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Abstract:30

31

Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation 32

and long range inhibition. This organization has been suggested as a model for brain structures or 33

for artificial systems involved in winner-take-all processes such as saliency localisation, perceptual 34

decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a 35

key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) 36

exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the 37

present study was to further examine the properties of a DNF with such an inhibition pattern in the 38

context of target selection. First we tested the effects of stimulus size and shape on when and where39

self-maintained clusters of firing neurons appeared, using three variants of the model. In each model40

variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the 41

suppression of any activity on the network and hence to no target selection, while larger sizes led to42

delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying 43

distance. Again single, none, or multiple spiking clusters could occur, depending on distance and 44

relative stimulus strength. For short distances, activity attracted towards the strongest stimulus, 45

reminiscent of well-known behavioural data for saccadic eye movements, while for larger distances46

repulsion away from the second stimulus occurred. All these properties predicted by the model 47

suggest that the SCs, or any other neural structure thought to implement a short range MH, is an 48

imperfect winner-take-all system. Although those properties call for systematic testing, the discussion49

gathers neurophysiological and behavioural data suggesting that such properties are indeed present 50

in target selection for saccadic eye movements.51

  52

53

54

55

56
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1 Introduction58

The ability to select important stimuli for further processing and action planning is a key function of 59

brains of visually dominant animals. For instance, in primate visuo-motor systems only a small part 60

of the retinal input benefits from a high spatial resolution; hence to select where to look is vital to 61

extract relevant information from the environment. Points of interest have to be extracted from the 62

overall visual input and, from those extracted points, only one can be selected at a time to orient gaze 63

or attentional focus. Since Koch and Ullman (1985) it is thought that potential points of interest are 64

evaluated through early visual processing and converge on a saliency map. 65

It has been suggested for a long time that a connectivity pattern of short range excitation and long 66

range inhibition in topographically organized visual structures could achieve saliency localization -67

see blob detection models for computer vision (Bretzner and Lindeberg 1998; Kong, Akakin, and 68

Sarma 2013; Lowe 1999) but also models of V1/LGN (Kang, Shelley, and Sompolinsky 2003; 69

Schwabe et al. 2006; Spratling 2010; Zeng, Li, and Li 2011) - and target selection (Kuniharu Arai, 70

Keller, and Edelman 1994; Kopecz 1995; Kopecz and Schöner 1995; Trappenberg et al. 2001). This 71

connectivity pattern is often referred as a Mexican hat (MH) or center-surround inhibition, and was 72

already implemented in early Dynamic Neural Field (DNF) models (e.g. Amari 1977).  Recently the 73

relevance of such organization has also been underlined for action selection in artificial cognition 74

(Erlhagen and Bicho 2006; Richter, Sandamirskaya, and Schoner 2012; Sandamirskaya 2014); 75

hardware implementations have emerged (Millner et al. 2010) and are suggested to be an important 76

milestone for developing complex cognition (Indiveri, Chicca, and Douglas 2009).77

78

Among neural structures often modelled using a DNF with MH connectivity (which we will refer to 79

as DNF-MH), a prominent example is the superior colliculus (SC), a layered structure at the roof of 80

the brainstem implicated in the control of gaze and attention orientation (Krauzlis, Liston, and Carello 81

2004; Munoz 2002; Robinson 1972; Sparks 1986; Sparks 2002; Guillaume and Pélisson 2001). The 82

superficial layers of the SC (SCs) receive afferents directly from the retina and also from visual cortex83

and show strong visual activations. The intermediate-deep layers (SCi) display premotor activity for 84

gaze orienting and receive multisensory input from a range of sources including connections from the 85

SCs as well as 'top down' input from frontal cortex and basal ganglia. Both layers are topographically 86

organized (retinotopic organization) and in register to one another. This neural structure is hence seen 87

as a sensory-motor interface able to associate a motor command to visual information through 88

connections between superficial and intermediate-deep layers (Isa 2002), as well as through other 89

input. While both layers have been assumed to have MH connectivity, most modelling has focused 90

on the SCi (and hence on target/action selection rather than saliency). Results of SCi studies 91

(electrophysiology: McIlwain 1982,Munoz and Istvan 1998; and anatomy: Behan and Kime 1996; 92

Meredith and Ramoa 1998) were in favour of MH connectivity and also suggested that inhibition 93

from a given site can concern very distant areas of the map. Hence, without more precise measures, 94

it was assumed that the inhibitory influence was very large. Numerous models implementing long 95

range inhibition (K. Arai, Keller, and Edelman 1993; Bompas and Sumner 2011; Kopecz 1995; 96

Kopecz and Schöner 1995; Marino et al. 2012; Meeter, Stigchel, and Theeuwes 2010; Trappenberg 97

et al. 2001; Wilimzig, Schneider, and Schöner 2006) showed that it was successful for winner-take-98

all selection of a saccade target among several options.99

However, the idea of long range inhibition in the SC has been challenged (Isa and Hall 2009; Lee and 100

Hall 2006). Very recently, a clearer picture has been obtained. Phongphanphanee et al. (2014) using 101

multi-electrode arrays on slice preparations of rodent SC evaluated the local connectivity in SCs and 102

SCi. This study found MH connectivity only in SCs and that, in this case, the range of inhibition is 103

relatively short (see below for details). In SCi, the excitation zone was at least as large as the area of 104

inhibitory influence. The second main difference between the SCs and the SCi revealed by the study 105

concerned the time course of their excitatory and inhibitory responses to a sustained stimulation: 106
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where the SCi was behaving as an accumulator, the SCs showed transient responses. Globally these 107

results led the authors to conclude that the winner-take-all phenomenon is observed in the SCs and 108

that it enables saliency detection. Phongphanphanee et al. (2014) wrote "The sensory layer (SCs) is 109

optimized to localize the single most salient stimulus" (p. 2342). The SCi, in turn, would cascade 110

activity from the SCs and integrate it with its other inputs to perform target selection. Importantly, 111

the saliency selected and localised by the SCs can be translated into the winner of the SCi target 112

selection when other target candidates are negligible. As stated above, numerous models of the SC 113

were implementing long range inhibition to perform selection. The results of Phongphanphanee et al. 114

(2014) call for an exploration of properties of map integrating MH with short range inhibition and 115

temporal dynamics based on the SCs.116

117

The aims of the present study were: 1) to test the capacity of such a DNF-MH with short range 118

inhibition to perform reliable target selection and 2) to highlight its noticeable properties and its 119

potential limitations in such a context. Importantly, those properties could represent testable 120

predictions to address if the SCs – or any brain structure – performances are indeed driven by a short 121

range MH. We implemented this type of DNF-MH in two dimensions with spiking neurons. We fed 122

it with various types of input stimulation to assess the emergence of localized and stable clusters of 123

firing neurons (a “spiking cluster”) that would represent saliency and/or target selection. We first 124

explore the effect of stimulus size on the performance of the model. Second, we tested the model125

while two stimuli were presented at the same time and we measured their interaction while varying 126

their weights and the distance between them. 127

To anticipate some of the key results, varying the size of a single stimulation led to bimodal activation 128

and to centre-surround interactions that could result in the complete suppression of any activity on 129

the network. When two stimulations were used, phenomena of attraction, complete suppression, and 130

repulsion were observed for different distances. Applied to target selection, those properties may 131

represent detrimental phenomena: prior loci of interest extracted from feature maps could suppress 132

themselves, or produce clusters of activity that are not localised on the stimuli of interest.133

Interestingly, we can link these properties with previous neurophysiological and behavioural studies. 134

These links are extensively explored in discussion.135

As a final note, although our rational is largely based on results obtained in the SC, especially the 136

superficial layers, our results describe a set of phenomena possible for any DNF-MH implementation 137

and usage. 138

139

140
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2 Material and Methods141

2.1 Overview of the Model142

The model is a simple network of neurons organized as one 2D layer of 100x100 cells (Figure 1A)143

and connected according to a 2D Mexican hat kernel (Figure 1B). Our model is close to those of K. 144

Arai, Keller, and Edelman 1993; Marino et al. 2012; Trappenberg et al. 2001; Wilimzig, Schneider, 145

and Schöner 2006. Nevertheless the critical differences are that we implemented a MH with a short 146

range of inhibition and spiking neurons (Figure 1C) which allow to set up different synaptic decay 147

times for inhibition and excitation (see section 2.2). Finally, we did not implement the logarithmic 148

compression of space that is observed in the SC to remain general.149

The model is implemented in Python 2.7 (http://www.python.org/) and using the library BRIAN, a 150

spiking neuron network simulator (D. Goodman and Brette 2008; D. F. Goodman and Brette 2009). 151

The code source for all the following simulations can be found at: 152

https://github.com/Nodragem/SuppData-MHLimitations-Selection.153

154

Figure 1: Overview of the model. Subplot A: The model is a dynamic neural field (DNF) of 100x100 cells. The red to yellow circle 155

represents the cluster of spiking neurons after stimulation of the neurons on the green line fed by the input neuron (green circle). This 156

cluster forms a circle centred on neuron A. Neurons A (blue-white dot) and B (red-white dot) are marked in reference to subplots B 157

and C. Subplot B: Illustration of the Mexican hat kernel. The graph shows the connection weight of neuron A with its neighbourhood. 158

The X- and Y-axis represent the distance from neuron A in number of cells; The Z-axis represents the weight of connection, a positive 159

number is excitatory while a negative number is inhibitory (arbitrary unit). Subplot C: illustration of equation 1. Each spike of neuron 160

A (panel 1, red bars) opens excitatory channels on the membrane of neuron B that close by themselves according to time constant τe 161

(panel 2, orange curve). These opened excitatory channels raise the membrane potential of neuron B (panel 3, green curve). When a 162

threshold (-50 mV here) is reached, a spike is triggered in the neuron B (panel 4, red bar).163

The spiking neuron model (Lapicque 1907; Brunel and van Rossum 2007) used here is a 164

simplification of conductance-based integrate-and-fire (Hodgkin and Huxley 1952; Shadlen and 165

Newsome 1998). Activity of each neuron (unit) of this network can be described with the following 166

equations:167
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with   𝑉 = 𝑉𝑟   if    𝑉 > 𝑉𝑡

168

Equation (a) describes the time course of the membrane potential V for all neuron n (Figure 1C, 169

column 3). It goes toward its equilibrium V0 with a time constant τm when at rest while it goes toward 170

Ve or Vi when ge or gi are different from zero. When V reaches a threshold Vt for a neuron n, a spike 171

is emitted and V is reset to Vr for that neuron n. After it emits a spike, a neuron will be unaffected by 172

any input during a refractory period of 1.5 ms. This refractory period limits the maximum firing rate 173

to 600 Hz which is consistent with SC cell recordings for instance (Anderson et al. 1998; Sparks, 174

Holland, and Guthrie 1976).175

Equations (b) and (c) describe the time course of the opening of excitatory and inhibitory gates –176

ge and gi -- on neuron n’s membrane (Figure 1C, column 2). By default, ge (respectively gi) goes to 177

zero with a time constant of τe (respectively τi) – the synapse decay time. For each time 𝑡
𝑛′
𝑓

--178

corresponding to a spike f of a neuron n’ in the network -- ge (respectively gi) gets an immediate 179

increase which corresponds to the weight connecting n to n’ defined by we (respectively wi). Finally, 180

one or more experimenter-controlled spiking neurons can be connected to the model through ge (see 181

Figure 1A). Their firing rate over time is controlled by a curve Fs; in that sense, they resemble electric 182

stimulations used in neurophysiology and do not follow a Poison process. The connections to the 183

network are defined within the unit interval with a matrix ws and are modulated with αs. 184

The matrices of connections we and wi are normalized between -1 up to 1: αe and αi are used to scale185

them to a relevant dimension for the network, its unit being millivolt. The matrices wi and we are 186

computed from a difference of Gaussians equation:187

𝑓(𝑥, 𝑦 ∣ 𝜃𝑥 , 𝜃𝑦, 𝐾, 𝛽) =

(1 + 𝛽)exp (−
(𝑥 − 𝜇𝑥)

2

2𝜎𝑥
2

−
(𝑦 − 𝜇𝑦)

2

2𝜎𝑦
2

) − 𝛽exp(−
(𝑥 − 𝜇𝑥)

2

2𝐾2𝜎𝑥
2
−
(𝑦 − 𝜇𝑦)

2

2𝐾2𝜎𝑦
2
)

188

(2)189

The resulting subtraction gives a Mexican hat curve (see Figure 1B and Figure 2); the first term on 190

the right hand side of equation (2) is used as we and the second term as wi. The variables σx/σy and 191

Kσx/Kσy define the standard deviation of the Gaussians. Thus, K is used to set up the192

inhibitory:excitatory extent ratio. β is a parameter controlling the depth of the inhibition.193

194
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2.2 Parameter Choice195

All the parameters of the model are summarized in the Table 1. Parameters for which values are not 196

given in the table have values varying in the different simulations and these values are to be found in 197

the description of each specific simulation. The neuron parameters were taken from recent spiking 198

neuron models of the SC (Lo et al. 2009; Morén, Shibata, and Doya 2010; Morén, Shibata, and Doya 199

2013) and adapted to obtain clusters that maintain a stable activity on the map for the range of 200

stimulations we used. Concerning synaptic decay times, τi is superior to τe which is coherent with the 201

observation of Phongphanphanee et al. (2014) during a sustained stimulation of the SC (see their 202

figure 7): indeed, Figure 5E of the present report shows that our model was able to reproduce a 203

transient response of the membrane potential to a sustained input. However, to our knowledge the 204

time constants τi and τe of actual SC neurons have never been specifically measured, which explains 205

large differences in parameters values between the work of the two previous teams. By default, no 206

noise will be introduced in the model. If a noise source is used, it will be stated in the text.207

Concerning the lateral connection parameters, we used values for K and that were chosen based on 208

previous physiological or modelling studies. K, corresponding to the ratio inhibition-209

extent/excitation-extent, was set to 1.2 to limit lateral inhibitory influence to a relatively small range 210

consistent with recent results (see Isa and Hall 2009 for a review). This ratio is similar to the value 211

suggested by the SCs in-vitro study of Phongphanphanee et al. (2014). Indeed, they reported an EPSC 212

half-width area of 130 μm2 and IPSC half-width area of 145 μm2 (see their figure 4.D and their text 213

page 5; note also that Lee and Hall’s (2006) in vitro study on rat SCi reported ratios of 500μm/300μm 214

= 1.6 or 500μm/400μm = 1.25) corresponds to the strength of inhibition; it was set at 6.0 in order 215

to set the maximum inhibition weight at roughly the half of the excitation maximum weight to fit with 216

the results of Arai et al. (1994) (see the black curve of our Figure 2 -- the minimum weight of the 217

reference MH is at -100 mV for a maximum of 200 mV). Note that we test variations in these K and 218

values below.219

Lastly, our parameters are chosen for the neural field to be bistable between the all-off state and a 220

spiking cluster state. When a bump in the membrane potential reaches the threshold, the model 221

generates systematically a stable and well-defined group of spiking neurons around the point which 222

passed the threshold. We name this group a "spiking cluster" to distinguish it from bumps in the 223

membrane potential. This spiking cluster is similar to a bump of activity in a population rate model, 224

and being stable, it survives after we stop stimulating the neural field.225

226

227

228

229

230

231

232

233

234

235

236

237

Table 1: Model parameters and variables:238

Provisional



General parameters Symbol Value and unit

simulation time None 200 ms

map size None 100x100 neurons

simulation clock precision None 0.01 ms

recording clock precision None 1 ms

Neuron parameters Symbol Value and unit

membrane time constant τm 10 ms

excitation time constant τe 3 ms

inhibition time constant τi 10 ms

potential threshold Vt -50 mV

reset potential Vr -80 mV

resting potential V0 -70 mV

Nernst potential of excitation ions Ve 0 mV

Nernst potential of inhibition ions Vi -80 mV

Neuron variables Symbol Unit

membrane potential V mV

number of opened excitatory channels ge no unit

number of opened inhibitory channels gi no unit

Mexican hat parameters Symbol Unit

depth of inhibition controller  no unit

Inhibition/excitation extent ratio K no unit

standard deviation on Y-axis σy cells

standard deviation on X-axis σx cells

center position on X-axis μx cells

center position on Y-axis μy cells

matrix of positive connections we no unit

weight factor for positive connection αe 200 mV

matrix of negative connections wi no unit

weight factor for negative connection αi 200 mV

External stimulus parameters Symbol Unit

spikes train Fs no unit

matrix of connections with the model ws no unit

weight factor αs mV

239

240

241

242

243

244

245
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2.3 Simulation Set 1: Size Variation of a Single Stimulus246

247

In a first set of simulations we want to characterize the response of the selection map to stimuli of 248

different sizes. We iterate the exploration for three different instances of the MH to test for the effect 249

of slight variations in the inhibition strength and extent.250

A range of stimulus lines of varying size (see below) was tested with the model. We ran three different 251

sub-simulations (S1, S2, S3): one testing the reference MH (see general method) and two testing 252

variations of it in order to make sure that the results are robust to moderate changes in the connectivity 253

profile. The first sub-simulation (S1) implemented the reference MH (K = 1.2 and  = 6.0; see Model 254

parameters). The second sub-simulation (S2) was conducted to test a larger extent of inhibition. K255

was fixed to 2.0, which covers the upper end suggested by data of Phongphanphanee et al. (2014). In 256

order to only address the extent of inhibition,  was set to 1.43 with an optimization algorithm to 257

keep the minimum of MH function (depth of the inhibition) similar to S1. The third sub-simulation 258

(S3) was conducted with K = 1.2 and = 8.0 to observe the effect of a stronger inhibition while 259

keeping its extent constant. For the whole set of simulations in this part, x and y were fixed to 5 260

neurons, this was chosen to get relatively small MH lateral connections compared to the dimension 261

of the model map. Given that the determinant factor is the relative size of the stimuli compared to the 262

MH’s size, having small connections allowed us to increase the range of tested stimulus sizes.263

The map was stimulated with line-shaped stimuli with twenty sizes (2 neurons up to 42 neurons in 264

steps of 2 neurons along the Y-axis). These line-shaped stimuli were defined by Is  =  αs * ws * Fs as 265

explained in the equation (1.b). The maximum size of 42 neurons represents less than 50% of the Y-266

axis size of the model map in order to limit border effects (map size = 100x100 neurons, see table 1). 267

The firing rate pattern over time of the external input, Fs, was a Gaussian centred on 25 ms with a 268

standard deviation of 80 ms and a maximum frequency of 400 Hz. The strength of the stimulus was 269

αs = 4000mV. Finally, the duration of each simulation was 200 ms.270

271

272

Figure 2: The three Mexican hats tested in Simulation 1. They correspond to the connection of a neuron n with its neighbourhood (i.e. 273

αe.we + αi.wi). They are only plotted on the X-axis and for one direction.274

275
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The results will be split in four parts. The first part focuses on the spatial pattern obtained on the 276

map, the second part on the temporal dynamic. The third part investigates if our result would be 277

different if using a sustained input (Fs = 400Hz) instead of the Gaussian firing rate pattern 278

aforementioned. Finally the last part extends our results to bidimensional shape – replacing the line-279

shaped stimuli by squares and circles. 280

281

282

2.4 Simulation Set 2: Interaction of Two Stimuli283

284

Our first set of simulations addresses the effect of stimulus size in a simple DNF-MH used as a target 285

selection map. However, such a map is prone to receive many candidate points of interest from 286

satellite structures feeding it. Our second set of simulations tests the behaviour of our DNF-MH model 287

when stimulated at two points with varying the distance and relative strength. In a comparison of our 288

model with the SCs, this simulation is analogous to the in-vitro experiments conducted by 289

Phongphanphanee et al. (2014) and by Vokoun et al. (2014) in which these two teams stimulated two 290

points in the SCs varying the distance and the strength of stimulations injected in each point.291

Two stimulation points, A and B, of size 2x2, are considered. Stimulation A is kept at a fixed location 292

(x= 31; y= 51), while stimulation B is tested for distances from 2 to 40 cells with a step of 2. 293

Stimulation A and B both have the same firing rate pattern as used in simulation 1. While the 294

stimulation B is always connected with a weight of 4000 mV to the model, stimulation A is tested for 295

3 different weights: 1333 mV, 2000 mV and 4000 mV. We used the reference MH configuration (K296

= 1.2;  β = 6.0) but in a larger implementation (σx = σy = 8.5 cells, compared to 5 cells in Simulation 297

1, to increase the MH size and hence virtually increase the granularity of our probing). The result we 298

report here is the position of the spiking cluster nearest to stimulation B on the map. Its localization299

is defined by the centre of gravity of its spike count over all the simulation. To control that border 300

effects was not at the origin of the following observations, a control condition was run that tested the 301

spiking cluster position for the different location of the stimulation B alone. The spiking cluster 302

positions were then well aligned with the stimulation B and suggest there is not border effect at those 303

locations. 304

The results for the simulation set 2 will be split in two parts. The first part presents the results without 305

including noise in the model. The second part tests if the results obtained for the condition 4000mV-306

4000mV are robust to the addition of noise in the model and if they extend to a slight inequality in A 307

and B intensity (3500mV-4000mV). Precisely, the noise was added to the membrane potential and 308

was following a normal distribution of standard deviation 4 mV.309

310

311

312

313

314

315

316

317

318

319

3 Results320

3.1 Simulation Set 1: Spatial Patterns321

322
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Figure 3 shows membrane potential and firing rate for all neurons of the neural field for a subset of 323

stimulus sizes for the 3 MH variants (S1, S2, S3, depicted in Figure 2). These values of membrane 324

potential and firing rate were averaged over all the simulation time (200ms). The represented line 325

sizes illustrate the different observed activity patterns. Panel D shows the number of spiking clusters 326

(see parameter section for definition) as a function of the stimulus size for the three MH variants, as 327

further explained below.328

329

330

Figure 3: Overview of the spiking clusters spatial distribution during S1, S2 and S3 (respectively subplot A, B and C). The results are 331

shown for the most informative stimulus sizes, which are different according to the set of simulations and are indicated on each column 332

of the graphs. Subplot A, B, C: On each picture, the top part shows average membrane potential during the simulation; the lower part 333

shows average firing rate during the simulation. Subplot D summarizes the result: the number of spike clusters is computed as the sum 334

of spikes on the map divided by the sum of spikes occurring for the first distractor size (each first distractor size gave rise to one spike 335

cluster that is used as reference).336

337

For the first MH (S1, K = 1.2 and = 6.0, Figure 3A and black line in 3D), a unique circular spiking 338

cluster located on the centre of the stimulus line was observed from the smallest size up to the size of 339

18. Despite the transient nature of the stimulation, the spike cluster persists during the whole duration 340

of the simulation. On the contrary, from size 20 to the largest tested size (size 42), no spiking clusters 341

appeared on the firing rate map: a complete activity suppression was observed. It can be noticed that 342

on the membrane potential map, the activity appears equally spread for size 20 while the activity is 343

stronger on the extremities for size 42. This sub-threshold activity distribution suggests that the 344

extremities could win the competition if the threshold was decreased.345
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In the second sub-simulation (S2, K = 2.0 and = 1.43, Figure 3B and red line in D), we observed 346

similar results but the spiking cluster for small line sizes was larger and the complete activity 347

suppression starts at a larger stimulus size. These two observations are to be related to the slightly 348

larger excitation influence in S2 with respect to S1 (Figure 3). The main difference with S1 appears 349

at size 42: the activity on the extremities was strong enough to give rise to two spiking clusters. Those 350

two spiking clusters have a weaker average firing rate than the one observed for previous sizes; below 351

we show this is due to a larger latency before the first spike rather than a lower firing rate once 352

initiated (see next section).353

In the third sub-simulation (S3, K = 1.2 and = 8.0, Figure 3C and green line in D), similar results 354

as in S2 and S1 are found but with a smaller radius of the spiking cluster for small line sizes and a 355

suppression that starts at a smaller stimulus size (size 16). Here, two spiking clusters were observed, 356

as in S2, for stimulus size 30 to 36. However, S3 differs from S2 as a complete suppression was again 357

observed for larger sizes than 36. When present, the two spiking clusters were on average weaker 358

than the unique spiking cluster observed for smaller sizes, and again this is due to delay rather than 359

firing rate once the spiking cluster occurs (see below).360

Thus complete activity suppression occurred for at least one range of sizes for each set of simulations. 361

The stimulus size for which it appears is positively correlated with the size of the positive area of the 362

MH used for these simulations.363

Lastly, note that the stimuli tested were spatially homogenous: each point of the stimulus gave the 364

same input to the map. This type of stimulation may favour complete suppression, and if noise were 365

present in the network, it is conceivable that it could randomly favour the selection of a spiking cluster 366

and hence eliminate the phenomenon of complete suppression. To test this hypothesis we added 367

normally distributed noise in the membrane potential of all the units of the 2D network, using K = 1.2 368

and = 6.0 (S1). The standard deviation of the noise was of 4mV, which corresponds to a fifth of the 369

distance between the resting potential and the threshold. The results were similar to those presented 370

above. Hence, even with noise in the network, the phenomenon of complete suppression could be 371

observed.372

373

3.2 Simulation Set 1: Temporal Dynamics374

375

In simulations S2 and S3 larger stimuli could lead to two spiking clusters, which show a lower firing 376

rate average than for the unique cluster appearing for smaller sizes. Figure 4A, B, C shows the 377

evolution of the membrane potential for neurons just next to the stimulus line (see caption for more 378

details) for the same sizes addressed in Figure 3A, B and C. It can be observed that the threshold to 379

the first spike is reached much later for sizes giving rise to two spiking clusters (size 42 in SA2 and 380

size 30 in SA3) when compared to sizes leading to one spiking cluster. In addition we have estimated 381

the firing rate of the spiking clusters for the last 50 ms of each simulation: their firing rate does not 382

change between stimulus size (550-600Hz for S2, 350-400Hz for S3,). Hence the change in firing 383

rate average observed in S2 and S3 was the result of the change in latency for the membrane potential 384

to reach the threshold.385

Provisional



Page 13 of 28

386

Figure 4: Overview of the membrane potential dynamics during SA1, SA2 and SA3. Subplot A-C: Effect of the stimulation on the 387

neighbourhood according to time. We report the membrane potential of the most excited neuron among the neurons situated along a 388

line parallel to the stimuli and at 2 cells from it (x = 52). When a neuron on this line reaches its threshold (at -50 mV, see the dashed 389

horizontal line), it means that a spiking cluster is created. A, B and C correspond to the 3 different MHs introduced in figure 3; their 390

parameters K and β (from equation 2) are indicated. For each MH, we plot the maximum of the membrane potential for the sizes shown 391

in figure 4.The vertical lines at the bottom represent the input spike train. Subplot D: Initial speed (averaged between 0 and 6 ms) of 392

the membrane potential (in mV/s) according to stimulus size for SA1, SA2 and SA3. The circles plotted on the curves denote that, for 393

these stimulus sizes, the membrane potential reached the threshold before 30 ms and led to one spiking cluster on the neural field. 394

Subplot E: Speed of the membrane potential (in mV/s) between 30 and 90 ms when auto-inhibition prevented threshold being reached 395

in the first rise, plotted according to stimulus size. The circles plotted on the curves denote that, for these sizes, the membrane potential 396

reached the threshold sometime after 30 ms and there are two spiking clusters on the map397

We can observe in all the simulations (Figure 4A, B, C, all curves) an early rise of membrane 398

potential. This early rise is at the origin of all single spiking clusters observed in Figure 3. Figure 4D 399

shows the speed of this early rise (for the interval between 0 and 6 ms) for all stimulus sizes. This 400

speed increases until an optimal size (10, 12 and 8 cells for S1, S2 and S3 respectively) and then 401

decreases to a plateau. The obtained curve is analogue to what is found with the firing rate of neurons 402

in surround suppression literature (Sceniak et al. 1999; Schwabe et al. 2006). Empty circles on the 403

curves indicate that the threshold is reached before 30 ms (i.e. a single spiking cluster is observed). 404

Hence we can see that close to the stimulus size corresponding to the beginning of the plateau, the 405

initial wave of excitation starts to fail to reach spiking threshold. Interestingly, in those conditions 406

(size 20 and 42 of Figure 4A for instance), we can observe that the early rise is transient. This transient 407

nature will be explained below with Figure 5 showing the dynamics of excitatory and inhibitory 408

influences. Interestingly, this transient rise in the membrane potential echoes the transience observed 409

by Phongphanphanee et al. (2014) in the SCs as previously mentioned (see their figure 7A, left). 410

The two spiking clusters for larger stimuli occurred through a late second rise in membrane potential 411

after 50ms (e.g. size 42 and 30 for S2 and S3). By observing the curve for size 20 in S1 Figure 4A, 412

we can see that a late rise in the membrane potential occurs also for intermediate sizes, but 413

insufficiently to produce late spiking clusters (see also size 24 for S2 and sizes 16 and 38 for SA3), 414

this corresponds to the complete activity suppression shown on Figure 3. To examine this further, 415

Figure 4E plots the mean speed of the membrane potential averaged between 30ms and 90ms to 416

illustrate how the second rise varies over stimulus size. The time window used catches the variation 417
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for S3 especially well showing that the second rise of the membrane potential, like the first, also has 418

an optimal stimulus size after which the rise speed decreases again and it fails to reach threshold 419

(compare with the panel D of the Fig 3).420

421

3.3 Simulation Set 1: Effect of Input Dynamic422

423

To get a better view of the dynamics of inhibition and excitation, we compared these dynamics for a 424

sustained input at 400Hz to those for the transient input with a Gaussian profile as previously used. 425

Figure 5 shows the membrane potential of the neuron showing the largest hyperpolarization near the 426

stimulus in these two cases (panels A,B,C for transient input and panels D,E,F for sustained input) 427

obtained with parameters of S3 (K = 1.2,  = 8.0). It highlights that the dynamic of the initial transient 428

rise in membrane potential comes from a delayed wave of inhibition (Panels B, C, E and F). Indeed, 429

the weight of excitation is twice larger than the weight of inhibition, giving an initial advantage to the 430

excitation which the inhibition later catches up due to its larger decay time constant. Note that this 431

wave of inhibition comes from remote units (see Figure 2) and, so, does not appear for small size 432

(Panels A and D).433

With the sustained input, we still observe a second rise in the membrane potential; the inhibition curve 434

still decreases after having overtaken the excitation. As our recording takes place toward the 435

extremities of the stimulus -- near the potential winner loci -- this decrease of inhibition thus comes436

from the decrease of activity of the middle of the stimulus (see Figure 3B size 42, and 4C size 30, 38) 437

silently losing the competition at sub-threshold level. 438

For a stimulus size of 36, no spike cluster is observed in this sustained input condition in opposition 439

with the transient stimulus condition (Figure 5.C and 5.F). As mentioned above, the second membrane 440

potential rise is weaker when using the sustained stimulation. Counter-intuitively, this suggests that 441

to decrease or to stop the stimulation input --with the transient stimulation-- helped the membrane 442

potential to reach the threshold. Two pieces of explanation are that 1) as the neurons are excitatory 443

coupled, the most excited regions of the stimuli self-sustain their firing longer than the others when 444

our input stops, 2) the most inhibited regions lose their only source of excitation when our input stops. 445

Then to stop or decrease the input signal can accentuate disequilibrium in the competition and 446

facilitate a target selection outcome.447

448
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449

Figure 5: Excitatory and Inhibitory Channels opening and membrane potential according to time for transient stimulation (upper 450

graphs) and sustained stimulation (lower graphs). Data from SA3 (K=1.2, β=8.0) are shown here; similar curves can be obtained from 451

the other conditions. The transient input (A,B,C) is the one used in the previous simulations and corresponds to a Gaussian (see F_s 452

in Inputs and Methodology). The sustained input (D,E,F) set F_s = 400 Hz, e.g. the firing rate of the input stimulation is at 400 Hz and 453

constant over the time. The vertical lines at the bottom represent the input spike train. The tracked neurons all come from the row at 2 454

cells from the stimulated neurons (x=52). At each timepoint, the following measures are extracted from the neuron that has the 455

maximum membrane potential among the tracked neurons. The curve “V” is the evolution of the membrane potential over the time.456

“ge” or “gi” describe the evolution of, respectively, the number of excitatory or inhibitory opened channels on the neuron’s membrane. 457

However, for the sake of comparison, the number of opened channels ge and gi are multiplied by a scaling factor. Indeed, for any value 458

of V: |Ee-V| > |Ei-V| where Ei and Ee are, respectively, the inhibition and the excitation equilibrium. Thus, an excitatory gate that 459

opens always has more effect on V than an inhibitory gate. The scaling factors represent this difference by being |𝐸𝑒 − 𝑉́| for ge and 460

|𝐸𝑖 − 𝑉́| for gi, with 𝑉́ = (𝑉𝑡 − 𝑉0) 2⁄ .461

462

3.4 Simulation Set 1: Generalization to 2D stimulus shapes463

464

Our DNF-MH model of target selection map shows a phenomenon of total activity suppression 465

related to stimulus size for 1D stimulus. Here, we generalize our observations to 2D stimuli by testing 466

the behaviour of the model when stimulated with a circle and a rectangle of varying size. We used467

the reference MH (S1, K = 1.2 and = 6.0).468

Figure 6 shows results obtained for these tests conducted with 2D shapes. Columns 1 and 3 show 469

average firing rate over the simulation period and columns 2 and 4 contain the spikes train of neurons 470

on the diagonal of the map. Similar phenomena of activity suppression to those for the 1D stimulus 471

are observed: spiking clusters did not emerge for size 18 for the square and for sizes 20-26 for the 472

circle. Additionally for further increases of size, several clusters appear: from sizes 20 (square) and 473

28 (circle) four spiking clusters emerged (Note that activity for the circle segregates into 4 regions 474

because the pixelation of our map, theoretically no point on a disk would be advantaged on a 475

continuous competition field). Especially in the case of the circle, these clusters tend to move as if 476

they are repulsed from the centre (lower panel of the column 4). This repulsion becomes weaker with 477

size until a new spiking cluster emerges at the centre in addition of the four on its corners (not shown).478

The spike trains (columns 2 and 4) also allow observing a latency increase for clusters appearance 479

when increasing the size. For smaller sizes, below 18 (square) and 20 (circle), the unique cluster480

appears with almost no delay with respect to the onset of the stimulation. Conversely, when spikes481

appear for larger sizes, whether they finally disappear (size of 18 for the square or of 20-26 for the 482

circle) or are part of stable spiking clusters (larger sizes), there is a short latency period of 483
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approximately 10 ms before their appearance. This latency increase is similar to the one observed 484

when a 1D stimulus resulted in two clusters (see above) but of lower value: the latency increase for 485

the 1D stimulus was around 70 ms. Finally, the first burst of spikes and the following gap (just at the 486

beginning of the stimulation; middle and lower panels in the columns 2 and 4) can be respectively 487

related to the initial rise of membrane potential and to the wave of inhibition seen with 1D stimuli. 488

These differences can be explained by the greater number of neurons interacting, which speeds and 489

strengthens excitatory and inhibitory influence. Hence, apart from this difference in the latency, 490

results for 2D shapes are similar to those obtained for the 1D stimulus (line).491

492

493

Figure 6: Results of the simulations for the Simulation 2 which test for a suppression effect with a square and a circular shaped stimuli. 494

Column 1 and 3 show the average spike frequency (firing rate) in the neural map in hertz. The column 2 and 4 show the spikes train 495

of neurons according to time. The red vertical lines at the bottom represent the input spike train. The recorded neurons are those 496

forming the diagonal of the neural field from the position (25, 25) to the position (75, 75).497

498

3.5 Simulation Set 2: Spatial Interactions499

500

Panel B of Fig 7 shows a summary of the results for these simulations. The spiking clusters produced501

by the model indicate which locus has been selected as a target. Its deviation from stimulation B is 502

shown as a function of distance between the two loci of stimulation. Negative values correspond to a 503

deviation toward the locus of A.  The three curves correspond to the three different intensity of 504

stimulation tested for the point A (1333, 2000, 4000mV; B is always stimulated with 4000mV). Filled 505

symbols indicate that only one spiking cluster was present on the network and open symbols that two 506

clusters survived.507
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In the case of equal strength for both stimulations (green curve), for the first distances up to 14 cells, 508

we observed one single resulting cluster (fusion phenomenon) that was in between the two stimulation 509

loci (see panel A1 Attraction). That observation can be related to the activation merging found by 510

Vokoun et al. (2014) in the SCs (see their figure 3). Then for two following distances (16 and 18 511

cells), a complete suppression of activity on the map was observed (see panel A2 Suppression). 512

Finally, from a distance of 20 cells up to the largest tested distance (40 cells), two clusters are 513

produced and the closer to the site of B is repulsed in the opposite direction with respect to A (positive 514

values on y axis of the panel B). The panel A3 allows us to see that the same repulsion was observed 515

for the cluster close to the A site. This repulsion phenomenon decreased as the distance between the 516

two stimulating sites increased.517

When stimulation B was stronger than stimulation A (blue and red curves), in almost every case only 518

one cluster was produced: a winner-take-all mechanism occurred and selected a locus near stimulation 519

B. Nevertheless, a deviation toward stimulation A is still observed up to the distance 16 cells: the 520

spiking cluster appears in between the two stimulations. Note here that the selected locus is closer to 521

the strongest stimulation and that it gets closer when the latter gets stronger. That bias toward the 522

strongest stimulus is also observed in Vokoun et al. (2014). For larger separation distances, the 523

winning cluster remained localized near site B. This result goes in line with the results of 524

Phongphanphanee et al. (2014): when the stimulations are close enough, an activation is present at A 525

and B sites while when the stimulations are more distant, no activity is recorded close to the 526

stimulation A (the weakest) and a normal cluster is observed close to the stimulation B (the strongest). 527

Nevertheless, the winner-take-all mechanism is not perfect: the selected locus is near to B but not 528

aligned with it. Indeed a deviation away from stimulation A occurred, similar to what we observed 529

with equal strength simulations.530

Panels C1 and C2 show this winner-take-all phenomenon. However, for the last tested distance with 531

A=2000mV (40 cells), the activity at A escaped from the inhibition influence of the stimulation B 532

and two clusters emerged (panel C3) which may be seen as a fail to select one target from the two 533

input:  the stimulation A overcomes the surround inhibition – which decrease with the distance in that 534

range of distances – and stimulation B gives rise to its own spiking cluster. That does not occur for 535

the condition 4000mV-1333mV, where the stimulation A is too weak to overcome the inhibition even 536

at such a distance.537 Provisional



538

Figure 7: Interaction between two stimulation induced bumps according to their distances. The magenta dot in subplot A and C 539

represent the position of stimulation B, while the green dot represents the stimulation A. The white dot in subplot A is the centre of 540

gravity of the spiking cluster the nearest from stimulation B. The plot B describes the deviation of that centre of gravity (white dot) 541

from the stimulation B (magenta dot) on the x-axis. Filled dots denote there is only one spiking cluster on the map, while the unfilled 542

dots denote there are two spiking clusters on the map. The simulation was run for different distance between the stimulation A and B 543

(x-axis), and for different strength of the stimulation A (curves red, blue and green).Note that the subplot A shows an average of the 544

firing rate over the simulation while the subplot B show an average of the membrane potential over the simulation.545

546

3.6 Simulation Set 2: Tight competition and addition of noise.547

548

Our previous results for two stimulation inputs of exactly same strength show that for a given range 549

of distances a complete suppression of activity is observed. This corresponds to a failure for the DNF-550

MH model to select only one target.  One can suggest that this failure of the winner-take-all is due to 551

1) the absence of noise in our model or 2) the unnatural exact equality of the two stimulations in 552

competition. 553
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We tested here if the previous results, notably the suppression, can be obtained with the addition of 554

noise and for close competition (3500mV vs 4000mV).555

The Figure 8 shows the results of one simulation with these conditions. The results are strongly 556

similar to those obtained in the simulation without noise. The addition of noise, even if it helps to get 557

only one winner (compare distance 20 and 22 in Figure 8 and Figure 7B), does not prevent the case 558

of two-winner and no-winners in the 4000mV-4000mV condition. Interestingly, the condition 4000-559

3500mV (dark blue curve) shows that we can also obtain activity suppression (Figure 8) when the 560

two stimulations are not exactly of the same strength. This occurs for distance 16 and 18 cells, 561

similarly to the equal strengths condition. However, in this case, the two-winner situation is not 562

observed directly after the suppression phase. For some distances, the curve is similar to the one 563

obtained in the condition 4000-2000mV. Nevertheless, finally stimulation A succeeds to give rise to 564

a spiking cluster because the inhibition from stimulation B gets smaller after a certain distance (refer 565

to the shape of a MH curve, Figure 2). Here, stimulation A being stronger than in the 4000-2000mV 566

condition, it overcomes the inhibition of B (i.e. it results in two clusters) at a smaller distance.567

568

Figure 8: Interaction between two stimulations according to their distances, with noise, and with an additional condition (4000-569

3500mV) testing for tight competition. Same description as for Figure 7B.570

571

572
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4 Discussion573

The aim of the present study was to get further insight into the properties -- and their consequences 574

for saliency or target selection -- of Dynamic Neural Fields based on a Mexican hat kernel (DNH-575

MHs) in the specific case of short inhibitory influence. Indeed, this type of lateral connection has 576

been recently demonstrated for a classical biological example of DNF-MHs, the superior colliculus 577

(SC; see Introduction). We designed a simple one layer model implementing the most recent data 578

concerning lateral interaction in this neural structure (Phongphanphanee et al., 2014) and we tested 579

its properties. We observed that certain stimulus sizes could lead through centre-surround interactions 580

to a complete suppression of the network activity, while larger sizes led to multi loci selection. This 581

complete suppression, which led to no target selection, also occurred when two stimulations were 582

presented simultaneously within a certain range of distances. For smaller distances, the model 583

selected a position in-between, closer to the strongest stimulus (attraction/fusion), while for larger 584

distances the model selected two loci that were deviated away from the stimuli positions (repulsion). 585

We discuss these results of suppression and spatial deviation (i.e., attraction/fusion and repulsion)586

obtained here in view of neurophysiological, modelling and behavioural previous findings.587

588

4.1 Suppression phenomena: Neurophysiology results589

590

It may seem counterintuitive to observe complete suppression on a saliency map for large stimuli of 591

interest. This result can nevertheless be related to previous neurophysiological, modelling and 592

behavioural findings in the visuo-oculomotor system and may help to disentangle unanswered 593

questions.594

Suppression phenomena in which larger stimuli produce lower activity than smaller ones are well 595

described in sensory systems and especially in the visual system (Allman, Miezin, and McGuinness 596

1985; Series, Lorenceau, and Frégnac 2003). Most of the time a decrease in the response is observed 597

(either a decrease in the frequency of the response or/and in the number of spike emitted; see Hubel 598

and Wiesel 1968), rather than a complete suppression as observed here. Nevertheless, phenomena of 599

total suppression have also already been reported in physiological recordings. Goldberg and Wurtz 600

(1972) showed a complete suppression of SCs response when increasing the size of a visual stimulus 601

(see their Figure 4). Additionally, more recently, in a study on SCs receptive field, Wang et al. (2010)602

reported that the activity of SCs neurons was completely suppressed for large stimuli centred on the 603

tested neurons (see their Figure 5). Our study brings some clues concerning mechanisms underlying 604

these suppressive phenomena. Indeed, their neural substrates remain debated (Sachdev, Krause, and 605

Mazer 2012). The origin of the suppression is proposed to be due to 1) a decrease of feedforward 606

activation 2) interactions involving local lateral connections or, finally, 3) feedback connections from 607

higher areas. The present study confirms, on a theoretical ground, that centre surround interactions in 608

a single layer based on the most up to date physiological evidence from SC is sufficient to provide609

total suppression of the response for a certain range of stimulus sizes.610

For any given surround suppression phenomenon, other observations in the present work provide611

predictions to test the hypothesis that it might be driven by short inhibitory lateral connections. First, 612

increasing the size of a line stimulus should lead, after the suppression phase; to the reappearance of 613

activation clusters on sites corresponding to extremities (see Figure 3). Second, this reappearance 614

should be observed with a significant latency increase if a delayed wave of inhibition is present (see 615

Figure 4). Third, when two stimulations are tested, maximal activity suppression should also be 616

observed for a specific distance (see Figure 7).617

618
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4.2 Suppression phenomena: Modelling results619

620

Similar models with MH connections have already been suggested to reproduce surround suppression 621

(Sceniak et al. 1999; Schwabe et al. 2006; Spratling 2010). Only Sceniak et al. (1999) also showed 622

total suppression (see their Figure 2F). Nevertheless none of them were constructed with spiking 623

neurons. Further than the effect of the spatial organization of inhibition and excitation, our work gives 624

an insight in how the dynamic of the inhibition and excitation can shape the suppression. In the present 625

model, it is a delayed wave of inhibition – i.e. after an initial rise of membrane potential-- which 626

drives the surround suppression. A change of the inhibition time constant would modify the 627

suppression effect. This dynamics of the membrane potential during the surround suppression 628

phenomenon could be investigated in experimental intracellular recordings and, if matching those 629

observed in the present study, be used to infer the inhibition time constant of the local circuitry.630

Finally, our results suggest an optimal size of visual stimuli which minimizes the latency to trigger a 631

spiking cluster (Figure 4D) in our target selection model. This is in line with the modelling work of632

Marino et al. (2012) –see their figure 6F— who were working with a population rate model and an 633

arbitrary threshold to trigger saccades. They also observed a U-shape relationship, but didn't observe 634

a total suppression. 635

636

4.3 Suppression phenomena: Behavioral results637

638

If the suppression phenomenon observed in our model exists in the oculomotor system, this predicts 639

that large stimuli will lead to fewer saccades with short latency than would small stimuli. Ploner et 640

al. (2004) observed this type of effect in a behavioural study: saccades with short latency were less 641

numerous for large targets (10°), whereas saccades with short latency were more frequent for small 642

target sizes (1°). More precisely concerning this latency question, the U-shape curve for the 643

relationship between the membrane potential evolution speed and the size of the stimulus (Figure 4D, 644

see also Figure 6F of Marino et al. 2012) is in line with the relationship shown by Boch et al. (1984)645

between express saccades latency and the size of the target (see their figure 5).646

The observed suppression would similarly predict that larger distracting stimuli could paradoxically 647

interfere less with saccades to a nearby target than might smaller distractors. Such a pattern was648

observed by Tandonnet et al. (2012). Their work focused on the Global Effect, which is the tendency649

for saccades to land in between to nearby visual stimuli (Findlay 1982). Using a target-distractor650

couple, they found a U-shaped curve for such deviation while increasing the distractor size: first the 651

distractor is too small to have a strong influence, then its increase in size makes its influence grows, 652

but from a given size its influence begin to decrease. This loss of weight for larger stimuli could be 653

explained by a decreased response in a saliency map such as the SCs or the LIP. Finally, the results 654

of Stigchel et al. (2012) consisting in a smaller extent of the global effect for large stimuli may also 655

be explainable by a suppression of large stimuli. Note that while Tandonnet et al. (2012) observed 656

the average shift of the landing positions, Stigchel et al. (2012) observed the split from unimodal to 657

bimodal distribution. All these results suggest that different degrees of suppression are observable at 658

the behavioural level. It remains to be investigated whether total suppression phenomena can also be 659

detected – for single stimulus, and for two stimuli.660

4.4 Spatial Deviation: the Fusion effect661

Our DNF-MH demonstrates deviation of the spiking clusters from the initial input locations. Such 662

deviation can be detrimental, for instance, when the DNF-MH is used as a target selection map which 663

has to select among different points of interest sent by satellite structures. Indeed, with such deviation, 664
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the selected target would not correspond to any prior points of interest. We discuss here whether these 665

deviations have already been observed at the neurophysiological, modelling or behavioural level.666

When the model is stimulated at two nearby locations a single spiking cluster emerges in-between 667

them. The cluster is closer to the stronger stimulation location – in proportion to its relative strength 668

– and it is of the same width as spiking clusters induced by a single stimulation.  This phenomenon 669

of attraction (and fusion) was described for the first time by Amari (1977) in a DNF-MH based on a 670

firing rate neuron model. In the context of the spatial working memory, Compte et al. (2000) proposed 671

a model consisting in a one dimensional DNF with a MH connectivity pattern. Interestingly this group 672

recently demonstrated that this model could lead to phenomena of attraction and fusion (Almeida et 673

al. 2015). The findings of the present study extend these previous observations to a 2D spiking neuron 674

networks.675

676

On the behavioural side, the tendency for saccades to land in between two simultaneous and nearby 677

visual stimuli is known as the Global Effect or saccade averaging (Findlay 1982). Concerning the 678

neurophysiological approach, Glimcher and Sparks (1993) showed that this fusion phenomenon could 679

occur in the SCi when an intermediate saccade is made between two visual stimuli presented 680

simultaneously. Edelman and Keller (1998) added that this could be the case for saccades of latency 681

in the average range while two distinct bumps of activity would stand on the SCi for shortest latency 682

saccades. However, whether a fusion of activity in the SCs or the SCi can explain the Global Effect683

is still matter of debate. Arai et al. (1994) implemented a saccadic system model using a DNF-MH to 684

simulate the SC layers. Their model took into account the SC spatial compression and, in their test 685

using fusion to explain the Global Effect, one can notice hypermetria (overshoot) of the output 686

saccade (see their figure 10). Katnani and Gandhi (2011) brought further insight for that result: when 687

the DNF-MH phenomenon of fusion is applied in SC space (Note that the SCs and SCi are assumed 688

to have to an equivalent mapping; cf. Schiller and Stryker 1972), this would lead systematically to 689

overshooting averaging saccades in external or retinotopic space. On the other hand, they 690

demonstrated that a vector averaging of two steady bumps of the SC space would lead neither to a 691

hypo- nor a hypermetria. They, however, note that if the phenomenon of attraction could lead to a 692

wider bump of activity (wider on the axis formed by the two input stimulations, leading to an elliptic 693

shape), the hypermetria would be corrected.694

Recently, Vokoun et al. (2014) have reported in their work applying photodiode stimulations that on 695

a coronal slice of the superficial layers of the rat SC- “simultaneous stimulation of two nearby sites 696

resulted in a single, merged peak centered between the two sites”. They suggest that such a 697

phenomenon could explain the Global Effect. Importantly, they observed that an activity bump 698

induced by the simultaneous stimulation of two loci is wider than an activity bump induced by a 699

single stimulation. That results interestingly echoes to a previous behavioural study observing that 700

larger visual stimuli can lead to a wider distribution of saccade landing positions (Tandonnet and Vitu 701

2013). Under the considerations of Katnani and Gandhi (2011) this spread of activation could correct 702

the hypermetria issue discussed above, but it is important to note that a single layer bistable DNF-703

MH model such as ours could not replicate such a spread of activity - the fused activity has the same 704

width as that for a single stimulus because the stable cluster size is set by the width of the MH.705

4.5 Spatial Deviation: the Repulsion effect706

When two clusters of activity were induced by two stimuli, they tended to deviate away from each 707

other (see Figure 7). Here also both the early work of Amari (1977) and the recent study of Almeida 708

et al. (2015) already observed this phenomenon in 1D models. Again our results allow to extend these 709

findings to a 2D situation. To evoke this repulsion phenomenon, Amari (1977) explains that bumps 710

of activity tend to climb up inhibition slopes. Then, the repulsion is reserved to MHs which have a 711

range short enough to allow a stimulation to “climb” the outer inhibition slope of another.712

Provisional



Page 23 of 28

Concerning the behavioural level, Wang et al. (2012) as well as Wang and Theeuwes (2014) suggest 713

that if this phenomenon is present in the SC, it could explain the trends of saccade trajectories to 714

deviate away from a distractor. Wang and Theeuwes (2014) also report a shift of the landing positions 715

away from the previous fixation stimulus when varying its timing which might be explain by 716

repulsion. However, to the best of our knowledge, repulsion in the bimodal distribution of landing 717

positions to two simultaneously presented stimuli or in the internal representation of stimuli position 718

has never been observed. This may be due to the difficulty to track back a phenomenon occurring in 719

the SCs from behavioural data. For instance, the strongest repulsion effect we observed occurred 720

when there are two spiking clusters emerging on the map. Nevertheless, if there is vector averaging 721

downstream, at the behavioural level only a Global effect might be observed.722

Finally, at the neurophysiological level, Vokoun et al. (2014) studied activations in coronal slices of 723

the superficial layers of the rat SC after concomitant stimulation of 2 two sites. They did not observe 724

any repulsion (nor any suppression) effect despite the exploration of numerous distances between the 725

two stimulated sites. Hence, even though evidences have been found recently for a local Mexican hat 726

kernel in the SCs (Phongphanphanee et al. 2014), the lack of concordance between the present study 727

results and Vokoun et al. (2014)’s results question if the SCs can be modelled with a simple DNF-728

MH (see also the end of the previous section, 4.4). However, a possible alternative to explain this 729

lack of concordance is that the coronal slicing used by Vokoun et al. (2014) may have damaged part 730

of the lateral inhibition system altering the MH kernel, its size and its properties. Hence, further 731

neurophysiological works are required to shed more lights on 1) the link between fusion of activity 732

in the SC layers and Global Effect, and 2) on what extent those natural phenomena can be modelled 733

with a simple DNF-MH.734

5 Conclusion735

We constructed a DNF-MH integrating short range MH connections based on recent results obtained 736

in the superficial layers of the SC, and we tested how it performs in very simple target selection tasks: 737

1) the localization of a single stimulus of different sizes; 2) the selection and localization of the 738

strongest of a pair of stimulations. 739

Our work demonstrates that even a short range inhibition (i.e. only slightly larger than the excitation; 740

ratio of 1.2) can enable a selection dynamic. However, it also highlights noticeable phenomena 741

emerging from the model during those tasks: suppression, multi-spot selection, attraction/fusion and 742

repulsion. If the DNF-MH is used as a target selection map as it is thought to be the case for the SCs, 743

such attraction and repulsion would impair the spatial precision of the selection while the suppression 744

would delay or hinder selection. In short, those properties suggest that the SCs is an imperfect winner-745

take-all selection system. At the same time, those properties constitute a collection of testable 746

predictions to verify this point and the pertinence of using a DNF with short range MH to model the 747

SCs. In parallel, future modelling work may investigate whether the phenomena we observed survive 748

more advanced implementations of the SC dynamics. Notably, 1) when one implements the transient 749

visual burst dynamics in SCs; 2) when one implements the SCi layer and the motor executions.750

Finally, results obtained in the present study have been obtained with activity in the range of what 751

can be observed in the SC (up to 600 Hz). Further works remain to be done to explore what would be 752

observed in DNF with lower maximum frequency.753

Interestingly, attraction and repulsion phenomena have recently been reported when using DNF-MHs 754

in spatial working memory tasks, and they have been successfully related to actual behavioural 755

imprecisions (Almeida et al. 2015). Those results support the point that DNF-MHs are imperfect 756

winner-take-all systems and relevant models of biological networks at the same time. 757
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