 mRNA synthesis by peripheral blood mononuclear cells (PBMC) in patients with chronic renal failure. Clin Exp Immunol 1996; 103: 279–284
- 680 79. Pecoits-Filho R, Carvalho MJ, Stenvinkel P et al. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int 2006; 26: 53–63
 - Jofre R, Rodriguez-Benitez P, Lopez-Gomez JM et al. Inflammatory syndrome in patients on hemodialysis. J Am Soc Nephrol 2006; 17: S274–S280
 - Kaysen GA, Eiserich JP. Characteristics and effects of inflammation in end-stage renal disease. Semin Dial 2003; 16: 438–446

- Bologa RM *et al.* Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am J Kidney Dis 1998; 32: 107–114
- Lambie M et al. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol 2013

- Chung SH, Heimburger O, Stenvinkel P *et al.* Influence of peritoneal transport rate, inflammation, and fluid removal on nutritional status and clinical outcome in prevalent peritoneal dialysis patients. Perit Dial Int 695 2003; 23: 174–183
- Ridker PM, Rifai N, Stampfer MJ *et al.* Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101: 1767–1772
- Williams JD, Coles GA. Gram-positive infections related to CAPD. J 700 Antimicrob Chemother 1991; 27: 31–35
- McLoughlin RM *et al.* Interplay between IFN-gamma and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation. J Clin Investig 2003; 112: 598–607
- Hurst SM *et al.* Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14: 705–714
- Fielding CA *et al.* IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J Immunol 2008; 181: 2189–2195
- McLoughlin RM *et al.* IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Natl Acad Sci U S A 2005; 102: 9589–9594
- Jones GW *et al.* Loss of CD4+ T cell IL-6R expression during inflammation underlines a role for IL-6 *trans* signaling in the local maintenance of Th17 cells. J Immunol 2010; 184: 2130–2139
- 92. Onogawa T. Local delivery of soluble interleukin-6 receptors to improve the outcome of alpha-toxin producing *Staphylococcus aureus* infection in mice. Immunobiology 2005; 209: 651–660
- Holland SM et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007; 357: 1608–1619
- Puel A *et al.* Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J Immunol 2008; 180: 647–654
- 95. Colmont CS *et al.* Human peritoneal mesothelial cells respond to bacterial ligands through a specific subset of Toll-like receptors. Nephrol Dial Transplant 2011; 26: 4079–4090
- Park JH et al. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 2007; 179: 514–521
- Strunk T et al. TLR2 mediates recognition of live Staphylococcus epidermidis and clearance of bacteremia. PLoS One 2010; 5: e10111
- Kato S *et al.* Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4. J Am Soc Nephrol 2004; 15: 1289–1299
- Williams JD *et al.* Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470–479
- 100. Numata M *et al.* Association between an increased surface area of peritoneal microvessels and a high peritoneal solute transport rate. Perit Dial Int 2003; 23: 116–122
- 101. Cho Y et al. Dialysate interleukin-6 predicts increasing peritoneal solute 740 transport rate in incident peritoneal dialysis patients. BMC Nephrol 2014; 15: 8
- 102. Oh KH *et al.* Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol Dial Transplant 2010; 25: 1639–1646
- 103. Hwang YH *et al.* Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 2009; 29: 81–88
- Verduijn M *et al.* The -174G/C variant of IL6 as risk factor for mortality and technique failure in a large cohort of peritoneal dialysis patients. 750 Nephrol Dial Transplant 2012; 27: 3516–3523
- 105. Gallucci RM *et al.* Impaired cutaneous wound healing in interleukin-6deficient and immunosuppressed mice. FASEB J 2000; 14: 2525–2531
- Barnes TC, Anderson ME, Moots RJ. The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic 755 sclerosis. Int J Rheumatol 2011; 2011: 721608

715

72

- 107. O'Donoghue RJ et al. Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis. EMBO Mol M d 2012; 4: 939–951
- 10 Iding Ceri A, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014. http://dx.doi.org/10.1016/J.immuni.2013. 10.022
- 109. Raj DS. Role of interleukin-6 in the anemia of chronic disease. Semin Arthritis Rheum 2009; 38: 382-388
- 110. Raj DS, Sun Y, Tzamaloukas AH. Hypercatabolism in dialysis patients. Curr Opin Nephrol Hypertens 2008; 17: 589-594
- 111. Xu H et al. Oxidative DNA damage and mortality in hemodialysis and peritoneal dialysis patients. Perit Dial Int 2014
- 112. Pecoits-Filho R, Lindholm B, Axelsson J et al. Update on interleukin-6 and its role in chronic renal failure. Nephrol Dial Transplant 2003; 18: 1042-1045
- 113. Garibotto G et al. Peripheral tissue release of interleukin-6 in patients with chronic kidney diseases: effects of end-stage renal disease and microinflammatory state. Kidney Int 2006; 70: 384-390
- 114. Pietrangelo A et al. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo. Gastroenterology 2007; 132: 294-300
 - 115. Nemeth E et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Investig 2004; 113: 1271-1276
- Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression 780 116. through STAT3. Blood 2006; 108: 3204-3209
 - 117. Garnero P, Thompson E, Woodworth T et al. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid
 - arthritis patients with an inadequate response to methotrexate: results

from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheumat 2010: 62: 33-43

- 118. Jacobs P, Glorieux G, Vanholder R. Interleukin/cytokine profiles in haemodialysis and in continuous peritoneal dialysis. Nephrol Dial Trans-790 plant 2004; 19: V41-V45
- 119. Carrero JJ et al. Additive effects of soluble TWEAK and inflammation on mortality in hemodialysis patients. Clin J Am Soc Nephrol 2009; 4: 110 - 118
- 120. Zhang L et al. IL-6 and serum amyloid A synergy mediates angiotensin 795 II-induced muscle wasting. J Am Soc Nephrol 2009; 20: 604-612
- 121. Cho Y et al. Baseline serum interleukin-6 predicts cardio in incident peritoneal dialysis patients. Perit Dial Int 2014
- 122. Meuwese CL, Stenvinkel P, Dekker FW et al. Monitoring of inflammation in patients on dialysis: forewarned is forearmed. Nat Rev Nephrol 800 2011; 7: 166-176
- 123. Zoccali C, Tripepi G, Mallamaci F. Dissecting inflammation in ESRD: do cytokines and C-reactive protein have a complementary prognostic value for mortality in dialysis patients? J Am Soc Nephrol 17, S169-S173
- 09 805
- 124. Panichi V et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than C-reactive protein in haemodialysis patients. Nephrol Dial Transplant 2004; 19: 1154–1160
- 125. Voorhees PM, Manges RF, Somlo G et al. A phase II multicenter study of CNTO 328, an anti-IL-6 monoclonal antibody, in patients (pts) with relapsed or refractory multiple myeloma (MM). J Clin Oncol 2009; 27 810 (Suppl. Abstr. 8527)

Received for publication: 13.1.2014; Accepted in revised form: 3.6.2014

760

08

770

775