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Abstract  

 

     Metal-on-metal (MOM) total hip replacement is an artificial hip joint 

has been used to replace damaged or diseased natural joints. MOM 

studies have demonstrated severe complications due to metal wear debris 

in tissues adjacent to the implants. Reducing the wear rate and operating 

with full film lubrication could reduce these problems; a better 

understanding of the lubrication mechanisms is also relevant to other hard 

bearing materials such as ceramics or new metal alloys.   

     Ball-in-socket MOM contacts were analysed using the Abaqus Finite 

Element package to simulate dry contact between the acetabular cup and 

the femoral head. Different cup thicknesses of 4, 6, 8, and 10 mm were 

considered using a polyurethane foam block support system. 

 

     Elastohydrodynamic lubrication (EHL) analyses were developed for 

the contacts using three different approaches to specify the contact. These 

were  

(i) A simple model based on the radii of relative curvature, 

(ii)  An equivalent contact model developed so that its dry contact area 

and maximum pressure replicated the values obtained from the FE 

analysis, and  

(iii) A modified version of (ii) that also ensured equivalence of the gap 

shape outside the contact area.  

 

 

     Published in vivo information for the hip joint contact forces over the 

walking cycle was used to specify the operating conditions for the EHL analysis. 
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This was achieved by developing techniques to transform the in vivo 

information to provide load direction and kinematic information relative to the 

nominal contact point between the components.  

     The analysis method was found to be effective for all points of the walking 

cycle for cases where the cup thickness exceeded 5 mm and modelling approach 

(ii) was identified as satisfactory. For a cup thickness of 4 mm, membrane action 

began to emerge in the FE analyses so that such contacts behaved in a different 

way.  
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Nomenclature 

       

a                              Radius of contact area 

cd                             Diametral clearance  

d                              Surface deflection                                                                                       

D                             Femoral head diameter                                                        

�́�                             Reduced elastic modulus 

E1, E2                      Elastic modulus for bodies 1 and 2 

F                             Load 

h                              Film thickness 

hc                             Central film thickness (when x=0, y=0)   

hm                                            Minimum film thickness 

hu                             The undeformed geometry  

M                             Moment                                                    

P                              Pressure                                                                           

Po                             Maximum pressure                                                         

R                              Principal radius of relative curvature 

Rb                             Radius of femoral head   

Rc                             Radius of cup                     



X 
 

 t                                Time                                                                                  

W                               Load  

wt                              Cup wall thickness                                                           

x, y, z                       Cartesian coordinates 

𝛾1 , 𝛾2                       Poisson’s ratio for bodies 1 and 2 

ω                             angular velocity     

        

Subscribe  

h               Hertzian 

f                Finite element  

equiv         Equivalent model 

mod           Modified model                 

Other symbols are defined in the text   
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Introduction  

1.1  Introduction 

     The natural hip joint is one of the largest and strongest joints in the body. It 

is the place where the femur and the pelvic bones articulate with each other. 

The high stability of the hip joint comes from its ball and socket configuration 

which has a high degree of envelopment. It allows for a wide range of multi-

axial movements required for normal daily activities like walking and sitting. 

Supporting the weight of the body represents the second function of the hip 

joint in both the static and dynamic positions. The hip joint comprises of the 

acetabulum (socket) in the pelvic bone and the femoral head, as shown in 

Figure 1. The head of the femur/ ball/ is the convex component of the hip 

joint, and it is covered with an articular cartilage. It forms two – thirds of a 

sphere reflecting the high degree of articulation provide by the joint. The 

acetabulum/ socket/ is the concave surface of the pelvis bone. The cavity of 

the acetabulum is also covered with a cartilage layer.  

 

     Large and strong muscles surround the articulation between the ball and the 

socket. The two cartilage layers in addition to a lubricant fluid, called synovial 

fluid, allow the femoral head to rotate freely with a range of motion in three 

directions. A healthy joint is expected to last a lifetime as a result of the high 

performance of the lubrication process preventing bone to bone contact 

occurring at the interface. There are a number of diseases such as arthritis, 

osteoarthritis and rheumatoid arthritis that cause degradation of the articular 

cartilage. These diseases affect the lubrication operation and lead to losing the  
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range of motion and experiencing bone–on–bone contact. Consequently, the 

joint often needs to be restored by hemiarthroplasty, hip resurfacing or total 

hip arthroplasty surgical procedures.  

 

     Different materials have been used instead of the damaged hip joint in 

replacement prostheses. There are four main types of hip replacements which 

are characterised by the material couples at the sliding interface, metal-on-

metal (MOM), metal-on-polyethylene (MOP), ceramic-on-ceramic (COC), 

ceramic-on-polyethylene (COP). Details of the advantages and the limitations 

of each one of these material combinations will be discussed in the next 

sections of this chapter. 

 

 

   

 Figure. 1: The natural hip joint, 

 reproduced from Pramanik [1].   
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Definitions of common terms 

- Osteolysis: is the bone degeneration caused by the response of the 

immune system to wear debris.  

- Impingement: when the femoral head moves at or around the boundary 

of the acetabular cup rim, sometimes resulting a dislocation.     

1.2  Total Hip Arthroplasty 

Artificial hip joints have been in existence for over 100 years, but the last 50 

years have seen some remarkable developments [2]. The replacement of 

diseased natural joints by totally artificial joints is one of the most successful 

surgical procedures carried out today. Over 70,000 replacement joints are 

currently performed annually in patients in the United Kingdom [3] and more 

than one million hip joint replacements are carried out worldwide every year 

[4].  

     A Total Hip Arthroplasty (THA) is a biomechanical device used to replace 

the damaged, diseased or fractured, hip joint as shown in Figure 2. It is a cost 

effective surgical procedure undertaken to reduce pain and reintroduce 

function of the hip joint. A total hip replacement is comprised of a femoral 

component and an acetabular component.  

 

 

Figure 2: Left hip replacement,  

reproduced from Kluess [5] 
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     Figure 3 shows a range of femoral components that are either of a modular 

or one piece design. The modular components consist of a shaft, a stem, which 

is inserted into the thigh bone, and a replaceable femoral head which is 

connected to the stem through a taper locking mechanism. Additional tapered 

sleeves make it possible to adjust the length of the neck during surgery.  

 

 

 

 

 

 

                    ( a )                                                                          ( b ) 

Figure 3 a) One piece femoral head, reproduced from Ramos [6], b) Modular femoral 

head, reproduced from Garbuz [7] 

 

     Similarly, the acetabular component, cup, is either a monoblock or of 

modular design, as shown in Figure 4. The modular component is composed 

of a liner and a shell where the shell is fixed to the concave surface of the 

acetabulum and the liner is fixed into the shell, while the monoblock cup is 

just one piece and is fixed directly to the acetabulum.  

 



Chapter  1 

5 

 

 

 

 

 

 

                    

                           ( a )                                                                               ( b )              

Figure 4 (a) Monoblock acetabular cup, reproduced from [8], (b) Modular acetabular cup, 

reproduced from [9]. 

 

     The fixation method between the stem and thigh bone and between the cup 

and the pelvic bone may be with or without cement and will be discussed later 

in this Chapter. The two articulating surfaces of the artificial hip joint 

comprise the inner bearing surface of the cup, which can be metal, ceramic or 

polyethylene, and the metal or ceramic femoral head. 

 

1.3  Hip Resurfacing  

     Total hip arthroplasty is a successful operation for middle to late age with 

more than 90% to 95% survival rate at ten years. Implant survival after THA 

in younger patients is lower [10, 11]. Despite high wear characteristics with 

earlier generations, MOM hip resurfacing has been used for the treatment of 

younger patients [12]. A metallic acetabular cup is inserted into the 

acetabulum cavity without cement. The neck of the femur remains in place, 
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whereas the surface of the head of the femur is changed by a cemented 

metallic bearing surface as shown in Figure 5.  

 

 

 

 

 

                          

                     Figure 5: Hip resurfacing, reproduced from Ramakrishnan [13] 

 

     The advantages of hip resurfacing over total hip arthroplasty include 

proximal femoral bone preservation, optimization of stress transfer to the 

proximal femur and reproduction of normal hip biomechanics, greater implant 

stability, and perceived ease of revision. Clinical function is thought to be 

better with a large femoral head with patients reporting less postoperative 

limping [12, 14]. It is also found that there is a higher rate of activity, a greater 

range of motion and a lower rate of dislocation due to the large diameter 

bearing with the hip resurfacing than with total hip arthroplasty. It preserves 

much more of the femoral bone which allows replacement with a 

conventional THA later if needed.  
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     On the other hand, there are potential disadvantages to resurfacing 

arthroplasty. It appears, in a proportion of cases, to require a greater resection 

of acetabular bone than conventional arthroplasty, and there is concern over 

the long-term survival of the femoral component. It is reported that men lose 

18% and women 25% of bone mineral density in the femoral neck from age 

30 to age 70. Thus, it is possible there will be more femoral neck fractures 

over time in resurfaced hips. Obviously, femoral neck fracture cannot occur 

after a conventional THA [7, 15].  

     Hip resurfacing is more likely to fail in female patients over 55 years old 

because of decreased bone density. Figure 6 shows the clinical results for 254 

hips resurfaced, 154 male and 100 female hips. All patients were followed up 

for the time range 12-45 months [12]. Therefore there are age and gender 

limitations when hip resurfacing has been used. 

 

 

 

 

 

 

 

 

Figure 6: Male and Female survival probability of hip resurfacing, reproduced from 

Jameson [12]. 
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1.4  Metal on Polyethylene Hip joint ( MOP ) 

     The metal femoral head on a polyethylene cup is the most common choice 

for the artificial hip joint. This combination of materials has acceptable 

articulation properties such as shock absorption, very low friction and is also 

inexpensive. Charnley introduced low-frictional torque arthroplasty of the hip 

(LFA) into routine clinical practice in November 1962 [16]. Charnley low-

friction arthroplasty which, in its original form, consisted of a stainless steel 

femoral component with a 22.225 mm diameter femoral head rubbing against 

a polytetrafluoroethylene (PTFE) acetabular cup. The low friction came from 

two design features. 

 

     The first was the choice of PTFE as one component of the joint 

which ensured a very low coefficient of friction. The second feature 

was the use of a small diameter femoral head which ensured that any 

friction generated, acted at a small radius, hence reducing the frictional 

torque which Charnley felt was important for the longevity of the 

procedure [2]. It reduced the stresses across the interface between the 

implant and the bone, which is the weakest part of the construct. 

     Sliding properties, mechanical strength and biocompatibility of 

polyethylene have been improved by the development of cross-linked 

ultra-high molecular weight polyethylene (UHMWPE). Although Metal 

on Polyethylene (UHMWPE) has high success rates, the osteolysis, foreign 

body reactions and implant loosening as a result of the polyethylene wear 

particles are still long term major concerns in total hip arthroplasty. There are 

three different metallic femoral heads, which have been used to articulate 
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against the polyethylene (UHMWPE) acetabular cups in the total hip 

replacement: 

- Cobalt – chromium – molybdenum. 

- Titanium – aluminium – vanadium. 

- Stainless steel. 

 

1.5  Metal on Metal Hip joint (MOM)  

     First generation MOM hip bearings include prostheses developed in the 

1960s. Some implants from this era survived for more than 25 years because 

of low wear rates and minimal osteolysis. However, alongside these 

encouraging durability results, first generation MOM studies also 

demonstrated metal wear debris in tissues adjacent to the implants, 

particularly in prostheses with loose components or impingement. The first 

generation MOM articulations were commonly used until the mid – 1970s. 

Most were then abandoned in favour of MOP articulation. The main reason 

for this change was the introduction of the Charnley low-friction arthroplasty.  

 

     Long-term results of MOM implants had boosted their popularity 

and led to the development of second generation MOM implants in the 

early 1980s. In addition, polyethylene wear from MOP implants was 

hypothesized to cause osteolysis around the implant. Second 

generation MOM implants have an improved bearing interface and are 

composed of alloys with an increased metal hardness, it was also 

much tighter tolerances and more accurate manufacturing. Although 

medium and long term clinical results with MOM bearings appeared to 

have demonstrated excellent durability, recent studies have shown that 

MOM bearing systems are not resistant to osteolysis. The widespread 
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 acceptance of MOM articulations has been tempered by concerns regarding 

increased metal ion production from these devices. Within the cells of tissues, 

nanoparticles are exposed to a series of oxidative mechanisms designed to 

destroy the foreign body, which leads to the generation of metal ions [17]. 

  

     By the use of MOM bearings, significantly lower wear is experienced, 0.19 

mm
3
/year for MOM compared to 0.98 mm

3
/year for MOP. The amount of 

volumetric wear was reduced; but the number of particles produced increased 

100-fold. These bearings have raised new problems associated with small 

metal particles and their relationship to the local and systemic environment 

within the body. Furthermore, with increased numbers of small metal particles 

the surface area available for corrosion is also increased. Nano-sized particles 

could be absorbed more easily than micro-particles and can cause more DNA 

damage [18].  

 

     Metal particles and ions may spread throughout the body by blood and 

lymphoreticular dissemination and potentially have harmful effects on the 

immune system, the kidneys and the nervous system [19]. Serum cobalt levels 

are the most frequently reported metal ion concentrations, and they were 

found to be 5–6 fold higher in patients after MOM implantation than 

preoperatively [20].  

 

1.6  Ceramic on Polyethylene Hip Joint ( COP )  

     In the mid-1970s, a total hip replacement in the form of a ceramic femoral 

head and a polyethylene acetabular cup was introduced in order to reduce the 

volume of polymeric wear debris. In more recent years ceramic femoral heads 
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have been mounted on metallic stems in modular constructions in increasing 

numbers in order to provide an inert, very hard, smooth counterface for 

polyethylene acetabular cups as a means of reducing wear. Laboratory and 

clinical data strongly confirm that wear is considerably reduced with the 

ceramic femoral head penetrating into the acetabular cup at a rate of fifty 

percent, or less, of the rate for comparable metallic heads [21].  

 

     For a period of time high purity alumina ( Al2O3 ) has been used for 

femoral heads of hip joint implants due to its excellent immunological 

biocompatibility, longevity, corrosion resistance and wear resistance. The mid 

1980s marked the entry of zirconia into the orthopaedic field. Zirconia is a 

ceramic that offers higher strength and higher fracture toughness associated 

with similar biocompatibility when compared to alumina.  

     

     Today hip joint implants made of a titanium stem, ceramic ball head, 

ceramic or polyethylene inlay and titanium acetabular cup are considered the 

most reliable. In the 1970s, failure rates of implanted ceramic heads of up to 

13.4% were reported. The most recent studies report failure rates in the range 

of 0.004 – 0.05%. This includes all causes of fracture including impingement, 

combinations of head with damaged metal tapers or non-approved tapers, 

entrapped debris in the stem – ball interface, material flaw, incorrect surgical 

use, wrong cup position and mishandling. Even though the probability of 

failure is very low nowadays, all possible measures should be considered to 

decrease it further.  

     Despite the excellent material properties of ceramics noted above, their 

fracture toughness is low compared to metals. The presence of contaminants 
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or scratches can yield a non-uniform load transfer which induces stress 

concentrations in the ball head, thus increasing the risk of failure [22].  

1.7  Ceramic on Ceramic Hip Joint ( COC ) 

     Aluminium oxide and zirconium oxide are the most widely used ceramics 

on both bearing surfaces, as shown in Figure 8. Ceramics were introduced in 

total hip arthroplasty because of their high wear resistance and low friction. 

 

 

 

 

 

Figure 8: Ceramic-on-ceramic hip joint  

Replacement, reproduced from [23]  

 

 

 

 

 

     With the increasing number of prostheses implanted, audible squeaking has 

arisen as a new complication. The incidence of squeaking varies considerably, 

ranging from less than 1% to 21%. The exact mechanism for squeaking 

remains unclear [24].  

 

     Ceramics are known to be brittle materials with no ductility and limited 

bending strength. As the material has no possibility to deform, implants break 

without warning. Several factors have been reported to increase the risk of 

failure of ceramic heads including increased body weight, high activity level, 
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and entrapment of a foreign body between the taper and the ball, but the most 

important factor is material quality. Although COC bearings have proven their 

efficacy in the long term, concern remains over some risk of fracture and the 

cost of the prosthesis [25].  

 

     The clinically relevant alumina COC particles are less toxic than the 

cobalt-chromium MOM particles relative to the equivalent particle volumes. 

This emphasises the fact that the nature, size and volume of particles is 

important in assessing the biological effects of wear debris on cells in vitro 

[26]. Figures 9 and 10 illustrate the volumetric wear rate for different bearing 

surfaces [27].    

 

 

 

 

 

 

 

 

 

 

 

        Figure 9:Wear rate of bearing couples[27]             Figure 10: Wear rates of polyethylene when used  

                                                                                                   against various orthopaedic materials [27]  
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1.8  Fixation of the prosthesis 

     Fixation of the artificial hip joint is accomplished either with or without 

cement. The two components of the implant, stem and cup may or may not be 

cemented to the thigh bone and the acetabulum respectively. Both ideas have 

significant support and the surgeons have several preferences.  

 

1.8.1  Cemented fixation  

     The use of cemented hip prostheses has given excellent clinical results. The 

success of cemented implants depends on many factors. Fatigue failure of the 

cement mantle interfaces, stem-cement and cement-bone, have each been 

identified as a possible loosening mechanism of the prosthesis. A cement 

thickness higher than 2 mm does not apparently affect the mechanical 

behaviour of the cement mantle [6].  

     Due to the high physical loading, use of cemented fixation  is not 

recommended for active and young patients. Studies concluded that cement 

crack failures begin in the cement bone interface with formation of micro-

cracks [28, 29]. Other authors have indicated that the most critical success 

factor is the interface between stem and cement, where localized high strains 

occur in the cement mantle due to the difference between cement and stem 

stiffness values [30].       
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1.8.2  Cementless fixation   

Concepts of cementless fixation involve screwing or press-fitting the 

components into the bone to provide initial stability. The long-term fixation is 

then achieved by subsequent bone growth into the porous coating or rough 

surface of the implant over time, to provide what is referred to as biological 

fixation [31]. There are other methods to achieve additional cementless 

fixation. Various shapes and cross–sections, rectangular or taper, of the 

femoral stem are commonly used to fix the femoral component. Furthermore, 

spikes and fins may be included on the outer surface of the cup or the shell to 

locate them firmly into the concave surface of the acetabulum.             

            

1.9 Discussion  

MOM total hip replacements have been used widely due to their low wear rate 

comparing to the conventional MOP prostheses. High wear rate and wear 

particles of the MOP have been considered to be the reason for developing the 

osteolysis and the aseptic loosening and they are still long term major 

concerns in total hip arthroplasty. This is particularly the case with younger 

patients who tend to be more active than older patients and have longer life 

expectancy. For such patients the MOP prosthesis is not attractive and more 

appropriate solutions are required. COC hip replacements have very low 

surface roughness and high wear resistance, both of which are highly desirable 

characteristics. However their mechanical properties are not ideal as they are 

brittle materials with limited bending strength and have been found to break 

without warning.  
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MOM bearings could emerge as a good choice for replacing the diseased or 

damaged natural hip joint, particularly in younger patients. They present a 

different design challenge and a means to conduct a detailed analysis of the 

lubrication mechanism taking into account the true shape of the components is 

a necessary step in building a comprehensive understanding of their operation. 

They are known to generate large numbers of very small wear particles. There 

have been examples that have functioned extremely well in patients, and 

others where their performance was less satisfactory. Both of these 

considerations need a robust accurate lubrication analysis as a basis for further 

investigation. This is therefore the main focus of the research reported in the 

thesis.  
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Literature Review  

 

     The term bio-tribology was introduced by Dowson and Wright in 1973 to 

cover all aspects of tribology related to biological systems. The best known 

examples of the subject are the numerous studies of natural synovial joint 

lubrication and the design, manufacture and performance of various forms of 

total joint replacements [32]. Eliminating wear and operating with fluid film 

lubrication could one day allow the artificial hip joint to reproduce the 

tribological performance and function of the natural synovial hip joint.  

     In engineering there are three distinct lubrication regimes: fluid film 

lubrication, mixed lubrication and boundary lubrication. The main problem 

associated with the long term survival of ultra-high molecular weight 

polyethylene (UHMWPE) hip joint replacement is loosening believed to be 

caused by the adverse tissue reaction to wear particles. The film thickness is 

generally thought to be much smaller than the surface roughness of the 

UHMWPE bearing surface, consequently leading to a mixed or boundary 

lubrication regime and generation of wear particles [33]. MOM bearings for 

total hip arthroplasty are an alternative to polyethylene bearing surfaces. Hip 

simulators demonstrate that MOM bearings have lower wear rate volume than 

MOP bearings. However, clinical reports have identified concerns related to 

metal ion release and hypersensitivity type lymphocytic reaction. The 

hypersensitivity reaction often leads to the formation of large complex fluid/soft 

tissue collections around the hip joint which can be clinically asymptomatic [34-

35]. 
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     An efficient lubrication system between the ball surface of the femoral head 

and the inner surface of the acetabular cup of the artificial hip joint is a crucial 

factor for enhancing the long-term survival of these biomedical implant 

components. A large number of clinical, experimental and theoretical studies of 

the hip joint replacement have been reported in the literature, where different 

problems and theories investigated. In this chapter a number of each category of 

these research areas will be reviewed.  

 

     MOM bearings are being used increasingly in total hip arthroplasty for 

treatment of arthritis of the hip in younger and active patients. The advantages of 

this approach include increased stability and decreased wear as compared to 

metal-on-plastic bearing surfaces. However, there have been reports of metal 

debris generated from wear being detectable in the blood, tissue and urine. The 

localized effect of metal debris produces groin pain and soft-tissue lesions that 

are termed Pseudotumors around the hip, which should be taken seriously as 

they identify a metal reaction. These reactions can cause progressive soft tissue 

necrosis leading to instability [36-41].  

 

     A comparison study for 144 patients using MOM large diameter femoral 

head of total hip arthroplasty was carried out between April 2006 and November 

2008 by Lavigne et al [42]. The purpose of this study was to compare the 

amount of metal ion release (chromium and cobalt) from four different types of 

prostheses supplied by four different implant manufacturers (Biomet, DePuy, 

Smith & Nephew, and Zimmer). The femoral head and acetabular component 

were both made of high-carbon-content cobalt-chromium alloy in each of the 

four types of prostheses. For chromium ion levels, no significant differences 

were found between the four groups at all follow up time periods. For cobalt ion 
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levels a significant difference was found between the groups at three, six, twelve 

and twenty four months with the Zimmer implant showing the highest levels and 

the Biomet implant the lowest. The source of metal ion is hypothesized to be 

wear and corrosion at the junction between the adapter sleeve and the femoral 

stem may be responsible for elevated ion levels. There are limitations in this 

study, as the in vivo measurements of whole blood ion levels do not always 

reflect the local ion load around the implant and do not allow discrimination 

between ion release from wear of articulating surfaces and other sources. 

  

     It was found that the concentration of metal ions may affect bone cell health 

and contribute to the bone-related complications of the prostheses. Many authors 

have reported elevation of metal ions for patients who had MOM total hip 

arthroplasty. Short period studies and follow-up for twelve months in 29 patients 

and longitudinal follow-up in 44 patients for a minimum of 7 years 

postoperatively showed higher ions levels. Circulating physiological levels of 

cobalt and chromium are normally less than 0.25 µg/l, while the mean serum 

chromium and cobalt levels in these patients were 1.3 and 2.2 µg/l at 12 months. 

Although there was a consistent increase in the mean serum chromium level 

until 3 years after implantation, there was little difference in the levels from 

years 3 to 7 postoperatively. It has also been demonstrated that the addition of a 

sleeve with modular junctions causes more ion release than bearing surface wear 

[43-45].  
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     COC and MOM hip arthroplasty have been compared in many different 

studies. Porat et al [46] in 2012 reviewed records of 2907 total hip arthroplasty 

implanted between 1996 and 2009; 1697 (58%) had COC and 1210 (42%) 

MOM bearing surfaces. Femoral head sizes ranged from 28 to 36 mm for the 

COC cases and from 28 to 60 mm for the MOM cases. The minimum follow-up 

for the COC cases was 6 months (mean, 48 months; range 6-97 months) and for 

the MOM cases was 24 months (mean, 60 months; range, 24-178 months). The 

overall COC revision rate was 2.2% (38 of 1697) with aseptic loosening 

accounting for 55% of revisions. The overall MOM revision rate was 5.4% (65 

of 1210) with adverse tissue reactions accounting for 26% of revisions. 

 

     In 2011 Bernasek et al [47] identified the incidence of “squeaking” in 

modular MOM prostheses in total hip arthroplasty and studied whether males or 

females were more likely to experience squeaking. They reviewed the patient 

records and radiographs of 539 patients (542 hips) from three independent 

centres who underwent a MOM arthroplasty between February 2001 and 

December 2005. The minimum follow-up was 36 months (mean, 76 months; 

range, 36-119 months). The acetabular cup and femoral stem were made from 

titanium alloy with a porous surface coating, whereas the femoral heads and 

acetabular inserts were cobalt-chromium alloy. They identified squeaking in 

eight of the 542 hips; five were in women and two were in men (one patient had 

bilateral squeaking). No hips with 45
o
 or less acetabular inclination squeaked 

(291 hips); eight of 251 hips with inclination angles greater than 45
o
 squeaked. 

In this research there was no information about the number of male patients of 

the total (539) to specify the percentage. So the occurrence for male and female 

patients is not clear.  
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     Contact forces and friction moments were measured in vivo during walking 

in eight patients by Damm et al [48] in 2013. Instrumented hip implants with 32 

mm diameter heads were used. In vivo measurements were taken 3 months post 

operatively. Peak contact forces of 248% of the bodyweight and peak friction 

moments of 0.26% bodyweight times meter were determined, as shown in figure 

2.1(a) and (b). A telemetry circuit, 6 strain gauges with an accuracy of 1-2%, 

and a secondary induction coil were placed in the hollow neck, which was 

closed by welding. The strain gauge signals were transferred via an antenna in 

the implant head to the external receiver. A coil around the hip joint powered the 

inner electronics inductively. The equations used to calculate the friction 

coefficient were; 

 

𝜇𝑥 =  
𝑀𝑥

(𝐹𝑦𝑧 ∗ 𝑅)
… . . (2.1) 

𝜇𝑦 =  
𝑀𝑦

(𝐹𝑥𝑧 ∗ 𝑅)
… . . (2.2) 

𝜇𝑧 =  
𝑀𝑧

(𝐹𝑥𝑦 ∗ 𝑅)
… … (2.3) 

 

where Fyz, Fxz and Fxy are the measured forces in the sagittal, frontal and 

horizontal planes respectively. 

Mx, My and Mz are the measured moments.  

R is the radius of the head, the results of these equations are shown in Figure 2.1 

(c).  

The friction force, can be calculated by: 
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𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =  𝜇 ∗ 𝐹𝑟𝑒𝑠    … . . (2.4) 

 

The friction moments increased during the extension phase of the joint. The 

average coefficient of friction also increased during this period, from 0.04 at toe 

off to 0.06 at heel strike. During the flexion phase the friction coefficient 

increased further to 0.14 at toe off. The large increase of the friction could be 

caused by the synovial fluid being squeezed out under load. In this investigation 

the number of patients was small, and only one implant type was used at only 

one speed of walking and one time after implantation which are limitations of 

this interesting work.  
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Figure 2.1 (a) measured contact force and its components, (b) measured friction 

moments and its components, (c) coefficient of friction from 3D calculation. 

The data are for an average subject during level walking at approximately 1 m/s 

[48].   
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     In 2005 Liu et al [49] employed the finite element method using the Abaqus 

package (Version 6.4-1) to compare the contact mechanics at the bearing 

surfaces between a MOM hip resurfacing 50 mm diameter prosthesis and a 28 

mm diameter total hip replacement with similar bearing material combination. 

The nominal diametrical clearances between the femoral head and acetabular 

cup for the hip resurfacing and total hip replacement prostheses were 145 and 

120 µm, respectively. All implants were manufactured from high-carbon cobalt-

chromium alloy. A fixed resultant contact load of 3200 N was applied to both 

models. A significant reduction in the predicted contact pressure by over 53% as 

well as a corresponding increase in the contact area by approximately 220% was 

found in the hip resurfacing prosthesis, in comparison to the total hip 

replacement. The predicted maximum contact pressures were 22 MPa for the 

resurfacing bearing and 47 MPa for the THA. The corresponding predicted 

contact area for the hip resurfacing and THA were 237 and 74 mm
2
 respectively. 

The reduced contact pressure and increased contact area were due to the 

combination of the larger bearing size and increased elastic deflection of the 

metallic cup and the underlying bone support. A better understanding could be 

obtained from this study by using surgical and patient parameters within the 

simulation procedures.   

 

     The deformation of metallic acetabular cups for MOM hip resurfacing was 

investigated theoretically using the finite element method in 2006 by Yew et al 

[50]. Three representative cups, characterised by the cup wall thickness as thin, 

intermediate and thick were considered, as shown in Figure 2.2. Both two-

dimensional axisymmetric and three-dimensional finite element models were 

developed to examine the important parameters during and after the press-fit  
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procedure, and in particular the deformation of the metallic cup. All cups were 

specified as high-carbon cobalt-chromium alloy. Two different methods of 

simulating the press-fit, multiple- displacement and multiple-load, were 

examined to simulate the procedure as realistically as possible without 

increasing the computational overheads.  

 

 

 

 

        Thin cup                     intermediate cup                  thick cup 

                  Figure 2.2 Cross-sections of three cup design [50]. 

 

     The Abaqus package was used to simulate contact of the surfaces in this 

study using the contact pair option of master and slave surfaces. Different cup 

sizes (diameter between 46 and 70 mm) and various interferences between 0.25 

and 1 mm were used. Simulation of the cup deformation behaviour was carried 

out using a two-point pinching model with a modified spherical cavity of 

polyurethane foam, as shown in Figure 2.3. The results were validated against 

classical Hertzian contact mechanics. The most significant factor influencing the 

cup deformation was the cup wall thickness. The cup deformation was found to 

increase as the cup wall thickness decreased, the interference increased, and the 

size increased.  

 



Chapter 2 
 

26 
 

 

 

 

   

    

  

 

(a)                                                        (b)                          

Figure 2.3 (a) Original and deformed cup with a diametral interference of 0.5 

mm under the punching action caused by press fitting of the cup. (b) 

Displacement of the foam in pinching direction [50]. 

 

The effect of the press-fitting on the cup deformation has been investigated by 

other researchers [51-54]. However, Yew and his group were only researchers to 

use the polyurethane foam with rectangular cut-outs to represent the in vivo 

situation, and they found a good agreement between the finite element 

simulation and experimental work using cadaveric specimens. The author of 

thesis has adopted the same polyurethane foam block approach in the research. 

     The combined influence of head lateral micro-separation and the acetabular 

cup abduction angle on the contact pressure were investigated by Sariali et al 

[55] in 2012. A 32 mm ball with a radial clearance 30 µm total hip arthroplasty 

was analysed using a finite element model. The cup was positioned with an 

abduction angle ranging from 45
o
 to 90

o
. The medial-lateral micro-separation 

varied from 0 to 500 µm. A load of 2500 N was applied through the head centre.  

Pinching 

direction 

0.24 mm 

0.24 mm 
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Complete edge loading was obtained for a 60 µm medial-lateral separation, as 

shown in Figure 2.4. Under the case of centred loading, the maximum contact 

pressure was found to be 66 MPa, which is very close to the theoretical value 

predicted by the Hertz theory (64.4 MPa).  

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Results of FE contact analyses with medial lateral micro-separations 

between 0 and 500 µm showing changing contact area shape as the micro-

separation increased [55]. 

 

     Under edge loading conditions, the contact area was found to be elliptical. 

Both cup abduction and lateral micro-separation displacement induced a large 

increase in the contact pressure. Indeed, above 240 µm the contact pressure 

reached an asymptotic value of about 200 MPa as shown in figure 2.5. This 
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model did not take into account the surrounding bone, it modelled only the 

bearing surfaces. Furthermore, it did not take into account the effects of 

lubrication. A further limitation is that the load used was higher than the 

reported in vivo values. 

 

 

 

 

 

 

 

 

Figure 2.5 Variation of contact pressure according to the cup abduction angle 

and head lateral microseparation values [55]. 

 

     In 2003 Udofia and Jin [56] highlighted the importance of the design and 

manufacturing parameters on the tribological performance of MOM hip 

prostheses. An Elastohydrodynamic Lubrication (EHL) analysis was carried out 

under a simple steady state rotation ω, of 2 rad/s to represent the flexion and 

extension motion. The Reynolds and elasticity equations were coupled and 

solved numerically. A constant vertical load of 2500 N was considered with the 

acetabular cup assumed to be positioned horizontally. The effect of radial 

clearance on the predicted film thickness and pressure distribution was 

investigated. Under realistic physiological walking conditions a decrease in the 
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radial clearance from 150 to 50 µm resulted in a 137% increase in the predicted 

minimum film thickness from 19 to 45 nm. 

That could be used to obtain the ratio of the theoretical film thickness to the 

composite roughness of the surfaces  

 

Λ =  
ℎ𝑚𝑖𝑛

√𝑅𝑞1
2 + 𝑅𝑞2

2

… … (2.5) 

 

where 𝑅𝑞1 and 𝑅𝑞2 are root mean square roughness height of surfaces 1 and 2, 

respectively. 

Λ is an indicator of the lubrication regime with Λ > 3 corresponding to full film 

conditions and Λ < 1 indicating significant asperity interaction and boundary 

lubrication conditions. 

     Consequently, given a surface roughness of 0.01 µm for both contacting 

surfaces, the predicted mixed lubrication regime for the larger clearance was 

changed to a full fluid film lubrication regime for the smaller clearance. In this 

research of Udofia and Jin, it would be necessary to consider the variation of the 

cup thickness and the anatomical position of the cup on the predicted film 

thickness. As it is known that a decrease in the cup thickness would result in a 

significant increase in the elastic deformation, this factor could influence the 

lubrication behaviour. 

     Also in 2004 Dowson et al [57] studied the variation of clearance and head 

diameter of MOM hip implants on the wear rates both experimentally in 

simulator tests, and theoretically in terms of film thickness and lambda ratio (Λ). 

Head diameters ranging from 16 – 54 mm and diametral clearance from 53 – 
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307 µm were studied. Effective mixed-film lubrication achieved through careful 

design and manufacture greatly reduced wear. 

 

     Heads and cups were manufactured from cobalt chromium alloy. A constant 

load, 2500 N, and angular velocity, 1.5 rad/s, were used. The running-in wear 

volumes were very low for larger diameter heads and smaller clearance, as 

shown in Figures 2.6 and 2.7. Where the volumetric wear increased relatively 

and almost linearly for both 16 mm and 22 mm diameter joints as can be seen in 

Figure 2.6 for points (a), this is indicative of a full boundary mode of 

lubrication. On the other hand, steady low wear rates were established earlier as 

the head diameter increased from 28 mm to 36 mm and then 54.5 mm, as shown 

in the same figure for points (b) and (c). The results have shown that head 

diameters should be as large as possible and the diametral clearances as low as 

practicable to ensure that the joints operate well into the mixed lubrication 

regime. Effects of the variation of the diametral clearance and the head diameter 

on the lubrication system and wear rate were investigated by other researchers 

[58-59]. They found that increasing the diameter of the head and reducing the 

radial clearance of the MOM hip replacement will transfer the lubrication 

system from boundary to mixed lubrication with a consequential reduction in the 

wear rate. These results emphasize what Dowson et al found, although the 

computational wear model of Feng Liu et al [60] in 2012 showed that an 

opposite result was obtained if the material of the cup was UHMWPE. Feng 

found that the calculated wear rate of the PE bearing based on their wear model 

can be decreased by twofold by increasing the bearing clearance from 0.02 to 

0.35 mm, and a larger diameter generally resulted in a higher wear rate. 
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Figure 2.6 The influence of femoral head diameter on volumetric running-in 

wear. (a) boundary lubrication, 16 and 22 mm diameter; (b) mixed lubrication, 

28 mm cd (55-70) µm, 36 mm cd (76-78) µm, 54.5 mm cd (83-129) µm; (c) 54 

mm cd (254-307) [57]. 

 

 

 

 

 

 

 

Figure 2.7 Influence of diameter clearance on running-in wear for 54 mm cd 

(254-307) µm and 54.5 mm cd (83-129) µm [57].  
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     In 2006 Liu et al [61] analysed the performance of EHL for a typical MOM 

bearing employing a polyethylene backing underneath a metallic cup inlay under 

dynamic operating conditions of load and speed representative of normal 

walking. The major load component in the vertical load direction and the major 

flexion / extension motion were considered in the study. The radius of the 

femoral head was 14 mm with a nominal radial clearance of 60 µm between the 

head and cup. A Newtonian and iso-viscous lubricant model was assumed. It 

was found that the polyethylene backing employed in the MOM hip, combined 

with dynamic squeeze film action, significantly improved the transient 

lubrication film thickness under cyclic walking and consequently a fluid film 

lubrication regime was possible for smooth bearing surfaces provided that the 

average roughness was less than 0.005 µm. The hip joint is generally subjected 

to dynamic load and speed in three directions during walking, whereas, only the 

major components of load and speed were adopted in this work. A better result 

could be obtained from this work if the three components of load and speed 

were used. Gao et al [62] found that the lubrication in the MOM hip implant was 

improved under 3D physiological loading and motion.   

     A novel MOM hip implant employing a specific aspherical bearing surface, 

Alpharabola, as the acetabular surface was investigated in 2010 by Meng et al 

[63]. Dry contact and Elastohydrodynamic lubrication under steady state 

conditions were analysed. The alpharabola surface defined in equation (2.6) was 

employed as the internal bearing surface of an acetabular cup. 

 

𝑥2

𝑅2
2 𝛼⁄

+  
(𝑦−𝑅2+𝑅2 𝛼⁄ )2

𝑅2
2 𝛼2⁄

+  
𝑧2

𝑅2
2 𝛼⁄

= 1    …………(2.6) 

 



Chapter 2 
 

33 
 

Here x, y and z are Cartesian coordinates defined in figure 2.8, R2 is the desired 

minimum radius of curvature of the Alpharabola surface, and α is the parameter 

to control the variation rate of the radius of curvature.  

 

 

 

 

 

 

 

Figure 2.8 The MoM hip implant using Alpharabola as the cup surface [63].  

 

     Both femoral head and acetabular cup were specified as cobalt chromium 

alloy. The cup thickness of 9.5 mm for a typical 28 mm MoM hip implant was 

adopted. The bone and the fixation of the cup were represented by an equivalent 

support layer 2mm thick with appropriate mechanical properties. The vertical 

load was chosen as 3000 N and only the angular velocity around z-axis was 

considered with a value 2 rad/s. The results compared with the conventional 

spherical bearing surfaces showed that a more uniform pressure distribution and 

a thicker lubricant film thickness within the loaded conjunction were predicted 

for this novel hip implant. However, the manufacturing of the Alpharabola cup 

can be potentially more challenging due to the local non-spherical surface. The 

manufacturing errors and the angles of inclination and anteversion produced 

during the implantation operation could also affect the sensitivity of the 

lubrication performance of the Alpharabola cup surface.  
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     In 2010 Gao et al [64] simulated the surface texture with simple cylindrical 

dimples numerically under steady state and walking conditions. A MOM hip 

replacement made from cobalt chromium alloy was assumed using a ball-in-

socket model. A cylindrical dimple profile was numerically generated as shown 

in Figure 2.9. The radius (r) and the depth (d) of the dimples were chosen to be 

0.2 mm and 1 µm respectively. The dimples were distributed over the bearing 

surface with a uniform spatial interval (L) of 2 mm.  

 

 

 

 

 

 

 

 Figure 2.9 Illustration of dimple surface texturing [64] showing (a) geometry of 

virtual dimples, and (b) their distribution on the bearing surface. 

 

     The results showed that surface texturing may have a potentially beneficial 

effect on the lubrication performance of MOM hip replacements. The average 

film thickness of the dimpled surface model was found significantly increased, 

mainly due to the contribution of dimpled surface texture. For example, the 

average film thicknesses of the dimpled and smooth surfaces were 0.053 µm and 

0.04 µm respectively.  

 

b a 
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     Friction moments of the hip joint in various bearings under simulated 

physiological joint conditions were measured using custom test apparatus by 

Bishop et al [65] in 2008. One sample each of nine different bearing pairs was 

available for testing. The surface finish of all implants was measured with a 

surface scanner and the arithmetic average of the absolute values, RA, ranged 

from 0.01 to 0.03 µm for all implants with the exception of the polyethylene cup 

which had a mean roughness of 0.25 µm. MOM, MOP, MOC and COC bearings 

were tested. Diameters ranged from 28 to 55 mm and diameter clearances from 

0.053 to 0.235 mm were used. Distilled water alone and distilled water with 

17% foetal calf serum were used as lubricant at room temperature. The largest 

moments in serum were measured for large diameter MOM bearings, followed 

by MOP and the lowest moments were for small diameter COC and MOC 

combinations. Water as a lubricant was found to double the moments in 

comparison with serum. In this work there was only one sample of each bearing 

type used so that any variations in manufacture or test set-up could not be tested 

and statistical evaluation was limited.    

 

Summary  

Literature regarding hip prostheses, in general, and MOM types, in particular, 

has been reviewed in this Chapter. The functional behaviour of MOM joints is 

not fully understood and is the subject of this investigation. The emphasis taken 

is that of examining the mechanical action of these joints with particular 

reference to their capability in forming lubricating films to separate the 

contacting components. Key questions to be examined in the research are  

1- What is the relationship between the contact area and pressure in the 

prosthesis joint and what are the results of applying the Hertzian contact 

equations to the configuration?  
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2- How does the contact area and pressure vary as a result of the cup 

thickness and the means by which the cup is restrained? 

3-   Can EHL analysis techniques be used for the contacts, and how can they 

be utilised if the contacts do not behave in accordance with the Hertz 

equations? 

4- Can the appropriate loading and kinematic conditions of the contact be 

obtained from the patient measurement information made available to 

researchers in the field? 

5- Can a transient EHL analysis of the walking cycle be constructed based 

on the considerations given above? 

6- What are the synovial fluid film thickness levels that can be expected in 

MOM prostheses, and can design choices be identified to optimise this? 
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The Governing Equations of the Elastohydrodynamic Lubrication of 

Point Contact 

 

3.1 Introduction  

     In this thesis point contact EHL analyses have been carried out using 

available software. The author’s contribution to the modelling has been to 

introduce surface gap corrections to the problem as part of establishing the 

most appropriate EHL model specifications for analysis of the MOM 

prosthesis contacts. The fundamental equations to be solved in the analysis 

are briefly reviewed in this Chapter for completeness.   

     The main governing equations of the (EHL) problem for point contacts 

will be described. The two contacting surfaces are assumed to be smooth and 

steady state conditions are adopted. The Hertzian theory for two contacting 

bodies will be used to obtain the maximum contact pressure and the radius of 

the contact area. The results of the dry contact finite element analysis (FEA) 

of this project will be compared with the Hertzian theory analysis. The gap 

outside the contact area zone from the Hertzian theory will be calculated and 

compared with the gap obtained from the FEA. From the principles of the 

Hertzian theory, when the principal radii of relative curvature of the 

contacting bodies are equal then the contact area shape is circular. 

Consequently, a circular point contact will be adopted due to the symmetry of 

the geometry used. The governing equations of the EHL analysis of the 

contact point are:- 

- Film thickness equation for elastic surfaces. 

- Reynolds equation for hydrodynamic lubrication.  
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     The lubricant pressure within the contact area zone is related to the film 

thickness by the Reynolds equation, and it is considered that this pressure is 

sufficient to deform the two contacting bodies. Deformation of the bearing 

surfaces of MOM hip implants under load within the contact zone caused by 

representative contact pressure is typically of micron proportions, while the 

calculated film thicknesses are only a few tens of nanometres. The ratio of 

elastic deformation to film thickness can thus be of the order of 10
3
 [63, 66].  

3.2  Hertzian contact of two elastic bodies 

     The maximum contact pressure and the dimension of the contact area of 

the two elastic contacting bodies can be calculated using the geometry, the 

material properties and the applied load of the bodies, which are illustrated in 

Figure 3.1 for a general case. In engineering applications concentrated 

contacts may be line or point contacts according to whether the zero load 

contact takes place along a line (e.g. two cylinders with parallel axes) or at a 

point (e.g. a ball on a plane). Line contacts can occur between gear teeth but 

this involves edge effects with stress concentrations that are often controlled 

by crowing of the teeth to result in an elliptical point contact. For the research 

in this thesis the basic configuration is that of a ball in a hemispherical cup, 

which is a nominally circular point contact. The conventional presentation of 

elliptical point contacts is in terms of convex bodies and that approach is used 

here without loss of generality.  

     When the contact situation occurs with different principal radii of relative 

curvature Rx ≠ Ry then the resulting contact area is elliptical. If they are equal 

Rx = Ry then the contact area is a circle. The Hertz theory for two contacting 

surfaces is based on a number of assumptions: 

- The contacting surfaces are frictionless. 

- The contacting bodies are treated as elastic half-spaces. 
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- The surfaces are continuous and non-conforming. 

- The strains are small. 

For contacting bodies whose principal axes of curvature coincide as 

illustrated in figure 3.1 the principal radii of relative curvature, Rx and Ry, can 

be calculated as follows [67]: 

1

𝑅𝑥
=  

1

𝑅𝑥1
+

1

𝑅𝑥2
………(3.1) 

 

1

𝑅𝑦
=  

1

𝑅𝑦1
+

1

𝑅𝑦2
   ……...(3.2) 

 

 

 

 

 

 

 

 

 

                     Figure 3.1 Contact of two elastic bodies [68]. 

 

when Rx1=Ry1=R1 and Rx2=Ry2=R2 the contact area is circular and the radius 

of relative curvature is the same in all directions and is given by;  

 

 

Rx1 

Ry2 

Ry1 

Rx2 
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1

𝑅
=  

1

𝑅1
+

1

𝑅2
 ……..(3.3) 

If one of the bodies is concave, as in the current case where the ball is convex 

and the cup is concave, then a negative radius of curvature is applied in 

Equation (3.3) to obtain; 

1

𝑅
=  

1

𝑅1
−

1

𝑅2
 ……..(3.4) 

 

For a circular point contact the maximum Hertzian contact pressure is; 

 

𝑃𝑜(ℎ)  =  √
3

2
 

𝑊 �́�2

𝜋3 𝑅2

3

  ………(3.5) 

Where, suffix  h   indicates the results from Hertz’s Equations.  

The pressure distribution is in the form of an ellipsoid, and is given by; 

𝑃 = 𝑃𝑜(ℎ)√1 −
𝑟2

𝑎ℎ
2  ……(3.6) 

 

where    𝑟 = √𝑥2 + 𝑦2  

The radius of the contact area and the reduced elastic modulus are:  

𝑎ℎ =  √
3

2

𝑅𝑊

�́�

3
 …..(3.7) 

 

2

�́�
=

1− 𝛾1
2

𝐸1
+ 

1− 𝛾2
2

𝐸2
 ….(3.8) 
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An improvement to the Hertz theory for the case of a sphere in contact with a 

cup has been provided by Goodman and Keer [96]. This suggests that the 

contact is stiffer than that predicted by the Hertz equations and has a contact 

dimension that is approximately 3% smaller than the corresponding Hertzian 

result for the case illustrated which has radii in the ratio 1.01. The radius ratio 

for the contacts analysed in the current work is 1.004 and so the difference 

can be expected to be bigger. 

The contact results obtained from the FEA analysis presented in chapter 7 

have contact dimensions that are smaller than the Hertzian result and are 

therefore in closer agreement with the Hertzian analysis than with that of 

Goodman and Keer [96]. However, as the approach to the EHL analysis 

adopted in the current research is to generate Hertzian contacts that have the 

same contact dimensions as the actual FEA results, there is no advantage to 

be gained by relating the FEA contact analyses to the Goodman and Keer 

model. Furthermore, as the elastic deflection analysis embedded in the EHL 

approach is for plane semi-infinite bodies and is entirely compatible with the 

Hertzian contact model this is the best analytic contact model to adopt in this 

modelling role. 

3.3  Lubrication of the Contact  

The circular point contact can be considered as the contact of a sphere with a 

plane where the radius of the sphere is the radius of relative curvature given 

in equation (3.4). Furthermore, the plane may be regarded as rigid with the 

elastic deflection of the sphere being that for a body with reduced elastic 

modulus as given in equation (3.8). The nature of this elastic deflection is 

given in equation (3.30). This situation is illustrated in figure 3.2 which 

shows a schematic section of the equivalent contact in the entrainment 

direction of the EHL contact.  
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Figure 3.2 Schematic section of the EHL contact in the entrainment direction, x, 

The figure illustrates the main features of an EHL contact. The elastic 

deflection results in a near parallel lubricant film in the entrainment direction 

in the area corresponding to the Hertzian contact. The lubricant film 

thickness, h, has a restriction at the exit of the contact. The lubricant is drawn 

into the contact area by the motion of the surfaces relative to the contact 

point, i.e. due to the surface velocities U1 and U2. The z axis is drawn at a 

larger scale than the x axis so that the undeformed sphere (chained) appears 

as a parabola. The elastic deflection, def, is large compared to the film 

thickness which is a characteristic of EHL. 

def 
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  Deformed sphere 
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The lubricant is contained between the two surfaces which are near parallel in 

the contact region including the inlet and exit zones. The way in which the 

lubricant moves and its varation of pressure is described by Reynolds 

equation which is derived in the next section.           

3.4  Reynolds Equation 

     The governing equation to predict the hydrodynamic pressure of the oil 

film lubricant is known as Reynolds equation and it was obtained by 

Reynolds in 1886. It can be derived from the equilibrium of a small fluid 

element under the action of the viscous shear stresses and the fluid pressure. 

There are a number of assumptions that should be considered for deriving this 

equation which are listed below [69]; 

 

1- Body forces are neglected. 

2- The pressure is considered to be constant through the film thickness. 

3- There is no slip at the boundaries. 

4- The lubricant is Newtonian. 

5- The flow is laminar. 

6- The fluid inertia can be neglected. 

7- The lubricant density is constant through the film thickness. 

8- The viscosity is taken as constant through the thickness of the film. 

 

Consider the problem of the equilibrium of a small element of lubricant, as 

shown in Figure 3.3, with sides of length dx, dy and dz on which pressures 

and shear stresses act. 
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                𝑝𝑑𝑦𝑑𝑧                 

                                                                                

                                                                                            

                                                                                            

(𝑝 +
𝜕𝑝

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 

                                                                                      

                                 Figure 3.3 Equilibrium of an element 

For equilibrium the forces acting in the, x-direction must balance so that; 

𝑝𝑑𝑦𝑑𝑧 +(𝜏𝑧𝑥 +
𝜕𝜏𝑧𝑥

𝜕𝑧
𝑑𝑧)𝑑𝑥𝑑𝑦 = 𝜏𝑧𝑥𝑑𝑥𝑑𝑦 + (𝑝 +

𝜕𝑝

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 …(3.9) 

Multiplying out and cancelling, 

𝜕𝜏𝑧𝑥

𝜕𝑧
𝑑𝑧𝑑𝑥𝑑𝑦 =

𝜕𝑝

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 … … (3.10) 

so that 

       

𝜕𝜏𝑧𝑥

𝜕𝑧
=

𝜕𝑝

𝜕𝑥
 … . (3.11) 

In the same way, summation of forces in the y-direction must be balanced to 

obtain; 

𝜕𝜏𝑧𝑦

𝜕𝑧
=  

𝜕𝑝

𝜕𝑦
… . (3.12) 

𝜏𝑧𝑥𝑑𝑥𝑑𝑦 

(𝜏𝑧𝑥 +
𝜕𝜏𝑧𝑥

𝜕𝑧
𝑑𝑧)𝑑𝑥𝑑𝑦 

 

dz 

dx 

dy 

X 

Y 

Z 
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From the Newton’s law of viscous flow 

𝜏𝑧𝑥 =  𝜂
𝜕𝑢

𝜕𝑧
… (3.13) 

  

and 

𝜏𝑧𝑦 =  𝜂
𝜕𝑣

𝜕𝑧
… . (3.14) 

where u and v are the velocities in the x and y directions respectively. 

Substituting these equations into the pressure gradient equations leads to; 

𝜕𝑝

𝜕𝑥
=  𝜂

𝜕2𝑢

𝜕𝑧2
… . (3.15) 

𝜕𝑝

𝜕𝑦
=  𝜂

𝜕2𝑣

𝜕𝑧2
… . (3.16)  

From the basic assumptions, the pressure and the viscosity are constant 

through the film thickness, z-direction. So equation (3.15) can be integrated 

twice with respect to z to give; 

𝜕𝑢

𝜕𝑧
=  

1

𝜂

𝜕𝑝

𝜕𝑥
𝑧 + 𝐶1 … . (3.17) 

 

𝑢 =
1

𝜂

𝜕𝑝

𝜕𝑥

𝑧2

2
+ 𝐶1𝑧 + 𝐶2 … . (3.18) 

where C1 and C2 are the integration constants. Two boundary conditions are 

required to determine the constants. From assumption 3; 

when  z = h, u = U1  
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and when z = 0, u = U2 

where U1 and U2 are the surface velocities. Putting these boundary conditions 

into equation (3.18) gives; 

𝑢 =
1

𝜂

𝜕𝑝

𝜕𝑥

(𝑧2 − 𝑧ℎ)

2
+ (𝑈1 − 𝑈2)

𝑧

ℎ
+ 𝑈2 … . (3.19) 

 

In the same way and with the boundary conditions z = h, v = V1, and z = 0, V 

= V2, the velocity v in the y-direction becomes; 

 

𝑣 =
1

𝜂

𝜕𝑝

𝜕𝑦

(𝑧2 − 𝑧ℎ)

2
+ (𝑉1 − 𝑉2)

𝑧

ℎ
+ 𝑉2 … . (3.20) 

The lubricant flow rate per unit width in the x-direction, qx, can be calculated 

by the integration ∫ 𝑢 𝑑𝑧
ℎ

0
 and similarly the lubricant flow rate in the y-

direction, qy, is  ∫ 𝑣 𝑑𝑧
ℎ

0
.  

Therefore  

𝑞𝑥 =  ∫ 𝑢 𝑑𝑧
ℎ

0

=
1

2𝜂

𝜕𝑝

𝜕𝑥
|
𝑧3

3
−

𝑧2ℎ

2
|

0

ℎ

+ |(𝑈1 − 𝑈2)
𝑧2

2ℎ
|

0

ℎ

+ |𝑈2𝑧|0
ℎ … (3.21) 

giving  

  

𝑞𝑥 = −
ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
+ (𝑈1 + 𝑈2)

ℎ

2
… . . (3.22) 

 

and in the same way 
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𝑞𝑦 =  ∫ 𝑣 𝑑𝑧
ℎ

0

=
1

2𝜂

𝜕𝑝

𝜕𝑦
|
𝑧3

3
−

𝑧2ℎ

2
|

0

ℎ

+ |(𝑉1 − 𝑉2)
𝑧2

2ℎ
|

0

ℎ

+ |𝑉2𝑧|0
ℎ … (3.23) 

   

𝑞𝑦 = −
ℎ3

12𝜂

𝜕𝑝

𝜕𝑦
+ (𝑉1 + 𝑉2)

ℎ

2
… … . . (3.24) 

 

For continuity of flow in steady state conditions equation (3.25) must be 

satisfied; 

 

𝜕𝑞𝑥

𝜕𝑥
+  

𝜕𝑞𝑦

𝜕𝑦
= 0 … … (3.25) 

 

 It is possible to write �̅� =  
𝑈1+ 𝑈2

2
, and in most cases there is no surface 

movement in y-direction, therefore V1 = V2 = 0 

Substituting equations (3.22) and (3.24) into (3.25) then leads to; 

 

𝜕

𝜕𝑥
( 

�̅�ℎ

2
−

ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
 ) +

𝜕

𝜕𝑦
(−

ℎ3

12𝜂

𝜕𝑝

𝜕𝑦
) = 0 … . . (3.26) 

Re-write equation (3.26)  

𝜕

𝜕𝑥
( 

ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
 ) +

𝜕

𝜕𝑦
(

ℎ3

12𝜂

𝜕𝑝

𝜕𝑦
) =

𝜕

𝜕𝑥
( 

�̅�ℎ

2
 ) … . . (3.27) 

Equation (3.27) is the steady state Reynolds equation in two dimensions used 

in this thesis and x is the entrainment direction. 
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3.5  The film thickness equation 

 The lubricant film thickness between the two contacting surfaces in the EHL 

analysis can be calculated by; 

ℎ(𝑥, 𝑦) =  ℎ𝑢(𝑥, 𝑦) +  𝑑(𝑥, 𝑦) + 𝑆𝑒 … … . (3.28) 

where hu is the undeformed geometry and is calculated as; 

ℎ𝑢 =  
𝑥2

2𝑅𝑥
+  

𝑦2

2𝑅𝑦
… … . (3.29) 

Se is the separation between the two contacting surfaces.  

and d is the surface deflection. For contacting bodies that are assumed to be 

semi-infinite the deformation of the elastic body is perpendicular to the 

contacting surface, and the pressure applied will cause a deflection at all 

points of the contacting surface of the semi-infinite body. This deflection is 

obtained by the integration of the pressure distribution applied to the surface 

using the equation given by Timoshenko and Goodier [70] as shown below; 

𝑑(𝑥, 𝑦) =
2

𝜋�̀�
 ∬

𝑝(𝑠, 𝑏) 𝑑𝑠𝑑𝑏

√(𝑥 − 𝑠)2 + (𝑦 − 𝑏)2 
𝑎𝑟𝑒𝑎

… … (3.30) 

The integration term can be evaluated in a differential form which was given 

by Evans & Hughes [71], and for numerical calculations the deflection at any 

mesh point is given by 

 ∇2𝑑(𝑥𝑖 , 𝑦𝑗) =
2

𝜋�̀�
∑ 𝑓𝑘−𝑖,𝑙−𝑗

𝑎𝑙𝑙𝑘,𝑎𝑙𝑙𝑙

𝑝𝑘,𝑙 … (3.31) 

where fi,j is the differential influence coefficient, and more detail about this 

coefficient can be found in Evans and Hughes [71].  
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3.6  The load equation     

The predicted load from the EHL of the two contact bodies can be calculated 

by double integration of the pressure distribution over the computing domain; 

𝑊 =  ∬ 𝑝 𝑑𝑥𝑑𝑦

𝑎𝑟𝑒𝑎

… … (3.32 )  

 

3.7 The fluid properties model 

The viscosity and density of the lubricant are both taken to be pressure 

dependent in the EHL model. The viscosity is assumed to be given by the 

commonly adopted equation due to Roelands (1966)   

     11
00


Z

plnexp                   …..  (3.33)          

Constants  and  in this equation have the values 
6

1015.63


 Pa.s, and 

1.5 GPa
-1

 Pa.s, and constant Z is chosen so as to have the specified 

pressure viscosity coefficient at ambient conditions by ensuring that the slope 

of ln() plotted against p is equal to  when p = 0, resulting in  

 



0

0

ln
Z    ……(3.34) 

The density is assumed to be given by the formula introduced by Dowson and 

Higginson (1966)  

 



















p

p
p






1

1

0
       …(3.35)                                                                                             

with 2662 .  GPa
-1

     and 6831 . GPa
-1   
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The lubricant in an artificial hip joint is peri-prosthetic synovial fluid in hip 

joint replacement patients (in vivo) and bovine serum diluted to various 

concentrations is generally used for simulator testing (in vitro). Synovial 

fluid, SF, is a viscous fluid that has lubrication, metabolic, and regulatory 

functions within synovial joints. SF contains lubricant molecules, including 

proteoglycan-4 (PRG4, also known as lubricin and a superficial zone protein) 

and hyaluronan. SF is an ultrafiltrate of plasma with secreted contributions 

from cell population linings and from within the synovial joint space, that 

include chondrocytes and synoviocytes. A major component of SF 

composition is proteins derived from plasma. Total protein concentration in 

normal human SF is 19–28 mg/ml, nearly one-third of that in plasma.  

 

The rheological and tribological properties of SF have been characterized 

through measurements of viscosity, viscoelasticity, and friction. Normal SF is 

a viscous, non-Newtonian fluid. It behaves as a viscous material at low 

frequencies of oscillation, and as an elastic material at high frequencies. 

 

The majority of investigative work determining the composition of synovial 

fluid has been carried out on bovine synovial fluid mainly because large 

quantities of it are available. Synovial fluid is a plasma dialysate modified by 

constituents secreted by the joint tissues. The major difference between 

synovial fluid and other body fluids derived from plasma is the high content 

of hyaluronic acid in synovial fluid. 

Synovial fluid is believed to have two main functions: to aid in the nutrition 

of articular cartilage by acting as a transport medium for nutritional 

substances, such as glucose, and to aid in the mechanical function of joints by 
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lubrication of the articulating surfaces. Articular cartilage has no blood, 

nerve, or lymphatic supply. Glucose for articular cartilage chondrocyte 

energy is transported from the periarticular vasculature to the cartilage by the 

synovial fluid. Under fasting conditions, the glucose concentration of 

synovial fluid is usually approximately equal to that of blood. A decreased 

amount of synovial fluid glucose may be associated with articular diseases, 

particularly septic and immune-mediated arthritis [91-93]. 

     Laboratory measurements of viscosity at various shear rates for the 

synovial fluid have shown powerful non-Newtonian shear thinning 

characteristics under relatively low shear rates. However, this shear thinning 

declines significantly at high shear rates [74]. Thus, it is usually appropriate 

to approximate the non-Newtonian synovial fluid with reasonable accuracy as 

a Newtonian fluid at the very high shear rates, which are likely to be 

experienced in hip joint replacement under steady walking conditions [59, 

74].  

 

3.8 Discretisation and method of solution 

The deflection given in equation (3.30) means that the gap between the 

surfaces when pressure is developed that acts on them is given by 

 


l all,k all

l,kjl,iku
p f

'E
)y,x(h)y,x(h



2
  …..(3.36) 

where hu (x,y) is the shape of the undeformed gap between the surfaces. 

This is stated in the differential form proposed by Evans and Hughes (2000) 

so that it may be included as a second differential equation to the EHL 

problem rather than in the integral form of equation (3.30).  This becomes 

 


lallkall

lkjliku
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E
hh

 , 
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'

2


                            …(3.37) 
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where 
ji

f
,

 are the differential influence coefficients and the pressures pk,l are 

those at the nodes of a finite difference grid with mesh size x and y.  

The Reynolds equation is discretized using 2
nd

 order central differences on 

the mesh illustrated in figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Detail of finite difference grid used to discretize the EHL problem. 

 

For the equation applied at mesh point (i,j) the Reynolds equation becomes 
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  (3.38) 

where 





12

3
h

 . 

The elastic equation is discretised on the same mesh to the form  
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             (3.39) 

Where 
u

h
2

  is obtained analytically as 2/R. 
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Equations (3.38 and 3.39) are solved as a coupled pair of equations in the 

variables h and p. Equation 3.38 is nonlinear as terms  and  are dependent 

on pressure, and equation (3.39) involves all the pressures in the solution 

zone. Both equations are linearised in order to solve the problem and the 

solution to the non-linear problem is obtained at the end of a series of 

iterations that progressively develop distributions of pressure and film 

thickness satisfying all the equations. Equation (3.38) has an outer loop 

pressure which is used to find the values of  and  so that the terms in 

brackets are fixed for each mesh point during the coupled solution. For 

equation (3.39) only the eight points that are immediate neighbours to point 

(i,j) are included in the summation and the contribution of the remainder of 

the points is obtained from the outer loop pressure for those that are far away, 

and by using previous cycle inner loop pressures for those at an intermediate 

distance. 

In this way the pair of equations involve pressures and film thickness at the 

nodes shown in figure 3.4.  For the current study the method of solution was 

semi implicit with each row of n mesh points in the entrainment direction 

giving 2(n-2) equations in 2(n-2) unknowns pi,j and hi,j, where j is fixed and p 

and h values on the neighbouring rows j1 are fixed for the row j calculation. 

The additional values of the variables at i=1 and i=n were supplied by the 

appropriate boundary conditions. During development by Holmes et al [97] 

the problem was formulated as an alternating direction implicit method (ADI) 

but it was found that solutions were obtained more quickly by repeating the 

flow direction row calculations, rather than by solving the transverse rows 

alternately. This is a reflection of the fact that the flow is almost entirely in 

the entrainment direction within the Hertzian zone.  

The boundary condition adopted for the film thickness was that its value at 

the inlet boundary on the entrainment centreline was given the value hcon, and 
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the remaining boundary points were given consistent values based on the 

undeformed film thickness variation hu, and the deflection along the boundary 

as determined by using equation (3.30) for the current outer loop pressure to 

find the deflection at each point around the boundary. 

The load was obtained for the outer loop pressure by using Equation (3.32) 

and this was assessed against the required load for the problem.  In the initial 

iterative cycles the value of value hcon was kept constant, but as the outer loop 

pressure approached convergence, the value of hcon was adjusted periodically 

in order to obtain a final converged solution that supported the required load. 

The author was not concerned with developments of the solution method 

other than those relating to the specification of the undeformed gap for the 

equivalent Hertzian models described in Chapter 6. The EHL solution routine 

was available as a package developed by other researchers at Cardiff, and the 

author was able to use it successfully for the research carried out in this 

project. 
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Development of FEA Contact Models 

4.1.  Introduction 

     In this chapter modelling the dry contact problem between two elastic bodies 

using the ABAQUS FEA system will be described. The nature of the contact shape, 

line, circular or elliptical, and the maximum contact pressure can be obtained by 

specifying the load, material properties, geometry of the contacting bodies and 

carrying out a contact analysis. To develop a technique for making such analyses 

between 3D bodies, a ball on plane contact as shown in Figure 4.1, was used as the 

first stage to simulate the contact in the hip joint. Representing the contact in the 

hip joint anatomically was regarded as a second stage to be proceeded when the 

contact analysis technique had been developed and validated with the ball on plane 

contact for which an analytical solution is available.  

     At the start of the investigation the FEBio software was used as a finite element 

analysis solver method to simulate the contact. After three months it was found that 

the tools available within this package to simulate the geometry and obtain detailed 

results of the contact pressure distribution were limited and did not allow the 

software to be used for the intended purpose.  

     As a result of this experience it was decided to use the commercially available 

Abaqus 6.12 software package for the contact analyses. A brief description of the 

Abaqus software and its contents is given in the Appendix. Defining the geometry 

of the contacting components and carrying out the dry contact between the two 

elastic bodies will be described in section 4.3. The results obtained for contact 

pressure distribution and the radius of contact area from the finite element analysis 
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will be compared with the theoretical Hertzian results to validate the contact 

modelling approach used in section 4.4.  

     Finally, in section 4.5 different boundary conditions for supporting the cup have 

been used to investigate the effect of the fixation process. The results of the 

changing of boundary conditions on the value of the contact pressure distribution 

are also reviewed.  

 

 

 

 

      

 

 

                                    Figure 4.1, Dry contact of the ball on plane 

            

 

4.2.  Finite Element Analysis 

     The finite element method (FEM) is a numerical technique for solving a wide 

range of complex physical phenomena, particularly those exhibiting geometrical 

and material non-linearities (such as those that are often encountered in the 

physical and engineering sciences). It is used most frequently to tackle problems 



Chapter 4 

57 

 

that aren’t readily amenable to analytical treatments. The premise is simple; 

continuous domains (geometries) are decomposed into discrete, connected regions 

(or finite elements). An assembly of element-level equations is subsequently 

solved, in order to establish the response of the complete domain to a particular set 

of boundary conditions. There are several finite element methods. These are the 

Direct Approach, which is the simplest method for solving discrete problems in 1 

and 2 dimensions; the Weighted Residuals method which uses the governing 

differential equations directly (e.g. the Galerkin method), and the Variational 

Approach, which uses the calculus of variations and the minimisation of potential 

energy (e.g. the Rayleigh-Ritz method).  

     FEA uses a system of points called nodes which make a grid called a mesh. This 

mesh is programmed to contain the material and structural properties which define 

how the structure will react to certain loading conditions. Nodes are assigned at a 

certain density throughout the material depending on the anticipated stress levels of 

a particular area. Regions which will receive large amounts of stress, or have rapid 

spatial variation in stress, usually have a higher node density than those which 

experience little or no stress or near constant stress. Points of interest may consist 

of: fracture point of previously tested material, fillets, corners, complex detail, and 

high stress areas. The mesh acts like a spider’s web in that from each node, there 

extends a mesh element to each of the adjacent nodes. This web of vectors is what 

carries the material properties to the object, creating many elements. 

Nodes are located at each end of the element, a bar element for example, each of 

which can have displacements in the x and y directions. The displacements are 

denoted u1, u2, u3, and u4. Corresponding forces due to these displacements are F1, 

F2, F3, and F4. The bar has a uniform cross-sectional area and Young's Modulus. 

http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/glossary.html#node
http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/glossary.html#mesh
http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/glossary.html#node
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The general relationship between force and displacement is Fi = kij*uj, where Fi is 

the force in direction i, uj is the displacement in direction j, and kij is the "stiffness" 

coefficient relating Fi to uj. In the current example of a bar element confined to the 

xy plane, the force, displacement and stiffness system of equations are [94, 95]: 

F1 = k11u1 + k12u2 + k13u3 + k14u4  (4.1) 

F2 = k21u2 + k22u2 + k23u3 + k24u4  (4.2) 

F3 = k31u1 + k32u2 + k33u3 + k34u4  (4.3) 

F4 = k41u1 + k42u2 + k43u3 + k44u4  (4.4) 

Alternatively, in matrix form:  

 

                                                    {F} = [k] {u}  (4.5) 

 

The matrix kij is called the element stiffness matrix. It is the matrix which defines 

the geometric and material properties of the bar. Element stiffness matrices are a 

fundamental part of FEA. These matrices always define inherent properties of the 

system being studied at the element level.  

For a more complex system, a ‘global’ stiffness matrix is required – i.e. one that 

describes the behaviour of the complete system, and not just the individual element 

bars. The global system of equations for the unknowns (for example the 

displacements uij) in the finite element analysis, takes the following form: 

 

                                                                                    (4.6) 

http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/glossary.html#stiffmatrix
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To obtain {u} then 

                                           {u} = {F} [K]
-1

   (4.7) 

Different methods can be used to calculate the inverse global stiffness matrix. For 

the linear system there are n equations to be solved with n unknowns, where n is 

the number of distinct nodal freedoms. The global stiffness matrix is an n by n 

array and solution of equation (4.6) is a complex problem when there are a large 

number of degrees of freedom, and many sophisticated mathematical techniques 

are used to obtain accurate solutions.  This process is not problem dependant 

because of the general way in which the finite element system discretises the 

problem and so the FE method is particularly suitable to be packaged in a general 

purpose solution tool such as the Abaqus package used in this research. 

4.3.  Finite Element Analysis of Contact Modelling   

      A steady state contact mechanism was used to simulate the contact in the MOM 

hip joint replacement. All materials that have been defined in this simulation were 

assumed to be linear elastic. Different element shapes were employed to mesh the 

parts involved in this work. Results of the contact, the pressure distribution and the 

area of contact have been reviewed.    

4.3.1  Creating the Parts      

     At the first stage of the contact simulation the model was divided into the two 

parts that are to be created, the ball is “part1”, and the plane is “part2”. Due to the 

symmetry of the geometry ( ball on plane ) and to reduce the total time to run the 

model only one quarter of the geometry was modelled as shown in Figure 4.2, with 

suitable boundary conditions to ensure that the quarter model behaves as if it was 

part of the full model. The part was created by drawing a two dimensional profile 
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and then manipulating it to obtain a three dimensional solid model. To form the 

entire model the two parts were assembled later.  

 

   

 

 

 

 

 

              (a) The quarter ball (Part1)                                  (b) the plane (Part2)  

                                  Figure 4.2 Creating 3D elastic solid geometry    

 

4.3.2   Properties 

    The most popular MOM total hip arthroplasty is manufactured from cobalt 

chromium, CoCr, alloy which was taken as the material to be used in this research. 

The material parameters [72] of the two contacting bodies are shown below:- 

- Modulus of Elasticity = 210 GPa 

- Poisson's ratio = 0.3  

The deformation between the two contacting bodies, part1 and part2, was 

considered to be elastic.  
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4.3.3  Assembly  

     The assembly process includes moving one instance relative to the second one 

in the global coordinate system and manipulating them together, so the quarter ball 

is the upper instance and the plane is the lower. To ensure that the two instances are 

in the correct position, two constraints were made to the two faces of the quarter 

ball to be parallel with the two faces of the plane, as shown in Figure 4.3. Nodes on 

these surfaces were constrained so they can only move within the respective planes. 

This ensured that deflection under load was the same as that which would occur in 

the complete model.   

 

 

 

 

 

 

 

                           (a)                                                                                   (b) 

   Figure 4.3:  Parallel faces constraint for instances of the quarter ball and the plane 
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4.3.4  Step and Interaction 

     In this contact problem there were steps, the making contact step and the 

applying load step, which were specified together with the initial step which the 

software generates automatically. The initial step is used for applying the boundary 

conditions only and no analysis was carried out in this step. In the first step, making 

contact, a static analysis was used to apply the contact mechanism between the two 

surfaces, the curved surface of the quarter ball instance, surface1, and the top 

surface of the plane instance, surface2, as shown in Figure 4.4.  

 

       

  

 

 

 

 

 

                                          Figure 4.4: Surface-to surface contact. 

 

     The coefficient of friction between the two surfaces was assumed to be zero. A 

surface-to-surface contact was used as a contact analysis method, discretization 

method. When using surface-to-surface contact, it is necessary to specify which 
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surface is the Master surface and which one is the slave surface. At this stage the 

curved surface, surface1, of the quarter ball was selected to be the master and the 

top surface of the plane, surface2, was selected as the slave surface. The choice of 

which surfaces are to be the master and the slave surface within the Abaqus/CAE 

software depends on three factors: 

- The mesh density of the parts in terms of relative fineness of mesh. 

- Whether the bodies are rigid or deformable bodies.   

- The relative stiffness of the material from which the bodies are made.  

If any one of the two contacting bodies has a coarse mesh, relatively stiff material 

properties or is a rigid body, then the contact surface of this body must be the 

master surface. 

     In the current contact simulation the two contacting bodies, the quarter ball and 

the plane, are both deformable bodies and have the same material properties. The 

only difference between them is the mesh resolution. Therefore as the quarter ball 

was meshed with a coarse mesh and the plane meshed with a fine mesh the ball was 

selected as the master surface. More details about the meshing process can be 

found in section 4.3.6.   

4.3.5  Loads and Boundary conditions  

     In this simulation a concentrated force was applied in the downwards direction    

( negative Y direction ) to the vertex at the top surface corner of the quarter ball 

instance. The load was applied during the second static analysis step, created using 

the Step module.  In the current model the bottom surface of the plane instance is 

constrained completely and thus cannot move in any direction. The two faces of the 
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quarter ball instance and also the two faces of the plane in the x and z directions, as 

shown in Figure 4.5, had zero displacement during the simulation in the normal 

directions. Within these boundary conditions the quarter ball was free to move in 

the y-direction only under the action of the applied load.   

 

 

 

 

 

 

 

 

 

Figure 4.5 Four faces have been specified to have zero displacement in the normal directions 

4.3.6  Mesh  

     Abaqus/CAE supplies a variety of tools for managing mesh characteristics. 

Mesh density can be specified by the seeding process. There are two ways to seed 

the geometry of the model, the global seed and the local seed. The global seed has 

been used to specify the element size of the body as a whole, as shown in Figure 

4.6.  
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(a)                                                                      (b)                                                      

                              Figure 4.6: Global seed, (a) part1 seed, (b) part2 seed 

 

     The uniform sized element specified using the global seed allows the automatic 

meshing tools to create a smooth mesh. Two of the three different elements shapes 

were possible for use in meshing the two instances, the brick and the tetrahedral 

elements, as shown in Figure 4.7. Wedge elements were not available for automatic 

meshing.  

     There are two aims that should be achieved in using the mesh module. Firstly, a 

coarse resolution of the global model permitted the contact simulation of the whole 

volume to be accomplished with only moderate computational time. It was carried 

out by using the global seed. Secondly, it is well known from the principles of the 

theory of contact mechanics that a small contact area will be produced as a result of 

the contact between the two non-conformal bodies. To meet the requirement of a 

high enough resolution within the contact area in the model, a local seed must be 

used.  
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                                   (a)                                                                          (b) 

                       Figure 4.7: global mesh, (a) brick element, (b) Tet element 

     There are two ways to use the local seed. The first method represents increasing 

the number of elements in one direction by using very small element size. On the 

other hand, a coarse mesh was used in the opposite direction as shown in Figure 

4.8. This method is called bias seeding. 

 

 

 

 

 

 

                  Figure 4.8: Bias seed for the slave surface, surface2, of the plane 
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     The second way to gain a high resolution at and near the contact area can be 

attained by making a Partition. The Abaqus package provides the partition toolset 

to divide the part into regions. Partitions may be used, where it is essential to make 

a change in the material properties, to indicate a location of the load, or to specify a 

mesh boundary for these regions, for example. The result of the partition around the 

contact area to obtain a fine mesh is shown in Figure 4.9.  

     It is important to know that the output data which is obtained by Abaqus as a 

result of the contact analysis of the two surfaces, CPRESS, COPEN, COORD, 

can be extracted from the slave surface, surface2. Where; 

CPRESS is the contact pressure at surface nodes. 

COPEN is the contact opening at surface nodes. 

COORD provides the coordinates at nodes. 

 

 

 

 

 

 

                                    (a)                                                                         (b) 

Figure 4.9: Seeding of model, (a) partition and local seed, (b) zoomed local area   
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     It was found that using the local seed with the partition process was more 

flexible for meshing the contact area than the bias seed and generated a mesh where 

the element size distribution was relatively uniform. A good finite element mesh 

can be achieved when its resolution can be modified without impacting the results. 

This is the case regardless of the refinement method used to seed the geometry. 

  4.3.7  Job and Visualisation   

     By creating the analysis job the model becomes ready for submitting for 

solution. When data is incorrect or missing the submitting process will stop to show 

an appropriate error message. With practice the analysis of the model is usually 

carried out normally. The output data is written to the output database when the full 

analysis is complete. The visualisation module of Abaqus/CAE, also called Abaqus 

Viewer, was used to view the analysis results and to read the output database. The 

contour of contact pressure and the boundary of the contact area for the contact 

simulation between the quarter ball and the plane is shown in Figure 4.10 for the 

case when the parts were meshed using tetrahedral elements. 

 

 

 

 

 

 

Figure 4.10: Contours of contact pressure (Pa) on the slave surface partition 
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     Figure 4.14 compares the result of using tetrahedral elements with that of using 

hexahedral elements. It can be seen, that the pressure variation in the contour of the 

contact pressure is more uniform in Figure 4.11 (b) than in Figure 4.11 (a). The 

reason for this comes from using a tetrahedron element shape in the meshing 

module in (a) while the element shape in (b) was hexahedron. The result for the 

tetrahedral elements is different on different radial planes and this illustrate that the 

results for contact pressure were inaccurate in spite of the fine resolution. In 

addition, the unstructured distribution of surface nodes with the tetrahedron 

element is not useful in terms of extracting the output data to reuse it with other 

software. However, the tetrahedron element is the most flexible element shape and 

can be used with any complicated geometry. At this stage the hexahedron element 

was adopted for meshing the slave surface for any contact simulation on the basis 

that it maintains uniformity in the solution on different radial planes. 

 

 

 

 

 

 

 

                           (a)                                                                                (b) 

Figure 4.11: Contour of contact pressure / Pa for, (a) tetrahedral element mesh, (b) hexahedral element mesh.      
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4.4.  Verifying the Results        

The results obtained from the finite element software were verified to investigate 

the results sensitivity to the length and type of the element. A large number of 

models were investigated using same geometry, load and boundary conditions, and 

material properties. The only difference between them was the element sizes and 

shapes, for example two models were compared as shown in figures 4.12 and 4.13. 

In these two models the element length was 0.003 m for both, while the element 

type was tetrahedral for figure 4.12 and hexahedral for figure 4.13. The number of 

nodes in these two models was 5820 and 1022 for the tetrahedral and hexahedral 

element types, respectively.  

It can be seen from these figures that there is a variation of 34% in the maximum 

contact pressure, although all the parameters and convergence criteria are the same 

for these two models. This suggest that the finite element results vary relative to the 

element type and length. In general, using finer element dimensions leads to more 

accurate results than those for a coarse mesh size, regardless the element shape as 

can be seen from figure 4.11 where there is an only 1.3% variation in the maximum 

contact pressure for that two different element shape models relative to each other.        
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       (a)                                                                  (b) 

Figure 4.12 (a) tetrahedral element mesh, (b) zoomed local area.  

 

 

 

 

 

 

 

 

     (a)                                                                        (b) 

Figure 4.13 (a) Hexahedral element mesh, (b) zoomed local area.  
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Verifying the results of the finite element analysis was also carried out by 

comparing them with the results obtained from the theoretical equations of Hertzian 

theory. A comparison between the contact pressure distributions from the Hertzian 

equations of contact mechanics with the finite element analysis, FEA, results is 

shown in Figure 4.14. 

 

 

                     Figure 4.14: Pressure distribution of quarter ball-on-plane 
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     It is quite clear from Figure 4.14 that the contact pressure distribution between 

the quarter ball and the plane is a good approximation to the Hertzian pressure, but 

it was not able to follow the analytical result to the accuracy that might be expected 

from the spatial resolution allowed by the mesh at the edge of the contact area.    

     Extensive experiments were carried out using different approaches within the 

options available but this minor discrepancy could not be eliminated and seems to 

be a characteristic of the contact model. It is interesting to note that in the software 

documentation the Hertzian contact problem is covered and illustrated using a 

relatively coarse mesh where the edge discrepancy is not apparent.   

4.5  Full Ball–Cup Simulation  

     Reducing the computational running time and verifying the results with the 

theoretical Hertzian equations were the aims of adopting the simple geometry, 

quarter ball-on-plane. After obtaining the results of the simple geometry, a full 

ball–on–cup model was created to simulate the MOM total hip replacement.  

Three different boundary conditions have been used as follows; 

1- The outer cup surface was constrained completely. 

2- A circumferential stiffening ring was added to the cup periphery to restrain 

the ball-cup system. 

3- A band supporter was attached to the outer cup surface along its mid plane to 

fix the cup. 

     Each one of these supporting systems will be dealt with in more detail later. The 

purpose of using these suggested fixation methods was to examine the effect of 
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fixing on the pressure distribution, radius of contact area and the value of 

maximum contact pressure.   

The ball and the cup modelled in the three systems had the same dimensions, 

material properties, applied load, shape and size of the element mesh. The 

geometric and the material parameters are listed in Table 4.1:- 

Table 4.1  

Radius of the ball 0.025 m 

Radial clearance 0.0001 m 

Cup thickness 0.008 m 

Modulus of Elasticity 210*10
9
 Pa 

Poisson`s ratio 0.3 

  

     A concentrated load of 3 kN was applied in the direction of the central axis of 

the ball. The load value used in this simulation represents four times an average 

body mass, 75 kg [73] to cover the variation in multiples of the body weight that is 

applied to the hip joint during the normal walking cycle.   

     The contact between the full ball–on–cup is shown in Figure 4.15. There were 

17779 tetrahedral elements and 25668 nodes for the ball, and the cup was modelled 

using 8208 linear hexahedral elements with a total of 9733 nodes. Within the 

surface-to-surface contact method the ball surface was selected to be the master 

surface, while the inner cup surface was used as the slave surface.  
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                       Figure 4.15: Contact simulation of ball-on-cup. 

     For the first model the outer surface of the cup was fully constrained in the three 

directions. Two analysis steps were carried out with this contact simulation job as 

well as the initial step. The finite element analysis result of the contact pressure is 

shown in Figure 4.16. 

 

 

 

 

 

 

 

Figure 4.16: Contour of the contact pressure (Pa) of the slave, cup, surface 
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     The assembly module of the circumferential ring system is shown in Figure 

4.17. The material properties of the ring were similar to the ball and cup. The 

thickness of the ring was 1mm and the width was 8 mm. The inner surface of the 

ring was joined to the cup, while the outer surface was constrained to have zero 

displacement in the x, y, z directions.  

     A tie constraint was applied to join the inner surface of ring with the outer cup 

surface. The tie constraint allows the user to connect two regions together even 

though these two different regions have dissimilarity in the meshes created on the 

surfaces.   

 

 

 

 

 

 

 

(a)                                                       (b)             

                     Figure 4.17: (a) Ball-cup-ring parts, (b) Assembly model.  

      By using the tie connection there will not be any relative motion between the 

joined bodies. Figure 4.18 shows the pressure contours of the contact area on the 

inner cup surface.  
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                                 (a)                                                                                  (b) 

      Figure 4.18 Contours of contact pressure / Pa, (a) for whole cup (b) for the contact area  

     The band supporter was used to restrain the ball-cup system, as shown in Figure 

4.19. It has a 15 mm width and 1 mm thickness. The tie constraint has been used to 

connect the band and the cup. It also has the same material properties as ball-cup 

system and its outer surface was restrained. 

 

 

 

 

 

 

                                   (a)                                                   (b) 

          4.19: (a) Ball-cup-band supporter parts, (b) Assembly model. 
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The results of the contact pressure distribution for the three different supporting 

systems are shown in Figure 4.20.  

 

 

 

 

 

 

 

 

 

 

        Figure 4.20: Contact pressure distribution of ball-on-cup for 8mm cup thickness  

 

     It can be seen from Figure 4.20 that regardless of the way used to restrain the 

ball-cup system with 8 mm cup wall thickness, the radius of the contact area was 

similar. On the other hand, there was a 20% difference in the maximum contact 

pressure due to the dissimilarity in the fixation conditions. To see if this case is a 

general or it was specific to 8 mm cup thickness, further investigation was carried 

out by using a 5 mm cup wall thickness with the same set of boundary conditions 

as discussed above, and the results are shown in Figure 4.21. 
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       Figure 4.21: Contact pressure distribution of ball-on-cup for 5mm cup thickness 

     

     In general, in Figure 4.21, the trend of the pressure curves for the band and full 

cup surface fixation are still parabolic and similar to the trend of curves with the 8 

mm cup thickness, while the ring fixation curve had an approximately horizontal 

trend within the contact area and a bigger contact area radius than the other two 

fixation structures with the 5 mm cup thickness. A reduction in the maximum 

contact pressure of 46% and 11% were found for the ring and band fixation 

methods respectively relative to the full outer cup surface supported model.   

     From Figures 4.20 and 4.21, it is clear that using various systems of fixation to 

support the ball-cup MOM hip joint might vary the contact pressure and radius of 
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the contact area. This could affect the performance of the artificial hip joint. As a 

result of that variation, the contact analysis of MOM prostheses is required to be 

more representative of the in vivo situation. This will be covered and described in 

some detail in the next chapter.   
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FEA Contact Analyses and Equivalent Hertzian Models  

5.1  Introduction  

     Finite element analysis has been used considerably in implant development, 

and to provide assistance to resolve clinically complicated problems. In this 

thesis ball-in-socket MOM contacts were analysed using the Abaqus software 

package to simulate the dry contact between the acetabular cup and the femoral 

head as discussed in Chapter 4. Hexahedral and tetrahedral element shapes were 

used to mesh the cup and the ball respectively. Three different constraints of the 

ball-in-socket system: ring, band and full outer cup surface were examined with 

various cup thicknesses. Significant variations in the value of the contact 

pressure and the contact area were found due to using the various support 

systems.  

 

     Developing models where the stress field is similar to the in vivo situation 

led to a search for the most appropriate boundary condition to support the ball-

in-socket system. Consideration of the numerical method used to simulate the in 

vivo situation of the boundary condition and the fixation of the MOM hip joint 

replacement is the objective of the next two sections.   

 

5.2  The Sawbones polyurethane foam block 

     Due to the limitations of using cadaveric specimens of pelvis bone 

experimentally, “Sawbones” polyurethane foam blocks have been widely used 

in vitro. The Sawbones blocks are available with a range of material properties. 

Consequently, they should be able to represent various bone densities.  

     Grimes [75] and Fritsche et al [76] used Sawbones blocks to simulate the 

insertion and the deformation behaviour of the acetabular cup. Jin et al [74] 

found that a hemispherical cavity in a Sawbones polyurethane block with 
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rectangular cut-outs as shown in Figure 5.1 gave the best approximation to the in 

vivo situation. They used both cadaver and polyurethane foams to investigate 

the interference press fit of a metallic one –piece acetabular cup employed for 

MOM hip resurfacing. The diametral cup deformation as a result of the press fit 

was measured on different foam cavity models and grades, and it was found that 

the deformation measured from a two- point pinching cavity model was 

consistent with the cadaveric test. Other researchers, Ong et al [77] and 

Schmidig et al [78] have also used a hemispherical cavity with cut-outs in their 

studies to simulate the bony acetabulum. The foam in the deformed model had a 

further cavities machined to create two recesses and promote shell deformation 

by removing the supporting material from the superior and inferior aspects of 

the acetabular rim area. By removing the foam support, this simulated a pelvis 

with dense bone at the ischial and ilium columns of the acetabulum that would 

cause compression of the cup during insertion.     

     In the current work, a polyurethane foam block was added to the ball-in-

socket artificial joint model to represent the structure of the total hip 

replacement anatomically. It was important to select the appropriate material 

properties for the polyurethane block so that the model represented the pelvic 

bone as closely as possible.  
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(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 

 

 

 

 

Figure 5.1 (a) Polyurethane foam block used to restrain cup, (b) longitudinal and (c) 

transverse section of the foam, cup and sphere. 
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     The density of the foam varies from 80 – 800 kg/m
3
 (5 – 50 pounds per cubic 

foot, pcf ) and the compressive modulus of elasticity range is 16 – 1148 MPa as 

shown in Figure 5.2. 

 

 

 

 

 

                   

                             Figure 5.2 Material properties of Sawbones blocks [79]  

 

     From the literature the polyurethane foam with density 480 kg/m
3
 (30 pcf) is 

the most commonly used to simulate the pelvic bone. According to ASTM F-

1839 the block with a density of 480 kg/m
3
 (30 pcf) has similar properties to 

cortical bone [76], Fritsche et al analysed the deformation behaviour of threaded 

and press-fit acetabular cup designs during insertion and extraction with regard 

to the possibility of cup failure. Jin et al [74] employed grades with densities of 

240, 480 and 640 kg/m
3
 (15, 30, 40 pcf) to simulate different bone properties. 

They found that the grade with density 480 kg/m
3
 (30 pcf) gave results that 

agreed with cadaveric tests. Therefore a Sawbones block with 480 kg/m
3
 (30 

pcf) density, 445 MPa modulus of elasticity, was simulated in the current study.  
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5.3  Assembly of the ball-cup-block 

 

     A three dimensional assembly process for the (ball, cup and block) was 

carried out by applying a frictionless dry contact between the ball surface and 

the inner cup surface. Spears et al [80] investigated the amount of friction 

occurring between the cup – bone surfaces during the press-fitting. A range of 

friction coefficients (0.1 – 0.5) was assigned to the cup-bone interface using 

finite element model. They found that the intermediate values of friction (0.2-

0.3) gave the best results because a high friction coefficient (0.5) restricted the 

penetration of the cup during load application, while a low friction coefficient 

(0.1) resulted in unrestricted rebounding during load removal. 

  

     In this work a frictional contact with a friction coefficient of 0.3, was used 

between the outer cup surface and the hemispherical cavity of the Sawbones 

block. The polyurethane block was meshed using a four node linear tetrahedral 

element shape with a free meshing technique as shown in Figure 5.3. In this 

simulation a concentrated force was applied to the vertex at the top surface of 

the ball. The lower surface of the polyurethane block was fixed in the x, y, z 

directions for both translation and rotation, and this was the only boundary 

condition adopted to support the ball-cup-block system.  

 

     The contact results data calculated by the Abaqus software for each node on 

the contact surfaces were the contact pressure, the gap between the contacting 

surfaces and the coordinates. This data was appended to a file so that for each 

node it was possible to obtain the node label and pressure value or node label 

and the coordinate value and so on. These files were then manipulated to 

tabulate all variables in terms of the node label in a single file. This was 

achieved by writing a Fortran language code.  
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                                Figure 5.3  Assembly of  Ball, Cup  and Block 

      

     In section 4.5 of Chapter 4, selecting the master and the slave surfaces for 

modelling the surface to surface contact was carried out as follows; the ball 

surface was chosen to be the master surface, while the inner cup surface was 

used as a slave surface. In the current model the master and slave surfaces were 

reversed in comparison with Chapter 4, so that the ball surface became the slave 

and the inner cup surface was the master. The reason for this exchange operation 

was that during the walking cycle the rotation of the ball relative to the cup 

would need to be taken into account. To obtain contact pressure and gap data 

between the surfaces it was judged appropriate to use the ball’s structured mesh 

to extract the information from the Abaqus system, by rotating the ball so that 

the origin of the radial mesh lines corresponded to the contact point. This data 

would be available on a structured mesh to feed into subsequent EHL models 

without introducing interpolation errors. 

     The ball (slave) surface, which was used to extract the data, was divided into 

24 radial lines, as shown in Figure 5.4. For each line it was possible to obtain 

data for every mesh point on that line.  
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                               Figure 5.4  Slave surface with 24 radial lines 

     Choosing the 24 radial lines was specified with consideration of two factors. 

Firstly, the total time required to run the analysis of the finite element job. 

Secondly, from the Hertzian theory the contour plot of the contact pressure 

should be circular when the two contacting bodies are solids of revolution, as in 

the current geometry. Figure 5.5 shows the computer running time for the 

analysis of the job against different numbers of radial lines, 10, 12, 18, 24 and 

26.  

 

Figure 5.5 Different numbers of radial lines of slave surface against the PC running time  
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     From Figure 5.5, it seems that the minimum running time occurs at 18 radial 

lines and this is consistent with the first condition. The pressure distribution for 

these variations of using different numbers of radial lines at the 0
o
 angular 

position is shown in Figure 5.6. It can be seen that the variation in the pressure 

value is quite small and it does not affect the accuracy of the results. 

 

      

        Figure 5.6 pressure distribution with different radial lines of slave surface 

 

     Generally, choosing eighteen curved lines or less did not satisfy the circular 

contour of contact pressure as shown in Figure 5.7. These contours are closer to 

polygons rather than circles. It is evident that with an increase in the number of 

radial lines of the slave surface a more circular shape can be obtained. However, 

the time required to analyse the job was multiplied due to the larger number of 

elements and nodes that were used. It should be noted that linear elements were 

used in accordance with the advice given by Abaqus. Trials with quadratic 

elements had confirmed that they did not give any advantages and indeed 

produced contact pressure profiles where pressures at mid side and corner nodes 
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followed two parallel curves with an inter node oscillation. The choice of 24 

radial lines is to some extent aesthetic for symmetrical problems, but gives 

enhanced resolution for cases encountered later in the study where 

circumferential asymmetry is a feature of the results.   

 

 

 

 

 

 

 

                    (a) 12 radial lines                                          (b) 18 radial lines 

                        

  

 

 

 

 

 

                     (c) 24 radial lines                                          (d) 26 radial lines  

          Figure 5.7: ball (slave) surface with different numbers of radial lines 
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     For all of the results presented in the remainder of this thesis 24 radial lines 

were chosen for the FE contact analyses. These were at 15
o 

increments from the 

sphere’s x axis whose orientation depends on the direction of the contact force 

as discussed in section 6.4. 

     In sectional figures of contact pressure and gap between the surfaces the 

sections in each of the 24 radial directions are superimposed for comparison. 

The  key in such figures labels the individual sections in terms of their angular 

positions (0
o
, 15

o
, 30

o
….345

o
). Figure 5.11 in the next section is the first figure 

of this type.     

5.4.  Radius of the contact area edge (a) 

     In this investigation it was necessary to calculate, r and θ. The radius, r, 

which represents the curved distance from the centre of the contact area to the 

particular node measured along the ball surface as shown in Figure 5.8.   

 

 

 

 

 

 

                                                                Figure 5.8 Radius of contact area ( r )  

 Rb   is the radius of the ball  

r =  𝑅b*α                                   …………(5.1) 

∴ r =  𝑅b ∗ cos−1 (1 − 
𝑦

𝑅b
)         ………..(5.2) 

α 

Ball Surface 

X 

Y 

Rb 

r y 
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     The angle (θ) is the measured angle from the X- axis of the finite element 

analysis geometry to the selected node on the slave surface, the ball surface, as 

shown in Figure 5.9. The difference in the angle (θ) between each line of the 24 

radial lines of the slave surface is 15
o
. The first line of the 24 radial lines is the 

x- axis and was taken as θ = 0 while the second line was θ = 15
o 
and so on.  

 

 

    

 

 

 

 

 

  

 

                Figure 5.9: the measured angle, θ, relative to the slave surface  

 

     The radius of contact (r) and the angle (θ) were calculated for each mesh 

point using its Cartesian coordinates. The node label was employed so it was 

possible to sort the contact pressure and the gap value for each node on the 

contact surface. All the calculations and sorting the data were carried out by 

writing a computer program using the Fortran language software. 

 

θ 
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     The finite element results of the ball-cup-block system, the contact area and 

the pressure distribution are shown in Figures 5.10 and 5.11 respectively where 

the load was applied in the direction of the cup’s axis of rotational symmetry. It 

can be noted from these Figures that the results are quite similar to the Hertzian 

theory, where the contact area is circular and the contact pressure distribution is 

semi-elliptical. 

     

 

 

 

 

 

 

(a)                          (b) 

          Figure 5.10: (a) contact area of slave surface, (b) zoomed local area      
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               Figure 5.11 Pressure distributions at each radial line of the slave surface 

 

     In Figure 5.11, the black dashed line is the Hertzian pressure distribution 

based on load, relative radius of curvature and material elastic properties. The 

numbers from 0–345 represent the 24 radial lines of nodes which are used to 

obtain data from Abaqus at every 15
o
 angle increment. It is clear that there is a 

numerical error in the pressure value at the point immediately before the first 

zero pressure point. This error point occurred in all the contact models that have 

been developed in this study, regardless as to whether the model used a fine 

mesh resolution, a coarse mesh, the linear element type, the quadratic element 

type, hexahedron, tetrahedron or wedge element shapes. To investigate this error 

a plot of pressure and gap against contact radius for one case study was drawn as 

shown in Figure 5.12.   
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                Figure 5.12: Pressure and Gap distribution from FE analysis 

The solution to a contact problem consists of a contact area zone where:   

 P  ≥  0      and    Gap  =  0       at    r <  a 

Also a non- contact area zone where: 

P = 0       and    Gap > 0           at   r > a 

In the contact analysis with a finite element discretised approach, it is not 

possible to insist that the gap  ≡  0   in the contact zone, the approach adopted by 

the Abaqus package for contact analyses is:  

(i) P  ≥  0      and    - pt  <  Gap <   0  in the contact zone  and  

(ii) P =  0       and             Gap  >  0    elsewhere   

where ( pt ) is the penetration tolerance of the surfaces.  

     Condition (ii) is violated at the error point as can be seen in Figure 5.12. The 

error point at r = 5 mm has a pressure value greater than zero and a positive gap 
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value at the same time which is in conflict with the contact conditions. Therefore 

this error point has been disregarded from the calculations. The dimension of the 

contact radius when the pressure value equals zero is calculated by using a curve 

fit for the last two or three points just before the error point.  

     A linear curve fit using the last two points, and a quadratic curve fit using the 

last three points were carried out to compare them and select the most 

appropriate result as shown in Figure 5.13. It was found that the quadratic curve 

fit for the last three points had a closer value to the theoretical calculations for 

the Hertzian pressure value. The slope of the quadratic curve is also steeper than 

the slope of the line curve fit which is consistent with the Hertzian pressure 

where the slope becomes infinite at the edge of the loaded region. As a result, it 

was judged that the quadratic curve was the more accurate of these two options.  

 

                     Figure 5.13  showing the curve fit to last two and three points 
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Another way to obtain the most accurate value of the radius of contact was 

assumed by using a parabola Equation to curve fit the last two points as follows: 

𝑎 − 𝑟 = 𝑘𝑝2              ……..(5.3) 

     This is a parabola whose axis of symmetry is in the negative direction 

passing through the point r = a with infinite slope.  

     There are two unknown constants, a and k in this Equation. Substituting the 

last two points before the error point of the pressure curve in Equation 5.3, 

where these two points are referred to as (r1, p1) and (r2, p2), gives: 

𝑎 − 𝑟1 = 𝑘𝑝1
2             …….(5.4) 

𝑎 − 𝑟2 = 𝑘𝑝2
2            …….(5.5) 

From Equations 5.4 and 5.5, k equals: 

𝑘 =
𝑟1−𝑟2

𝑝2
2−𝑝1

2                    …..(5.6) 

Then  a  can be calculated by: 

𝑎 = 𝑟1 + (𝑟1 − 𝑟2)
𝑝1

2

(𝑝2
2−𝑝1

2)
      ……(5.7) 

     Comparison of the calculated values of contact radius, a, obtained from 

quadratic three points (a from 3p) and parabola two points (a from 2p) for the 24 

radial lines are given in table (5.1). It can be seen from this table that the average 

value of a calculated from the two points parabola is less than the a value from 

three points quadratic and it is also closest to the Hertzian a value. As a result, 

the two points parabola of Equation (5.3) was adopted to calculate the radius of 

the contact area in this research. The average value of a from the 24 lines was 

taken as the radius at the edge of the contact area. 
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Table (5.1) values of radius of contact for the 24 radial lines. 

angle a from 2p a from 3p angle a from 2p a from 3p 

0 0.0047558 0.004835 195 0.0047649 0.004852 

15 0.004756 0.004835 210 0.0047631 0.00485 

30 0.0047572 0.004838 225 0.0047615 0.004846 

45 0.004759 0.00484 240 0.0047601 0.004842 

60 0.0047609 0.004845 255 0.0047591 0.00484 

75 0.0047629 0.00485 270 0.0047588 0.00484 

90 0.0047651 0.004854 285 0.0047592 0.004842 

105 0.0047676 0.004859 300 0.0047596 0.004843 

120 0.0047698 0.004862 315 0.0047594 0.004842 

135 0.0047709 0.004864 330 0.0047582 0.00484 

150 0.0047706 0.004863 345 0.0047567 0.004837 

165 0.004769 0.00486 Average 0.0047622 0.004847 

180 0.0047669 0.004857    

 

5.5.  Equivalent Semi-Infinite Body Contact  

     For the case study used at this stage the mechanical properties of the 

geometry applied in the FE analysis, the Abaqus software, and in calculations 

with the Hertz Equations are listed in Table (5.2). The load applied to the head 

of the prosthesis was 2500 N which represents approximately three times body 

weight of 750 N [74]. To the author’s knowledge, most researchers use 3- 4 

times body weight to represent the applied load in the hip joint during normal 

walking activity. In other words, the employed forces in their laboratory tests or 

calculation procedures for simulation the hip joint are between 2 kN to 3 kN as a 

maximum load value. This range of forces is not only an assumed value, it has 

also been measured experimentally as will be shown in Chapter 6.    
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Table ( 5.2 ) geometry properties  

E1 ( Young Modulus for body 1 ) 210 GPa 

E2 ( Young Modulus for body 2 ) 210 GPa 

γ1 ( Poisson’s ratio  ( 3.0 

γ2 ( Poisson’s ratio  ( 3.0 

Rb ( ball radius ) 25 mm 

Rc ( cup radius ) 25.1 mm 

     

 The Hertz Equations that were used to calculate the maximum contact pressure  

𝑃o(h)  and the radius at the edge of contact 𝑎ℎwere given in Chapter 3, equations 

3.4 to 3.8:   The results then become 

𝑃o(h)  =  54.689 MPas,   and  𝑎h = 4.67 mm.  

     A comparative study for different cup thicknesses has been carried out using 

4, 6, 8, 10 mm thicknesses. The effect of cup thickness variation on the pressure 

generation between the ball and the cup is shown in Figure 5.14.  

 

           Figure 5.14: Contact pressure for one radial line of different cup thickness 
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     The pressure distribution from 10 mm, 8 mm and 6mm cup thickness will be 

compared with the equivalent Hertzian pressure later. It can be seen from 

Figure 5.14 that the contact pressure for the 4mm cup thickness does not look 

like the semi-elliptical pressure Hertzian distribution. It has an almost constant 

pressure within the contact area falling to zero over the last 20% of the contact 

radius. 

The results obtained from the FE analysis with 10 mm cup thickness were 

  𝑃o(f)  = 54.077 MPa and    𝑎f = 4.762 mm, where  

suffix f indicates the FEA results.  

     The difference between the FEA results and Hertzian theory may occur 

because the FEA contact is not semi-infinite, this is clearly the case when the 

cup thickness is 4mm. It is also because the FEA load is the resolved contact 

pressure and this takes into account the slope of the contact interface.    

     Because the EHL analysis assumes that the surface deflection corresponds to 

that of a semi – infinite body, it was necessary to determine an equivalent 

Hertzian problem that has the same characteristics as the FEA model results. 

Equivalence is taken as a Hertzian contact that has the same maximum pressure 

and the same contact radius.  

     Modifying the Hertzian contact pressure, 𝑃o(h), and the Hertzian contact 

radius, 𝑎h, to be the equivalent contact pressure, 𝑃o(equiv), and the equivalent 

contact radius, 𝑎equiv, from the FE analysis was achieved by changing the 

reduced elastic modulus, �́�, to be an equivalent elastic modulus, �́�equiv, and 

changing the applied load, W, to be an equivalent load, 𝑊equiv. 

The requirement is that     
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𝑎equiv  = 𝑎f      …….. ( 5.8 )  

𝑃o(equiv)  =  𝑃o(f)      …..( 5.9 )  

where suffix ‘equiv’ indicates the Hertzian results equivalent to the FEA results.    

Equations 3.5 and 3.7 can be re-written as,   

�́�𝑒𝑞𝑢𝑖𝑣 =  
𝜋 𝑅 𝑃0(ℎ)

𝑎ℎ
        …. ( 5.10 ) 

𝑤𝑒𝑞𝑢𝑖𝑣 =  
2𝜋 𝑃𝑜(ℎ)𝑎2

ℎ  

3
      ….. ( 5.11 )  

by substitution of Equations 5.8 and 5.9 into Equations 5.10 and 5.11 the 

necessary values of  �́� and  W are found to be  

�́�𝑒𝑞𝑢𝑖𝑣 =  
𝜋 𝑅 𝑃0(𝑓)

𝑎𝑓
         …….(5.12) 

𝑤𝑒𝑞𝑢𝑖𝑣 =  
2𝜋 𝑃𝑜(𝑓)𝑎2

𝑓  

3
    …….(5.13)  

  

     Equations 5.12 and 5.13 were employed to evaluate the equivalent load and 

reduced modulus of elasticity. These values make the contact pressure and the 

radius of contact area from Hertz Equations equivalent to the real joint as 

evaluated by FE analysis of the joint components. The results of these 

calculations for 10, 8 and 6 mm cup thickness are shown in Figure 5.15 – 5.17, 

and the values of Po, a,  �́�equiv and 𝑊equiv are given in table ( 5.3 ). 
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Table 5.3. Contact parameters for semi-infinite contact and for equivalent semi-

infinite contacts for the cup thicknesses of 10, 8 and 6 mm. 

 W  (N) �́�  (GPa) a  (mm) Po  (MPa) 

Semi-infinite 2500 230.77 4.67 54.689 

10 mm cup 2492 217.23 4.76 52.475 

8 mm cup 2451 203.67 4.84 49.99 

6 mm cup 2381 166.94 5.12 43.39 

 

 

A good agreement was found between the pressure curve trend of the finite 

element results and the equivalent Hertzian results for the 10 and 8 mm cup 

thickness, with a small deviation for the 6 mm cup.    

 

Figure 5.15 Hertz equivalent, Hertz theory and the FEA pressure sections for 10 mm cup. 
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Figure 5.16: Hertz equivalent and the FEA pressure sections for 8 mm cup 

 

Figure 5.17: Hertz equivalent and the FEA pressure sections for 6 mm cup 
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5.6  Gap Outside the Contact Area   

     The gap outside the contact area is equal to the distance between the two 

contacting bodies outside the contact zone, as shown in Figure 5.18. 

  

 

 

 

                         Figure 5.18: The gap between two contacting geometries 

 

     From the numerical analysis of the Abaqus software, the gap at every 15
o
 

angle for all the 24 radial lines, Gapf, is as shown in Figure 5.19. 

 

 

                 Figure 5.19: Gap values of the FEA, Gapf, for the 24 radial lines  
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The gap outside the contact zone for the equivalent Hertzian contact, Gaph, is 

given by Johnson [67]:  

Gaph = ( r
2
 – 2a

2
 )/ ( 2R)+( 1/ πR)[ ( 2a

2
 – r

2
)sin

-1
(a/r) + ar(1-(a

2
/r

2
)

0.5
)]     (5.14) 

     The difference between the gap from the FE analysis and the gap from the 

semi- infinite equivalent contact will be called the gap factor, as shown in Figure 

5.20. 

Gap factor = finite element gap – Hertzian gap  

Then  

Finite element gap = Hertzian gap + gap factor 

 

    Figure 5.20: Gapf, Gaph for one of the radial lines with the corresponding gap factor  
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5.7  Elastohydrodynamic Lubrication 

     The long-term success of hip joint arthroplasty can be extremely affected by 

the performance of the lubrication process. Wear debris are generated normally 

by direct surface contact between the femoral head and the acetabular cup, 

causing abrasive and adhesive wear. Reducing wear particles can be promoted 

by using high wear resistance bearing materials and forming a good lubricant 

film in the joint capsule after total hip replacement. From a fluid film lubrication 

point of view, separating the contacting surfaces as much as possible can reduce 

the portion of the load carried by asperity contacts.  

     Lubrication of the contacts is by the synovial fluid whose pressure viscosity 

coefficient is of the order α = 16.5 GPa
-1

 as discussed in section 3.7. The 

reciprocal of α is 66.6 MPa so that piezo viscous effects became significant for 

contact pressures of this order. Lubrication analysis of hip prostheses is usually 

based on an Elastohydrodynamic model as is the case for the work described in 

[61-64], for example.  The gap outside the contact needs to be the same in the 

equivalent model as in the FEA model. This is because the film is formed in the 

entry region to the contact so that must also be equivalent. Therefore, it was 

necessary in this research to investigate the effect of the gap factor in the 

lubrication of the MOM artificial hip joint.   

   

     The gap factor value was added to the undeformed geometry of the Semi-

infinite equivalent gap in the EHL analysis so that the total is equal to the FE 

analysis gap. The gap factor values were calculated relative to the mesh of the 

FE analysis geometry, the 24 radial lines mesh nodes. Transferring the gap 

values from the FE coordinate system to the EHL coordinate system, as shown 

in the Figure 5.21, was accomplished by arranging an interpolation method as 

follows; 
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     The rectangular coordinate system, ( i, j ), represents the EHL coordinate, 

while the circular coordinate, ( r, θ ), system represents the slave surface node of 

the finite element analysis. 

 Where  

i varies from  – 2.5a to 2a  

j varies from  – 1.5a to 1.5a  

and m and n are the number of the nodes spacing in the half width of the 

Hertzian contact in the x and y directions respectively.   

r varies from  Hertzian half width value, a, to about 2.5a. 

θ varies from 0
o
, radial line 1, to 345

o
, radial line 24. 

For each point in the EHL mesh outside the dry contact area the two radial lines, 

θ1 and θ2 closest to the point were found.    

Linear interpolation formulas were then used,  

 

Gap(r, θ1) = ( ( ( r – r1 ) * gap(r2, θ1) ) + ( ( r2 – r ) * gap(r1, θ1) ) ) / ( r2 – r1 ) 

……...( 5.15 ) 

Gap(r, θ2) = ( ( ( r – r1 ) * gap(r2, θ2) ) + ( ( r2 – r ) * gap(r1, θ2) ) ) / ( r2 – r1 ) 

…..…(  5.16 ) 

Gap(i,j) = ( ( ( θ – θ1 ) * gap(r, θ2) + ( ( θ2 – θ ) * gap(r, θ1) ) / ( θ2 – θ1 ) 

….....….( 5.17 ) 

This process is illustrated in Figure 5.21 A and B 
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              i = - 2.5a                                                                         i =1                                            i = 2a 
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( b )  

  

  

  

  

 Figure 5.21 (a) and (b) Coordinates and mesh points used for transferring the gap value from     

                                              FE to EHL coordinate systems 
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     Changing the contact point position of the ball-cup system relative to the 

acetabular cup in the MOM prosthetic hip may lead to poor lubrication 

performance. Saikko et al [82] showed that a steep contact position of the cup 

exceeding a critical value of 60
o
 leads to an asymmetric contact area, boundary 

lubrication at best, and considerably higher wear rate. Clarke et al [83] also 

showed a non-linear relationship between inclination angle and indicative wear 

depth, whilst wear was clearly at its highest at the steepest inclination angle.  

 

     Clinically it is observed that the optimum inclination angle is in the region of 

40–45
o
. It is becoming evident that socket-cup placement outside of a 

recommended range of 30
o 

to 50
o
 abduction angle (inclination angle) can lead to 

a greater amount of metal release particularly in small diameter components 

[84].  

     In order to investigate the influence of the contact area position on the 

contact pressure value, the radius of contact area and gap factor values, three 

models were generated. In the first model a central contact area was obtained 

when the load applied in the vertical, y-axis, direction as shown in Figure 5.22. 

In the second model as illustrated in Figure 5.23 the slave surface, the ball 

surface, was inclined 30
o 

to the vertical line. In the third model a 45
o
 inclination 

angle was used with the polar axis of the ball and the vertical axis of the cup as 

shown in Figure 5.24. 
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                   Figure 5.22: a central contact of the ball – cup system.  

 

 

            Figure 5.23: a 30
o
 inclination angle between ball – cup system 
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             Figure 5.24: a 45
o
 inclination angle between ball – cup system 

     The distribution of the equivalent contact pressure for the three different 

inclination angle cases is shown in Figure 5.25. Comparing these sections it can 

be seen that there is only a 0.8% reduction in the maximum contact pressure 

between the central contact case and the (30
o
) inclined case, and (1.63%) 

pressure reduction between the (0
o
) case and the (45

o
) case.  

  

 

 

 

 

 

 

      Figure 5.25: Equivalent contact pressure for 0
o
, 30

o
 and 45

o
 inclination angle  
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     The gap factor values for the 24 radial lines of the three models are shown in 

Figures 5.26 to 5.28. Only very small differences were found in the gap factor 

values for the different radial lines when the contact between the ball and the 

cup was symmetrical about the vertical axis, i.e at 0
o
 inclination angle. The 

maximum gap factor value was about (-0.2*10
-6

 m) at r/a =2.4 as shown in 

Figure 5.26. 

                                                                              

  

Figure 5.26 Gap factor of 10 mm cup thickness with 0
o 
inclination angle for the 24 radial lines 
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 and 45

o
 about the vertical axis of the cup surface 

than the 0
o
 angle. The maximum gap factor was approximately (0.45*10

-6
) for 

30
o 

angle and (0.5*10
-6

) for 45
o
 as shown in Figures 5.27 and 5.28. The gap 

factor was approximately double when there was a changing of the contact area 

position, which means specifying the correct contact position is essential to 

obtain accurate results. 
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Figure 5.27 Gap factor of 10 mm cup thickness with 30
o 
inclination angle for the 24 radial lines 

  

 

Figure 5.28 Gap factor of 10 mm cup thickness with 45
o 
inclination angle for the 24 radial lines 
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5.8 Summary 

     This chapter has presented the developed form of the FEA contact analysis. 

The sensitivity of results to the restraint mechanism of the cup component was 

observed in Chapter 4. This was addressed by adopting the foam block approach 

introduced by Jin et al [74]. In this method a foam block with a hemispherical 

recess provides restraint of the cup through contacting surfaces with a specified 

friction coefficient. To replicate the asymmetrical nature of the cup support 

provided by the acetabulum, two additional recesses were specified in the foam 

block where there was no contact and therefore, no restraint.  

     The ball model was finalised by choosing an ordered radial structure for the 

finite element mesh. There were two reasons for this choice. It led to symmetric 

contact results for cases where the restraint system was also symmetric, whilst 

variations were observed when an unstructured mesh was used. It also provided 

a regular surface coordinate system for the ball which maximised the accuracy 

obtained for transferring information from the FEA model to the lubrication 

analysis. By orienting the polar axis of the ball in the load direction, the 

coordinate system became a polar system centred on the contact point, which 

was the ideal configuration as this was also the origin for the rectangular 

coordinates used for the EHL analysis. 

     The resolution of the mesh adopted was finalised by comparing results 

obtained with different angular resolution so as to optimise the symmetry of the 

results obtained and the computational time required.  

 

     The contact results obtained using Abaqus displayed an unexplained feature 

for all the analysis. This was an inconsistency between the results obtained and 

the contact conditions at the boundary of the contact area. This gave a constant 

error point at the last node on each radial line which had a contact pressure, 
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although it was not in contact. This is thought to be related to the convergence of 

the contact process within the software. The difficulty was overcome by 

disregarding this point as far as determining the contact area was concerned and 

adopting a parabolic curve fit based on the two closest mesh points to the error 

point.  

     The contact area and pressure results were developed into an equivalent 

Hertzian model. Whereby the elastic properties and the load were adjusted so as 

to provide a contact with the same contact dimension and maximum contact 

pressure as had been obtained from the FE model. 

The difference between the shape of the gap between the surfaces obtained using 

the equivalent Hertzian and FEA models was quantified and procedures 

developed to make this available for subsequent EHL analyses based on the 

equivalent Hertzian model. 

     To complete the EHL analysis, kinematic information was required. Instead 

of estimating the position of the contact point, published measured data from 

different patients was used which was available in the form of a dataset [88]. 

Specification of the correct position of the contact point between the ball and the 

cup during normal walking activity was accomplished. The method developed to 

define the coordinates of the contact point position relative to the cup surface 

and the ball surface will be discussed in Chapter 6. 
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Gait Analysis  

6.1  Introduction  

     Contact forces in the artificial hip joint should be known for experiments 

on wear and friction, durability and fixation of prostheses for optimising their 

design. It is also important to draw a clear picture for physiotherapists and 

patients who need to make decisions as to which activities must be avoided 

after hip replacement surgery. The contact forces acting in vivo in the total 

hip replacement during normal walking, stair climbing and other activities 

have been measured for an age group of patients between 55 and 76 years old         

[85]. Friction induced polyethylene wear and wear related aseptic loosening 

are the most frequent reasons for revisions of hip joint prostheses.  

     Other bearing combinations such as MOM type which are the focus of the 

current study have much lower wear rates but still retain the problem of 

aseptic loosening. The friction in the joint and thus the wear of the implants 

can be determined from measured joint contact forces and moments [86]. 

Lenaerts et al [87] analysed the effect of modelling of the hip geometry on the 

quantification of hip joint moments, muscle moments and hip contact forces 

during gait using musculoskeletal modelling.  

     In the current investigation the in vivo data for the hip joint contact forces 

and synchronous analysis of gait patterns from the Orthoload website [88] 

were adopted. In the Orthoload experimental program the three dimensional 

hip forces were measured in vivo with instrumented implants for four 

different patients. Telemetric data transmission was used for the four patients 

during the most frequent activities of daily living. All the data are available to 

researchers as a software program which is called HIP98. A new version of 

this software measurement data released in 2011 has been used in the current 

work.  

http://www.orthoload/
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6.2  Orthoload  

     The main window of the HIP98, version 2011, is shown in Figure 6.1. The 

data is presented as videos, force vectors, numerical data and video images of 

the patients. From the Orthoload database, it is possible to select an activity, 

one or several trials and a patient. Numerical data files of the contact forces 

can be downloaded and then used, for example in joint simulators or finite 

element analyses. Measured forces of the hip joint in this program are shown 

as a percentage of body weight, %BW. Consequently, it is possible for 

researchers to recalculate the forces by using the patients’ body weight.  

 

 

 

 

 

 

 

 

 

 

 

                      Figure. 6.1 Components of the main window of HIP98   
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     All forces reported in HIP98 are relative to the left femur coordinate 

system, where the centre of the femoral head is chosen to be the centre of the 

femur system. A particular method of averaging was used to calculate 

average gait data and hip contact forces from a number of trials for the same 

patient. Averages from the four patients were averaged again to obtain data 

for a “typical” patient. The implant hip was made of an alumina ceramic 

head, a titanium stem and a polyethylene cup. Three of the four patients 

received non-cemented hip implants while the fourth patient had a cemented 

prosthesis. The patients were 51-76 years old. Measurements were taken 

between 11 and 31 months after hip replacement.  

     The resultant force of the hip joint, F, has three components Fx, Fy, Fz as 

shown in Figure 6.2. The angles of the resultant force in the three planes are 

referred as Ax, Ay, Az. In order to investigate strength or fatigue of the implant, 

it is important to transfer the force components from the femur coordinate 

system to the implant system. Two angles are required for the transformation 

of forces, the anteversion angle AV of the implant and the angle S between 

the shaft axis of the implant and the z axis of the bone. There are individual 

values of the angles S and AV for each one of the four patients.  

     The resultant contact force, F, produces a three directional moment M 

about the intersection point of the neck and the shaft axes of the implant. This 

implant moment is composed of three components Mxi, Myi and Mzi, where 

these components act about the implant system axes Xi, Yi and Zi in the RH 

screw sense as shown in Figure 6.2. The torsional moment Mzi is the 

important component for the implant fixation as it trends to rotate the implant 

about the shaft axis.        
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                  Figure 6.2 femur and implant coordinate system, [88]  

 

     In the Orthoload data, nine different activities were tested that were 

assumed to take place frequently in daily living. Each patient carried out most 

exercises between 4 and 6 times during the trials. A small number of trials 

could not be evaluated due to data errors. For stair climbing and walking, the 

instants of foot contact (heel strike) were selected to be the start of the 

activity cycles.      

 

6.3 Hip Contact Forces  

     In this work the average case study of the four patients, the typical patient, 

was adopted. The resultant contact force, F, and its three components, Fx, Fy, 

Fz relative to the femur coordinate system for normal walking, which is the 

most frequent activity, are charted in Figure 6.3.  
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Figure 6.3 the measured contact force for one cycle of normal walking 

referred to the femur axis system 

 

     The cycle time of 1.103 s was divided into 200 time steps for numerical 

simulation. The data available in the HIP98 package are the three force 

components, Fx, Fy, Fz and the resultant force, F, relative to the following 

coordinate systems: 

- The Femur coordinate system as previously shown in Figure 6.2. 

- The Pelvis coordinate system illustrated in Figure 6.4. 

- The Cup coordinate system illustrated in Figure 6.5. 

Moreover, the ground reaction forces, implant moments, flexion and 

abduction angles are also included in the data. 
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                                 Figure 6.4  Pelvis coordinate system, [88] 

 

 

 

 

 

 

 

 

 

                           Figure 6.5 Cup coordinate system, [88] 
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     The resultant contact force and its three components relative to the cup and 

pelvis coordinate systems are shown in Figures 6.6 and 6.7. It is clear from 

these Figures that the resultant force, F, has the same values relative to the 

three different coordinate systems, femur, pelvis and cup, whereas the three 

components in the x, y, z directions vary depending on the various coordinate 

systems. In addition, the force component in the z-direction (Fz) has the 

biggest value and it is nearly equal to the resultant force especially for the 

femur and pelvis coordinate systems.  

 

     Meng et al [89] and Liu et al [90] employed only the vertical load 

component and the major velocity component in the flexion – extension 

direction in their studies. Gao et al [62] showed that under walking 

conditions, the horizontal load components had a significant impact on the 

lubrication film due to the squeeze film effect. During the whole walking 

cycle both the average and central film thickness were found to increase to a 

range of 40-65 nm, compared with the range of 25-55 nm under a single, 

vertical, load and one motion condition, flexion – extension, which suggested 

the lubrication in the MOM hip implant was improved under 3D 

physiological loading and motion. In the current work the physiological 

loading and motion gait cycle in all three directions have been taken into 

account.   

 

     

 

 



Chapter 6 

122 
 

 

 

 

 

 

 

 

 

 

Figure 6.6 the measured contact force for one cycle of normal walking 

referred to the Cup coordinate system 

 

Figure 6.7 the measured contact force for one cycle of normal walking 

referred to the Pelvis coordinate system 
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6.4 Coordinates of the Contact Points 

     The coordinates ( x, y, z ) of the contact points relative to the femur or the 

cup system were not available from the data in HIP98. In addition, there was 

no information about the relative velocity between the contacting surfaces, 

the femur surface and the cup surface, which are essential for the EHL 

analysis. The only data available for normal walking was the average speed of 

the four patients which was 1.09 m/s.   

     Evaluation of the coordinates of the contact point position at each time 

step of the walking cycle have been carried out. As mentioned previously, the 

table of force components Fx, Fy and Fz for each time step relative to the cup 

coordinate system is available from the data of the HIP98 system. 

Consequently, the coordinates Kx, Ky, Kz of the general contact point K was 

calculated by using vector algebra. It was assumed that the contact points are 

located at the position that the resultant force vector from the ball centre 

intersects the ball and the cup surfaces, i.e at the vectorial position .  

�⃗⃗⃗� =  
𝐹 

|𝐹|
 𝑅           ……..( 6.1 ) 

The results from Equation (6.1) for the cup surface are shown in Figure 6.8. It 

can be seen from this Figure that all the contact points, the 200 steps, are 

located in the upper half of the cup. The distance between the farthest contact 

point and the centre of the cup is approximately 16 mm in this projection. 

However, the radius of the cup was 25 mm which means that there is no 

contact between the femoral head and the acetabular cup at or around the rim 

of the cup. Figure 6.9 shows this trace superimposed on a plan view of the 

cup viewed in the negative Yc direction. 
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Figure 6.8 the contact point’s positions relative to the cup coordinate system 

projected onto the Xc Zc plane 

  

 

 

 

 

 

 

 

 

Figure 6.9 Contact points trace relative to the cup size 
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     The same procedure as was used to specify the coordinates of the contact 

points relative to the cup system was repeated to calculate the coordinates of 

the contact points relative to the femur system as shown in Figure 6.10. The 

HIP98 software does not provide information concerning the contact point 

postion but does indicate it by means of a video showing its motion over the 

walking cycle. These videos can be viewed in the femur coordinate system or 

in that of the cup. The contact points illustrated by the videos can be seen to 

agree closely with the current evaluations shown in Figures 6.9 and 6.10. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Contact points trace relative to the femur coordinate system 
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          Two angles, α1 and α2, were used to specify the position of the general 

contact point K on the cup surface. Plane AA contains point K and the Yc-axis 

and α1 is the angle that the plane makes with the Xc-axis as shown in Figure 

6.11.     

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 General contact point K on plan of cup viewed in negative Yc 

direction 

 

Figure 6.12 shows the cup sectioned on the plane AA and indicates the 

meaning of angle α2 which is the angle between OK and the negative Yc-axis. 
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Figure 6.12 Section of cup on AA plane showing general contact point, K, 

and angle α2 

 

     By calculating the contact point position as a vector for all the contact 

points within the walking cycle trace relative to the cup system, it was 

possible to calculate  α1 and α2 as follows: 

From Figures 6.11and 6.12;  

𝐾𝑦 = −𝑅 cos𝛼2             ……..( 6.2 ) 

𝐾𝑥 = −𝑅 sin 𝛼2 cos 𝛼1   ……..( 6.3 ) 

𝐾𝑧 = 𝑅 sin𝛼2 sin 𝛼1      ……...( 6.4 ) 

Dividing Equations (6.4) and (6.3) gives; 

𝛼1 = tan−1 −𝐾𝑧

𝐾𝑥
         ………. ( 6.5 )  

K α2 
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and re-writing equation ( 6.2 ) gives; 

𝛼2 = cos−1 −𝐾𝑦

𝑅
        ………..( 6.6 ) 

     Using equations (6.5) and (6.6) the values of α1 and α2 for the 200 steps of 

the walking cycle were obtained, as shown in Figure 6.13. These two angles 

are necessary to specify the contact point for the finite element contact 

analysis. Simulating the contact between the femur and the cup using the 

Abaqus software for particular contact points within the walking trace was 

carried out by rotating the ball in directions of α1 and α2. The measured 

contact load was applied through the polar centre line of the ball component 

finite element mesh.    

 

 

Figure 6.13 Variation of the angles α1 and α2 within the walking cycle 
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6.5 Transformation between coordinate systems   

     It was important to transform vector variables such as force, velocity and 

position from one coordinate system to another for calculation purposes. 

Furthermore, transformation can also be useful for comparison or verifying 

accuracy of the results. One of the main parameters which needed to be 

transformed from the femur coordinate system to the cup coordinate system 

was the velocity. The entrainment velocity, which is essential in the EHL 

analysis, equals to the average velocity value of the two contacting surfaces 

relative to the contact point. Both of these velocities must be obtained in the 

same coordinate system either the femur coordinate system or cup coordinate 

system.  

     The transformation matrices from the femur coordinate system, CE1, and 

the pelvis coordinate system, CE2, to the laboratory coordinate system are 

available from the data of the HIP98 for all the points in the walking cycle. 

These transformation matrices are different in each of the time steps because 

the position and orientation of the femur and pelvis system are continually 

changing as the patient moves. In contrast, there is no transformation matrix 

from the cup coordinate system to the laboratory system. The only 

information available about the cup coordinate system that it is fixed relative 

to the pelvis system and the transformation between them can be obtained by 

using the two available angles, γ (Gamma) and β (Beta), as shown in Figure 

6.5. These angles are fixed for each patient and given in the database.   

      As a result, the transformation of the femur surface velocity from the 

femur coordinate system to the cup coordinate system was achieved as 

follows: 

- Transformation from the femur coordinate system to the laboratory 

system, as shown in Figure 6.14, using a transformation matrix CE1. 
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- Transformation from the laboratory system to the pelvis coordinate 

system using the transpose of the transformation matrix CE2, CE2
T
.  

- Rotating  the pelvis coordinate system about the pelvic z and x axes to 

obtain the cup coordinate system using the trigonometric functions and 

the two available angles, γ (Gamma) and β (Beta). For the average 

patient γ and β are 70.3
o
 and 49.4

o
 respectively.  

 

These steps can be written as; 

 

U⃗⃗ fp = CE2
T ∗ CE1 ∗ U⃗⃗ f     ……( 6.7 ) 

 

In equation (6.7) Uf is the surface velocity of the femur, which was 

established depending on the change of the contact point position with time as 

shown later, Ufp  is the femur surface velocity relative to the pelvis coordinate 

system, and CE1 and CE2 are the transformation matrices. The nine elements of 

each matrix are available from HIP98 at each point of the walking cycle. The 

matrices have the general form: 

 

𝐶𝐸 = (

𝐶𝑥𝑥 𝐶𝑦𝑥 𝐶𝑧𝑥

𝐶𝑥𝑦 𝐶𝑦𝑦 𝐶𝑧𝑦

𝐶𝑥𝑧 𝐶𝑦𝑧 𝐶𝑧𝑧

)    ……. ( 6.8 ) 

 

To transform U⃗⃗ fp to the cup coordinate axes the rotation illustrated in figure 

6.5 needs to be taken into account. Figure 6.5 is taken from the database 

information and needs to be interpreted in terms of the description of β and γ. 

To obtain the cup axis set firstly a rotation β takes place about the Xp axis and 

a further rotation through an angle γ then takes place about the Zp axis. If the 
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unit vectors in the pelvic axis system are I, J and K, and in cup axis system i, j 

and k, the equations that give the transformation are 

 

i = cos γ I + sin γ J 

j = -cos β sin γ I + cos β cos γ J – sin β K               ……..(6.9) 

k = -sin β sin γ I + sin β cos γ J + cos β K  

 

Equations (6.7) and (6.9) can be used to transform a vector of load, velocity, 

contact point position or any other vector between the femur and pelvis 

coordinate systems. Tests were conducted on the contact force vector given in 

the database whereby the femur force was transformed to the cup coordinate 

system in this way. This confirmed that the componenets were then as stated 

in the database. This gave confidence that the transformation process was 

correctly implemented.  

   

  

 

 

 

 

 

 

 

 

 

Figure 6.14 Laboratory coordinate system, [ 88 ] 

Joint Center

Reference Point

W
alking

Kistler Plate #2 Kistler Plate #1

x

y

z

Laboratory

Coordinates

Local

Coordinates

Thigh

Ground Reaction Forces

Gait Analysis System

#2

#3

#4

#5

#6

#1

Camera

Xl

Yl

Zl

Dire
ctio

n



Chapter 6 

132 
 

The surface velocity of the femur relative to the contact point, Ufi, is the 

velocity of the contact point in the femur system with opposite sign.  

Ufi = - velocity of contact point in the femur system. 

 

The velocity of the contact point was established by utilisation of the 

coordinate values Kf ( Kx, Ky, Kz ) of the contact point at different times using 

backward differences, therefore  

�⃗⃗� 𝐟𝐢 = − 
�⃗⃗� 𝐟(𝐢+𝟏) − �⃗⃗� 𝐟(𝐢−𝟏)

𝐭𝐢+𝟏 − 𝐭𝐢−𝟏
  ……….( 6.10 ) 

The only component of the surface velocity, �⃗⃗� 𝐟𝐢, that contributes to the 

entrainment velocity for the EHL analysis is tangential to the surface, and it 

can be determined by:     

�⃗⃗� 𝐟𝐓𝐢 = �⃗⃗� 𝐟𝐢 − (
�⃗⃗� 𝐟𝐢∙�⃗⃗� 𝐟𝐢

𝐑
) 

�⃗⃗� 𝐟𝐢

𝐑
  ……….( 6.11 )  

In equation (6.11) the vector K⃗⃗ fi has magnitude R, and is normal to the 

surface at the contact point. The term in the bracket is thus the magnitude of 

the velocity in the normal direction and it is multiplied by the unit vector in 

the normal direction. The subtraction therefore removes the normal velocity 

from U⃗⃗ fi to establish the tangential velocity.  

The same procedure was used to calculate the tangential component of the 

surface velocity of the cup in the cup coordinate system relative to the contact 

point. Using the corresponding notation, the relative velocity is  

�⃗⃗� 𝐜𝐢 = − 
�⃗⃗� 𝐜(𝐢+𝟏) − �⃗⃗� 𝐜(𝐢−𝟏)

𝐭𝐢+𝟏 − 𝐭𝐢−𝟏
   …........ ( 6.12 ) 
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and its normal component is removed in the same way to give the tangential 

velocity vector of the surface relative to the contact point. 

 

�⃗⃗� 𝐜𝐓𝐢 = �⃗⃗� 𝐜𝐢 − (
�⃗⃗� 𝐜𝐢∙�⃗⃗� 𝐜𝐢

𝐑
) 

�⃗⃗� 𝐜𝐢

𝐑
   ……..( 6.13 ) 

 

Then the mean surface velocity relative to the contact point for the two 

surfaces is the mean of �⃗⃗� 𝐜𝐓𝐢 and �⃗⃗� 𝐟𝐓𝐜𝐢. To evaluate this it is necessary for 

both terms to be evaluated in the same coordinate system. The appropriate 

system is the cup system as that is used for the contact analysis.  

�⃗⃗� 𝐟𝐓𝐜 is the tangential component of the femur surface velocity relative to the 

contact point expressed in terms of the cup coordinate system, which can be 

obtained from the transformation matrices via equations (6.7 and (6.9). The 

entrainment velocity is then  

�⃗⃗� 𝐢 = 
�⃗⃗� 𝐜𝐓𝐢+ �⃗⃗� 𝐟𝐓𝐜𝐢

𝟐
    ……..( 6.14 ) 

 

To check the accuracy of the procedure and the transformation from the 

femur to the cup systems it was confirmed that U⃗⃗ fTc was perpendicular to 

K⃗⃗ fi for each time step.  

A Microsoft excel spreadsheet was developed and used to transform the 

tangent femur surface velocity to the cup coordinate system through the 

laboratory and pelvis coordinate systems as described previously. The 

entrainment velocity, Ui, and its three components are shown in Figure 6.15.    
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Figure 6.15 The entrainment velocity and its components over the walking cycle. 

 

6.6  Steady State Analysis of the EHL     

     Nine points were selected from the trace of the gait cycle for futher 

investigation of EHL behaviour, as shown in Figure 6.16. The points were 

selected taking the location of the contact point relative to the centre of the 

cup into account so as to cover the range of positions in the cycle. In addition  

the variation of the contact force values were taken into account, as shown in 

Figure 6.17. The direction of the inlet and outlet of the lubricant flow was 

assumed in accordance with the EHL mesh direction.  

     These points in the walking cycle were used to develop steady state 

elastohydrodynamic lubrication analyses using the in vivo measured contact 

force, mean velocity and contact point position for the nine cases selected 

which are denoted by letters A to I.  
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Figure 6.16  the nine selected contact points of the gait cycle 

 

 

Figure 6.17 Different loads values for the selected nine points. 
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6.7 Discussion 

This chapter has presented the method by which the variation of load and 

kinematic conditions at the contact has been established.  This has not been by use 

of idealised walking cycles as often seen in the literature, but by use of a public 

database of experimental results obtained from patients whose hip prostheses have 

been instrumented to allow direct measurement of the contact load and its 

direction. The data made available in this way does not provide the necessary 

information for the EHL analysis directly and consequently calculation procedures 

have been developed to process the data in a robust and accurate way for all the 

time steps in the database.  The database contains data for individual patients over 

a series of trials and also an averaged dataset and thus the process can give rise to 

several sets of experimentally accurate walking cycles for EHL analyses. For the 

results reported in the thesis the average database cycle information was used.  

 

The load and kinematic conditions were all obtained from the contact load data.  

At each time step the contact load is given relative to both the femur coordinate 

system and the cup coordinate system. To proceed, it was necessary to transform 

the relevant information for the cup and femur components to a common axis set, 

and the cup axis set was chosen for this function. Transforming the vectorial 

information from the femur to the cup coordinate system was a complicated 

process that involved two intermediate coordinate systems. These were the 

laboratory coordinate system which was a fixed reference set, and the pelvis 

coordinate system.  Both femur and pelvis coordinate systems moved continuously 

over the walking cycle and transformation matrices were provided in the dataset 

linking each to the laboratory coordinate system.  There was no transformation 

matrix given in the database for the cup coordinate system which was offset from 

the pelvic system and rotated in a fixed general way so that none of the axes in the 

cup system was parallel to any of those in the pelvic system.  Transferring 
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information from the femur to the cup systems involved two time step dependent 

matrix transformations to reach the pelvic system via the laboratory system, and a 

further fixed origin offset and compound rotation to reach the cup system.  

 

The measured force vectors in the two systems were compared when both were 

expressed as components in the cup system and found to agree closely confirming 

that the measurements given were in agreement and that the implementation of the 

transformation process was accurate.  This information allowed the coordinates of 

the contact point to be determined as the force vector from the cup system origin 

scaled to have magnitude equal to the ball radius gave the coordinates of the 

contact point.  This information could then be used directly to form the FEA 

models of contact at any particular time step. 

 

The kinematic information required is the entrainment velocity which is the mean 

surface velocity relative to the moving contact point. For each component (cup and 

femur) this was obtained in the component system as (minus) the difference in the 

contact point vectors at successive time steps divided by the time separation.  

These vectors were both brought to the cup system and their components normal 

to the contact removed to leave the tangent plane relative velocities. These were 

then averaged to obtain the entrainment vector for the time step. The checking 

operation on transferring the force vector between the systems gives assurance that 

no errors have been introduced in this process. 

 

The entrainment velocities were found to vary in magnitude and direction relative 

to the axes to be used for the EHL analyses.  This provides the necessary 

information to conduct a transient EHL analysis of the walking cycle including the 

entrainment reversals that take place. However, due to pressure of time it was not 
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possible to include this in the work reported and it remains an objective for further 

work.  Within the time constraints of the research project it was decided to carry 

out steady state EHL analyses at a series of representative points over the meshing 

cycle, and these are reported in Chapter 7. 
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Results  

7.1 Introduction  

      In this chapter a comparison between the results of the dry contact of the 

equivalent Hertzian theory and the results of the finite element analysis were 

carried out as a first stage. The results of the EHL of the Hertzian theory, the 

equivalent model, and the modified model were also investigated as a second 

stage, where the modified model equals to the equivalent model after adding 

the gap factor. A new system for calculating the contact point coordinates and 

relative velocity between the two contact surfaces was developed depending 

on the three dimensional forces using vector algebra. The 3D force 

information was obtained from Orthoload [88]. The procedure used to 

investigate the effect of the gap factor on the lubrication process was carried 

out for the nine contact points of the walking gait cycle as follows: 

 

- Extracting the measured force and calculating the position of the 

contact point and the mean velocity relative to the contact point of the 

two contacting surfaces, the femur surface  and the cup surface from 

the HIP98 program.  

- Utilisation of the measured force and the position of the contact point 

in the Abaqus software to obtain the maximum contact pressure, radius 

of the contact area and gap value from the FE analysis. 

- Using the maximum pressure and the contact area radius of the Abaqus 

software to modify the Hertzian maximum contact pressure and the 

radius of the contact area. As a result, an equivalent load and Modulus 

of Elasticity were produced. 

 

 

http://www.orthoload/
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- Determining the gap value of the Hertzian equivalent contact theory, 

and comparing it with the gap from the Abaqus software to obtain the 

gap factor values. 

- Adding the gap factor value to the undeformed shape of the equivalent 

model.   

- Running the EHL program to determine the differences between the 

Hertzian model pressure distribution and film thickness, the equivalent 

contact model pressure distribution and film thickness, the modified 

equivalent contact model pressure distribution and film thickness after 

adding the gap factor. 

- Repeating the procedure for all the steps above with different cup 

thicknesses 4, 6, 8, and 10 mm.  

 

7.2  FEA Pressure distribution  

     Figures 7.1 – 7.4 represent the pressure distribution of the dry contact 

between the ball surface and the cup surface. The finite element results of the 

Abaqus software version 6.12 were compared with the equivalent Hertzian 

theory results, (the black line). Different cup thicknesses of 4, 6, 8, 10 mm 

were investigated. 

     For the 4 mm cup thickness results presented in figure 7.1, it can be seen 

that the pressure distribution is non-Hertzian for contact points B, C, D, E and 

F. Consequently, the EHL analysis will be applied to only the Hertzian 

pressure distribution points that are A, G, H and I. The reason for some 

contact points to be Hertzian or otherwise is connected to the variation of the 

hip joint load. As it can be seen that points B, C and D have the largest 

deviation 
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from the Hertzian curves and it is known from Figure 6.17 that these three 

points have the maximum measured joint loads. On the other hand, the 

measured load for A, G, H, and I contact points are less than 30% of the 

maximum load value within the gait cycle which suggests that with the low 

load the contact pressure is Hertzian in form. Points E and F have 

intermediate load values and they show less deviation than points B, C and D, 

but they are still non-Hertzian.  

     Figures 7.2 to 7.4 show the corresponding results for cases where the cup 

thickness was 6, 8, and 10 mm, respectively. For these results the equivalent 

Hertzian model results is a good fit to the radial variation of pressure obtained 

from the FE analysis. The results for the 6 mm cup have a marginally greater 

deviation than these for 8 and 10 mm cups so it is clear that by increasing the 

cup thickness the contact pressure trend is to be closer and closer to a Hertz 

pressure distribution.  

     A significant variation in the hip joint load between the maximum value, 

1819 N at point C, and the minimum value, 295 N at the point I, occurred in 

this research. The contact pressure variation for the 4 mm cup thickness was 

limited to the range 24.5 MPa (case I) to 29.3 MPa (case F), which represents 

a 19.5% variation. For the 6, 8, 10 mm cup thickness the variations are 

56.7%, 72.4% and 78.5 % respectively over the contact sequence. Clearly, 

with the thin cup the results obtained have been less affected by varying the 

applied load, because the higher load values were not analysed due to their 

non-Hertzian behaviour.   
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     Regardless of the cup thickness used for the lowest hip joint load, such as 

contact points H and I, a small variation was found in the pressure developed 

between the ball and the cup. For points H and I the maximum contact 

pressures are 25.19 MPa and 24.5 MPa respectively at 4 mm cup thickness, 

and 27.6 MPa and 27 MPa at 10 mm cup thickness. However, increasing the 

cup thickness from 4mm for points B, C and D where the contact pressures 

are 28.8 MPa, 28.9 MPa and 28.6 MPa respectively, to 10 mm leads to 

pressures of 48.2 MPa, 48 MPa and 46.8 MPa, respectively, despite the fact 

that the load for each point was the same. In general, increasing the cup 

thickness produces higher contact pressures and smaller contact areas as the 

cup becomes stiffer. 

 

     Table 7.1 shows the measured hip joint load, the calculated contact 

pressure from the FE analysis, the equivalent contact radius, the Hertzian 

contact radius, the entrainment velocity and the cup thickness to the Hertzian 

radius ratio for the nine contact points and four cup thicknesses. It was found 

from the ratio of the cup thickness to the Hertzian radius of contact, t/ah, that 

when this ratio is unity or less the pressure distribution from the FE analysis 

is non Hertzian. This is apparent from the results for contact points B, C, D, E 

and F with the 4 mm cup thickness, as shown in figure 7.1 and Table 7.1.  
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Pressure distribution of 4 mm cup thickness  
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Figure 7.1 FEA dry contact pressure distribution of 4 mm cup thickness of the 

nine contact points A, B, C, D, E, F, G, H, and I compared with the 

theoretical equivalent Hertzian (black line). 

  

 

 

 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area r / m 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area r / m 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area  r / m 



Chapter 7 
 

145 
 

Pressure distribution of 6 mm cup thickness  
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Figure 7.2 FEA dry contact pressure distribution of 6 mm cup thickness of the 

nine contact points A, B, C, D, E, F, G, H, and I compared with the 

theoretical equivalent Hertzian (black line). 
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Pressure distribution of 8 mm cup thickness  
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Figure 7.3 FEA dry contact pressure distribution of 8 mm cup thickness of the 

nine contact points A, B, C, D, E, F, G, H, and I compared with the 

theoretical equivalent Hertzian (black line). 
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Pressure distribution of 10 mm cup thickness  

 

                               

 

 

 

                               A                                                            B 

 

 

 

 

 

                              C                                                             D 

 

 

 

 

 

                                 E                                                            F 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

35E+6

40E+6

45E+6

50E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area r / m 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

35E+6

40E+6

45E+6

50E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area r / m 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

35E+6

40E+6

45E+6

50E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area r / m 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

35E+6

40E+6

45E+6

50E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area r / m 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

35E+6

40E+6

45E+6

50E+6

0 0.001 0.002 0.003 0.004 0.005 0.006

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
  
/ 

P
a

 

Radius of contact area r / m 

00E+0

05E+6

10E+6

15E+6

20E+6

25E+6

30E+6

35E+6

40E+6

45E+6

50E+6

0 0.002 0.004 0.006

C
o

n
ta

ct
 P

re
ss

u
re

 /
 P

a
 

Radius of contact area r / m 



Chapter 7 
 

150 
 

                             

 

 

        

 

                               G                                                               H 

 

 

 

 

 

                               I 

Figure 7.4 FEA dry contact pressure distribution of 10 mm cup thickness of 

the nine contact points A, B, C, D, E, F, G, H, and I compared with the 

theoretical equivalent Hertzian (black line). 
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Table 7.1 Cup wall thickness (wt), Measured load (W), Equivalent load           

(𝑊equiv), Calculated contact pressure (Po(f)), Equivalent elastic modulus 

(�́�equiv), Entrainment velocity(�⃗⃗� i), Equivalent and Hertzian radius of contact 

area (aeq, ah), ratio of cup thickness to Hertzian radius of contact area (wt/ah). 

 

wt 

(mm) 
W (N) 

𝑾𝐞𝐪𝐮𝐢𝐯 

(N) 

Po(f) 

(MPa) 

�́�𝐞𝐪𝐮𝐢𝐯 

(GPa) 

�⃗⃗� 𝐢 

(m/s) 

aeq 

(mm) 

ah 

(mm) 
wt/ah 

Point A 10 568 567.8 33.4 231.363 0.049 2.847 2.85 3.50 

 
8 568 569.5 33.1 227.963 0.049 2.865 2.85 2.80 

 
6 568 581.8 31.7 211.161 0.049 2.96 2.85 2.10 

 
4 568 546.0 27.7 178.520 0.049 3.065 2.85 1.40 

  
      

  
Point B 10 1807 1790.3 48.2 225.401 0.032 4.212 4.192 2.38 

 
8 1807 1757.2 46.4 211.558 0.032 4.276 4.192 1.90 

 
6 1807 1730.7 41.3 180.727 0.032 4.483 4.192 1.43 

 
4 1807  28.8  0.032 5.124 4.192 0.95 

  
      

  
Point C 10 1819 1809.4 48 223.172 0.008 4.241 4.202 2.37 

 
8 1819 1777.4 46.3 211.592 0.008 4.292 4.202 1.90 

 
6 1819 1752.2 41.7 180.605 0.008 4.503 4.202 1.42 

 
4 1819  28.9  0.008 5.14 4.202 0.95 

  
      

  
Point D 10 1679 1692.4 46.8 222.618 0.028 4.151 4.085 2.44 

 
8 1679 1661.4 45.5 214.210 0.028 4.179 4.085 1.95 

 
6 1679 1684.5 40.9 182.111 0.028 4.432 4.085 1.46 

 
4 1679  28.6  0.028 5.033 4.085 0.97 

  
      

  
Point E 10 1276 1331.3 43.1 220.874 0.073 3.842 3.733 2.67 

 
8 1276 1303.7 41.9 214.039 0.073 3.856 3.733 2.14 

 
6 1276 1250.9 38.7 193.350 0.073 3.934 3.733 1.60 

 
4 1276  29  0.073 4.436 3.733 1.07 
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Point F 10 958 944.0 39.6 231.869 0.075 3.371 3.393 2.94 

 8 958 955.3 38.9 223.986 0.075 3.362 3.393 2.35 

 6 958 972.5 36.6 203.264 0.075 3.557 3.393 1.76 

 4 958  29.3  0.075 3.824 3.393 1.17 

  
      

  
Point G 10 663 660.3 35 230.479 0.034 2.998 3.001 3.33 

 8 663 659.8 34.8 228.192 0.034 3.008 3.001 2.66 

 6 663 649.1 33.3 215.196 0.034 3.051 3.001 1.99 

 4 663 642.0 28.4 169.222 0.034 3.293 3.001 1.33 

  
      

  
Point H 10 312 325.1 27.6 229.438 0.01 2.371 2.334 4.28 

 8 312 321.0 27.2 226.698 0.01 2.371 2.334 3.42 

 6 312 318.2 26.9 223.618 0.01 2.374 2.334 2.57 

 4 312 305.8 25.1 206.211 0.01 2.408 2.334 1.71 

  
      

  
Point I 10 295 297.9 27 233.098 0.029 2.291 2.291 4.36 

 8 295 295.9 26.9 232.233 0.029 2.289 2.291 3.49 

 6 295 312.4 26.6 221.972 0.029 2.366 2.291 2.61 

 4 295 293.2 24.5 202.658 0.029 2.388 2.291 1.74 

 

 

     In Table 7.1 the value of  �́�𝐞𝐪𝐮𝐢𝐯 is seen to reduce as the cup thickness 

reduces at each of the nine gait cycle positions. There is a tendency for �́�𝐞𝐪𝐮𝐢𝐯 

to reduce as the load is increased for each value of cup thickness but this is a 

trend rather than a rule and is also influenced by the position of the contact 

point on the cup surface. The values of 𝑎equiv follow the pattern of the 

Hertzian results, and can be seen to be larger, and increasingly so as the cup 

thickness is reduced. The differences between 𝑎equiv and ah become large for 

the 4 mm cup at the heaviest loads (22% for case C). The pattern of 𝑊equiv is 
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less ordered. Its value generally falls as the cup thickness is reduced but 

points A, D and I have no clear trend.   

     The equivalent Hertzian models are based on two features of the FE 

analyses which are not established precisely. The contact dimension is 

obtained by an extrapolation of the pressure curve to find the position at 

which it becomes zero. This calculation is made for each axial position in the 

FEA mesh and an average is used for 𝑎equiv. The values obtained at the 24 

angular positions are close to each other and are best viewed as consisting of 

a circle with random errors of radius, rather than a distorted circle with a 

smooth boundary. The second feature is the contact pressure at the centre of 

the contact and this has an element of variation, e.g. case C in figure 7.2. It is 

therefore reasonable to expect same inconsistencies to emerge in the trends 

for the equivalent model parameters when the different loads and cup 

positions are considered. 

    

 7.3  EHL Film Thickness Contours  

     Contours of the film thicknesses for the nine contact points, A – I, and four 

cup thicknesses, 4, 6, 8 and 10 mm are shown in figures 7.5 – 7.8. The black 

dashed line in each contour plot represents the boundary of the contact area. 

In these figures the contour key has been kept fixed so that the film 

thicknesses may be compared. Figure 7.5 for a 4 mm cup thickness shows 

contours for cases A, G, H and I only because these are the only cases with 

this cup thickness where the contact can be regarded as Hertzian. All the 

contours presented here were for the modified equivalent Hertzian case. A 

typical film shape of the steady state problem for each contact point with the 

classic horseshoe film thickness can be shown in these figures where the 

constriction is formed. This is most evident in the contours of figure 7.8 case 
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D because the fixed contour levels show the horseshoe constriction clearly 

and the location of the minimum film thickness in the side lobes. The value of 

central and minimum film thickness is given below the key for each contour 

plot. Within the Hertzian contact, in the right hand side of each figure the 

minimum film thickness develops near the contact edges. There is a reduction 

in the lubricant film thickness for the circular contact points from the central 

area of the contact as y/a increases. For the contours presented for the three 

different cup thicknesses, 6, 8 and 10 mm, the lowest value of the film 

thickness occurs at the contact point C with a value of hm = 0.030 µm. 

     Comparing the contour plots for the different cup thicknesses, it can be 

seen that the minimum film thickness which occurs in the side lobes become 

thinner as the cup thickness increases. Points G and D are good examples to 

illustrate this as their minimum film thickness value reduces to cross the 

contour colour boundary at 0.075 µm as the cup thickness increases. This is 

illustrated by the emergence of the red contour at these points. Although, the 

load applied and the entrainment velocity are fixed for the same contact point, 

the minimum and central film thicknesses of point G decrease from 0.160 and 

0.112 µm at 4 mm cup to be 0.145 and 0.102 µm at 6 mm cup, 0.141 and 

0.100 µm at 8 mm, 0.140 and 0.99 µm at 10 mm cup thickness. It is possible 

to say that thicker film thickness can be produced by reducing the cup wall 

thickness because the resulting change to the equivalent contact conditions 

are determental to the film thickness. 

     The minimum and central film thicknesses for the contact point I are about 

double that of the contact point H for all the cup thicknesses, although the 

difference of the measured load between these two points is no more than 6%. 

The reason for this variation in the film thickness comes from entrainment 

velocity, where the velocity for the point I is three times bigger than the 

velocity for the point H. This case can also be applied for the contact points 
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B, C and D, where there are relatively small differences between the 

measured loads of these points as it shown from Table 7.1, but there are large 

variations in the contour plots due to the changing the entrainment velocities.     

      

Contour of film thickness of 4 mm cup  
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                           H                                                               I 

Figure 7.5 film thickness /µm at different contact positions for points A, G, 

H, I, of the gait cycle for a 4 mm cup thickness. 
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Contour of film thickness of 6 mm cup 
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Figure 7.6 film thickness /µm at different contact positions, nine points, of the 

gait cycle for a 6 mm cup thickness. 
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Contour of film thickness of 8 mm cup 
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Figure 7.7 film thickness /µm at different contact positions, nine points, of the 

gait cycle for a 8 mm cup thickness. 
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Contour of film thickness of 10 mm cup 
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Figure 7.8 film thickness /µm at different contact positions, nine points, of the 

gait cycle for a 10 mm cup thickness. 
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show sections of pressure and film thickness, respectively, in the contact 

entrainment direction. The final two figures show the corresponding sections 

perpendicular to the entrainment direction. 

     In each of these sections three curves are shown; the result for EHL 

analysis of the nominal Hertzian contact, denoted Hz; the result for the 

equivalent Hertzian contact determined according to section 5.5, denoted Hz-

equiv; and the result when the gap factor is added to the equivalent Hertzian 

contact, denoted Hz-equiv-mod.  

     In comparing the results for the gap factors for the various cup thicknesses 

and gait cycle positions it was found that the gap factor values decrease when 

the cup thickness increases for the same contact point. For example, the 

contact point A has an average gap factor equal to – 0.48 µm, – 0.175 µm, – 

0.105 µm, – 0.05 µm at r/a =2.4 for 4, 6, 8, 10 mm cup thickness 

respectively. When the cup thickness increases the contact pressure also 

increases and the radius of the contact area decreases at the same applied 

load. As a result, the gap factor decreases. In other words, when the radius of 

the contact area decreases, the gap outside the contact zone which is 

calculated from equation (5.18) for the equivalent Hertzian also decreases. 

Consequently, the difference between the gap from the FE analysis and 

Hertzian theory is reduced. The gap factors also have different values for the 

nine contact points, A to I, for the same cup thickness. In general, it seems 

that the gap factor depends directly on the radius of the contact area, a.  
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7.4  Detailed EHL results for 4 mm cup thickness 

     Figures 7.9 – 7.28, show the EHL results for the four contact points, A, G, 

H and I of the 4 mm cup thickness. In comparison to the nominal Hertzian 

EHL pressure distribution it was found that the equivalent and modified cases 

had contact pressures that were lower by 16.3%, 19.6%, 7.8% and 8.8% for 

the contact points A, G, H and I respectively. Besides the reduction in the 

maximum contact pressure there is also an increase in the film thickness. 

Where the percentage ratios of increasing of the central film thicknesses for 

A, G, H and I are 11.5%, 14%, 5%, and 5.7% respectively. There were very 

small variations between the results of the equivalent case and the modified 

case, which means that adding the gap factor value to the undeformed 

geometry of the equivalent Hertzian case does not make a significant change 

to the results.  

     It should be noted that in these sections the position ( x or y) is normalised 

to the contact dimension for the individual model. The reduction in contact 

pressure occurs in association with an increase in the contact dimension as the 

load is the same for the cases compared in the sectional figure.  

     Table 7.2 shows summary for the 4 mm cup of the calculated Hertzian and 

equivalent radius of contact area, the Hertzian and the equivalent maximum 

contact pressure and the ratio between them, the Hertzian and the equivalent 

central film thickness and the ratio between them. Where the pressure and the 

film ratios were obtained as follows; 

Percentage of the pressure ratio = 
𝑃𝑜(𝑒𝑞𝑢𝑖𝑣)−𝑃𝑜(ℎ)

𝑃𝑜(ℎ)
 × 100% ……………….(7.1) 

Percentage of the central film thickness ratio = 
ℎ𝑐(𝑒𝑞𝑢𝑖𝑣)−ℎ𝑐(ℎ)

ℎ𝑐(ℎ)
 × 100%.....(7.2) 
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 EHL results for 4 mm Cup thickness 

Contact Point A 

 

 

 

 

 

 

 

 

Figure 7.9 Gap factor for point A of 4 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.10 Pressure distribution for point A, 4 mm cup thickness, central line 

in x-direction   
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where  

Equiv : means Equivalent Hertzian. 

Mod : means Modified Equivalent Hertzian, which is equal to the Equivalent 

Hertzian after adding the gap factor.   

 

 

 

 

 

 

 

 

 

 

Figure 7.11 Film thickness for point A, 4 mm cup thickness, central line in   

x-direction 
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Figure 7.12 Pressure distribution for point A, 4 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

Figure 7.13 Film thickness for point A, 4 mm cup thickness, central line in   

y-direction 
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 Contact Point G     

 

 

 

 

 

 

 

 

Figure 7.14 Gap factor for point G of 4 mm cup thickness 

 

 

 

 

 

 

 

 

 

Figure 7.15 Pressure distribution for point G, 4 mm cup thickness, central line 

in x-direction 
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Figure 7.16 Film thickness for point G, 4 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.17 Pressure distribution for point G, 4 mm cup thickness, central line 

in y-direction 
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Figure 7.18 Film thickness for point G, 4 mm cup thickness, central line in   

y-direction 
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Figure 7.19 Gap factor for point H of4 mm cup thickness 
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Figure 7.20 Pressure distribution for point H, 4 mm cup thickness, central line 

in x-direction 

 

 

 

 

 

 

 

 

Figure 7.21 Film thickness for point H, 4 mm cup thickness, central line in   

x-direction 
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Figure 7.22 Pressure distribution for point H, 4 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

Figure 7.23 Film thickness for point H, 4 mm cup thickness, central line in   

y-direction 
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Contact Point I 

 

 

 

 

 

 

 

 

 

Figure 7.24 Gap factor for point I of 4 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.25 Pressure distribution for point I, 4 mm cup thickness, central line 

in x-direction 
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Figure 7.26 Film thickness for point I, 4 mm cup thickness, central line in    

x-direction 

 

 

 

 

 

 

 

 

Figure 7.27 Pressure distribution for point I, 4 mm cup thickness, central line 

in y-direction 
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Figure 7.28 Film thickness for point I, 4 mm cup thickness, central line in    

y-direction 

 

Table 7.2 shows the calculated the Hertzian and the equivalent pressure and 

the pressure ratio, the Hertzian and the equivalent central film thickness and 

the film ratio, the Hertzian and the equivalent radius of contact area for the 4 

mm cup.  

 ah(mm) aequiv(mm) Po(h)(MPa) Po(equiv)(MPa) % hc(h)(µm) hc(equiv)(µm) % 

A 2.852 3.067 31.277 26.192 -16.258 0.177 0.197 11.533 

G 3.003 3.295 33.848 27.228 -19.558 0.140 0.160 14.013 

H 2.336 2.410 26.471 24.407 -7.797 0.073 0.077 5.068 

I 2.293 2.389 24.970 22.779 -8.775 0.137 0.145 5.727 
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7.5  Detailed EHL results for 6 mm cup thickness  

     For the results of the 6 mm cup thickness, Figures 7.29 – 7.73, it is 

possible to categorise the nine contact points into three groups. Firstly, the 

contact points B, C and D where for these three points the effect of adding the 

gap factor value to the undeformed geometry can be seen, although there are 

slight changes in the results relative to the equivalent case. Adding the gap 

factor to the undeformed geometry with an average value 0.8 µm at r/a =2.4 

reduced the film thickness in the inlet zone which made the contact pressure 

increase to be greater than the pressure produced by the same geometry 

without the gap factor. Adding the gap factor to the undeformed geometry 

does not make change to the film thickness within the contact area zone, 

although it makes the maximum pressure value for the modified model be 

higher than that for the equivalent model by a maximum of approximately 

1.5% considering all cases.    

 

     For contact points B, C and D there is a reduction in the maximum contact 

pressures due to changing the model from the Hertzian to the equivalent 

model by 16.2%, 16.1% and 14.4%, respectively. This ratio of the variation 

of the contact pressure comes from the difference between the Hertzian 

theory which assumed the contacting bodies are semi-infinite bodies, and the 

changed load and reduced elastic modulus of the equivalent Hertzian contact 

which replaces the contact of the real model with a specific cup thickness, 

6mm in this case. It is expected that lower pressure ratios can be found with 

increasing the cup thickness and this will be shown in the next sections.  In 

addition to the reduction in the contact pressure there is an increase in the 
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radius of the contact area by 6.9%, 7.1% and 8.3% for contact points B, C and 

D respectively.  

     Secondly, the contact points H and I where there are no differences 

between the three cases, Hertzian, equivalent and the modified, and the 

results of the contact pressures and the film thicknesses are similar. Two 

factors are expected to be the reason for this similarity in the results. The first 

factor is the low load measured in the hip joint, 295 – 312 N, for these two 

contact points which represents no more than 40% of the body weight of 

patient and this can be explained by examining the values of wt/ah in Table 

7.1 which shows values of 2.6 for these two cases. In these circumstances the 

cup behaves as a semi-infinite body and the equivalent model is essentially 

the same as Hertzian. Therefore, there is no difference between the equivalent 

model from one side and the Hertzian model on another side. The second 

factor is low value of the average gap factor where it is about 0.075 µm at r/a 

= 2.4 for these two points and this factor is the reason for the similarity 

between the equivalent and modified models.   

  

     The third group of the contact points, A, E, F and G where the average 

value of the gap factor is 0.18 − 0.55 µm. These values are not high enough to 

make changes between the equivalent and the modified cases. While there are 

differences between them and the Hertzian case due to changing the model 

from the Hertzian to the equivalent. The variation ratios of the central film 

thicknesses and the maximum contact pressures between the Hertzian case 

and the equivalent case for the nine contact points are shown in Table 7.3.      
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EHL results for 6 mm Cup thickness 

Contact Point A 

 

 

 

 

 

 

 

Figure 7.29 Gap factor for point A of 6 mm cup thickness 
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Figure 7.30 Pressure distribution for point A, 6 mm cup thickness, central line 

in x-direction 
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Figure 7.31 Film thickness for point A, 6 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.32 Pressure distribution for point A, 6 mm cup thickness, central line 

in y-direction 
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Figure 7.33 Film thickness for point A, 6 mm cup thickness, central line in   

y-direction 

Contact Point B 

 

 

 

 

 

 

 

 

Figure 7.34 Gap factor for point B of 6 mm cup thickness 
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Figure 7.35 Pressure distribution for point B, 6 mm cup thickness, central line 

in x-direction 

 

 

 

 

 

 

 

 

Figure 7.36 Film thickness for point B, 6 mm cup thickness, central line in   

x-direction 
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Figure 7.37 Pressure distribution for point B, 6 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

Figure 7.38 Film thickness for point B, 6 mm cup thickness, central line in   

y-direction 
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Contact Point C 

 

 

 

 

 

 

 

 

Figure 7.39 Gap factor for point C of 6 mm cup thickness 

 

 

 

 

 

 

 

 

 

Figure 7.40 Pressure distribution for point C, 6 mm cup thickness, central line 

in x-direction 
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Figure 7.41 Film thickness for point C, 6 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.42 Pressure distribution for point C, 6 mm cup thickness, central line 

in y-direction 
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Figure 7.43 Film thickness for point C, 6 mm cup thickness, central line in   

y-direction 

Contact Point D 

 

 

 

 

 

 

 

 

 

Figure 7.44 Gap factor for point D of 6 mm cup thickness 
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Figure 7.45 Pressure distribution for point D, 6 mm cup thickness, central line 

in x-direction 

 

 

 

 

 

 

 

 

 

Figure 7.46 Film thickness for point D, 6 mm cup thickness, central line in   

x-direction 
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Figure 7.47 Pressure distribution for point D, 6 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

 

Figure 7.48 Film thickness for point D, 6 mm cup thickness, central line in   

y-direction 
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Contact Point E  

 

 

 

 

 

 

 

 

Figure 7.49 Gap factor for point E of 6 mm cup thickness 

 

 

 

 

 

 

 

 

 

Figure 7.50 Pressure distribution for point E, 6 mm cup thickness, central line 

in x-direction 
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Figure 7.51 Film thickness for point E, 6 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.52 Pressure distribution for point E, 6 mm cup thickness, central line 

in y-direction 
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Figure 7.53 Film thickness for point E, 6 mm cup thickness, central line in   

y-direction 

Contact Point F 

 

 

 

 

 

 

 

 

Figure 7.54 Gap factor for point F of 6 mm cup thickness 
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Figure 7.55 Pressure distribution for point F, 6 mm cup thickness, central line 

in x-direction 

 

 

 

 

 

 

 

 

Figure 7.56 Film thickness for point F, 6 mm cup thickness, central line in    

x-direction 
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Figure 7.57 Pressure distribution for point F, 6 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

 

Figure 7.58 Film thickness for point F, 6 mm cup thickness, central line in y-

direction 
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Contact Point G 

 

 

 

 

 

 

 

 

Figure 7.59 Gap factor for point G of 6 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.60 Pressure distribution for point G, 6 mm cup thickness, central line 

in x-direction 
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Figure 7.61 Film thickness for point G, 6 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.62 Pressure distribution for point G, 6 mm cup thickness, central line 

in y-direction 
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Figure 7.63 Film thickness for point G, 6 mm cup thickness, central line in   

y-direction 

Contact Point H 

 

 

 

 

 

 

 

 

 

Figure 7.64 Gap factor for point H of 6 mm cup thickness  
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Figure 7.65 Pressure distribution for point H, 6 mm cup thickness, central line 

in x-direction 

 

 

 

 

 

 

 

 

 

Figure 7.66 Film thickness for point H, 6 mm cup thickness, central line in x-

direction 
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Figure 7.67 Pressure distribution for point H, 6 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

 

Figure 7.68 Film thickness for point H, 6 mm cup thickness, central line in   

y-direction 
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Contact Point I  

 

 

 

 

 

 

 

 

Figure 7.69 Gap factor for point I of 6 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.70 Pressure distribution for point I, 6 mm cup thickness, central line 

in x-direction 
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Figure 7.71 Film thickness for point I, 6 mm cup thickness, central line in    

x-direction 

 

 

 

 

 

 

 

 

 

Figure 7.72 Pressure distribution for point I, 6 mm cup thickness, central line 

in y-direction 
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Figure 7.73 Film thickness for point I, 6 mm cup thickness, central line in    

y-direction 

 

Table 7.3 Calculated Hertzian and equivalent pressure and the ratio between 

them, Hertzian and equivalent central film thickness and the ratio between 

them, Hertzian and equivalent radius of contact area for the 6 mm cup.  

 ah(mm) aequiv(mm) Po(h)(MPa) Po(equiv)(MPa) % hc(h)(µm) hc(equiv)(µm) % 

A 2.852 2.960 31.277 29.802 -4.716 0.177 0.183 3.523 

B 4.195 4.486 48.811 40.900 -16.207 0.123 0.136 10.701 

C 4.204 4.506 49.306 41.375 -16.085 0.054 0.060 11.041 

D 4.094 4.435 47.649 40.800 -14.374 0.115 0.126 9.941 

E 3.736 3.936 42.267 37.326 -11.690 0.208 0.224 7.493 

F 3.395 3.559 38.433 35.557 -7.483 0.168 0.177 5.091 

G 3.003 3.052 33.848 32.041 -5.339 0.140 0.145 3.096 

H 2.336 2.376 26.471 26.151 -1.209 0.073 0.074 1.143 

I 2.293 2.367 24.970 24.621 -1.398 0.137 0.139 1.307 
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7.6  Detailed EHL results for 8 mm cup thickness 

     The section results for the EHL analyses with an 8 mm cup thickness are 

given in figures 7.74 to 7.118. Comparing the results of the EHL analysis of 8 

mm cup thickness with the 6 mm cup, it can be shown that five contact 

points, A, F, G, H and I are essentially identical for the Hertzian, equivalent 

and modified equivalent model cases. As only points H and I had identical 

results for the 6 mm cup, it can be said that increasing the cup thickness 

reduces the differences between the Hertzian model and the equivalent model. 

In other words, the contact pressure, the film thickness and radius of the 

contact area become closer and closer to the Hertzian case when the cup 

thickness becomes thicker and thicker. Again this corresponds to increasing 

values of wt/ah in Table 7.1. 

     When the measured load of the hip joint is greater than 150% of the body 

weight as in the contact points B, C, D and E there are some differences in the 

values of the contact pressure and the film thickness. Lower values by 6.5%, 

6.3%, 5% and 4.1% were found for the maximum contact pressure due to 

changing from the Hertzian model to the equivalent model for contact points 

B, C, D and E respectively. Also there was an increase in the lubricant film 

thickness for these four contact points by 3.8%, 3.9%, 3% and 2.8%.  

A summary of the radius of contact area, contact pressure and the film 

thickness for the Hertzian and equivalent models are given in Table 7.4.  
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EHL results for 8 mm Cup thickness 

Contact Point A  

 

 

 

 

 

 

 

 

Figure 7.74 Gap factor for point A of 8 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.75 Pressure distribution for point A, 8 mm cup thickness, central line 

in x-direction 
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Figure 7.76 Film thickness for point A, 8 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.77 Pressure distribution for point A, 8 mm cup thickness, central line 

in y-direction 
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Figure 7.78 Film thickness for point A, 8 mm cup thickness, central line in   

y-direction 

Contact Point B  

 

 

 

 

 

 

 

 

Figure 7.79 Gap factor for point B of 8 mm cup thickness 
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Figure 7.80 Pressure distribution for point B, 8 mm cup thickness, central line 

in x-direction 

 

 

 

 

 

 

 

 

Figure 7.81 Film thickness for point B, 8 mm cup thickness, central line in   

x-direction 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

C
o

n
ta

ct
 P

re
ss

u
re

 (
 M

P
a

 )
 

x / a 

Hz

Hz-equiv

Hz-equiv-mod

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

F
il

m
 t

h
ic

k
n

es
s 

( 
M

m
 )

 

x / a 

Hz

Hz-equiv

Hz-equiv-mod



Chapter 7 
 

205 
 

 

 

 

 

 

 

 

 

 

Figure 7.82 Pressure distribution for point B, 8 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

Figure 7.83 Film thickness for point B, 8 mm cup thickness, central line in   

y-direction 
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Contact Point C  

 

 

 

 

 

 

 

 

 

Figure 7.84 Gap factor for point C of 8 mm cup thickness  

 

 

 

 

 

 

 

 

Figure 7.85 Pressure distribution for point C, 8 mm cup thickness, central line 

in x-direction 
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Figure 7.86 Film thickness for point C, 8 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.87 Pressure distribution for point C, 8 mm cup thickness, central line 

in y-direction 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

F
il

m
 t

h
ic

k
n

es
s 

( 
M

m
 )

 

x / a 

Hz

Hz-equiv

Hz-equiv-mod

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

C
o

n
ta

ct
 P

re
ss

u
re

 (
 M

P
a

 )
 

y / a 

Hz

Hz-equiv

Hz-equiv-mod



Chapter 7 
 

208 
 

 

 

 

 

 

 

 

 

 

Figure 7.88 Film thickness for point C, 8 mm cup thickness, central line in   

y-direction 

Contact Point D 

 

 

 

 

 

 

 

 

Figure 7.89 Gap factor for point D of 8 mm cup thickness 
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Figure 7.90 Pressure distribution for point D, 8 mm cup thickness, central line 

in x-direction 

 

 

 

 

 

 

 

 

Figure 7.91 Film thickness for point D, 8 mm cup thickness, central line in   

x-direction 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

C
o

n
ta

ct
 p

re
ss

u
re

 (
 M

P
a

 )
 

x / a 

Hz

Hz-equiv

Hz-equiv-mod

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

F
il

m
 t

h
ic

k
n

es
s 

( 
M

m
 )

 

x / a 

Hz

Hz-equiv

Hz-equiv-mod



Chapter 7 
 

210 
 

 

 

 

 

 

 

 

 

 

Figure 7.92 Pressure distribution for point D, 8 mm cup thickness, central line 

in y-direction 

 

 

 

 

 

 

 

 

Figure 7.93 Film thickness for point D, 8 mm cup thickness, central line in   

y-direction 
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Contact Point E  

 

 

 

 

 

 

 

 

 

Figure 7.94 Gap factor for point E of 8 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.95 Pressure distribution for point E, 8 mm cup thickness, central line 

in x-direction 
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Figure 7.96 Film thickness for point E, 8 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.97 Pressure distribution for point E, 8 mm cup thickness, central line 

in y-direction 
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Figure 7.98 Film thickness for point E, 8 mm cup thickness, central line in   

y-direction 

Contact Point F 

 

 

 

 

 

 

 

 

Figure 7.99 Gap factor for point F of 8 mm cup thickness 
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Figure 7.100 Pressure distribution for point F, 8 mm cup thickness, central 

line in x-direction 

 

 

 

 

 

 

 

 

Figure 7.101 Film thickness for point F, 8 mm cup thickness, central line in  

x-direction 
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Figure 7.102 Pressure distribution for point F, 8 mm cup thickness, central 

line in y-direction 

 

 

 

 

 

 

 

 

Figure 7.103 Film thickness for point F, 8 mm cup thickness, central line in  

y-direction 
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Contact Point G 

 

 

 

 

 

 

 

 

 

Figure 7.104 Gap factor for point G of 8 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.105 Pressure distribution for point G, 8 mm cup thickness, central 

line in x-direction 
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Figure 7.106 Film thickness for point G, 8 mm cup thickness, central line in 

x-direction 

 

 

 

 

 

 

 

 

Figure 7.107 Pressure distribution for point G, 8 mm cup thickness, central 

line in y-direction 
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Figure 7.108 Film thickness for point G, 8 mm cup thickness, central line in 

y-direction 

Contact Point H 

 

 

 

 

 

 

 

 

Figure 7.109 Gap factor for point H of 8 mm cup thickness 
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Figure 7.110 Pressure distribution for point H, 8 mm cup thickness, central 

line in x-direction 

 

 

 

 

 

 

 

 

Figure 7.111 Film thickness for point H, 8 mm cup thickness, central line in 

x-direction 
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Figure 7.112 Pressure distribution for point H, 8 mm cup thickness, central 

line in y-direction 

 

 

 

 

 

 

 

 

Figure 7.113 Film thickness for point H, 8 mm cup thickness, central line in 

y-direction 
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Contact Point I 

 

 

 

 

 

 

 

 

 

Figure 7.114 Gap factor for point I of 8 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.115 Pressure distribution for point I, 8 mm cup thickness, central 

line in x-direction 
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Figure 7.116 Film thickness for point I, 8 mm cup thickness, central line in   

x-direction 

 

 

 

 

 

 

 

 

Figure 7.117 Pressure distribution for point I, 8 mm cup thickness, central 

line in y-direction 
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Figure 7.118 Film thickness for point I, 8 mm cup thickness, central line in   

y-direction 

 

Table 7.4 Calculated Hertzian and equivalent pressure and the ratio between 

them, Hertzian and equivalent central film thickness and the ratio between 

them, Hertzian and equivalent radius of contact area for the 8 mm cup. 

 ah(mm) aequiv(mm) Po(h)(MPa) Po(equiv)(MPa) % hc(h)(µm) hc(equiv)(µm) % 

A 2.852 2.867 31.277 30.932 -1.103 0.177 0.178 0.643 

B 4.195 4.278 48.811 45.635 -6.507 0.123 0.128 3.775 

C 4.204 4.295 49.304 46.176 -6.344 0.054 0.056 3.852 

D 4.088 4.182 47.581 45.188 -5.029 0.115 0.118 3.064 

E 3.736 3.858 42.267 40.524 -4.124 0.208 0.214 2.846 

F 3.395 3.426 37.801 37.021 -2.063 0.217 0.219 1.228 

G 3.003 3.010 33.848 33.495 -1.043 0.140 0.141 0.508 

H 2.336 2.372 26.471 26.477 0.023 0.073 0.073 0.447 

I 2.293 2.290 24.970 25.102 0.529 0.137 0.137 -0.287 
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7.7  Detailed EHL results for 10 mm cup thickness   

     Results of the EHL analysis for the 10 mm cup thickness are given in 

figures 7.119 to 7.163 and show that the Hertzian, equivalent and modified 

equivalent models of all the nine contact points are very similar, except for 

points B, C and D where there are a small difference between the Hertzian 

and the equivalent cases. No variation was observed in the film thicknesses. 

As mentioned in section 7.5, when the cup thickness increases the equivalent 

case becomes similar to the Hertzian case.     

For the contact points B, C and D of the 10 mm cup thickness, the maximum 

pressure of the equivalent model reduced by 1.8%, 2.4% and 2.1%, as shown 

in Table 7.5, relative to the Hertzian model pressure, and the variation in the 

pressure for the other contact points is about 1% or less. Increases in the 

central film thicknesses were found of 1%, 1.4% and 1.3% for points B, C 

and D respectively, and less than 1% for the rest of the contact points. 

     Comparisons were made of the average value of the gap factor for each of 

the nine contact points. For example, for point G at r/a = 2.4 and cup 

thicknesses of 4, 6, 8 and 10 mm these values were found to be 0.58, 0.25, 

0.12 and 0.08 µm. It can be said that the gap factor depends on the cup 

thickness used, although within this range of values no significant changes 

were observed in the results of the contact pressure and film thickness.    

A summary of the results for the 10 mm cup thickness cases is given in Table 

7.5.  
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EHL results for 10 mm Cup thickness  

Contact Point A 

 

 

 

 

 

 

 

 

Figure 7.119 Gap factor for point A of 10 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.120 Pressure distribution for point A, 10 mm cup thickness, central 

line in x-direction 
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Figure 7.121 Film thickness for point A, 10 mm cup thickness, central line in 

x-direction 

 

 

 

 

 

 

 

 

 

Figure 7.122 Pressure distribution for point A, 10 mm cup thickness, central 

line in y-direction 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

F
il

m
 t

h
ic

k
n

es
s 

 (
 M

m
 )

 

x / a 

Hz

Hz-equiv

Hz-equiv-mod

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

C
o

n
ta

ct
 P

re
ss

u
re

 (
 M

P
a

 )
 

y / a 

Hz

Hz-equiv

Hz-equiv-mod



Chapter 7 
 

227 
 

 

 

 

 

 

 

 

 

Figure 7.123 Film thickness for point A, 10 mm cup thickness, central line in 

y-direction 

Contact Point B  

 

 

 

 

 

 

 

 

 

Figure 7.124 Gap factor for point B of 10 mm cup thickness 
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Figure 7.125 Pressure distribution for point B, 10 mm cup thickness, central 

line in x-direction 

 

 

 

 

 

 

 

 

 

Figure 7.126 Film thickness for point B, 10 mm cup thickness, central line in 

x-direction 
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Figure 7.127 Pressure distribution for point B, 10 mm cup thickness, central 

line in y-direction 

 

 

 

 

 

 

 

 

Figure 7.128 Film thickness for point B, 10 mm cup thickness, central line in 

y-direction 
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Contact Point C 

 

 

 

 

 

 

 

 

Figure 7.129 Gap factor for point C of 10 mm cup thickness 

 

 

 

 

 

 

 

 

 

Figure 7.130 Pressure distribution for point C, 10 mm cup thickness, central 

line in x-direction 
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Figure 7.131 Film thickness for point C, 10 mm cup thickness, central line in 

x-direction 

 

 

 

 

 

 

 

  

 

Figure 7.132 Pressure distribution for point C, 10 mm cup thickness, central 

line in y-direction 
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Figure 7.133 Film thickness for point C, 10 mm cup thickness, central line in 

y-direction 

Contact Point D 

 

 

 

 

 

 

 

 

Figure 7.134 Gap factor for point D of 10 mm cup thickness 
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Figure 7.135 Pressure distribution for point D, 10 mm cup thickness, central 

line in x-direction 

 

 

 

 

 

 

 

 

Figure 7.136 Film thickness for point D, 10 mm cup thickness, central line in 

x-direction 
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Figure 7.137 Pressure distribution for point D, 10 mm cup thickness, central 

line in y-direction 

 

 

 

 

 

 

 

 

 

Figure 7.138 Film thickness for point D, 10 mm cup thickness, central line in 

y-direction 
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Contact Point E  

 

 

 

 

 

 

 

 

Figure 7.139 Gap factor for point E of 10 mm cup thickness 

 

Figure 7.140 Pressure distribution for point E, 10 mm cup thickness, central 

line in x-direction 
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Figure 7.141 Film thickness for point E, 10 mm cup thickness, central line in 

x-direction 

 

 

 

 

 

 

 

 

 

Figure 7.142 Pressure distribution for point E, 10 mm cup thickness, central 

line in y-direction 
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Figure 7.143 Film thickness for point E, 10 mm cup thickness, central line in 

y-direction 
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Figure 7.144 Gap factor for point F of 10 mm cup thickness 
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Figure 7.145 Pressure distribution for point F, 10 mm cup thickness, central 

line in x-direction 

 

 

 

 

 

 

 

 

Figure 7.146 Film thickness for point F, 10 mm cup thickness, central line in 

x-direction 
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Figure 7.147 Pressure distribution for point F, 10 mm cup thickness, central 

line in y-direction 

 

 

 

 

 

 

 

 

Figure 7.148 Film thickness for point F, 10 mm cup thickness, central line in 

y-direction 
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Contact Point G 

 

 

 

 

 

 

 

 

 

Figure 7.149 Gap factor for point G of 10 mm cup thickness 

 

 

 

 

 

 

 

 

Figure 7.150 Pressure distribution for point G, 10 mm cup thickness, central 

line in x-direction 
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Figure 7.151 Film thickness for point G, 10 mm cup thickness, central line in 

x-direction 

 

 

 

 

 

 

 

 

Figure 7.152 Pressure distribution for point G, 10 mm cup thickness, central 

line in y-direction 
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Figure 7.153 Film thickness for point G, 10 mm cup thickness, central line in 

y-direction 

Contact Point H 

 

 

 

 

 

 

 

 

Figure 7.154 Gap factor for point H of 10 mm cup thickness 
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Figure 7.155 Pressure distribution for point H, 10 mm cup thickness, central 

line in x-direction 

 

 

 

 

 

 

 

 

Figure 7.156 Film thickness for point H, 10 mm cup thickness, central line in 

x-direction 
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Figure 7.157 Pressure distribution for point H, 10 mm cup thickness, central 

line in y-direction 

 

 

 

 

 

 

 

 

 

Figure 7.158 Film thickness for point H, 10 mm cup thickness, central line in 

y-direction 
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Contact Point I  

 

 

 

 

 

 

 

 

Figure 7.159 Gap factor for point I of 10 mm cup thickness 

 

 

 

  

 

 

 

 

Figure 7.160 Pressure distribution for point I, 10 mm cup thickness, central 

line in x-direction 
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Figure 7.161  Film thickness for point I, 10 mm cup thickness, central line in 

x-direction 

 

 

 

 

 

 

 

 

Figure 7.162 Pressure distribution for point I, 10 mm cup thickness, central 

line in y-direction 
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Figure 7.163 Film thickness for point I, 10 mm cup thickness, central line in 

y-direction 

 

Table 7.5 Calculated Hertzian and equivalent pressure and the ratio between 

them, Hertzian and equivalent central film thickness and the ratio between 

them, Hertzian and equivalent radius of contact area for the 10 mm cup. 

 ah(mm) aequiv(mm) Po(h)(MPa) Po(equiv)(MPa) % hc(h)(µm) hc(equiv)(µm) % 

A 2.852 2.850 31.277 31.603 1.042 0.177 0.176 -0.307 

B 4.195 4.215 48.811 47.898 -1.870 0.123 0.125 1.024 

C 4.204 4.244 49.306 48.132 -2.381 0.054 0.055 1.432 

D 4.094 4.154 47.649 46.651 -2.094 0.115 0.116 1.362 

E 3.736 3.845 42.267 41.738 -1.252 0.208 0.211 1.395 

F 3.395 3.373 37.801 37.583 -0.577 0.217 0.217 0.007 

G 3.003 3.000 33.848 33.766 -0.242 0.140 0.140 0.093 

H 2.336 2.373 26.471 26.801 1.247 0.073 0.073 -0.183 

I 2.293 2.293 24.970 25.247 1.109 0.137 0.136 -0.507 
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7.7  Discussion 

    The EHL results obtained in this chapter cover all of the equivalent Hertzian 

contact models.  They were obtained using a mesh that was based on the Hertzian 

contact dimension a (aequiv).  The standard computing mesh used covered the 

rectangular area 2.5a  x  2a, 1.5a  y  1.5a, and the resolution adopted was 

x = a/60, y = a/40. 

 

     The problems for which solutions are presented were relatively lightly loaded 

in EHL terms. Peak pressures of 50MPa for point C were just approaching a 

pressure of 1/ = 60.6 MPa, so that the piezo viscous effect was mild and the 

results could have been obtained with a simpler solution scheme. The radius of the 

ball used in the study was 25 mm and that of the cup was 25.1 mm, resulting in a 

radius of relative curvature of 6.275 m. However, any greater mismatch between 

the radius of the ball and socket would have moved the conditions further into the 

EHL regime where an EHL solver would be necessary to produce solutions. The 

contacts are subject to considerable elastic deflection as can be seen from the film 

thickness sections. For a circular contact the Hertzian deflection at the contact 

point is a
2
/R, where R is the radius of relative curvature, and a

2
/2R at the edge of 

the Hertzian contact zone. Taking contact point C with 10 mm cup thickness as an 

example this leads to a central deflection that is 50 times the EHL film thickness, 

and at the other extreme of load, contact I has a contact point deflection that is 6 

times the EHL film thickness. 
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     The film thicknesses obtained from the analyses are low with values for central 

film thickness that vary between 0.055 m and 0.227 m. The variation in 

entrainment speed is clearly influential with cases C and D, which have similar 

loads differing by a factor of 2 in central film thickness values. The minimum film 

thicknesses cover the range from 0.030 m and 0.162 m. These film thickness 

values would require extremely smooth surfaces to be unaffected by surface 

roughness. To obtain  values of unity, based on the calculated central film 

thicknesses would need surface finish with standard deviations of surface height, 

Rq, that are of the order 0.02 m. This is much finer than is likely to be achieved 

in practice, so that contacts of the type analysed will operate in the mixed 

lubrication regime with considerable interaction of the surface asperity features. 

This will cause pressure fluctuations in the lubricant film at the scale of the 

roughness features, and will lead to higher friction values than would be the case if 

the roughness was small compared to the film thickness. It is also likely to be 

influential in the production of wear particles referred to in the literature review. 

 

     Comparison of the three model types for each contact shows that there are clear 

differences between the equivalent Hertzian model results and those for the 

Hertzian model based solely on dimensions and material properties.  The 

equivalent Hertzian models have lower lubricant pressures (up to 10% reduction) 

and higher film thicknesses (by 10 to 20%) but these differences do not change the 

assessment of the contacts significantly. The complication of adding the inlet gap 

correction to the equivalent Hertzian model is not justified by the results, which in 

all cases are indistinguishable from the equivalent Hertzian model results. 
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     Neither of these observations were known before the contacts were analysed in 

this comparative way. It is also clear that for cups that are thinner than the 

Hertzian contact radius the contact pressure distribution is non-Hertzian and the 

FEA results at the higher loads suggest that the cup deflection is tending towards 

the membrane behaviour that would certainly be expected for thin cups if they 

were restrained around the lip periphery. To calculate film thicknesses for thin 

cups would require a different approach to the elastic deflection.   
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Conclusions and Recommendations  

 

8.1  Conclusions   

     The main parameter characteristics required to produce an artificial hip 

joint that is a good alternative to the natural hip joint are to reduce the wear 

rate to be as small as possible and to improve the lubrication process to 

develop full fluid film lubrication and avoid asperity contact. A better 

understanding of the lubrication mechanism is needed to improve future 

designs and to help understand problems that have occurred with commercial 

metal–on–metal designs. An MOM ball-in-socket model with a “sawbones” 

polyurethane foam block supporting system was studied using an FEA 

contact model. Four different cup thicknesses 4, 6, 8, 10 mm were used.  

Results of EHL based on the Hertzian analysis geometry were compared with 

the developed equivalent and modified models. The finite element analysis to 

simulate the contact between the femoral head and the acetabular cup using 

measured forces in three directions were considered in this investigation. 

     The EHL analyses presented in the thesis were limited to steady state 

conditions at nine points in the walking cycle. The walking cycle analysis was 

developed to give a detailed picture of the way in which contact position, 

load, and entrainment velocity vary over the walking cycle. This provides the 

basis for a transient EHL analysis of the contact and would be a clear 

candidate for further work built on the foundation of this project. This is 

envisaged as a process that consists of the following steps. (i) conduct a series 

of FEA contact analyses for the walking cycle to provide, say, 20 equivalent 

Hertzian contact models, possibly over a series of loads covering the variation 

between this point and its neighbours. (ii) Establish the variation of contact 
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load and entrainment velocity over the walking cycle and introduce 

smoothing procedures to remove any numerical noise introduced by the 

experimental data.  (iii) construct a transient EHL analysis of walking cycle 

where the equivalent Hertzian contact is obtained by interpolation between 

those established from the FEA analyses and the load and entrainment 

velocity vary according to the smoothed cycle. 

     Difficulties that will be encountered will be that of the small number of 

instances where there is a rapid variation in magnitude and/or direction of the 

entrainment velocity. This occurs naturally at the ends of the swinging motion 

cycle of the femur relative to the hip where the entrainment magnitude falls to 

zero and the flow direction within the contact reverses.   

A zero entrainment velocity steady state case will have no film generating 

capability, but a transient analysis will not experience a loss of film as 

entrainment will grow in a different direction before the lubricant can start to 

leak away. 

  

The main results of this work are: 

- For the 4 mm cup thickness, the pressure distribution was only of 

Hertzian form when the measured load of the hip joint was less than 

30% of the body weight. For the 6, 8 and 10 mm cup thickness the 

pressure distribution for all the loads cases considered was of Hertzian 

form. This indicates that by increasing the cup thickness the contact 

pressure becomes progressively closer and closer to the Hertzian 

pressure. In general, it was found from the ratio of the cup thickness to 

the Hertzian radius of contact, wt/ah, that when this ratio is unity or less 

the pressure distribution from the FE analysis is non Hertzian, and vice 

versa.  
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- The maximum variation ratio of contact pressure of the 4 mm cup 

thickness for the nine contact points and load range of 295 to 1819 N 

was 19.5%, while for the 6, 8, 10 mm cup thickness the variations are 

56.7%, 72.4% and 78.5 % respectively. With the thinner cup the results 

obtained have been less affected by varying the applied load because 

the higher load values were not analysed due to their non-Hertzian 

behaviour. 

- Increasing the cup thickness produces higher contact pressures and 

smaller contact areas. In addition, it is possible to say that thinner film 

thicknesses were produced as a result of increasing the cup wall 

thickness. 

- For the four cup thicknesses used in this work and the nine contact 

points for each cup, adding the gap factor to the undeformed geometry 

reduced the film thickness in the inlet zone in some of the contact 

points. This was associated with increased contact pressure but the 

increase was small when compared to the results for the same geometry 

without the gap factor with the highest variations being approximately 

1.5%. There were no differences in the film thickness within the 

contact area zone, which means that adding the gap factor value to the 

undeformed geometry of the equivalent Hertzian case does not make a 

significant change to the results.  

     It can be concluded that the equivalent Hertzian model is a valid analysis 

method for all cases where wt > ah, and that introducing the gap factor to the 

model has no significant effect on the EHL calculations produced. It can also 

be say that a thinner, more flexible cup may significantly reduce the contact 

pressure and increase the film thickness, potentially resulting in reduced 

wear.  Using a thin cup could significantly improve the wear performance, 
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while also conserving bone stock and allowing a larger head in a given size of 

acetabulum, reducing the risk of dislocation.   

8.2  Future work 

     In proposing future work on the basis of the results obtained in this 

research study there are a number of ways in which the current approach 

could be developed, for example to quantify the effect of different design 

decisions in terms of ball diameter, contact conformity and cup thickness 

choices. These are of course dominated by surgical considerations but it 

would be useful to know how film thickness can be improved by design, if at 

all. There are also material choices to be made and wear minimisation may 

well be best approached by seeking better materials.  

The research in the thesis has focussed on modelling the film forming ability 

of the contacts taking the particular nature of the ball cup contacts into 

account by detailed FE contact analysis. There are two significant factors that 

emerge as a result of this study which were not investigated in the present 

study due to time constraints and ways to approach these factors are discussed 

as follows: 

8.2.1 Transient Effects 

    The EHL analyses presented in the thesis were limited to steady state 

conditions at nine points in the walking cycle. More accurate results could be 

obtained to calculate the film thickness if the effect of the squeeze film was 

taken into account. The walking cycle analysis was developed to give a 

detailed picture of the way in which contact position, load, and entrainment 

velocity vary over the walking cycle. This provides the basis for a transient 

EHL analysis of the contact and would be a clear candidate for further work 

built on the foundation of this project. . The equivalent Hertzian approach can 

be used in a transient analysis by plotting the variation of Wequiv and �̀�equiv 
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over the walking cycle. The transient load can be replaced by the transient 

equivalent load, Wequiv, and the value of �̀�equiv regarded as a time varying 

parameter to be varied from time step to time step. The effect of including the 

gap factor could be evaluated but is unlikely to be significant as the squeeze 

film term will be dominated by the film thickness variation due to the 

transient load changes. The transient model envisaged would be a process that 

consists of the following steps.  

(i) Conduct a series of FEA contact analyses for the walking cycle to 

provide, say, 20 equivalent Hertzian contact models, possibly over a 

series of loads covering the variation between this point and its 

neighbours.  

(ii) Establish the variation of contact load and entrainment velocity over 

the walking cycle and introduce smoothing procedures to remove 

any numerical noise introduced by the experimental data.   

(iii) Construct a transient EHL analysis of walking cycle where the 

equivalent Hertzian contact is obtained by interpolation between 

those established from the FEA analyses and the load and 

entrainment velocity vary according to the smoothed cycle. 

Difficulties that will be encountered will be that of the small number of 

instances where there is a rapid variation in magnitude and/or direction of the 

entrainment velocity. This occurs naturally at the ends of the swinging motion 

cycle of the femur relative to the hip where the entrainment magnitude falls to 

zero and the flow direction within the contact reverses.   

A zero entrainment velocity steady state case will have no film generating 

capability, but a transient analysis will not experience a loss of film as 

entrainment will grow in a different direction before the lubricant can start to 

leak away. 
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8.2.2 Roughness Effects 

The film thickness results obtained in chapter 7 show that the contacts 

between MoM cups and balls are likely to operate well into the mixed 

lubrication regime and as such are influenced considerably by surface 

roughness. To gain an appreciation of the roughness effects they need to be 

added to the surface geometry to form a mixed lubrication model. To do this 

in a deterministic way where roughness is measured and included in the 

analysis is extremely challenging from a computational perspective. The 

problem requires resolution at the spatial scale of the roughness features, 

which are very fine, and transient consideration at the timescale of the motion 

of the roughness features within the contact. As a general rule this requires 

the surfaces to move through no more than half a spatial mesh point in each 

time step to include the roughness effects correctly.  

The difficulties presented by these constraints are compounded by the fact 

that the contact areas are very large in comparison with the spatial separation 

of the roughness features. In the current work contact circle diameters of up 

to 10 mm occur and the roughness features of the fine surfaces can be 

expected to have width dimensions of the order 5 m. These numbers are in 

the ratio of 2000 so to resolve the full rough surface problem at this resolution 

is problematic.  

To make progress in this direction would require roughness investigations to 

characterise the roughness effect in parametric form obtained under different 

EHL circumstances such as a small concentrated contact operating under 

similar conditions of film thickness, entrainment velocity and sliding speed. 

There may be scope for such an investigation to be coupled with experimental 

evaluation using interferometry techniques, and this would be a challenging 

and very worthwhile endeavour for a future investigation. 
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A.1  The Abaqus software package    

     Abaqus is an influential engineering simulation software package based on 

the finite element analysis method. It contains a wide range of element types 

that can be used to model any geometry. It is used in a large number of 

research institutions and industries due to its capabilities to address linear and 

non-linear applications. Abaqus can be used to simulate different engineering 

materials including metals, polymers, reinforced concrete, composites, and 

others. It is also able to import input data files from a number of different 

engineering software packages (AutoCAD, Nastran, ANSYS, and other 

software). A complete Abaqus analysis consists of three stages: pre-

processing (Abaqus/ CAE), Simulation (Abaqus Standard, Abaqus Explicit, 

Abaqus CFD and Abaqus Electromagnetic) and post-processing (Abaqus 

Viewer). 

 

A.2 Pre-processing stage  

     The pre-processing stage is the first stage of a finite element analysis 

program. In this stage the model of the physical problem is created, usually 

using graphical tools available within the system, the material properties are 

specified, and the loads and the boundary conditions applied to the model are 

defined. The parts or components that make up the model of the physical 

problem are also subdivided into finite elements by meshing the geometry at 

this stage using Abaqus/CAE.  
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A.3 Simulation  

     The second stage in the simulation is where the numerical problem of the 

model defined in the pre-processing stage is solved. It is achieved either by 

using the Abaqus Standard solver or the Abaqus Explicit solver. When the 

solution has been obtained, the output data files will be ready for post-

processing to view the results of the analysis. The running time may take 

from a few minutes, to hours or days to complete the analysis of the job 

according to the complexity of the problem being submitted. It also depends 

on the specifications of the computer being used to carry out the analysis.  

A.4  Post-processing  

     In the final post-processing stage the results of the model analysed can be 

viewed using Abaqus Viewer. It allows the results database to be interrogated 

to provide tabulated output together with a wide range of plots that can be 

generated, including X-Y plots, colour contour plots, deformed shape plots 

and animations.  

     

A.5 Abaqus / CAE  

     Abaqus/CAE is a Complete Abaqus Environment. It provides an easy, 

consistent interface for creating a job, submitting and monitoring the Abaqus 

results model. The components of the Abaqus main window as shown in the 

screenshot presented in Figure A.1 are denoted: Title bar, Menu bar, 

Toolbars, Context bar, Model Tree, Toolbox area, Viewport, Message 

area and Prompt area.  

Title bar 

     The title bar shows the name of the current model as well as the version of 

Abaqus/CAE which is running.  
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Menu bar 

     In the menu bar all the available menus are presented, and within the 

menus all the functionality in the Abaqus software system can be reached. 

Depending on the module which is selected ( see context bar below ), 

different menus can be seen in the menu bar. 

Toolbars 

     A quick access to items available in the selected menu is provided by the 

toolbars which consists of icons for each of the items.  

Title bar                   Menu bar                                 Toolbars                      

Context bar  

 

 

 

 

 

 

 

 

 

            Model tree    Toolbox    Prompt area          Viewport  Message area 

               Figure A.1, Components of the main window of Abaqus CAE 
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Context bar 

     Abaqus/CAE is composed of a set of modules, where each module permits 

work to be carried out on one aspect of the model. In the context bar there is a 

Module list which allows the user to select between these modules. A number 

of icons in the context bar are a function of the module that is currently 

selected. For example, the context bar allows an existing part to be retrieved 

while creating the geometry of the model, or for the output database 

associated with the current viewport to be changed. Similarly, in the Mesh 

module it is possible to choose whether to display a particular part or an 

assembly.  

 

Model Tree 

     The Model Tree supplies a graphical description of the model and the 

objects that it contains, such as parts, properties of the materials, analysis 

steps, loads, and output requests. In addition, the Model Tree supplies an 

appropriate, centralised tool for changing between modules and for dealing 

with objects. If the model database contains more than one model, the Model 

Tree can be used to move between models.  

 

Toolbox area 

     When a module is entered, the toolbox area displays tools that are suitable 

for that module as a series of icons. The toolbox permits rapid access to many 

of the module functions which are also obtainable from the menu bar.  
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Viewport 

     Viewport is the area where Abaqus / CAE exhibits the model which is 

being created. 

Message area 

     In the message area Abaqus/CAE provides brief messages about warnings 

and the status information, for example. 

Prompt area  

     The prompt area shows the essential commands for the user to be followed 

during the procedure of modelling.  

Abaqus/CAE consists of modules as shown in Figure A.2, where each module 

describes a logical aspect of the modelling procedure as follows:  

 

The Part module is used for creating, drawing and managing the geometry in 

the current model. Individual parts can be created. The entire model will 

represent the assembly process for all the parts together.  

 

 

 

 

 

 

 

                              Figure A.2 Module in Abaqus/ CAS 
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          The Property module is utilised to specify the material properties of the 

model parts. Five categories, General, Mechanical, Thermal, Electrical/ 

Magnetic and Other, of material behaviours are available in the current 

Abaqus version as shown in Figure A.3.  

 

 

 

 

 

 

 

 

 

                   Figure A.3 Elasticity behaviours under the Mechanical menu 

 

     All the parts have the local coordinate systems in which they have been 

created. A copy of each part, which is called an “instance”, is used by the 

Assembly module to assemble them together in a global coordinate system. It 

is possible to use the same part more than once. The assembly module 

includes functions to rotate, translate, cut, merge and create constraints in 

order to assemble all the instances together.     

     In the Step module it is possible to create analysis steps and to request the 

files of output information to be prepared. Static or dynamic behaviour can be 

chosen within this module. In this module different types of field output 
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requests can be saved after the analyses have completed, this option enables 

the user to control the size of the results files.     

 

     The Interaction module is used to manage the interaction within the 

model. When there are multiple parts in the model then the relationship 

between these parts like surface-to-surface contact, for example, will be 

controlled and specified by using the interaction module.  

 

     In the load module the applied load and boundary conditions are defined 

and managed. Multi-types of loads and boundary conditions are available to 

apply at specific regions, surfaces or nodes. By using the step module the user 

can specify the load and boundary conditions as being active in one step and 

inactive in another one.  

     One of the most important modules is the Mesh module as the accuracy of 

the results is dependent on the meshing process. In this module the user can 

specify the element shape (hexahedron, tetrahedron or wedge), type (linear or 

quadratic) and size. 

     After finishing all of the tasks involved in defining the model such as 

creating the geometry, defining the properties, applying the loads and 

boundary conditions, making the assembly and meshing the parts, the model 

becomes ready for submitting and performing the analysis and monitoring its 

progress. These steps are achieved using the Job module.    

     The Visualization module (Abaqus Viewer) is used to view and plot the 

results of the model analysis. It supplies a graphical display of the finite 

element results. The user can view the results by plotting the deformed shape, 

contours, symbol, X-Y data and other methods.     
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