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ABSTRACT

Interleukin (IL)-6 has become a major target for clinical inter-
vention in various autoimmune conditions. Here, drugs in-

10 cluding the humanized anti-IL-6 receptor (IL-6R) antibody
Tocilizumab emphasize the clinical importance of IL-6 in
driving disease and poor patient outcomes. During the course
of this review we will outline the biology surrounding IL-6 and
will discuss the impact of IL-6 in renal disease and the clinical

15 complications associated with renal replacement therapies and
transplantation. We will also consider the merit of IL-6 meas-
urement as a prognostic indicator and provide a clinical per-
spective on IL-6 blocking therapies in renal disease.

Keywords: cytokines, interleukin-6, renal disease, therapy

20 INTRODUCTION

Cytokines perform pivotal roles during infection, trauma,
cancer and inflammation where they control cellular prolifer-
ation, differentiation, survival or death and cytokine specific
gene expression. Here, cytokine-driven communication between

25 immune cells and stromal non-haematopoietic cells enables
resolution of the condition and is part of the healing process
[1]. However during chronic inflammatory conditions, appro-
priate regulation of the immune response is lost and drives
disease progression.Under these circumstances, cytokines affect

30 the development of autoimmunity, chronic inflammation and
deleterious tissue damage [1]. This has ultimately led to the
design of biologic drug agents that target specific cytokines to
prevent the rapid clinical progression of disease. For example,
tumour necrosis factor-α (TNFα) blockers (e.g. the neutraliz-

35 ing anti-TNFα antibodies Infliximab, Adalimumab, Golimu-
mab, Certolizumab or the soluble TNF-R2 Fc-fusion protein

Etanercept) are broadly used to treat various autoimmune
conditions, while interleukin (IL)-1β inhibitors (e.g. the IL-1
receptor antagonist, Anakinra) have shown robust efficacy in

40auto-inflammatory conditions [2]. Although these agents are
effective treatments for many diseases, not all biologics work
in all patients, and not all biologics work in all inflammatory
conditions [1, 2]. Such observations are significantly influen-
cing the way researchers consider cytokine involvement in

45disease. Emphasis is now placed on identifying alternative
cytokine targets and strategies for therapeutic intervention,
while a greater attention to cytokine biology and signalling is
providing opportunities to stratify patients with chronic disease
for more appropriate treatment. Here, research is leading to a

50detailed understanding of how the cytokine network becomes
distorted to drive chronic inflammation instead of competent
host defense. During the course of this review, we discuss the
impact of IL-6 in renal disease and will describe aspects of its
biology that affect disease onset and progression, prognosis

55and treatment decisions.

INTERLEUKIN-6 AS A CLINICAL TARGET

Interleukin-6 was first described as interferon β2, hepatocyte
stimulating factor, cytotoxic T-cell differentiation factor, B-cell
differentiation factor and B-cell stimulatory factor-2, which re-

60flects its capacity to regulate lymphocyte activation and the
acute phase response [3]. While these activities are markedly
impaired in IL-6-deficient mice, it is important to remember
that IL-6 also controls various homeostatic functions includ-
ing glucose metabolism, the hypothalamic-pituitary-adrenal

65(HPA) axis, affecting mood, fatigue and depression and haem-
atopoiesis [3,4]. In this regard, systemic elevations in IL-6
cause hyperthermia and leads to a general loss of activity and
appetite [5]. As an inflammatory cytokine, IL-6 is one of the
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most highly regulated mediators of inflammation (increasing
70 from 1–5 pg/mL to several µg/mL in certain conditions) and

performs central roles in infection, autoimmunity and cancer
[6–9]. While traditionally viewed as a downstream target of
TNFα and IL-1β activity, various other inflammatory stimuli
induce IL-6 expression, and IL-6 forms part of an integrated

75 cytokine network that controls innate and adaptive immunity
[3, 8, 9]. As a consequence, IL-6 is a major target for thera-
peutic intervention and the complex nature of its biology has
led to development of various therapies that target either the
cytokine directly (e.g. Olokizumab, Clazakizumab) or the α-

80 subunit of its receptor (e.g. Tocilizumab, Sarilumab) [9]. A full
list of blocking IL-6 strategies and the current status of their
clinical development is shown in Table 1. This information
covers specific IL-6 targeting agents and small molecule inhi-
bitors that block intracellular proteins associated with (but

85 not necessary exclusive to) IL-6 receptor signalling. Given that
cytokines, such as IL-6 contribute to the progression of renal
disease and associated complications (e.g. vascular calcifica-
tion, wasting, fatigue and cardiovascular risk), the potential
applications of anti-cytokine targeted intervention deserves

90 closer attention [16, 17]. For additional information on IL-6
targeted therapies the reader is directed elsewhere [2, 9, 18].

The IL-6 receptor complex consists of an 80 kDa cognate
receptor (IL-6R, CD126) and a 130 kDa signal-transducing
element (gp130, CD130) [8, 9]. Although IL-6R is largely con-

95 fined to hepatocytes, certain leukocytes and some epithelial
lining cells, IL-6 activity is also controlled by a naturally occur-
ring soluble IL-6R (sIL-6R). The sIL-6R is a key regulator of
IL-6 responses and forms a sIL-6R/IL-6 complex capable of
activating cells via the ubiquitously expressed gp130 [3, 7–9,

100 19]. This process is called IL-6 trans-signalling, and activates
IL-6-type responses in cells lacking IL-6R (e.g. vascular endo-
thelial cells, peritoneal mesothelial cells and synovial fibro-
blasts). Interleukin-6 responses in vivo are therefore mediated
by IL-6 activation of a membrane-bound IL-6R (classical IL-

105 6R signalling) or via its soluble receptor (Figure 1). In both
cases, IL-6 activates gp130 associated cytoplasmic tyrosine
kinases (Janus kinases; Jak1, Jak2 and Tyk2), which control
the latent transcription factors STAT1 and STAT3, and signal-
ling through the Ras–Raf cascade. For a more detailed over-

110 view of IL-6 signalling the reader is directed elsewhere [20].
From a clinical perspective, measurements of IL-6, its

soluble receptor and indices of IL-6 bioactivity (e.g. STAT3 re-
sponses) are increasingly viewed as surrogate markers of in-
flammation, disease severity and valuable predictors of disease

115 progression. During the course of this review we will consider
the impact of IL-6 biology in various aspects of renal disease,
transplantation and therapy and detail potential avenues for
future clinical translation (Table 1).

CONTROL OF IL -6 EXPRESSION BY
120 INFLAMMATION, GENETIC VARIATION

AND MICRORNAS

In chronic inflammation and autoimmunity IL-6 plays roles
in both local (e.g. control of chemokine-directed leukocyte

recruitment) and systemic inflammation (e.g. activation of the
125acute phase response). Here, IL-6 transcription is regulated

by various pro-inflammatory cytokines and growth factors
(e.g. IL-1, TNFα and platelet derived growth factor; PDGF),
increases in intracellular cyclic AMP and certain pattern rec-
ognition receptors following activation by microbial or en-

130dogenous ligands [1]. Interleukin-6 is rapidly expressed in a
highly transient manner during inflammation. Here, circulat-
ing sIL-6R concentrations act as a buffering system that helps
to maintain the circulating half-life of IL-6. Thus, sIL-6R is a
central regulator of IL-6 bioactivity and must be tightly con-

135trolled to limit overt IL-6 signalling (Figure 1). While circulat-
ing levels of soluble gp130 (sgp130) selectively antagonize IL-6
trans-signalling, intracellular regulators of IL-6R-gp130 signal-
ling (e.g. suppressor of cytokine signalling; SOCS proteins)
prevent a prolonged activation by IL-6. Of equal importance

140are genetic factors, which substantially influence IL6 expres-
sion. This is best illustrated by the identification of functional
polymorphisms within the IL6 promoter. For example, a
G > C (rs1800795) mutation found at position −174 bp up-
stream from the transcriptional start site leads to enhanced IL-

1456 expression [21]. Similar genetic variations up to 6 kb from
the start of transcription also correlate with serum and consti-
tutive IL-6 levels. Patients displaying the rs1800975 mutation
often show increased susceptibility to coronary artery disease,
juvenile idiopathic arthritis and many other conditions typi-

150fied by chronic inflammation or autoimmunity. Similar genetic
mutations also occur in the IL6R loci, with the rs2228145
variant affecting the proteolytic release of sIL-6R from cells.
Significantly, the rs2228145 mutation in various ethnic popu-
lations has been linked to insulin resistance, an increase in

155body mass index, Type-II diabetes and diabetic nephropathy
[22–28].

Recent data show that microRNAs also govern IL-6 ex-
pression and activity. MicroRNAs are short endogenous
RNA regulators of gene expression, the first of which was

160identified in the nematode Caenorhabditis elegans in 1993
[29]. MicroRNAs are present in all human cells, and each re-
presses the expression of a specific set of genes. The let-7
family contains the first microRNAs to be identified in
mammals [30]. Let-7 microRNAs, most notably let-7a, target

165and repress synthesis of IL-6 [31]. Let-7 microRNAs are
themselves down-regulated by Lin28B [31], which is induced
following activation of nuclear factor-κB (NF-κB) to ensure
optimal Il6 expression and cellular transformation [32]. Also,
microRNA-23a targets and represses Il6r [33], meaning

170that cellular capacity to respond to IL-6 is also microRNA-
regulated. MicroRNAs are also important effectors of IL-6
responses. For example, microRNAs-21 and microRNAs-
181b-1 are induced by IL-6 activation of Stat3. These increase
NF-κB activity via repression of their targets phosphatase

175and tensin homologue (PTEN) and CYLD (the human gene
associated with cylindromatosis) [34]. Finally, emerging data
show that microRNAs may be released by cells, and serve as
a mechanism for intercellular communication. A subset of
these extracellular microRNAs can induce pro-inflammatory

180responses, including IL-6 secretion, by binding to and activat-
ing Toll-Like Receptors Q2[35].
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Table 1. Targeting IL-6 in disease

Targeting Strategy Compound Company Specificity Disease Phase ClinicalTrials.
gov

Global IL-6 signaling
Targeting soluble and

membrane-bound
Interleukin 6 receptor

Tocilizumab (ACTEMRA,
RoACTEMRA)

Chugai, Roche Humanized IL-6 receptor-specific
mAb

Castleman’s disease
Juvenile idiopathic arthritis
Systemic-onset juvenile idiopathic
arthritis
Rheumatoid Arthritis
Adult’s still disease
Graves’ ophthalmopathy
Relapsing polychondritis
Ankylosing spondylitis
Type II diabetes and exercise

2005, Japan
2008, Japan
2008, Japan
2009, EMEA; 2010, FDA
Phase II; 2009–11
Phase III; 2011–13
Phase II; 2010–12
Phase III; 2010–14
2010–12

Approved
Approved
Approved
Approved
NCT01002781
NCT01297699
NCT01104480
NCT01209702
NCT01073826

REGN88 (SAR153191) Regeneron/
Sanofi-Aventis

Fully human IL-6
receptor-specific mAb

Rheumatoid arthritis Phase II; 2010–12
Phase II + III; 2010–13
Phase III; 2010–15

NCT01217814
NCT01061736
NCT01146652

Ankylosing spondylitis Phase II; 2010–11
phase III; 2010–15

NCT01284569
NCT01118728

ALX-0061 Ablynx IL-6 receptor-specific VHH Rheumatoid arthritis Phase I + II; 2011–12 NCT01242488
Global IL-6 signaling
Targeting Interleukin 6

CDP6038 (Olokizumab) UCB, Inc., IL-6 specific mAb Rheumatoid arthritis Phase I + II; 2009–10
Phase II; 2010–12
Phase II; 2011–14

NCT01009242
NCT01242488
NCT01296711

CNTO136 (Sirukumab) Centocor, Inc., Fully human IL-6-specific mAb Rheumatoid arthritis Phase II; 2008–11 NCT00718718
CNTO328 (cCLB,
Siltuximab)

Centocor, Inc., Chimeric IL-6-specific mAb Castleman disease
Multiple myeloma [125]

Phase II; 2010–12
Phase II; 2006–12
Phase II; 2009–14
Phase III; 2010–14

NCT01024036
NCT00402181
NCT00911859
NCT01266811

Prostate cancer Phase I; 2005–10
Phase II; 2006–008
Phase II; 2007–09

NCT00401765
NCT00385827
NCT00433446

Solid tumors
Metastatic renal cell carcinoma
Metastatic kidney cancer

Phase I + II; 2009–11
Phase I + II; 2005–10
Phase II; 2006–10

NCT00841191
NCT00265135
NCT00311545

ALD518 (BMS-945429) Alder Biopharm./
Bristol-Myers
Squibb

Humanized IL-6-specific mAb,
aglycosylated

Rheumatoid arthritis
Non-small cell lung-cancer related
fatigue and cachexia

Phase II; 2008–09
Phase II; 2008–09

NCT00867516
NCT00866970

C326 Avidia anti-IL-6/anti-Fc avimer protein Crohn’s disease Phase I; 2006–07 NCT00353756
IL-6 Trans-signaling
Targeting IL-6/sIL-6R

FE301 Conaris/Ferring Soluble gp130-Fc fusion protein Crohn’s disease Preclinical

Downstream signaling
Targeting janus kinases (JAKs)

downstream of gp130/IL6ST

Tofacitinib Pfizer JAK1 and 2 Rheumatoid arthritis
Kidney transplant
Psoriasis
Rheumatoid arthritis

Phase III; 2013
Phase II; 2006
Phase I-III; 2004–14
Phase I; 2012–13

NCT00661661
NCT00106639
NCT01519089
NCT01741493

Ruxolitinib Incyte/Novartis JAK1 and 2 Multiple myeloma
Myelofibrosis
Plaque psoriasis

Phase II; 2010
Phase II; 2012–13
Phase II; 2009

NCT00639002
NCT01340651
NCT00820950

Baricitinib (INCB-28050) Eli Lilly/Incyte JAK1 and 2 Rheumatoid arthritis Phase II; 2010 NCT00902486
GLPG-0634 Abbot/Galapagos JAK1 Rheumatoid arthritis Phase I+ II; 2011–12 NCT01384422

NCT01668641
AC430 Ambit Biosciences JAK2 Rheumatoid arthritis Phase I, 2011 NCT01287858
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IL - 6 IN GLOMERULONEPHRITIS , CHRONIC
KIDNEY DISEASE AND ACUTE
KIDNEY INJURY

185 Clinical and experimental studies suggest that IL-6 contribute
to renal injury in glomerulonephritis and other forms of renal
disease. For example, elevated IL-6 expression in kidneys and
urine of patients with mesangial proliferative glomeruloneph-
ritis is often associated with poor outcome [36]. In this con-

190 text, IL-6 induces mesangial cell proliferation [36]. In murine
models of lupus nephritis IL-6 activities promote tissue dam-
age and disease severity [37–39], while transgenic mice dis-
playing elevated levels of circulating IL-6 develop proteinuric
nephropathy that culminates in death from renal failure [40].

195 Ultimately, the role of IL-6 in these conditions may relate to
IL-6 involvement in fibrosis and tissue damage. In models of
angiotensin-II induced renal disease, infusion of angiotensin-
II induces IL-6 expression and renal fibrosis. This response is
IL-6 dependent and IL-6-deficient mice remain resistant to

200 renal injury [41]. Mechanistically, IL-6 may contribute to
renal disease by enhancing the signalling response of tubular
epithelial cells to pro-fibrotic cytokines such as transforming
growth factor-β (TGFβ) [42]. However, data from other ex-
perimental models of renal injury show that IL-6 is not always

205a key facet of progressive kidney damage [43–45]. What factors
contribute to these differences in disease outcome remain to
be established, but may reflect differences in disease induction
methods or protocols using cytokine-deficient animals versus
direct manipulation of cytokine activity in wild type strains.

210In patients with acute kidney injury (AKI), high circulating
levels of IL-6 are predictive of increased mortality [10]. This
outcome is also seen in murine models of ischaemia reperfu-
sion injury- and nephrotoxin-induced models of AKI [11, 46,
47]. In mercuric chloride-induced AKI, IL-6 deficient mice

215exhibit less kidney-associated inflammation, and have improved
outcome [47]. In the same study, IL-6 trans-signalling in tub-
ular epithelial cells ameliorated injury and led to preservation
of renal function. This led the authors to conclude that IL-6
simultaneously promotes an injurious inflammatory response

220and, through a mechanism involving IL-6 trans-signalling,
protects the kidney from further injury [47]. These studies are
akin to the role of IL-6 and IL-6 trans-signalling in regulating
homeostatic gut epithelia remodelling versus colitis-like inflam-
mation [9]. Significantly, tocilizumab is not prescribed in

225patients with a history of diverticulitis [2, 9].
Biologics against IL-6 are highly effective in autoimmune

conditions including rheumatoid arthritis [1, 2]. To date, there
is little data relating to IL-6 blockade in patients with renal

F IGURE 1 : Interleukin-6 and mechanisms for receptor signalling. Interleukin-6 activates cells through two distinct mechanisms termed
classical IL-6R signalling and IL-6 trans-signalling. The receptor complex responsible for regulating IL-6 responses consists of a non-signalling
cognate receptor (IL-6R, CD126), which binds IL-6 and dimerizes with the signal-transducing receptor subunit gp130. (A) Classical IL-6R
signalling occurs in cell types that inherently express both IL-6R and gp130. (B) While expression of IL-6R has a restricted cellular expression
(hepatocytes, leukocytes and certain epithelial cells), these cells also generate a soluble form of the IL-6R (sIL-6R) that retains cytokine-binding
properties and mediates IL-6 responses in cell types that lack IL-6R, but expression gp130 (IL-6 trans-signalling). (C) In many instances, IL-6
trans-signalling regulates various inflammatory activities and must be tightly regulated. Here, a soluble form of gp130, which circulates at high
serum concentrations acts as an antagonist of IL-6 trans-signalling and binds IL-6 only when bound to sIL-6R.
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disease. Case reports of tocilizumab use in patients with condi-
230 tions where renal complications is an associated co-morbidity

show promising improvements in urinary sediment, protein-
uria and stabilization of renal function. These include the lym-
phoproliferative disorder multicentric Casteman’s disease [48,
49], AA Amyloidosis [50, 51] and a subset of five patients with

235 renal dysfunction in a Phase I study of SLE [52]. While these
studies endorse the potential clinical application of IL-6 tar-
geted interventions in acute or chronic renal disease, definitive
randomized controlled trials are lacking.

INTERLEUKIN-6 IN RENAL
240 TRANSPLANTATION

Renal transplantation is considered to be the ‘gold standard’
treatment for most patients with end stage renal failure. Bene-
fits include improved patient survival, quality of life and
healthcare cost [53]. Recent advances in treatment means that

245 the rate of acute clinical rejection (AR) has fallen. However,
AR remains a determining factor for the development of
chronic rejection and long-term allograft survival [53, 54].

Interleukin-6 has long been highlighted as a pro-inflammatory
cytokine associated with renal allograft rejection. While IL-6

250 levels are low in the serum and urine of healthy individuals,
renal transplant recipients display high serum and urinary
IL-6 levels immediately post transplantation and during AR
[55, 56]. For example, increased IL-6 mRNA transcripts have
been identified in renal biopsies from patients undergoing AR

255 [57]. Notably, while AR episodes have been associated with
increased serum and urine IL-6 levels, preventative rejection
treatments stabilize IL-6 expression and return them to
baseline [12, 58].

Most studies have underlined the greater sensitivity of urin-
260 ary IL-6, over serum measurements, as potential indicators of

rejection. For example urinary actin, IL-6 and CXC-chemokine
ligand 8 (CXCL8) have been proposed as biomarkers of sus-
tained acute renal failure in allograft recipients [59]. Kwon
et al. [59] observed elevated urinary IL-6 excretion in patients

265 displaying sustained acute renal failure compared with those
that went on to recover. For patients showing sustained failure,
urinary IL-6 was increased on the day of transplant and also
remained higher at postoperative Day 5. In a recent analysis of
90 transplant patients, stable allograft recipients showed

270 similar levels of serum IL-6 to healthy individuals. However
patients undergoing allograft rejection displayed significant in-
creases in circulating IL-6 [60]. Notably, higher IL-6 levels
were observed in individuals undergoing chronic allograft re-
jection compared with patients in AR [60]. Interestingly, while

275 increases in serum and urinary IL-6 are associated with AR,
sIL-6R levels do not correlate with rejection [12]. While the
mechanisms affecting these outcomes are far from clear, they
may relate to associated genetic factors. Meta-analysis of trans-
plant patients shows that alterations in AR risk are associated

280 with individuals bearing the rs1800795 ‘high’ IL-6 producing
loci [61, 62]. Notably, in allogenic haematopoietic cell trans-
plantation, the rs1800795 variant is linked with increased risk
of developing acute graft-versus-host disease [62]. Therefore,

IL-6 donor genotype may be more important in graft rejection
285than recipient genotype. Here, IL-6 may serve as an immune

‘danger signal’ thereby disrupting allograft tolerance.
Mechanisms underpinning the role of IL-6 in allograft

transplant rejection may hinge on its partnership with TGFβ,
which together balance the induction of T-cell tolerance

290versus pro-inflammatory effector responses. Regulatory T-cells
(Treg) provide tolerance by suppression of allo- and auto-
immune responses [63–65]. These cells are defined by their ex-
pression of transcription factor FoxP3, and are either thymus
derived (natural Treg; nTreg) or can differentiate from naïve

295CD4+ T-cells activated in the presence of TGFβ (induced Treg;
iTreg) [66]. Such has been the impact of Treg cells on allograft
tolerance in experimental animal models, that recent studies
have proposed FoxP3 as a prognostic marker for renal allograft
outcome (see review [67]). Interestingly, IL-6 inhibits the

300TGFβ-mediated differentiation of iTreg cells, instead favouring
the development of IL-17-producing CD4+ T-cells (Th17 cells)
[68, 69]. While Treg cells provide tolerance, there is mounting
evidence of a role for Th17 cells in allograft rejection. For
example, allograft infiltrating Th17 cells were associated with

305hallmarks of chronic rejection including exacerbated vasculo-
pathy and fibrosis in models of cardiac allograft rejection [70,
71]. In renal allografts, elevated IL-17 mRNA and protein has
been demonstrated during AR in both clinical patients and ex-
perimental models Q3[72–74]. Owing to the bias of IL-6 for in-

310ducing effector Th17 cells rather than regulatory Treg

populations with tolerogenic properties in allogenic grafts,
therapeutically targeting the IL-6 signalling pathway may
prove beneficial to renal transplant outcomes in patients
undergoing acute and chronic rejection.

315THE BIOLOGY OF INTERLEUKIN-6 IN RENAL
REPLACEMENT THERAPY

Haemodialysis (HD) and peritoneal dialysis (PD) represent
the two major renal replacement therapies available for pa-
tients with end-stage renal disease (ESRD). Both IL-6 and sIL-

3206R are considered important prognostic markers of clinical
outcome in ESRD patients. ESRD patients have elevated
serum IL-6 levels prior to treatment [75, 76]. Impaired excre-
tion due to reduced kidney function has been suggested as one
reason for this elevation [77], although IL-6 mRNA is in-

325creased in the peripheral blood mononuclear cells of ESRD pa-
tients [78]. PD treatment itself leads to increases in systemic
and intraperitoneal IL-6 and sIL-6R levels [79]. Here, systemic
elevations in circulating levels may reflect a consequence of
persistent or episodic bouts of inflammation, patient co-

330morbidities, genetic factors, obesity, alterations in metabolism,
infection incidence or other immunological events [80, 81].
However, raised serum IL-6 and sIL-6R levels at the beginning
of treatment remain powerful predictors of mortality in both
HD and PD patients [17, 75, 82, 83]. These changes may

335reflect the systemic inflammatory status of a patient, and often
corresponds to elevations in C-reactive protein [83, 84]. For
example, high IL-6 levels contribute to dialysis associated mal-
nutrition [13, 14] and are prognostic of cardiovascular risk
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[85], which is an adverse outcome of haemodialysis [15].
340 Here, systemic elevations in IL-6 likely arise from the liver,

muscle and the inflammatory activation of stromal tissues or
myeloidQ4 cells (Table 2).

Patients receiving PD often experience a number of clinical
complications. These include: (i) susceptibility to recurrent

345 episodes of peritonitis and (ii) changes in the structure of the
peritoneal membrane resulting in loss of ultrafiltration cap-
acity and treatment failure. PD-associated peritonitis is caused
predominantly by Gram-positive Staphylococcus species (most
commonly by Staphylococcus epidermis and Staphylococcus

350 aureus), but also by Gram-negative bacteria (e.g. Escherichia
coli) and fungi (e.g. Candida albicans) [86]. Here, IL-6 is es-
sential for the appropriate control of acute inflammation and
promotes bacterial clearance. Murine models of peritonitis
have shown IL-6/sIL-6R signalling via STAT3 regulates leuko-

355 cyte recruitment and activation [87–91], and IL-6-deficient
mice are less able to clear a number of bacterial species [4, 92]
(unpublished dataQ5 ). Interestingly, individuals with defects in
IL-6 or STAT3 display an impaired immune defense against
Staphylococcal infection [93, 94], implying IL-6 is an essential

360 part of the immune response to Staphylococcus species. Under
these conditions, IL-6 is highly expressed by resident periton-
eal leukocytes and mesothelial cells following microbial
sensing by pattern recognition receptors [95–98]. Indeed ele-
vated concentrations of IL-6 and sIL-6R are present in peri-

365 toneal dialysis effluent of patients during acute episodes of
bacterial peritonitis [88].

Extended PD therapy is associated with functional and
morphologic alterations to the peritoneal membrane and
result in PD treatment failure [99]. These changes may be

370 induced by uraemia, hyperglycaemia, prolonged exposure to
bio-incompatible peritoneal dialysis fluids, age and recurrent
episodes of peritonitis. Here, vascular alterations contribute to
increased peritoneal solute transport [100]. IL-6 levels are also
an important determinate of solute transport in PD [101]. In-

375 traperitoneal IL-6 and sIL-6R levels significantly correlate with
the baseline peritoneal solute transport (PSTR) observed in
PD patients and are predictive of pro-angiogenic factors
present in the dialysate (CCL2; CC-chemokine ligand 2 and
VEGF; vascular endothelial growth factor) [102]. In this

380 regard, plasma levels of IL-6 and VEGF are associated with a
high PSTR [17]. Again, the rs1800795 genetic loci relate to in-
traperitoneal IL-6 levels and baseline PSTR [103], and re-
present an independent risk factor for mortality and treatment
failure [104]. Regarding the role of IL-6 in fibrotic changes,

385IL-6 plays a clear role in normal wound healing [105] and fi-
brogenesis in various organs (e.g. lung, skin and kidney) [41,
106,107]. Recently, we have found that IL-6 is essential for the
development of peritoneal fibrosis following recurrent periton-
itis in a murine model [108]. IL-6-dependent changes in peri-

390toneal Th1 responses and IFN-γ and STAT1 activation within
the peritoneal membrane lead to alterations in the balance of
matrix metalloproteinase to tissue inhibitors of matrix metal-
loproteinases. Collectively, these studies demonstrate a funda-
mental aspect of IL-6 involvement in inflammation and

395specifically emphasize its importance in governing the balance
between provision of competent host defense and inflamma-
tion-induced tissue injury.

INTERLEUKIN-6 , COMORBIDITIES AND
URAEMIA IN END-STAGE RENAL DISEASE

400Considerable emphasis has been placed on the relationship
between IL-6 (and to a lesser extent sIL-6R) and C-reactive
protein, cardiovascular risk and patient outcomes such as
fatigue. However IL-6 also functions as a homeostatic regula-
tor of catabolism, iron uptake and muscle wasting. The IL-6

405control of these processes has a major bearing on patients with
ESRD and affects the incidence of anaemia, protein-energy
wasting and muscle atrophy [16, 109–113]. For example, the
hepatic control of hepcidin expression in response to systemic
elevations in IL-6 disrupts iron homeostasis and leads to iron-

410restricted erythropoiesis and anaemia [114–116]. In patients
with rheumatoid arthritis, treatment with the blocking anti-
IL-6R monoclonal antibody tocilizumab rapidly improves
anaemia by reducing serum hepcidin [117]. In ESRD many
of these processes are ultimately influenced by underlining

415alterations in uraemia. Studies show that uraemia is a contrib-
uting factor in the control of increased plasma IL-6 concentra-
tions [76, 118]. Thus, therapeutic control of IL-6 with selective
anti-cytokine interventions in combination with a standard
treatment for uraemia is likely to improve many compounding

420complications associated with the clinical management of
ESRD [112, 119, 120].

INTERLEUKIN-6 AND CLINICAL OUTCOMES

It is widely acknowledged that cytokines play an integral role
in determining the course of disease and IL-6 is increasing

Table 2. Role of the IL-6 pathway in renal disease, transplantation and renal replacement therapy

Factor Condition Associated outcome Reference

IL-6 AKI Mortality [10]
Ischaemia reperfusion injury Unclear [11]
Chronic allograft rejection Acute rejection [12]
Haemodialysis and peritoneal dialysis Mortality Pecoits-Filho et al. (2002) [17]

Malnutrition [13, 14]
Vascular changes [15]

IL-6R Haemodialysis and peritoneal dialysis Mortality Pecoits-Filho et al. (2002) [17]

This table summarizes the published clinical and experimental studies linking the IL-6 pathway to renal disease, transplantation and renal replacement therapy, and its associated
outcomes.
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425 viewed as major drug targets for therapy (Figure 2). The appli-
cation of biologics in conditions such as rheumatoid arthritis
emphasize that early therapeutic intervention is essential to
ensure appropriate management of the condition and poten-
tial disease remission [2]. While certain biologics (e.g. bevaci-

430 zumab, a humanized monoclonal antibody to VEGF-A) have
shown therapeutic efficacy in forms kidney cancer, their appli-
cation in chronic renal diseases appears to have minimal
appeal. This in part may reflect the success of renal transplant-
ation. Instead, clinical assessments of cytokine expression or

435 activities may be considered important prognostic or predict-
ive biomarkers that forecast the course of disease and aid treat-
ment decisions. For example, the monitoring of IL-6 in PD
patients is providing valuable information on the loss of ultra-
filtration capacity, fibrosis onset, the control of infection and

440 treatment failures [17, 77, 79, 82, 83, 102]. Here, IL-6 activities
not only predict local disease processes, but also provide valu-
able information on systemic inflammatory events and patient
co-morbidities (Figure 2). For example, detection of serum IL-
6 in PD patients significantly increases with time on dialysis

445 and, as seen in other chronic diseases, correlates with indices
of cardiovascular risk [121]. Such findings offer a valuable
addition to the standard measurement of C-reactive protein
and provide additional information on the potential efficiency
of treatment. While the clinical assessment of C-reactive pro-

450 tein is used to reflect the degree of systemic inflammation and
potential cardiovascular risk associated with a patient’s disease,
the role of C-reactive protein in determining the underlining
pathology is unclear [122]. Interleukin-6 is the principle driver

of C-reactive protein expression and may be viewed as a surro-
455gate marker of IL-6 bioactivity. In this context, the clinical as-

sessment of IL-6 may provide a more powerful prediction of
inflammation burden in ESRD [123, 124].

The impact of chronic kidney disease on healthcare systems
around the world is increasing. In response, it is essential for

460new clinical assessments to be applied to provide a more per-
sonalized approach to patient stratification, and improvements
in treatment decisions. Studies emphasize that IL-6 and asso-
ciated downstream signalling events may represent one such
marker (Figure 2). However to identify the pathways contrib-

465uting to chronic disease progression in patients with varying
degrees of renal disease, we must understand how cytokines
like IL-6 govern acute resolving inflammation and how their
activities become distorted to drive chronic inflammation.
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