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ABSTRACT

The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the
predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)—i.e.,
neutron star–neutron star (NS–NS), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH)
binary systems—is the most promising source of GWs for these detectors. We compute detection rates of
coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and
implementing inspiral-merger-ringdown gravitational waveform models in our signal-to-noise ratio calculations.
We find that (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for
NS–NS and BH–NS systems, but it boosts rates by a factor of ∼1.5 for BH–BH systems; (2) in almost all of our
models BH–BH systems yield by far the largest rates, followed by NS–NS and BH–NS systems, respectively; and
(3) a majority of the detectable BH–BH systems were formed in the early universe in low-metallicity
environments. We make predictions for the distributions of detected binaries and discuss what the first GW
detections will teach us about the astrophysics underlying binary formation and evolution.
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1. INTRODUCTION

Nearly a century has passed since Albert Einstein wrote
down the field equations of general relativity. A crucial
prediction of his theory is the existence of GWs. Observations
of the Hulse–Taylor binary pulsar (Taylor & Weisberg 1989)
and the double pulsar J0737-3039 (Lyne et al. 2004) leave little
doubt of the existence of GWs, with further evidence provided
by the recent claim of a detection of a GW-induced B-mode
polarization of the cosmic microwave background (BICEP2
Collaboration et al. 2014). However, GWs still elude direct
observation. The situation should change in the next few years,
when a network of second-generation GW observatories—
including Advanced LIGO (Harry 2010, henceforth aLIGO),
Advanced Virgo (Virgo Collaboration 2009, henceforth AdV),
and KAGRA (Somiya 2012)—will start taking data. The
unprecedented sensitivity of these observatories will allow
them to observe the inspiral and merger of DCOs out to
cosmological distances: for example, aLIGO should observe
binary neutron stars out to a luminosity distance of 450 Mpc
(z 0.1~ ), while DCOs containing BHs will be observable to
much larger distances (e.g., Abadie et al. 2010). Given the
cosmological reach of second-generation GW interferometers,
a theoretical investigation of the observable DCO populations
which incorporates cosmological evolution and accurate
models of the gravitational waveforms is particularly timely.
This is the goal of this paper, the third in a series (see Dominik
et al. 2012, 2013). Our work builds on the results presented in
the second paper (Dominik et al. 2013, henceforth Paper 2),
where we presented the cosmological distribution of DCOs for
a set of four evolutionary models. These models investigated a
range of Hertzsprung gap (HG) common envelope (CE)

donors, supernova (SN) explosion engines, and BH natal kicks,
showing distinct differences in the properties of the resulting
DCO populations. Population models were placed in a
cosmological context by adopting the star formation history
reported in Strolger et al. (2004) and the galaxy mass
distribution of Fontana et al. (2006), both of which are
redshift-dependent. We performed all calculations assuming
two scenarios for metallicity evolution, meant to bracket the
uncertainties associated with the chemical composition of the
universe. Binary evolution was performed using the Star-
Track population synthesis code (Belczynski et al. 2008a).
In this work we complete and extend the analysis of Paper 2.

We study the detection rates and the expected physical
properties of coalescing DCOs at cosmological distances for
second-generation GW observatories. The rates are calculated
for different sets of gravitational waveform models and
different detector sensitivities, representative of aLIGO, AdV,
and KAGRA. Several different groups have presented similar
estimates and studies in the past decade (e.g., Lipunov
et al. 1997; Bethe & Brown 1998; De Donder & Vanbeve-
ren 1998, 2004a; Bloom et al. 1999; Grishchuk et al. 2001;
Nelemans et al. 2001; Dewi & Pols 2003; Voss & Tauris
2003a; Nutzman et al. 2004; Pfahl et al. 2005; Postnov &
Yungelson 2006; Marassi et al. 2011; Mennekens & Vanbe-
veren 2014). However, none have combined cosmological
DCO populations with accurate GW models to obtain
thorough, detector-specific results. Our astrophysical models
for DCO formation are reviewed in Section 2. Gravitational
waveform models and signal-to-noise ratio (S/N) estimates are
discussed in Section 3. Our procedure to compute event rates is
presented in Section 4. Event rates and bulk properties of the
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detected populations are presented in Section 5. In Section 6 we
present and discuss the study by Mennekens & Vanbeveren
(2014), the primary result of which is the lack of detectable
black hole–black hole (BH–BH) systems. In Section 7 we
discuss the possible astrophysical payoff of the first GW
detections and important directions for future work.

2. ASTROPHYSICAL MODELS

2.1. Binary Evolution

We begin with a summary of the four StarTrack
evolutionary models that form the backbone of this work; a
more detailed discussion can be found in Dominik et al.
(2012, 2013).

(1) Standard model. This is our reference model, representing
the state of the art in the formation and evolution of binary
systems. We consider only field populations here. Rate estimates
performed for dense populations in which dynamical interactions
between stars are important (i.e., globular clusters and galactic
nuclear clusters) have been presented elsewhere (Gültekin
et al. 2004; Grindlay et al. 2006; O’Leary et al. 2006; Ivanova
et al. 2008; Sadowski et al. 2008; Miller & Lauburg 2009;
Downing et al. 2010). Our Standard model uses the “Nanjing”
(Xu & Li 2010) λ coefficient in the CE energy balance
prescription of Webbink (1984), where the precise value of λ
depends on the evolutionary stage of the donor, its zero-age
main sequence (ZAMS) mass, the mass of its envelope, and its
radius. In turn, these quantities depend on metallicity, which in
our simulations varies within the broad range Z10 0.034- ⩽ ⩽
(recall that solar metallicity corresponds to Z 0.02= ). The
values of λ for high-mass stars (M M20ZAMS > ) were
obtained through private communication with the authors and
are not present in Xu & Li (2010).

The impact of the CE outcome on binary populations
depends strongly on the evolutionary stage of the donor, as first
discussed in Belczynski et al. (2007). The Standard model does
not allow for CE events with HG donors. These stars are not
expected to possess a clear core-envelope structure (Ivanova &
Taam 2004), thus making it difficult for them to eject their
outer layers during the CE phase. In our Standard model all CE
events with HG donors lead to a prompt merger before a DCO
binary is formed, regardless of the aforementioned energy
balance.

The model employs a Maxwellian distribution of natal kicks
for NSs with 1D rms velocity σ = 265 km s−1, consistent with
NS observations (Hobbs et al. 2005). The same distribution is
extended to BHs, where we allow for the possibility that the
kicks may be reduced due to fallback of material during the SN
that leads to BH formation. The reduction in BH kicks is
described via

( )V V f1 , (1)k max fb= -

where Vk is the final magnitude of the natal kick, Vmax is the
velocity drawn from a Maxwellian kick distribution, and ffb is a
“fallback factor” that depends on the amount of fallback
material, calculated according to the prescription given in Fryer
et al. (2012). Our Standard model uses the “Rapid” convection-
driven, neutrino-enhanced SN engine (Fryer et al. 2012). The
SN explosion is sourced from the Rayleigh–Taylor instability
and occurs within the first 0.1–0.2 s after the bounce. When
used in the context of binary evolution models, this SN engine

successfully reproduces the mass gap (Belczynski et al. 2012b)
observed in Galactic X-ray binaries (Bailyn et al. 1998; Özel
et al. 2010; but see also Kreidberg et al. 2012).
(2) Optimistic CE. In this model we allow HG stars to be CE

donors. When the donor initiates the CE phase, the CE outcome
is determined via energy balance. The remaining physics is
identical to the Standard model.
(3) Delayed SN. This model utilizes the “Delayed” SN

engine instead of the Rapid one. The former is also a
convection driven, neutrino enhanced engine, but is sourced
from the standing accretion shock instability, and can produce
an explosion as late as 1 s after bounce. The Delayed engine
produces a continuous mass spectrum of compact objects,
ranging from NSs through light BHs to massive BHs
(Belczynski et al. 2012b).
(4) High BH kicks. In this model the BHs receive full natal

kicks, i.e., we set f 0fb = in Equation (1). Otherwise this
model is identical to the Standard model.

2.2. Metallicity Evolution

In this paper we employ two distinct metallicity evolution
scenarios: “high-end” and “low-end.” These are identical to
those in our previous study (Paper 2), and a detailed
description can be found therein. Employing such calibrations
allows us to explore and bracket uncertainties in the chemical
evolution of the universe. In both cases the average metallicity
decreases with increasing redshift.
The high-end metallicity profile is calibrated to yield a

median value of metallicity equal to Z1.5  (or 8.9 in the “12
+log(O/H)” formalism) at redshift z = 0. This calibration was
designed to match the upper 1σ scatter of metallicities
according to Yuan et al. (2013, see their Figure 2, top-right
panel).
The low-end metallicity profile is based on SDSS observa-

tions (Panter et al. 2008), from which we infer that one half of
the star forming mass of galaxies at z 0~ has 20% solar
metallicity, while the other half has 150% solar metallicity.

3. WAVEFORM MODELS

3.1. Order-of-magnitude Estimates

For any given GW detector the “horizon distance,” Dh, is
defined as the luminosity distance at which an optimally
oriented (face-on, overhead) canonical M(1.4 1.4)+  neutron
star–neutron star (NS–NS) binary would be detected at a
fiducial threshold S/N, taken to be 8 in this paper. The
expectation value of the S/N, ρ, of a signal with GW amplitude
h(t) is given by

h f

S f
df4

˜( )

( )
, (2)2

0

2

n
òr =

¥

where h f˜( ) is the Fourier transform of the signal and Sn(f) is the
noise power spectral density (PSD) of the detector (see, e.g.,
Cutler & Flanagan 1994; Poisson & Will 1995). The square
root of the noise PSD is plotted in Figure 1 for several
advanced interferometers of interest. For example, the aLIGO
horizon distance is D 450 Mpch  .
Although the sensitivity of a GW detector network depends

on the details of the search pipeline and the detector data
quality, we follow Abadie et al. (2010) in considering a single
detector with an S/N threshold 8r ⩾ as a proxy for
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detectability by the network. With this criterion, a simple and
common expression to transform the local merger rate to a
predicted detection rate RD, given the horizon distance Dh and
the merger rate density, z( ) , evaluated locally (at z= 0), is

( )R D w M
4

3
1.2 (0). (3)D h

3 3
c

15 6p  

In this expression w 2.2643 1 3á ñ-  is a purely geometrical and
S/N-threshold-independent factor commonly used to relate sky
location- and orientation-averaged distances to optimal detec-
tion distances (see the Appendix for details) and Mc

3 5h=
(where M m m1 2= + is the total mass of the binary and

m m M1 2
2h º ) is the “chirp mass” (see, e.g., Cutler &

Flanagan 1994). This estimate assumes that (1) cosmological
effects are negligible (i.e., space is Euclidean to a good
approximation), and (2) most of the S/N is accumulated during
an inspiral phase that lasts through the entire sensitive band of
the detector, where the GW amplitude in the frequency domain
is well approximated by the quadrupole formula, i.e.,
h f f D˜( ) c

5 6 7 6~ - . Here D is the luminosity distance to the
source. The estimate of Equation (3) follows from this simple
scaling together with the definition of the S/N, Equation (2).

Equation (3) involves only the local merger rate (0) and

c
15 6á ñ is averaged over detected binaries. Both quantities can

easily be extracted from StarTrack simulations; they are
listed in Table 1, along with the values of RD predicted by
Equation (3). We expect this rough estimate to be accurate for
NS–NS binaries, for which the overwhelming majority of the
S/N is accumulated during the inspiral phase. More accurate
calculations are required for DCOs comprised of BHs because
they are visible out to larger distances (making cosmological
corrections important) and because, as we discuss below, a
large fraction of the S/N for these binaries comes from the
merger/ringdown portion of the signal.

3.2. Including Merger and Ringdown

In order to refine our rate estimates for high-mass systems
containing BHs, it is important to consider the full waveform,

including inspiral, merger, and ringdown (IMR). The calcula-
tion of gravitational waveforms from merging BH–BH and
BH–NS binaries requires expensive numerical relativity
simulations, but several semi-analytical models have been
tuned to reproduce the amplitude and phasing of BH–BH and
BH–NS merger simulations. To estimate systematic uncertain-
ties and the impact of spin, we performed rate calculations
using three models: (1) the IMRPhenomB model described in
Ajith et al. (2011), one of the earliest phenomenological
models tuned to both nonspinning and spinning BH–BH
simulations with aligned spins, henceforth abbreviated as PhB;
(2) the IMRPhenomC (henceforth abbreviated PhC) model by
Santamaría et al. (2010), a more accurate alternative to PhB
also tuned to nonprecessing simulations of BH–BH mergers;
and (3) a nonspinning effective-one-body (EOB) model (Pan
et al. 2010). A detailed comparison of the three models can be
found in Damour et al. (2011). Recent work by Pannarale et al.
(2013) shows that finite-size effects introduce negligible errors
( 1% ) in S/N calculations for BH–NS binaries; therefore, the
above models are adequate for both BH–BH and BH–NS
binaries. In order to facilitate comparison with previous work,
we also evaluated rates using the simplest possible approxima-
tion: a restricted post-Newtonian (PN) waveform where the
amplitude is truncated at Newtonian order, i.e.,
h f f D˜( ) c

5 6 7 6~ - , terminated at a fiducial “innermost
stable circular orbit” frequency f GM c( ) 6ISCO

3 1 3 2p= - - . At
low mass, the upper limit can be neglected and this
approximation corresponds to c

5 6r µ  , as stated above: see
also Equation (7) in O’Shaughnessy et al. (2010a).

Figure 1. Noise models: we use an analytical approximation to the aLIGO
zero-detuning high power (ZDHP) noise power spectral density given in
Equation (4.7) of Ajith (2011; we verified that this approximation gives results
in excellent agreement with the “official” tabulated aLIGO ZDHP noise PSD
given in Shoemaker & LIGO Scientific Collaboration (2010). For AdV we use
the fit in Equation (3.4) of Ajith & Bose (2009) to Virgo Collaboration (2009),
and for KAGRA we use the PSD fit from the Appendix of Pannarale et al.
(2013) to Somiya (2012).

Table 1
Local Merger Rates and Simply-scaled Detection Rate Predictionsa

Model c
15 6

(M15 6
 )

(0)
(Gpc yr3 1- - )

RD (aLIGO
8r ⩾ )

(yr 1- )

RD (3-det
network

10r ⩾ )
(yr 1- )

NS–NS
Standard 1.1 (1.1) 61 (52) 1.3 (1.1) 3.2 (2.7)
Optimistic
CE

1.2 (1.2) 162 (137) 3.9 (3.3) 9.2 (7.7)

Delayed SN 1.4 (1.4) 67 (60) 1.9 (1.7) 4.5 (4.0)
High BH
Kicks

1.1 (1.1) 57 (52) 1.2 (1.1) 3.0 (2.7)

BH–NS
Standard 18 (19) 2.8 (3.0) 1.0 (1.2) 2.4 (2.7)
Optimistic
CE

17 (16) 17 (20) 5.7 (6.5) 13.8 (15.4)

Delayed SN 24 (20) 1.0 (2.4) 0.5 (0.9) 1.1 (2.3)
High BH
Kicks

19 (13) 0.04 (0.3) 0.01 (0.08) 0.04 (0.2)

BH–BH
Standard 402 (595) 28 (36) 227 (427) 540 (1017)
Optimistic
CE

311 (359) 109 (221) 676 (1585) 1610 (3773)

Delayed SN 829 (814) 14 (24) 232 (394) 552 (938)
High Kick 2159 (3413) 0.5 (0.5) 22 (34) 51 (81)

Note.
a Detection rates computed using the basic scaling of Equation (3) for both the
high-end and low-end (the latter in parentheses) metallicity scenarios (see
Section 2.2). These rates should be compared with those from more careful
calculations presented in Tables 2 and 3.
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Figure 2 shows that these models all make similar
predictions for the S/N of optimally oriented equal-mass
binaries as a function of their total mass for a single aLIGO
detector. Even small differences can be important: for any
given binary, a 30% difference in amplitude corresponds to a
factor (1.3) 2.23  in rate calculations. In practice, however, all
nonspinning IMR models agree in S/N to within tens of percent
over the total binary mass range of interest (up to M127 ; see
Section 5.3). The effect of spin will be discussed in more detail
in Section 5.2 below.

Figure 3 shows contour plots of the S/N, ρ, in the M q( , )z
plane, where M M z(1 )z º + is the redshifted total mass, z is
the redshift, and q m m 12 1= ⩽ is the mass ratio of the
components, for nonspinning binaries at luminosity distance
DL = 100Mpc. We discuss the justification for considering the
S/N as a function of Mz below, but since the chosen distance
corresponds to a negligible redshift z 0.023 using the
cosmological parameters 0.3MW = , 0.7W =L , 0kW = , and
h = 0.7 (chosen for consistency with Dominik
et al. 2012, 2013), M Mz at this distance. The left panel
refers to a calculation using an inspiral-only waveform with
Newtonian amplitude to compute the horizon distance. The
right panel includes inspiral, merger, and ringdown, modeled
using the PhC waveform. This plot shows two important
features: (1) including the full IMR increases the maximum
S/N at this luminosity distance by factors of a few with respect
to an inspiral-only calculation, from 300» to 103» ; (2) high-
mass binaries (M M M10 300z

2.5 » ) involving BHs that
would not be detectable using inspiral waveforms become
detectable using IMR waveforms. The latter point is not
important for the field binaries considered in this paper, but it is
crucial for intermediate-mass BH mergers (e.g., Amaro-Seoane
& Freitag 2006; Fregeau et al. 2006; Belczynski et al. 2014).

In an expanding universe, GW emission is redshifted by the
same factor of z(1 )+ as electromagnetic radiation. In the units

(G c 1= = ) adopted by relativists to describe gravitational
waves, the only quantity with dimensions in the GW signal is
the total mass M. Since the total mass sets the time scale, a
binary source of mass M in the local universe has an identical
waveform (but with different amplitude) to a binary at redshift
z with mass M z(1 )+ ; see, e.g., Flanagan & Hughes (1998).
Equation (2), together with the fact that gravitational
amplitudes scale inversely with the luminosity distance
DL(z), implies that the horizon redshift zh (i.e., the redshift at
which an optimally located and oriented binary would have S/
N 8thrr = ) can be found via the simple scaling

( )
D z D z

M q
( ) ( )

,
, (4)

z
h h L

thr

r

r
=

where ρ is the S/N at any redshift z, or luminosity distance
DL(z). Note that the right-hand side depends only on z, Mz and
q. Therefore one can easily turn an S/N calculation at fixed z
(cf. Figure 3) into a plot of the horizon luminosity distance Dh

(or equivalently of the horizon redshift zh) such as Figure 4.
StarTrack produces large catalogs of DCOs with intrinsic

parameters (M, q), with each of these binaries merging at a
different redshift. Any of these representative DCOs is
potentially detectable (depending on precise sky location and
binary orientation) when z zh< . Determining detectability
therefore amounts to a simple interpolation of two-dimensional
grids similar to those plotted in Figure 4. These grids can be
computed once and for all, given a waveform model and a
detector’s PSD. Evaluating such a grid typically involves
100 100 104´ = S/N evaluations, and it is much faster than
the (impractical) evaluation of millions of S/N integrals such as
Equation (2), one for each representative binary produced by
StarTrack. The conversion between detectability at optimal
location and optimal orientation and detectability at generic
orientations involves a simple geometrical factor pdet, as
discussed below.

4. RATE CALCULATION

The detection rate is

R z
dt

dt
p

dV

dz
dz dm dm( ) , (5)det

0
m

m

det
det

c

m
m 1 2=

¥∭ 

where z
dN

dm dm dV dt
( )m

1 2 c m
º is the binary merger rate per

unit component mass per unit comoving volume Vc per unit
time tm as measured in the source frame at merger redshift zm,

the term
dt

dt z

1

1
m

det m
=

+
accounts for the difference in clock

rates at the merger and at the detector, and
p p z m m( ; , )det det m 1 2= is the probability (over isotropic sky
locations and orientations) that a source with given masses at a
given redshift will be detectable. The quantity

dV

dz

c

H

D z

E z

4 ( )

( )
, (6)c

0

c
2p

=

with E z z z( ) (1 ) (1 )M
3

k
2= W + + W + + WL , is the

comoving volume per unit redshift, and

D z
c

H

dz

E z
( )

( )
(7)

z

c
0 0ò=

¢
¢

Figure 2. S/N for different signal models: to illustrate the relatively small
differences between the signal models we have adopted, we show the S/N,

M( )r , as a function of total binary mass, M, for an equal-mass nonspinning
binary at 100 Mpc, where the S/N is evaluated using a single fiducial aLIGO
detector. The colored solid curves show (a) the trivial expression

M M( 2.8 )0
5 6r r=  with 34.30r = (red), (b) an EOB model (black),

PhB model (blue), and PhC model (green), all evaluated for zero spin. The
green dotted line shows the PhC model evaluated with near-extremal spin on
both objects ( 0.9981 2c c= = ), while the green dashed line shows PhC with
near-extremal spin on one object ( 0.998, 01 2c c= = ). The choice

0.998ic = corresponds to the Thorne (1974) bound. This value of the spin
is outside the regime in which phenomenological models have been calibrated,
and it has been chosen to provide rough upper limits on the rates.
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is the comoving distance, related to the luminosity distance
DL(z) by D z D z z( ) ( ) (1 )c L= + , see Hogg (1999) for our
notation and conventions.

The merger rate z( )m is a convolution of the star formation
rate and the number density of binaries per unit star forming
mass Mf per unit time delay between formation and merger τ:

z
dM

dV dt
z

dN

dM dm dm d
t m m

t t d dt

( ) ( )

( ; , , )

( ) , (8)

t t

m
0 0

f

c f
f

f 1 2
f 1 2

m f f

m det

ò ò

t
t

d t t

=

´

´ - -



where
dM

dV dt
zSFR ( )f

c f
f= is the star formation rate per unit

comoving volume per unit time tf at formation redshift zf.

The distribution of binaries in mass and time delay space,
dN

dM dm dm d
t m m( ; , , )

f 1 2
f 1 2

t
t , is obtained with the Star-

Track population synthesis code, taking into account the
metallicity distribution at the formation redshift as described in
Section 2. Since StarTrack simulations produce a set of
merging binaries with specific component masses and time
delays sampling the desired distribution, the integrals above are
easily computed via Monte Carlo over the simulated systems.
For computational efficiency the outer integral over the time of
formation in Equation (8) is binned over t 100fD = Myr
segments, while the integral over the merger redshift zm in
Equation (5) is transformed into an integral over merger time

via dz
dz

dt
dt H z E z dt(1 ) ( )m

m

m
m 0 m= = + (Hogg 1999). Thus

the detection rate integral can be represented as a Monte Carlo

Figure 3. Optimal S/N for nonspinning binaries of given (redshifted) total mass M M z(1 )z = + and mass ratio q m m2 1= at luminosity distance DL = 100 Mpc. In
the left panel the S/N is computed using the restricted PN approximation (i.e., the GW amplitude is evaluated using the quadrupole formula). In the right panel we use
the PhC model for the full IMR waveform; the results for the EOB model are very similar. A low-frequency cutoff of f 20 Hzcut = has been assumed (see Section 5.2
for further details).

Figure 4. Horizon luminosity distance (in Mpc) for nonspinning binaries as a function of redshifted mass and mass ratio, computed according to Equation (4) using
waveforms comprised of only the inspiral (left panel) or the full IMR signal (right panel).
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sum over all simulated binaries:

R
M

p
z

dV

dz

dz

dt
t

SFR 1

1
, (9)det

f
det

cå=
D +

D

where MfD is the total star-forming mass that was simulated in
the Monte Carlo to represent the time bin tD , all terms but the
first are computed at the merger redshift of the simulated
source.

The detection probability for a given source at its merger
redshift p z m m( , , )det 1 2 is simply the fraction of sources of a
given mass located at the given redshift that exceed the
detectability threshold in S/N, assuming that sources are
uniformly distributed in sky location and orbital orientation.
If a single detector with an S/N threshold (e.g., 8thrr = ) is
used as a proxy for detectability, the detection probability can
be expressed as a cumulative distribution function on the
projection parameter w. In the Appendix, w is defined such that
w = 0 when the detector has no response to the gravitational
wave, and w = 1 for an optimally located and oriented (face-on
and directly overhead) binary. The detection probability is

( )p P , (10)det thr optr r=

where P(w) is the cumulative distribution function on w over
different source locations and orientations, and optr is the S/N
for an optimally located and oriented binary at redshift z.

5. RESULTS

In Section 3.1 we obtained a rough estimate of event rates by
extrapolating the local rate density via the scaling of
Equation (3). This extrapolation is expected to provide a good
approximation for low-mass systems (and in particular, NS–NS
binaries) because in this case the early inspiral makes up most
of the signal observable by advanced GW detectors, the signal
extends through the detector band, and the detector range is
sufficiently low that cosmological corrections to detectability
and the dependence of merger rates on redshift can largely be
ignored. The approximation will become increasingly inaccu-
rate for high-mass binaries, such as those comprising one or
two BHs. In Sections 3.2 and 4 we went beyond this
approximation by implementing three “complete” IMR wave-
form models (EOB, PhC, PhB), and we described how to
combine these models with simulations from the StarTrack
code in order to obtain more accurate estimates of the event
rates (see Equation (9)).

The analytical estimates of Section 3.1 with local merger
rates based on the StarTrack code are presented in Table 1.
The more careful event rate calculations of Section 4 are listed
in Table 2 (for the high-end metallicity scenario) and Table 3
(for the low-end metallicity scenario).

In these tables, the “single-detector” columns represent
estimated detection rates for a single detector with a 8r ⩾
threshold for detectability. This is often used as a proxy for
rates in multi-detector networks (Abadie et al. 2010). In the
“three-detector” columns we consider two alternate detect-
ability thresholds: minimum network S/Ns of either 10 or 12
for a three-detector network composed of three instruments
located at the LIGO Hanford, LIGO Livingston, and Virgo
sites, all with aLIGO sensitivity. The network S/N threshold of
10 would have yielded false alarm rates of roughly once per
decade in 2009–2010 initial LIGO and Virgo data (see Figure 3

in Aasi et al. 2013b). This threshold is optimistic for making
confident detections if data quality in advanced detectors is
similar to that in the initial detectors and the same searches are
used. With this in mind, Aasi et al. (2013b) assumed a network
S/N threshold of 12 with an additional threshold constraint on
the S/N in the second-loudest instrument; we consider a simple
S/N threshold of 12. Detection rates using a network S/N
threshold were calculated using the same framework as above,
but implementing a network-geometry-dependent P(w)
described (and fitted) in the Appendix. In the order-of-
magnitude estimates described by Equation (3) and provided
in Table 1 we employ w 0.4043  for the three-detector
network ( 10r ⩾ ), a factor of ∼4.6 larger than the value

w (1 2.26) 0.08663 3 » used for a one-detector network.
We now discuss these rate predictions, their dependence on

gravitational waveform models, and the astrophysical proper-
ties of DCO populations observable by advanced GW
detectors.

5.1. Broad Features of Rate Estimates

The main conclusion of this work is that BH–BH mergers
should yield the highest detection rates in all advanced
detectors (aLIGO, AdV, and KAGRA), followed by NS–NS
mergers, with BH–NS mergers being the rarest. This finding is
independent of our evolutionary models and of the details of
the gravitational waveforms (however, see Section 7 for
discussion). The only exception is the “Optimistic CE” model,
where detection rates for BH–NS mergers dominate over NS–
NS mergers (with BH–BH mergers still dominating the
detection rates). This model makes the assumption that CE
events with HG donors do not always end in a premature
merger, allowing more binaries to survive the CE and form
merging DCOs, and therefore increasing detection rates. As a
result the Optimistic CE model yields very large BH–BH rates,
comparable to, though a factor of a few below, existing upper
limits on the BH–BH binary mergers from initial LIGO/Virgo
observations (see, e.g., Abadie et al. 2012; Belczynski et al.
2012a; Aasi et al. 2013a).
Our quantitative predictions for compact binary merger rates

are consistent with our previous papers in this series (Dominik
et al. 2012, 2013). In particular, we agree with the main
conclusion of those papers: detectable BH–BH binaries can be
formed over a broad range of metallicities, with a significant
proportion forming in highly subsolar environments (Figure 7).
On a model-by-model basis our results are in good agreement
with prior work, with factor-of-two or smaller differences due
to our inclusion of cosmological effects.
As expected, the simple approximation of Equation (3) gives

a good order-of-magnitude estimate of the NS–NS detection
rates listed in Tables 2 and 3. However, the approximation fails
for BH–BH systems. By comparing the detection rates from
Table 1 with inspiral rates from Tables 2 and 3, we see that the
local universe approximation of Equation (3) overestimates
more careful calculations of detection rates by a factor of ∼2
for BH–BH systems. The limited signal bandwidth of high-
mass systems, the redshift dependence of binary merger rates,
and cosmological corrections make simple scaling relations
inaccurate over the large volume in which detectors are
sensitive to BH–BH systems. On the other hand, as the merger-
ringdown phase of these binaries falls within the sensitive band
of second-generation interferometers, it provides a significant
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contribution to the S/N. Indeed, as can be seen in Tables 2 and
3, the full IMR calculations increase the detection rates
considerably. However, BH–BH detection rates computed with

appropriate cosmological corrections are still lower than local
merger rates converted into detection rates via the basic scaling
of Equation (3).

Table 2
Detection Rates for Second-generation Detectors in the High-end Metallicity Scenario

Model AdV [ 8r ⩾ ] KAGRA [ 8r ⩾ ] aLIGO [ 8r ⩾ ] 3-det Network [ 10(12)r ⩾ ]

f 20cut = Hz f 10cut = Hz f 20cut = Hz f 20cut = Hz

Insp PhC (EOB) Insp PhC (EOB) Insp PhC (EOB) PhC (spin) Insp PhC
(yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1)

NS–NS
Standard 0.3 0.3 0.8 0.7 1.2 1.1 K 2.5 (1.5) 2.4 (1.4)
Optimistic CE 0.9 0.9 2.1 1.9 3.3 3.1 K 6.9 (4.0) 6.5 (3.8)
Delayed SN 0.4 0.4 1.0 0.9 1.6 1.5 K 3.3 (1.9) 3.1 (1.8)
High BH Kicks 0.3 0.3 0.7 0.7 1.1 1.1 K 2.3 (1.4) 2.2 (1.3)

BH–NS
Standard 0.2 0.2 0.5 0.4 0.7 0.6 0.8 1.5 (0.9) 1.2 (0.7)
Optimistic CE 1.1 1.0 2.9 2.2 4.4 3.6 4.4 9.2 (5.4) 7.4 (4.3)
Delayed SN 0.09 0.07 0.2 0.2 0.4 0.3 0.5 0.8 (0.5) 0.6 (0.3)
High BH Kicks 0.01 0.007 0.02 0.02 0.04 0.03 0.1 0.09 (0.05) 0.07 (0.04)

BH–BH
Standard 35 41 (38) 70 93 (86) 117 148 (142) 348 236 (144) 306 (177)
Optimistic CE 126 144 (133) 281 366 (333) 491 618 (585) 1554 1042 (588) 1338 (713)
Delayed SN 27 34 (32) 50 81 (75) 90 129 (124) 320 182 (110) 270 (155)
High Kick 0.6 1.0 (0.9) 0.9 2.5 (2.3) 2.1 3.8 (3.8) 12 4.2 (2.7) 8.2 (4.7)

Note.
a Detection rates computed for the high-end metallicity evolution scenario using the inspiral (“Insp”) and PhC or EOB IMR models for nonspinning binaries. For
aLIGO we also list rough upper limits on the rates computed with the IMR PhC model by assuming that BHs have near-maximal aligned spins ( 0.9981 2c c= = for
BH–BH systems; 0.9981c = and 02c = for BH–NS systems). The inspiral is calculated using the restricted PN approximation, which overestimates the amplitude
(and therefore the detection rates) for low-mass systems (NS–NS) when compared to the full IMR calculations; see Section 3 for details. The last two columns were
computed assuming a minimum network S/N of 10 (or 12, in parentheses) for a three-detector network composed of three instruments located at the LIGO Hanford,
LIGO Livingston, and Virgo sites, all with aLIGO sensitivity. For each detector, fcut is the assumed low-frequency cutoff in the power spectral density; see
Section 5.2.

Table 3
Detection Rates for Second-generation Detectors in the Low-end Metallicity Scenario

Model AdV [ 8r ⩾ ] KAGRA [ 8r ⩾ ] aLIGO [ 8r ⩾ ] 3-det Network [ 10(12)r ⩾ ]

f 20cut = Hz f 10cut = Hz f 20cut = Hz f 20cut = Hz

Insp PhC (EOB) Insp PhC (EOB) Insp PhC (EOB) PhC (spin) Insp PhC
(yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1) (yr−1)

NS–NS
Standard 0.3 0.3 0.7 0.6 1.1 1.0 K 2.3 (1.3) 2.2 (1.3)
Optimistic CE 0.8 0.7 1.8 1.7 2.9 2.7 K 6.0 (3.5) 5.6 (3.3)
Delayed SN 0.4 0.4 1.0 0.9 1.5 1.4 K 3.2 (1.8) 2.9 (1.7)
High BH Kicks 0.3 0.3 0.7 0.6 1.0 1.0 K 2.1 (1.3) 2.0 (1.2)

BH–NS
Standard 0.3 0.2 0.7 0.5 1.1 0.8 1.2 2.3 (1.3) 1.8 (1.0)
Optimistic CE 1.4 1.2 3.6 2.8 5.5 4.4 5.7 12 (6.7) 9.4 (5.4)
Delayed SN 0.2 0.1 0.5 0.4 0.8 0.6 0.9 1.7 (0.9) 1.3 (0.7)
High BH Kicks 0.04 0.03 0.09 0.07 0.1 0.1 0.3 0.6 (0.2) 0.5 (0.2)

BH–BH
Standard 56 66 (61) 106 153 (140) 183 246 (235) 610 369 (226) 514 (292)
Optimistic CE 287 324 (297) 629 828 (745) 1124 1421 (1339) 3560 2384 (1336) 3087 (1633)
Delayed SN 53 64 (59) 97 152 (139) 171 241 (231) 596 345 (213) 501 (291)
High Kick 0.9 1.5 (1.4) 1.4 3.8 (3.6) 3.2 5.9 (5.8) 19 6.6 (4.0) 13 (7.2)

Note.
a Same as Table 2, but for the low-end metallicity scenario.
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5.2. Impact of Waveform Models on Predicted Rates

Our results show that the merger–ringdown contribution is
not important for estimating detection rates of DCOs contain-
ing NSs. In fact, when compared with the restricted PN model,
the IMR waveforms slightly decrease event rates for NS–NS
and BH–NS systems. The reason for this reduction is that IMR
waveforms (such as PhC and EOB) provide a more accurate
representation of the early inspiral, incorporating PN amplitude
corrections that reduce the signal amplitude9—and hence the
event rates—for signals dominated by the early inspiral.

BH–NS systems may be subject to an additional event rate
reduction mechanism. There is the possibility of the NS being
distorted and disrupted by the BH tidal field. When these
violent phenomena occur, a suppression of the GW amplitude
takes place before the ISCO frequency, and the S/N decreases
with respect to that of a BH–BH system with the same
properties. The GW shut-off due to NS tidal disruption depends
on the parameters of the system: large values of the mass ratio,
the BH spin, the NS radius and the low tilt angles of NS orbital
angular momentum relative to BH spin all favor NS disruption
(e.g., Belczynski et al. 2008b). By using point-particle IMR
waveforms to describe the GW emission of BH–NS systems
we are neglecting this event rate reduction mechanism. While it
would be possible to take these effects into account for
nonspinning systems by using the GW amplitude model of
Pannarale et al. (2013), accurate models for systems with
spinning BHs do not exist yet. For consistency we therefore use
BH–BH waveform models in both cases. Additionally,
Pannarale et al. (2013) found that in the nonspinning case,
the S/N difference between the mergers of disrupted BH–NS
systems and the undisrupted systems modeled with PhC is less
than 1%.

Including the merger portion of the signal is important for
BH–BH systems. For illustration, let us focus on the Standard
model: if we use PhC waveforms rather than the restricted PN
approximation, we find a ∼25% increase in the detection rates
of BH–BH systems, from 117 (183) to 148 (246) in the high-
end (low-end) metallicity scenario.

The rates predicted by EOB and PhC models agree quite
well.10 This can be understood by looking again at Figure 2,
which shows that different approximations of the strong-field
merger waveform agree rather well (at least in the equal-mass
limit) on the S/N ρ and hence on the predicted event rates,
which scale with the cube of the S/N. Waveform differences
produce systematic rate uncertainties significantly less than a
factor of 2, much smaller than astrophysical differences
between our preferred models.

Our detailed calculation shows that typically PhC models
overestimate the rates by about 10% when compared to EOB
models. This agreement is nontrivial, because the two families
of models are very different in spirit and construction: the PhC
family is a frequency-domain model that can be easily
implemented in rate calculations, while the time-domain EOB
model is more accurate in its domain of validity and more
computationally demanding. It is important to note that in order
to use the two families of models in rate calculations we must

compute waveforms and S/Ns in regions of the parameter space
where the models were not tuned to numerical relativity
simulations. In particular, both models become less accurate for
small mass-ratio binaries.
Besides systematic errors in waveform modeling, the

detection rates reported in this work (and the resulting
distribution of detectable DCO parameters) depend on our
detection criteria. We ignore a variety of complications of the
detection pipelines, such as the difficulty of searching for
precessing sources, noise artifacts (non-stationary, non-
Gaussian “glitches” in the instruments) which can make
searches for shorter, high-mass signals less sensitive, and the
limited uptime of detectors. Instead, we have assumed several
simplistic detection thresholds on single-detector or network
S/N that are constant across all masses and mass ratios.
Moreover, achieving good detector sensitivity at low

frequencies may prove particularly difficult. We have only
included bandwidth above specified low-frequency cutoffs
( f 20cut = Hz in most cases) for detection-rate calculations.
However, the specific choice of low frequency cutoff has
minimal impact on our results. For example, using a lower
cutoff f 10cut = Hz rather than f 20cut = Hz in the single-
detector, high-end metallicity aLIGO rate calculation would
increase the Standard model BH–BH rates from 117 to 128 in
the inspiral case, and from 148 to 161 in the IMR case. The
effect is even smaller for BH–NS and NS–NS rates.
The impact of spins on the predicted detection rates can be

important. We only consider BH spins, since NSs in compact
binaries are not expected to be rapidly spinning (e.g., Mandel
& O’Shaughnessy 2010) and the dynamical impact of NS spin
will be small. In Tables 2 and 3 we use the PhC model to
estimate the possible impact of BH spin on BH–NS and BH–
BH detection rates by assuming that all BHs are nearly
maximally spinning (i.e., with dimensionless spin parameter

0.9981 2c c= = ) and aligned with the orbital angular
momentum. Aligned BH spins cause an orbital hang-up effect
that increases the overall power radiated in the merger,
produces a rapidly spinning merger remnant, and therefore
increases the range to which high-mass binaries can be
detected.
We find that spin effects may increase BH–BH detection

rates by as much as a factor of 3. These increased rates are a
direct result of the increased horizon distance to spinning
binaries. For example, a (30+30) M binary can be observed to
roughly 1.3 times farther and be detected (1.3) 23  more
often with near-maximal spins than with zero spin. Addition-
ally, spin dynamics can provide a direct diagnostic of the
dominant physical effects in DCO formation (Gerosa
et al. 2013). Spin effects only marginally increase BH–NS
rates, but (as discussed at the beginning of this section) tidal
disruption, which we neglected, may have the opposite effect.

5.3. Astrophysical Properties of Observable DCOs

We now turn to a more detailed analysis of the observable
properties of DCOs. For concreteness we will focus on aLIGO
results for the “Standard model” and nonspinning PhC
waveforms, unless stated otherwise.
NS–NS. By comparing Tables 2 and 3 we see that the

detection rates of NS–NS systems are not sensitive to our
differing metallicity evolution scenarios. For simplicity, we
therefore only discuss our results for the high-end metallicity
evolution scenario.

9 Note that in Equation (3.14) of Santamaría et al. (2010) the coefficient of
the dominant correction, 2 , listed in their Equation (A5) is negative.
10 We also carried out calculations using PhB models, which overestimate
rates by about 10% with respect to PhC models. We decided not to report these
results in the tables, because the PhB model is less accurate than PhC, although
it is easier to implement and less computationally expensive.
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As shown in our previous work (Dominik et al. 2012), NS–
NS systems are efficiently created in metal-rich environments.
The observable population shares this trait, and half of the
observable systems originate from solar metallicities and
higher. As the average metallicity content of the universe
correlates with time and as most DCOs preferentially merge
shortly after formation (i.e., the time delay distribution is

tmerger
1µ - ; see Dominik et al. 2012), the birth rate of detectable

NS–NS systems peaks at 13 Gyrs after the Big Bang (see
Figure 5). The most distant detectable system has a merger
redshift z 0.13~ (or luminosity distance L 610D = Mpc).

The range of possible chirp masses in the bottom left panel
of Figure 5 is limited at the low end ( M0.87> ) by the

M1  minimum birth mass for NS and is limited at the
high end by the (assumed) maximum mass for a NS
(m M M2.5 ; 2.1NS c< <  ). The birth mass, in turn, is
set by SN physics, which we have implemented as the Rapid or
Delayed SN engine (Fryer et al. 2012). For this reason the NS
mass difference between the SN engines is intrinsic to the
entire merging population of NS–NS systems. Therefore, this
observable feature should be available to any of the detectors
considered in this study.

The chirp mass distributions for Standard and Optimistic
CE models span the range from M0.9  to M1.6 . The Delayed

SN model results in a notably different NS mass distribution,
favoring heavier masses. As the SN explosion in the Delayed
engine lasts longer, more matter is accreted onto the proto–NS
(which is more massive than in the Rapid engine scenario),
allowing the formation of more massive remnants (see
Figure 5). The maximum allowed NS mass in this model is

M2.5 , and in extreme (but very rare) cases this mass is
approached; the maximum chirp mass for a detectable system
in our Monte Carlo simulation was M2.1 , corresponding to
both components close to the maximum allowed limit. For
comparison, chirp masses of NS–NS systems in the models
utilizing the Rapid SN engine (Standard, Optimistic CE
and High BH kick) never exceed M1.7 . Such extremely
high masses are rare for all engines, however, and the majority
of chirp masses are much lower, as seen in Figure 5. The
presence of more massive systems in the Delayed SN models
extends the horizon of NS–NS detectability to z 0.16~
(L 765D = Mpc).
Last, we note that Standard and High BH kick models are

identical for NS–NS systems. The difference between the black
curve (Standard) and blue curve (High BH Kick) in Figure 5
corresponds to the systematic errors associated with Monte
Carlo errors of binary simulations, galaxy sampling, metallicity
binning, etc.

Figure 5. Compact NS–NS binaries detectable by aLIGO: properties of NS–NS binaries with 8r ⩾ in a single aLIGO instrument in the high-end metallicity scenario,
scaled in proportion to their detection probability. Different color and line styles indicate results for different binary evolution models: Standard model (solid black),
optimistic CE (dotted black), delayed SN (dashed black), and high BH kicks (blue). The top left, top right, and bottom left panels show the distribution of birth time
tf , birth metallicity Zb (with a vertical bar marking solar metallicity, Z 0.02= ), and chirp mass c , respectively. The bottom right panel shows the cumulative
distribution in chirp mass, to highlight significant changes on a linear scale. The time domain ranges from 0 Gyr (Big Bang) to 13.47 Gyr (today). Though our
simulations use a discrete array of metallicity bins, to guide the eye their relative contributions have been joined by solid lines in the top right panel; this histogram
makes no correction for the density of metallicity bins.
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BH–NS. In our previous study (Dominik et al. 2013) we
showed that BH–NS systems are efficiently created at moderate
metallicities (Z Z0.1~ , or Zlog( ) 2.7~ - ). Indeed, Figure 6
shows that about half of all detectable BH–NS systems will
originate from metallicities Z Z0.5<  ( Zlog( ) 2< - ). These
systems have higher chirp masses than NS–NS systems, on
average M3.3  versus M1.2 , and therefore the detectors can
sample BH–NS systems from a larger volume. However, BH–
NS systems are the rarest of all DCOs per unit (comoving)
volume. As a consequence, BH–NS binaries typically yield the
lowest detection rates. One exception is the Optimistic CE
model, in which the merger rate per unit volume is large
enough (while still being lower than for NS–NS systems at all
redshifts) that BH–NS detection rates are larger than NS–NS
rates because they are observed farther (see Table 1 and
Figure 6).

In our Standard model BH–NS systems are detectable up to
redshift z 0.28» (L 1.4D = Mpc). However, in the Delayed
SN model this value reaches z 0.31» (L 1.6D = Mpc). As
discussed earlier, this is due to the more massive NSs (up to

M2.4 ) produced by the Delayed engine.
BH–BH. As discussed in our previous papers in this series

(Belczynski et al. 2010; Dominik et al. 2012, 2013), BH–BH
systems are formed most efficiently in low-metallicity
environments. The detectable population reflects this property:
about half of all detectable BH–BH systems were created in
environments with metallicities Z Z0.1<  ( Zlog( ) 2.7< - ).
As in prior studies (Voss & Tauris 2003b; Belczynski

et al. 2010; Dominik et al. 2012, 2013), our calculations imply
that BH–BH systems yield the highest detection rates for
ground-based interferometers. This is true even in the “High
BH kick” model, where the vast majority of binaries containing
a BH are disrupted.
Adjusting the metallicity evolution in the universe from

high-end to low-end we see a factor of ∼2 increase in detection
rates. In the low-end scenario the average metallicity in the
universe is lower at all times. Low metallicity environments are
much more effective at producing merging BH–BH systems
than higher ones, hence the increase in the detection rates.
Half of the detectable objects have chirp masses above
M14 . The most massive of these systems originate from

environments with very low metallicity content (Z Z0.01~ ).
The birth times of detectable BH–BH systems peak at ∼1 Gyr
after the Big Bang. Additionally, half of these systems were
created within ∼2 Gyrs of the Big Bang (see top left panel of
Figure 7), when the average abundance of heavy elements was
much smaller than today.
As seen in Tables 2 and 3, the detection rates of BH–BH

systems vary as we change our assumptions between the four
models and two metallicity evolution scenarios. By comparing
detection rates, for example, found by aLIGO with PhC
waveforms, for the high-end metallicity model (works for all
model choices), we can distinguish two extreme configura-
tions: (1) the High BH kick model yields the lowest rates of
merging BH–BH systems (3.8 yr−1). This is a direct conse-
quence of assuming the presence of the maximum natal kick

Figure 6. Compact BH–NS binaries detectable by aLIGO: same as Figure 5, but for BH–NS binaries in the high-end metallicity scenario. Some of the sharp features
in the chirp mass distribution are an artifact of the crude binning in metallicity undertaken for computational reasons; see the discussion in Section 5.3.
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velocities allowed within our framework, which efficiently
disrupt BH progenitor binaries. (2) The highest detection rate is
achieved with the Optimistic CE model (618 yr−1). Here, it is
assumed that binaries are allowed to progress through the CE
with a HG donor, which adds a significant amount of BH–BH
systems to the detectable population. The detection rates of the
other two models: Standard and Delayed SN are similar to each
other (148 and 129 yr−1, respectively).

The farthest objects are detectable out to z 2~ (L 15D Gpc).
These systems consist of the most massive BH pairs
(m M611 =  and m M662 =  in the detectable population,
with a chirp mass equal to M55 ), born 1.8 Gyr after the Big
Bang, and originating from regions with our lowest considered
metallicity content (Z Z0.005= ). Note that the maximum
mass of BH–BH systems is limited by the maximum ZAMS
mass of stars, which was set to M150  in the current
simulations. The effect of IMF extending to much higher
masses on detection of BH–BH inspirals have been recently
presented by Belczynski et al. (2014).

The detectable BH–BH chirp mass distribution for the
Standard model has three major peaks. These are present at

M7~ , M14 , and M21  (see the black curve in the bottom
left and bottom right panels of Figure 7). Their presence is
associated with the physics governing the Rapid SN engine and
the formation of the most massive BH–BH systems. Within this
framework we can distinguish three scenarios for BH
formation, each depending on the pre-SN carbon–oxygen
(CO) mass (see Equation (16) in Fryer et al. 2012). The “A”

scenario occurs for M M M6 7CO< ⩽ and results in full
fallback on the BH and, therefore, no natal kicks (see
Equation (1)). The “B” scenario occurs for

M M M7 11CO< ⩽ , where the fallback is partial and some
natal kicks are present. For this scenario we expect a decreased
number of BH–BH systems because of natal kicks disrupting
binary systems during SNe. The “C” scenario develops for
M M11CO ⩾ and again results in full fallback, and no natal
kicks.
BH progenitors originating from Z environments never

form through the C scenario, since they lose mass in winds at
rates that do not allow them to form CO cores larger than

M11 . Since BH–BH progenitors in the B scenario are subject
to disruption due to the presence of natal kicks, most BH–BH
systems in Z environments form through the A scenario, with
chirp masses clustered around M7 .
However, reducing the metallicity by a factor of 2 lowers the

wind mass loss rates sufficiently to allow BHs to form through
the C scenario. At this metallicity ( Z0.5~ ) only the most
massive progenitors (M M100ZAMS > ) may form BHs
through this scenario. Additionally, the mass of the BHs
formed from these high mass components (M M100ZAMS > )
only depends weakly on their initial mass. This stems from the
fact that these stars evolve quickly (∼Myrs) and lose large
fractions of their hydrogen envelope. Binary evolution does not
alter this result significantly, as the interactions between
components, such as mass transfer during CE episodes, also
lead to the removal of their hydrogen envelopes. The result for

Figure 7. BH–BH binaries detectable by aLIGO: same as Figure 5, but for BH–BH binaries in the high-end metallicity scenario. Some of the sharp features in the
chirp mass distribution are an artifact of the crude binning in metallicity undertaken for computational reasons; see the discussion in Section 5.3.
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metallicity Z0.5~  is a clustering of BH–BH systems formed
from the most massive binaries at masses around M16  for
each component. This produces the peak in the chirp mass
distribution at M14~ .

Reducing the metallicity content by another factor of 2 (to
Z0.25~ ) allows the same mechanism to form BH–BH

systems with masses clustering at around M24  for each
component. These systems form the peak in the chirp mass
distribution at M21~ .

The grouping effect disappears when reducing the metalli-
city abundance in BH progenitors even further. For example, at

Z0.1  the low wind mass loss rate does not increase the
separation between components as significantly as for higher
metallicities. Consequently, the most massive progenitor
binaries engage in a CE phase early in their evolution. This
usually happens when the donor is on the HG and the Standard
model does not allow for successful outcomes of such CEs.
However, this scenario is allowed to form BH–BH systems in
the Optimistic CE model, yielding the peak present in the chirp
mass distribution at M29~ .

As discussed above, the chirp mass distribution in scenario C
depends sensitively on the mass loss rate of stars, which
depends strongly on metallicity. Binary evolution for Z0.5 
and Z0.25  creates sharp peaks in the chirp mass distribution
of BH–BH systems. In the discrete metallicity grid simulated in
this study, there are no metallicity points between Z0.5  and

Z0.25 . Targeted follow-up investigations indicate that
metallicity choices between Z0.5  and Z0.25  lead to
additional sharp peaks in the chirp mass distribution between

M14 – M21 . We expect that an integral over a fine grid with
appropriately small step sizes in metallicity would lead to all of
these narrow peaks merging together to form a single broad
distribution without sharp features. However, we cannot
confidently describe the shape of this distribution without a
more detailed investigation with a fine grid of metallicities,
which is not computationally tractable at present.

Finally, the peak in the chirp mass distribution at M7~  in
the Standard model is formed from systems born in 0.5–1 Z
environments. These are low-mass BHs (usually 8–9 M per
component) formed in the A scenario. This formation is
particularly interesting as it does not appear in the Delayed SN
model, with the difference stemming from the different fallback
scenarios in the Rapid and Delayed engines. With the Rapid
engine, we can distinguish the three fallback regions. However,
the Delayed engine predicts one region of partial fallback for

M M M3.5 11CO< ⩽ and one region of full fallback
M M11CO ⩾ (identical to the C scenario in the Rapid
engine). Since partial fallback implies the presence of natal
kicks and, therefore, increased probability of binary disruption,
there are no “preferred” masses for the lightest BHs in the
Delayed SN engine (see the dashed line in the bottom left panel
of Figure 7) as in the Rapid engine.

The Standard and Delayed SN models also yield different
lower mass limits for BH remnants (see Section 2). For the
“Rapid engine” scenario the lowest-mass BH is M5~ , while
for the “Delayed engine” scenario the lowest-mass BH is

M2.5~  (this is also the highest NS mass adopted in our
StarTrack calculations). As a result, the detectable systems
with the lowest total mass have M4.8c =  and

M2.4c =  in the Rapid and Delayed engine scenarios,
respectively.

Additionally, regardless of our evolutionary models the
majority BH–BH systems are formed with nearly equal mass
components. Therefore, systems with mass rations ∼1
dominate the detected population, as shown in Figure 8. For
the Delayed SN model the detectable BH–BH systems with the
lowest mass ratio have q 0.05» . For the remaining models this
value is q 0.12» .
For future reference we also present the initial–final mass

relation for close BH–BH systems in Figure 9. The relation is
divided into the primary (more massive at ZAMS) and
secondary (less massive) component for two metallicity values
(Z and Z0.1 ), for the Standard model. It is clearly visible
that binary evolution distorts the initial–final mass relation for
single stars in both mass dimensions. In the initial mass
dimension, the absence of BHs forming from stars with ZAMS
mass above M70~  is a direct consequence of the assumption
of the negative (merger) CE outcome for HG donors in our
Standard model. In our framework more massive stars have
larger radii and, therefore, are more likely to engage in CE
while the donor is on the HG rather than on later evolutionary
stages. If this assumption was relaxed (Optimistic CE model)
the maximum BH mass reached in close BH–BH systems is
found to be M150  for both metallicities. In the final mass
dimension, binary evolution prevents remnant components
from reaching masses as high as those formed from single
progenitors. Whereas single stars shed mass only through
winds, binaries may also remove mass through interactions like
the non-conservative mass transfer and/or CE events, which
consequently lowers the mass of the remnants.
The initial–final mass relation (in this case for the binary

population of close BH–BH systems) is a result of a number of
various initial and evolutionary assumptions used in population
synthesis calculations. Change of any of these assumptions
(whether in initial conditions or evolutionary calculations) may
potentially influence the initial–final mass relation and in turn
the generated BH–BH population. The largest impact is
expected from the treatment of RLOF stability (i.e., criteria
for CE development), SN explosion physics, wind mass loss
and internal mixing within massive stars induced by convection
and/or rotation that sets the radial evolution of massive stars. It

Figure 8.Mass ratio (q) detection probability distribution for BH–BH systems.
It is clear that one should expect that the vast majority of detectable BH–BH
systems will be formed of nearly equal mass components. The lowest values of
q among the detected systems are 0.05 for the Delayed SN model and 0.12 for
the remaining models. For each model the probability is normalized to the total
number of detections for this model.
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seems that the change in the assumptions underlying the
initial–final mass relation may yield no BH–BHs (Mennekens
& Vanbeveren 2014) or numerous BH–BH systems (Voss &
Tauris 2003a; Belczynski et al. 2010; Dominik
et al. 2012, 2013). However, these results apply only to
isolated binary evolution. New studies of globular clusters
suggest that, such environments may be the birthplaces of a
significant number of BH–BH systems (Rodriguez et al. 2015).

Note that the above relations apply only to BH–BH systems.
However, our models do not inhibit the creation of NS from
progenitors much more massive than M20 . In fact, the study
by Belczynski & Taam (2008) shows that due to binary
evolution, NS may form from progenitors as massive as

M100 .

6. QUESTIONING THE NO BH–BH THEOREM

During more than a decade of research into the evolution of
binary stars and the formation of DCOs, several authors
proposed the absence of stellar-mass BH–BH systems merging
within the Hubble time (e.g., Nelemans et al. 2001; Mennekens
& Vanbeveren 2014). In the latter study the authors have
claimed that the main reason for this are the high wind mass
loss rates experienced by BH progenitors. For example, in their
version of the Brussels population/galactic code (originally De
Donder & Vanbeveren 2004b) they fix the wind mass loss rates

of the Luminous Blue Variable (LBV) phase at M10 3-
 yr−1.

Following such heavy mass loss, the orbital separation of the
components increases so that they do not engage in CE. As the
CE is a major mechanism for reducing orbital separation in
isolated binary evolution, allowing for the formation of close
BH–BH systems, the result is an absence of BH–BH systems
detectable through gravitational waves. These results stand in
contrast with the works of Voss & Tauris (2003a) and our
previous studies (Belczynski et al. 2010; Dominik
et al. 2012, 2013).
There are mitigating factors to the finding of Mennekens &

Vanbeveren (2014). For example, their code does not allow for
tidal interactions between close binary components. As we
demonstrate in the following text, tidal interactions may (even
for very high LBV winds) allow for the formation of close BH–
BH binaries (for more on the importance of tidal interactions,
see, e.g., Repetto & Nelemans 2014). Let us consider the
following example of binary evolution generated with the
StarTrack code. We start with an evolved binary: a M8  BH
accompanied by a M43  companion at the beginning of the
HG phase, with an orbital separation of R4600  at 5.5 Myr
after the creation of the systems (ZAMS). This is a typical
phase of a BH–BH progenitor in our Standard model. In this
example we also set the LBV wind mass loss rate to M10 3-


yr−1 and disable tidal interactions between the components,

Figure 9. Initial–final mass relation for binary systems. Presented for close BH–BH systems, Standard model. We define primary and secondary components as
initially (at ZAMS) more and less massive, respectively. The shaded scale (right side of each panel) shows the fractional contribution of a given ZAMS mass bin to
the total mass of merging black holes formed from primaries (left panels) and secondaries (right panels). Note that binary evolution produces a very different initial–
final mass relation than the single stellar evolution (thin line). The top panels and bottom panels show results for Z and Z0.1 , respectively.
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both as in Mennekens & Vanbeveren (2014). We find that
intense wind mass loss widens the orbital separation between
the components to such extent that they never interact.
Therefore, when the BH companion forms a second BH, the
resulting BH–BH systems is too wide to merge within a Hubble
time. This example is presented in Figure 10.

Our exercise can be repeated with tidal interactions between
the components enabled. Investigating the same system we find
a drastically different outcome of the evolution (see Figure 11).
As in the example above, the BH companion starts its
significant evolutionary expansion across HG. Due to the
conservation of angular momentum, the expansion of the star
slows its rotation down almost to a standstill.

Once the companion star fills a sizable fraction of its Roche
lobe (∼50%), the tidal torques imposed on the star by an
orbiting BH transfer the orbital angular momentum into the
star, spinning it up. At first this effect is negligible. However,
after approximately 5000 years, when the radius of the star
becomes sufficient ( R1100~ ), the spin up of the HG star
stalls and overpowers the increase of orbital separation. From
this point on, the orbital separation starts to decrease for
another 3000 years. Finally, when the radius of the star is

R2000~ , it fills its Roche lobe and initiates a CE.
Our exercise clearly shows that different assumptions may

lead to qualitatively different outcomes in terms of the close
BH–BH formation. In particular, assumptions used in this
study on LBV winds, tidal interactions and radial expansion
result in a large number of BH–BH mergers. In contrast,
assumptions used by Mennekens & Vanbeveren (2014) result
in no BH–BH mergers formed out of the isolated binary
evolution.

There are several caveats in this framework. First, it is not
theoretically well established if stellar radii can grow to

R2000~ . For example, intensive mixing (either invoked by
rapid rotation or extended convection in the stellar interior)
may reduce the size of the H-rich envelope which is responsible
for expansion in massive stars. On the other hand the intense

wind mass loss may additionally reduce the envelope (e.g.,
Yusof et al. 2013; but see MESA models for very massive
stars; Belczynski et al. 2014). However, the radii of AH Sco,
KW Sgr and UY Scuti estimated with the PHOENIX stellar
atmosphere model (Wittkowski et al. 2012) extend well
beyond R1000 , with UY Scuti, reaching R1708  (Arroyo-
Torres et al. 2013). The mass of UY Scuti is estimated to be
within M25 – M40 , i.e., within the mass range for BH
progenitors in our framework. Second, the efficiency of tidal
interactions depends on the structure of the envelope of the
participating components. Stars with convective envelopes tend
to respond more strongly to tidal dissipation than stars with
radiative envelopes. In StarTrack (see Section 3.3 of
Belczynski et al. 2008a) we calibrate this phenomenon against
the cutoff period for circularization of a population of MS
binaries in M67 and the orbital decay accompanying tidal
synchronization in the LMC X-4 high mass X-ray binary.
This treatment of tidal dissipation applies directly to the

given example as the envelope of the companion star turns
from radiative to convective about 3000 years after the
companion enters the HG (when HG star radius increases to
over R1000~ ). However, our simulations show that switch-
ing tidal dissipation to the weaker radiative damping does not
prevent binaries from initiating the CE. In our framework tides
are applied to the entire star and we assume that stars rotate
non-differentially. It cannot be excluded that tides operate only
on the outer layers of stellar atmosphere that holds only a small
fraction of a star’s mass. Additionally, if there is no (or very
weak) transport of angular momentum within a star, only a
small fraction of orbital energy is used to synchronize the
stellar atmosphere as compared to our prescription. Finally, the
moment of inertia of very massive stars depends strongly on
the radial profile, and the StarTrack assumptions may yield
a moment of inertia that is too large, therefore providing a more
significant reservoir for depositing orbital angular momentum
into the star than is available in practice. If in fact only very
little orbital angular momentum is used for binary component
synchronization and if the winds are in fact as intense as
indicated by Mennekens & Vanbeveren (2014), then this

Figure 10. Orbital evolution with tidal interactions disabled. This figure
presents a part of the evolution of a M8  BH and M43  HG system, with the
luminous blue variable wind mass loss rate set at M10 3-

 yr−1. The top panel
shows the evolution of the radius and Roche lobe of the HG star in addition to
the orbital separation in the binary. The bottom panel shows the evolution of
the HG star’s spin frequency relative to the orbital frequency. The HG star’s
activity as a luminous blue variable is marked by the “LBV” label. The vertical
line separating the “HG” and “CHeB” labels marks the transition of the HG star
to the core helium burning phase. Note that without tidal interactions the
binary’s orbit expands (due to stellar wind mass loss) and no component
interaction (e.g., CE) is expected. In the end a wide BH–BH binary is formed.

Figure 11. Orbital evolution with tidal interactions enabled. Same as Figure 10
but with tidal interactions enabled. The “Rad. Env.” and “Conv. Env.” labels
along with corresponding arrows highlight areas where the HG star has a
radiative and convective envelope, respectively. The vertical line linking the
arrows marks the transition point in the structure of the envelope. Tidal
interactions allow the transfer of orbital angular momentum into the expanding
HG star. The associated orbital decay leads to RLOF and the development of a
CE, which allows for the formation of a close BH–BH binary. The timescale on
the horizontal axis is zoomed in relative to Figure 10.
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would bar the formation of many close BH–BH binaries found
within the framework of our evolutionary model.

Even if tidal interactions turn out to be ineffective in massive
close binaries, this does not necessarily rule out the formation
of close BH–BH binaries. In field populations about 10%–30%
of binaries are, in fact, triples (or higher multiples; e.g.,
Kiminki & Kobulnicky 2012; Kiminki et al. 2012; Duchêne &
Kraus 2013) and Kozai–Lidov effects or dynamical instabilities
(Perets & Kratter 2012) may lead to the merger of wide BH–
BH binaries. Additionally, many (Kroupa 2014) massive stars
are formed in clusters and may be subject to dynamical
interactions that can potentially decrease orbital separations.
Finally, over the last few years it has been claimed that dense
globular clusters may produce significant number of close BH–
BH binaries. In contrast with earlier findings with no efficient
formation of close BH–BH binaries (e.g., Kulkarni et al. 1993;
Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan
2000; Banerjee et al. 2010) the new paradigm emerged based
on recent and updated Monte Carlo simulations of dense cluster
evolution (e.g., Mackey et al. 2008; Sippel & Hurley 2013;
Heggie & Giersz 2014; Morscher et al. 2013). BH–BH binaries
may also form via dynamical interactions in galactic nuclear
clusters with or without a massive black hole (Miller &
Lauburg 2009; O’Leary et al. 2009; but see Tsang 2013).

7. CONCLUSIONS

We have calculated cosmological detection rates of merging
DCOs for second-generation GW observatories. We used
redshift distributions of merging DCOs from the Startrack
population synthesis code, and have incorporated the cosmic
star formation rate as well as galaxy and metallicity evolution.
Using state-of-the-art gravitational waveforms and detector
sensitivity curves, we have translated the cosmological merger
rates into detection rates for four distinct models of binary
evolution.

Our study has several robust implications for imminent GW
searches. First and foremost, our four models agree on the
detection rates of merging NS–NS systems (∼1 detection per
year), with the exception of the Optimistic CE model which
predicts rates a factor of 2–3 times higher than other models.
The mass distributions of detectable NS–NS systems are also
similar across the models, with the exception of the Delayed
SN model, which allows for the formation of NSs with higher
masses due to prolonged accretion during the SN explosion.
We predict that NS–NS binaries will be detectable up to
redshift z 0.13» , i.e., only in the local universe.

Second, BH–NS systems are expected to be the rarest
detectable DCOs (less than 1 detection per year), with the
exception of the Optimistic CE model, in which BH–NS
detection rates slightly exceed those of NS–NS systems of the
same model. We predict BH–NS systems to be detectable up to
redshift z 0.3» .

In contrast, BH–BH systems will provide the largest number
of detections (∼100–1000 per year), making them the primary
target for first detection and the most promising source for
future statistical studies of source populations. BH–BH systems
dominate event rates even in the pessimistic “High BH kick”
model (several events per year), wherein most of the systems
containing BHs are disrupted during the SN. Additionally, the
BH–BH mass distribution could have rich, observationally
accessible structure (various lower limits and shapes) that
encodes fine details about stellar and binary evolution (see,

e.g., Belczynski et al. 2012b; Fryer et al. 2012; Kreidberg
et al. 2012; O’Shaughnessy 2013). We note, however, that the
crude binning in metallicity that we had to undertake in order to
limit computational costs may create artificial sharp, narrow
features in the mass distribution, which would merge together
into broader trends with a finer metallicity grid.
Mennekens & Vanbeveren (2014) point out that the detection

rate of BH–BH systems may be reduced to zero due to the
effects of intense stellar wind during the Red Supergiant and
Luminous Blue Variable phases of BH progenitors. However,
we have demonstrated that the Mennekens & Vanbeveren
(2014) result is a direct consequence of their assumption of no
tidal interaction in close binaries. If tides can efficiently transfer
angular momentum from the orbit into the companion spin, then
it is expected that isolated binaries will form close BH–BH
systems.
The criteria for the development of the CE phase may

influence the merger and detection rates of all DCOs. Woods &
Ivanova (2011) and Ivanova (2015) state that the criterion for
the stability of mass transfer sourced from the polytropic
approximation is much too strict. Therefore, the frequency of
the CE may be overestimated. The CE is a major mechanism
for creating close binaries that coalesce within a Hubble time.
The lack of CE events would, therefore, decrease the number of
DCO mergers. This would provide a reasonable pessimistic
scenario for the lack of detections of gravitational wave
signals. A study of CE development criteria and its effect
on the formation of close BH–BH binaries is underway
(K. Belczynski et al. 2015, in preparation). However, an
assumed rarity of CE systems would be difficult to reconcile
with observational evidence pointing to systems (for example,
V1309 Sco, V4332 Sgr, OGLE 2002-BLG-360 or CK Vul)
which seem to have developed a CE (e.g., Martini et al. 1999;
Tylenda et al. 2011, 2013). Additionally, massive X-ray
binaries such as NGC300 X-1 or IC10 X-1 are on close orbits
with orbital periods ∼30 hr, which have likely developed
through a CE event.
Our study shows that detectable NS–NS systems are formed

significantly later in the history of the universe than BH–BH
and BH–NS systems. As shown in Figures 5–7, the birth times
of NS–NS systems cluster around 13 Gyr after the Big Bang,
while for the other systems this is 1 Gyr. This behavior might
be counter-intuitive, as the intrinsic distribution of time delays
between formation and merger for all types of DCOs falls off as
tmerger

1- , barring exceptional circumstances (e.g., near-solar
metallicity BH–BH binaries; Dominik et al. 2012). Therefore,
one might expect the majority of detectable DCOs to be formed
within the past ∼Gyr as is the case for NS–NS systems.
However, BH–BH systems are created most efficiently in the
lowest metallicity environments, and therefore their formation
rate is highest in the early universe. The long time-delay tail of
these early systems dominates the subsequent detection rate.
The metallicity evolution is therefore a crucial factor in
predicting the detectable rate of DCOs.
We also find that including the merger and ringdown

components of the GW signal does not have a significant
impact on the detection rates of NS–NS systems. The full IMR
calculations become important for higher mass systems, and
especially for BH–BH binaries. The detection rates for BH–BH
systems increases by at least 20%, and typically by ∼50%,
when using full IMR waveforms when compared to the PN
inspiral alone.
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The detection rate of BH–BH systems is also sensitive to
spin effects. Extreme aligned spins increase the rates by a factor
of ∼3 when compared with the non-spinning case.

We used simplified criteria for detectability, considering an
S/N threshold of 8 in a single detector as a proxy for the
network (see Abadie et al. 2010). For reference, we also
considered a network S/N threshold of 10, which is likely to be
very optimistic, and 12, which is more realistic (cf. Aasi
et al. 2013b), on a network of three detectors with aLIGO
sensitivity. The network S/N threshold of 12 yields rates which
are roughly comparable with rates computed using an S/N
threshold of 8 in a single aLIGO detector as proxy for the
network. The actual detection thresholds are a complicated
function of network configuration, the level and frequency of
non-Gaussian, non-stationary excursions in the noise, and
search pipeline sensitivity to different source types. Therefore,
our simple thresholds are only meant to yield rough estimates
of detection rates, and the focus should be on relative rates for
different source types and model assumptions rather than
absolute numbers. Finally, we note that the sensitivity of
advanced detectors will gradually improve during commission-
ing, and several years will pass before they reach the sensitivity
we have assumed above (for an approximate time line, see Aasi
et al. 2013b).

The detection rates computed by assuming an S/N threshold
of 8 in a single aLIGO detector as proxy for the network allow
for a direct comparison with the rate ranges compiled in
(Abadie et al. 2010), which used the same detectability
criterion. Abadie et al. (2010) incorporated a number of
population synthesis studies and Galactic binary pulsar
observations, but did not include some of the factors considered
in the present study, such as cosmology and variations in
metallicity distributions and star formation rates with redshift.
We find that our predicted detection rates for NS–NS and BH–
BH binaries fall within the ranges given in Abadie et al. (2010)
for all models and both metallicity distribution choices
considered in the present work. For BH–NS binaries, the same
holds for all models and metallicity choices except for the high
BH kick model, which yields BH–NS detection rates below the
range quoted in Abadie et al. (2010).

We note that uncertainties in waveform systematics and
detection criteria pale in comparison to uncertainties in stellar
and binary evolution. We consider the most important
uncertainties to be the progress and outcome of the CE phase,
the SN explosion mechanism and the magnitude of BH natal
kicks. The four binary evolution models discussed in this study
explore these uncertainties, resulting in a wide range of mass
distributions and event rates. Changing other parameters such
as the initial binary mass distribution or varying the mass
escaping the systems during mass transfer episodes would also
influence the resulting distributions and rates (O’Shaughnessy
et al. 2005, 2008, 2010a).

The properties of the DCO populations produced in our
various models are sufficiently differentiated that it may be
possible to constrain or rule out some of the input physics
based on observed populations. For example, a lack of
significant number of detections will disfavor the Optimistic
CE model, in which we allow for CE events with HG donors
and thus find very high detection rates. This will indicate how
(if at all) CE develops for HG stars. If BH–BH systems are not
detected far more frequently than other DCO types, a likely
explanation is that BHs receive significant natal kicks

disrupting their binaries. A detailed comparison of detection
rates with current LIGO upper limits can be found in
Belczynski et al. (2012a). As detections accumulate, a well
measured chirp mass distribution could allow us to distinguish
between the Rapid and Delayed SN engine models, which
generate continuous and gapped chirp mass distribution of
DCOs, respectively. The number of detections needed to
distinguish between the Rapid and Delayed SN engines will be
discussed in future work (M. Dominik et al. 2014, in
preparation).
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APPENDIX
SINGLE- AND MULTI-DETECTOR RESPONSE

The “expected detection rate for GW detectors” is a
theorist’s idealization. First and foremost, the event rate
depends sensitively on the (time-dependent) performance of
instruments in development. Furthermore, real GW searches
employ complicated detection thresholds, accounting for noise
non-Gaussianity and non-stationarity; for multiple instruments
with unequal power spectra; and for some search-dependent
consistency requirement across multiple detectors. Rather than
attempt realism, our idealizations provide a concrete, repro-
ducible filter to identify the number and (critically) distribution
of “detectable” binaries.

A.1. Cumulative Amplitude Distribution for a Single Detector

In a simple idealization, the detection threshold depends only
on a single detector’s S/N. Several authors have characterized
the response of a single GW detector to the angular distribution
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of power for a GW source dominated by l m( , ) (2, 2)=∣ ∣
multipole radiation (Finn & Chernoff 1993; Finn 1996;
O’Shaughnessy et al. 2010a). This response depends on the
two-dimensional sky location Ω, inclination ι, and polarization
ψ, and can be conveniently summarized by a projection
parameter w which is maximum (w= 1) for a face-on,
overhead source, and minimum (w= 0) for sky locations and
orientations where the detector has no response to the source.
The S/N, ( , , )r y iW , is equal to the maximum S/N of a face-
on, overhead source at the same distance scaled by w, i.e.,

w optr r= . The cumulative distribution function for w is P(w):

P w
d d d

( )
4

cos

2
, (11)

Vò p
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where we integrate over the four-dimensional angular integra-
tion volume, V, which is the set of all , ,i yW such that the
response exceeds w. Our expression is identical to the
cumulative distribution function P ( )Q defined by Finn &
Chernoff (1993) and discussed also by Finn (1996), but we use
the variable w 4= Q such that w0 1< < (see, e.g.,
O’Shaughnessy et al. 2010a; Belczynski et al. 2014). Note that
w (2 5)2 2á ñ = , therefore the optimal S/N at a given distance
and the square root of the angle-averaged signal power for a
source at that distance ( ave

2 2r rº á ñ) are related by

(5 2)opt aver r= . Meanwhile, w 2.2643 1 3á ñ-  is the factor
commonly used to relate volume-averaged distances to optimal
detection distances, where w3 is the fraction of detectable
sources within a sphere whose radius equals the at-threshold
detection distance for an optimally located and oriented source;
see, e.g., Equation (6) of O’Shaughnessy et al. (2010a).

Easily-interpolated tabulated results for P(w) are available
online.11 The analytic approximation to this distribution
function given by Finn (1996) is inadequate for our purposes;
our tabulated results follow from sampling the distribution
numerically via a Monte Carlo over 109 binaries. We found that
a good three-parameter fit to the data is
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where n( ) refers to the number of detectors in the network, n( )a
is the maximum value that w can attain, so that 1(1)a = as w is
bounded between 0 and 1, and the coefficients are
a 0.3742222

(1) = , a 2.042164
(1) = , and a 2.639488

(1) = - . Note

that Equation (12) ensures that P ( ) 0(1)a = and P (0) 1= .

A.2. Cumulative Amplitude Distribution for Multiple Detectors

For a multi-detector network A, a network S/N Ar can
always be defined. Following an identical procedure as above,

we can define a cumulative distribution PA that generalizes
Equation (11). As before, w optr r= , but for multi-detector
networks composed of instruments with equal sensitivity, ρ is
the network S/N while optr is the single-detector S/N from an
optimally oriented binary directly overhead that detector. For
three identical instruments at the LIGO Hanford, Livingston,
and Virgo sites, tabulated results for PA are available online at
the URL listed in the previous footnote; a good fit to the data
has the form given in Equation (12), but now w0 1.4< < , so
that 1.4(3)a = . The coefficients we obtain are a 1.195492

(3) = ,
a 1.617584

(3) = , and a 4.870248
(3) = - .

Schutz (2011) described a simple idealized model for
the sensitivity of multi-instrument networks. This model is
almost equivalent to our own. The two models differ in
that Schutz (2011), in his Equations (14)–(15), replaces w2 by
an (unphysical) average of w2 over polarization, then treats the
rms value of w (i.e., w2 1 2á ñ ) as a substitute for w whenever w
appears. Our results adopt no such simplifying approximation.

A.3. Higher Harmonics

Real GW sources produce multimodal radiation, with each
mode providing a distinct angular pattern. For low-mass
sources these higher harmonics contribute little to the detector’s
response. For high-mass binaries with asymmetric mass ratios,
higher harmonics can contribute significantly to the observa-
tionally accessible signal (Capano et al. 2014). For nonspin-
ning binaries of total mass M M60< , and with the smaller
mass M1.2> , we expect higher harmonics to increase the S/N
ρ by less than a few percent, consistent with extrapolations
derived using PN waveforms. This expectation is supported by
investigations carried out with a multimodal EOB IMR
waveform (Pan et al. 2011). To a good approximation, the
S/N ρ and angular distribution P(w) can be approximated by
the corresponding expressions derived assuming purely quad-
rupolar, (2, 2)-mode emission.
Higher harmonics can play a significant role if the mass

distribution extends to very high redshifted mass. At high mass,
higher harmonics contribute a greater fraction of the S/N, each
in a distinctive angular pattern; see O’Shaughnessy et al.
(2010b) for illustrative results. For aLIGO, systematic astro-
physical uncertainties such as the BH spin and mass have a
significantly greater impact than the harmonic content. These
higher harmonics will be important for third-generation
interferometers, like the Einstein Telescope. This will be
investigated in future work.
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