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Abstract

Purpose: To investigate whether lamina cribrosa (LC) defects are associated with

optic disc morphology in primary open angle glaucoma (POAG) eyes with high

myopia.

Methods: A total of 129 POAG patients and 55 age-matched control subjects with

high myopia were evaluated. Three-dimensional scan images obtained by swept

source optical coherence tomography were used to detect LC defects. Radial B-

scans and infrared images obtained by spectral domain optical coherence

tomography were used to measure b-peripapillary atrophy (PPA) lengths with and

without Bruch’s membrane (BM) (temporal, nasal, superior, and inferior), tilt angle

(vertical and horizontal), and disc diameter (transverse and longitudinal).

Peripapillary intrachoroidal cavitations (PICCs), disc area, ovality index, and

cyclotorsion of the optic disc were analyzed as well.

Results: LC defects were found in 70 of 129 (54.2%) POAG eyes and 1 of 55

(1.8%) control eyes (P,0.001). Age, sex, spherical equivalent, axial length,

intraocular pressure, and central corneal thickness were not significantly different

among POAG eyes with LC defects, POAG eyes without LC defects, and control

eyes. Temporal PPA lengths without BM in all three groups correlated significantly

with vertical and horizontal tilt angles, although no PPA length with BM correlated

significantly with any tilt angle. PICCs were detected more frequently in POAG eyes

with LC defects than those without LC defects (P50.01) and control eyes (P50.02).

POAG eyes with LC defects showed a smaller ovality index (P50.004), longer

temporal PPA without BM (P,0.001), and larger vertical/horizontal tilt angles

(vertical, P,0.001; horizontal, P50.01), and transverse diameter (P50.01). In
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multivariate analysis for the presence of LC defects, presence of POAG (P,0.001)

and vertical tilt angle (P,0.001) were identified as significant.

Conclusions: The presence of LC defects was associated with myopic optic disc

morphology in POAG eyes with high myopia.

Introduction

Myopia is one of the most common ocular abnormalities across the globe, and its

prevalence is increasing among young people, especially in East Asian countries

[1–3]. One meta-analysis that included many participants identified myopia as a

risk factor in open angle glaucoma [4], with risk increasing in association with the

degree of myopia [5]. In primary open angle glaucoma (POAG), visual field (VF)

defects are usually detected peripherally during early stages of the disease, while

the paracentral area of the visual field is spared until the end stages. However, the

clinical manifestation of POAG with high myopia differs from that of POAG with

typical myopia. POAG with high myopia is associated with more retinal nerve

fiber layer (RNFL) defects within the papillomacular bundle, which can lead to the

development of a paracentral scotoma during the early stages of disease [6, 7]. In

advanced stages, VF defects are typically located temporally and inferior to the

fixation point [8], posing a substantial threat to the patient’s quality of vision.

In a myopic patients with POAG, the optic disc show various morphological

changes such as large and tilted disc, with cyclotorsion of the longer axis and

extensive peripapillary atrophy (PPA) [9–11]. PPA was reported to be associated

with the presence [12], progression [13, 14], and location of VF defects [15] in

POAG eyes. Recent SD-OCT research has shown that conventionally defined b-

PPA can be distinguished by the presence or absence of Bruch’s membrane.

Additionally, PPA without Bruch’s membrane is associated with axial globe

elongation and myopic optic disc morphologic changes [16, 17]. Moreover, optic

disc deformation and direct scleral compression or stretching at the peripapillary

region in degenerative myopia could lead to progressive VF defects that overlap

with those characteristic of POAG [18, 19].

The lamina cribrosa (LC), which is a principal site of axonal damage in

glaucoma, is a multilayered sieve-like supporting structure within the optic disc

[20, 21]. Structural changes to the LC, such as thinning [22, 23], posterior

displacement [24], and the creation of large pores [25], have been reported as

characteristic of POAG eyes. Previous reports have shown that the LC appears as a

hyperreflective structure on enhanced depth images (EDI) obtained using spectral

domain optical coherence tomography (SD-OCT) and swept source OCT (SS-

OCT). It has also been reported that this continuous LC hyperreflectivity has focal

defects called, ‘‘focal LC defects’’, in subset of eyes with POAG [26, 27, 28, 29, 30].

Focal LC defects were more likely to be found in eyes with NTG [28], a past

history of disc hemorrhage [28, 29], inferior mean deviation (MD) values [28],
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and negative refractive error [28]. Furthermore, the locations of these focal defects

corresponded strongly with those of RNFL defects in the same eye [30]. However,

the mechanism of focal LC defect formation has not yet been elucidated.

SS-OCT exhibits less signal decay over a given depth as compared with SD-

OCT, which makes the former approach advantageous for imaging deep

structures. SS-OCT is reportedly just as effective as EDI-SD-OCT for visualizing

LC in myopic glaucomatous eyes [31, 32]. Here we examine optic discs in eyes

with high myopia using SS-OCT and SD-OCT, and investigate whether focal LC

defects are associated with optic disc morphology in myopic eyes.

Methods

Ethics statement

All of the procedures adhered to the tenets of the Declaration of Helsinki, and the

study was approved by the Institutional Review Board and Ethics Committee of

Kyoto University Graduate School of Medicine. The nature of the study and its

possible consequences were explained to study candidates, after which written

informed consent was obtained from all who participated.

Participants

The medical records of patients who were observed at the Glaucoma clinic at the

Department of Ophthalmology, Kyoto University from October 2011 through

December 2013 were reviewed. All participants had undergone complete

ophthalmic examinations including the measurement of best-corrected visual

acuity (BCVA) with a 5 M Landolt chart; refraction; slit-lamp biomicroscopy;

intraocular pressure (IOP) measurements with a Goldman applanation ton-

ometer; gonioscopy; central corneal thickness (CCT) measurements with an

ultrasonic pachymeter (SP-3000, Tomay, Tokyo, Japan); axial length measure-

ments by partial laser interferometry (IOLMaster, Carl Zeiss Meditec, Dublin,

CA); dilated biomicroscopic examination; stereoscopic color optic disc photo-

graphy (3-Dx simultaneous stereo disc camera, Nidek, Gamagori, Japan); imaging

using a Heidelberg Retina Tomography 2 (HRT 2, Heidelberg Engineering), a

prototype SS-OCT system (Topcon, Tokyo, Japan), SD-OCT (Spectralis-OCT,

Heidelberg Engineering, Dossenheim, Germany) and standard automated

perimetry (SAP) using the Swedish interactive threshold algorithm standard 24-2

protocol for the Humphrey Visual Field Analyzer (Carl Zeiss Meditec, Dublin,

CA). The value for refractive error was converted to the spherical equivalent. The

average IOP for the last three examinations was used for analysis.

The inclusion criteria were: BCVA of $20/30 (Snellen equivalent), spherical

equivalent ,26.0 diopters, normal anterior segment, normal and open angle by

gonioscopy, glaucomatous appearance of the optic disc, glaucomatous visual field

defects corresponding to a glaucomatous optic disc appearance and reliable HFA

results with a false-positive error rate ,15%, a false-negative error rate ,15%,
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and fixation loss ,20%. Eyes meeting $2 of the following criteria were

considered to have glaucomatous VF defects: (1) a cluster of 3 points with

probability ,5% on a pattern deviation map in 1 or more hemifields, including 1

point or more with probability ,1% or 2 points with probability ,1%; (2)

glaucoma hemifield test results outside normal limits; and (3) pattern standard

deviation ,5%.The exclusion criteria were hazy media, evidence of vitreoretinal

disease including diabetic retinopathy, pathologic myopic fundus changes such as

patchy chorioretinal atrophy, lacquer crack lesions, or choroidal neovasculariza-

tion, and previous ocular surgery. Patients with a systemic disease or a

neurological disease that might cause VF defects or RNFL damage (e.g.,

uncontrolled hypertension, uncontrolled diabetes mellitus, pituitary tumor, and

cerebral infarction) were also excluded. When both eyes of a patient were eligible

for a POAG diagnosis, 1 eye was randomly selected.

Age-matched control subjects with high myopia were defined as those with

spherical equivalent ,26.0 diopters, IOP ,22 mmHg, a non-glaucomatous optic

disc appearance and no VF defects. Normal eyes also had no history of ocular

symptoms, disease, or intraocular surgery.

A paracentral scotoma was defined as a glaucomatous VF defect in one

hemifield within 10˚of fixation with at least 1 point with probability ,1% lying at

the 2 innermost paracentral points, regardless of the presence of VF defects

outside the central 10˚ [7].

HRT 2 optic disc area measurements

HRT 2 images were obtained from undilated pupils. Optic disc area was measured

using the built-in HRT 2 software (Heidelberg Engineering, Heidelberg,

Germany) as previously reported [7, 13]. The measurement was included in

subsequent analyses only if the standard deviation of the mean topographic image

was ,40 mm. An experienced examiner, masked to the other findings, manually

outlined the optic disc margin while viewing fundus color photographs.

Magnification errors were corrected by the HRT2 software using the patient’s

refractive error and corneal curvature measurements.

Measurements of ovality index and disc cyclotorsion

To estimate the tilt and cyclotorsion of the optic disc, we used two indices as

formally reported [7, 33, 34]. An examiner studied color fundus photographs of

the optic disc taken at a 45˚ viewing angle using custom-built software [7]. The

software automatically drew an ellipse along the contour of the optic disc and a

reference line from the disc center to the fovea as well as a vertical meridian from

the reference line. Ovality index was defined as the ratio of minimum to

maximum optic disc diameter, and cyclotorsion of the optic disc as degrees

between the longer axis of the optic disc and the vertical meridian.
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SD-OCT measurements of b-PPA length, tilt angle, and optic disc

diameter

b-PPA lengths were measured as previously described with modifications [17, 35].

Tomographic images of the optic disc were obtained by EDI-SD-OCT, with

infrared (IR) fundus images acquired simultaneously using a confocal scanning

laser ophthalmoscope (CSLO). The center of each radial B-scan image was

carefully placed at the disc center. Images were obtained every 30˚with scan length

of 6 mm. Fifty OCT frames were averaged to yield each section of the B-scan.

b-PPA length and optic tilt angle were analyzed with the intrinsic viewer

(Heidelberg Eye Explorer software version 1.7.0.0; Heidelberg Engineering). This

viewer automatically synchronizes the vertical lines of each B-scan and IR image.

The distance between two arbitrary points as measured with intrinsic calipers was

used to correct for the effect of corneal curvature.

The examiner (YK) defined three points of measurement: the disc margin, the

start of the retinal pigment epithelium (RPE), and the start of BM using IR and B-

scan images magnified to 200%. The disc margin was defined as the border

between low and high reflectivity in IR images. The start of the RPE and BM were

identified on B-scans as the termination of continuous lines of high reflectivity.

Vertical lines were drawn from these three points in the B-scan image, and the

distances among the three lines were measured using calipers. PPA length with

BM was defined as the distance from the RPE border to BM, and PPA length

without BM was defined as the distance from BM to the disc margin. When RPE

beginning or BM opening was not clearly visible due to the shadow of large vessels

or thick nerve fiber layer, such case was excluded from this analysis.

A total of 24 PPA length measurements (12 PPA lengths with and without BM,

respectively) in the area surrounding the disc were classified as superior, inferior,

temporal, or nasal, with three PPA length measurements averaged for each sector.

For example, in the left eye, superior PPA length was calculated as the average of

three radial scans obtained at 1, 11, and 12 o’clock; inferior PPA length was

measured at 5, 6, and 7 o’clock; temporal PPA length was measured at 3, 4, and 5

o’clock; and nasal PPA length was measured at 8, 9, and 10 o’clock (Fig. 1A, B, E).

To measure tilt angle, a reference line based on the internal border of BM was

defined in order to compensate for potential tilting of the OCT image. Using the

same radial scan images, two lines were drawn between the BM and disc borders

by the viewer, then captured as image data, which were imported to Image J

software (National Institutes of Health, Bethesda, MD) in order to measure the

angle between the lines. This angle was measured in 6 radial scan images of each

eye to define tilt angle. Three radial scans sectioned from 12–6, 1–7 and 5–11

o’clock were averaged to define horizontal tilt angle. Scans extending from 2–8, 3–

9 and 4–10 o’clock were averaged to determine vertical tilt angle (Fig. 1A, C, E).

When the temporal disc border was posteriorly tilted with respect to the nasal disc

border, the angle was considered as ‘‘positively tilted’’. When the inferior disc

border was tilted posteriorly with reference to the superior disc border, the angle

was also considered as ‘‘positively tilted’’.
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To measure optic disc diameter, a line was drawn between two disc borders and

the distance was measured. Three radial scans, taken at the 12 to 6, 1 to 7, and 5 to

11 o’clock positions were averaged to define longitudinal diameter. Scans

extending at 2 to 8, 3 to 9, and 4 to 10 o’clock positions were averaged to

determine transverse diameter (Fig. 1A, D, E).

The presence of peripapillary intrachoroidal cavitations (PICCs) was evaluated

using 6 radial scan images for each eye included in the study. PICCs were defined

as yellowish-orange lesions in the area surrounding the optic disc as detected in

fundus photographs [36], with triangular thickening of the choroid (with the base

at the optic disc border) and a distance between BM and sclera of $200 mm in at

least 1 of 6 scan images (Fig. 2) [37].

3D SS-OCT image acquisition of optic disc and assessment of LC

defects

Optic disc images were obtained as 3D scans using a prototype SS-OCT system,

which is basically equivalent to the commercially available DRI OCT-1 (Topcon,

Tokyo, Japan) [19, 29]. A 3D radial scan was acquired over a 363-mm area

centered on the optic disc center by well-trained examiners. En face images were

Fig. 1. Measurement of PPA lengths, tilt angles and disc diameters with spectral-domain optical coherence tomography (SD-OCT) in the left eye.
(A–D) Infrared (IR) images of the optic disc. (E) SD-OCT B-scan image oriented according to the red arrow in (A). Disc border (yellow arrows), RPE (blue
arrows) and Bruch’s membrane (BM) (orange arrows) were shown in (A, E). PPA lengths were categorized into superior, inferior, temporal, and nasal lenghs
(B). Tilt angle was determined by the angle between the two lines drawn between the BM termination point and disc border (two purple arrows). Tilt angle
was categorized into horizontal and vertical tilt angles (C). Disc diameter was defined as longitudinal and transverse diameters (D).

doi:10.1371/journal.pone.0115313.g001
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used in combination with vertical and horizontal serial B-scan images to evaluate

laminar structure.

The evaluation of LC defects was performed as previously described [29]. In

brief, the SS-OCT image set was independently reviewed for focal LC defects by

two graders (KT and YK), who were masked to all other information. An LC

defect was defined as a loss of high reflectivity from the anterior-to-posterior

border of the full-thickness LC on vertical/horizontal serial B-scan images and a

minimum width of hyporeflectivity of .100 mm on en-face images (Figs. 2 and

3)[26].

Hyporeflective lesions in the LC suspected to be vascular shadows were

excluded. If the two graders did not agree on the existence of an LC defect, they

reviewed and discussed the data until a consensus was reached. If no consensus

could be reached, the candidate LC defect was excluded from analysis.

Next, the location of an LC defect was defined. We selected the one en face

image in which the lamina structure was most clearly visible from all images

constructed by the 3D dataset. Two diagonal lines were drawn in the 363 mm

square of the en face image. This divided the lamina structure into superior,

inferior, temporal, and nasal quadrants. The LC defect location was determined by

assessing in which quadrant the LC defect was located.

Fig. 2. A representative case of an eye with primary open angle glaucoma, a lamina cribrosa (LC) defect, and peripapillary intrachoroidal cavities
(PICCs). (A) A dark yellowish-orange lesion was seen in the area inferior to the optic disc. The LC defect is visible in the en face image (B), volume scan
image (C), and B-scan image (D, red arrowhead). The infrared image (E) and spectral domain optical coherence tomography B-scan image (F), oriented at
the blue arrow in (E), are shown. PICCs are visible as hyporeflective cavities between Bruch’s membrane and the sclera. The retinal nerve fiber layer was
not visible at the orange arrow.

doi:10.1371/journal.pone.0115313.g002
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Fig. 3. Representative cases of a healthy highly myopic eye with enlarged lamina pores (A–E) and an
eye with primary open angle glaucoma and lamina cribrosa (LC) defects (F–J). (A) A lamina pore can be
seen within the optic disc cup (red arrowhead) in the optic disc photograph. (B) Multiple hyporeflective dots
and a large hyporeflective region (red arrowhead) can be interpreted as lamina pores in en face optic disc
images at the level of the LC. (C) Humphrey 24-2 pattern deviation plots show no glaucomatous visual field
defect. Volume image (D) and horizontal B-scan image (E) corresponding to the green dotted line in (A). Note
that the lamina structure was not fully defective in the hyporeflective region. (F) The LC defect can be seen in
the inferior border of the optic disc rim (red arrowhead). (G) A wedge shaped hyporeflective region (red
arrowhead) is also apparent in the en face image. (H) Humphrey 24-2 pattern deviation plots showed a
glaucomatous visual field defect. Volume image (I) and horizontal B scan image (J) corresponding to the
green dotted arrow in (F). Note that the lamina structure was fully defective in the hyporeflective region.

doi:10.1371/journal.pone.0115313.g003
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Interobserver reproducibility

To evaluate the interobserver reproducibility of PPA length and tilt angle

measurements, two observers (YK, KM) localized the RPE and BM borders and

disc margin, then measured the lengths and angles in 100 randomly selected eyes.

Intraclass correlation coefficients (ICCs) were calculated with their confidence

intervals.

Statistical analysis

A one-way analysis of variance (ANOVA) and Tukey’s post-hoc test were used to

compare differences in continuous variables among the groups. The frequency of

PICC detection was compared using a chi-square test with Bonferroni’s

correction. Pearson’s correlation coefficients were used to evaluate the associa-

tions among various parameters of optic disc morphology as measured using the

SD-OCT, HRT2, and fundus photographs. Univariate and multivariate logistic

regression analyses were performed to determine the association between each

optic disc parameter and the presence of LC defects. Optic disc parameters,

including disc area, ovality index, optic disc cyclotorsion, PPA length with/

without BM, horizontal/vertical tilt angle, and transverse/longitudinal diameters,

were the independent variables. The presence/absence of LC defects was used as

the dependent variable. All statistical analyses were performed using SPSS software

version 19.0 (SPSS, Chicago, IL). P values less than 0.05 were accepted as

statistically significant, except for those calculated to compare PICCs.

Results

This study initially involved 225 subjects with high myopia. Among these, 41 eyes

were excluded because of poor SS-OCT or SD-OCT scan quality (n534), an

unclear optic disc margin (n55), or unreliable visual field test results (n52).

Finally, the remaining 129 eyes of 129 POAG patients with high myopia and 55

eyes of 55 age-matched control subjects were evaluated. LC defects were found in

70 of 129 POAG eyes (54.2%, Fig. 3) and 1 of 55 age-matched control eyes

(1.8%). The frequencies of LC defects were significantly different between the

POAG and control eyes (P,0.001).

In agreement with our previous report [29], LC defects were found as the

laminar disinsertion (laminar insertion into the scleral wall, 70 of 75 [93.3%]

eyes) and the laminar hole (middle portion of the laminar structure, 5 of 75

[6.7%]). In all 75 eyes, LC defects were found in the temporal portion of the LC.

Moreover, LC defects were detected in the superior portion of 3 eyes and in the

inferior portion of 6 eyes. Interestingly, no LC defects were found in the nasal

quadrant. The location of LC defects spatially corresponded to areas of PPA in all

eyes examined.

Table 1 shows the demographic information for POAG eyes with LC defects,

POAG eyes without LC defects, and age-matched control subjects. MD was

Lamina Cribrosa Defects in Glaucoma with High Myopia
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significantly worse in POAG eyes with or without LC defects as compared to

control subjects (P,0.001 in both). MD was not significantly different between

POAG eyes with LC defects and without LC defects (P50.09). Paracentral

scotomas were detected more frequently in POAG eyes with LC defects than in

POAG eyes without LC defects (P50.008). Age, sex, spherical equivalent, axial

length, IOP, and CCT were not significantly different among the three groups.

Next, the frequency of paracentral scotomas was compared in the subgroup of

POAG eyes with better than MD.26.0 dB (26 POAG eyes with LC defects and 26

POAG eyes without LC defects). Paracentral scotomas were also detected more

frequently in POAG eyes with LC defects (n515) than in POAG eyes without LC

defects (n56) in the subgroup (P50.01). MD value was not significantly different

between these groups (POAG eyes with LC defects; 24.1¡1.4 dB, POAG eyes

without LC defects; 23.6¡1.3 dB, P50.25).

The interobserver reproducibilities of PPA length and tilt angle measurements

are presented in Table 2. ICCs ranged from 0.902 to 0.965, which suggested that

measurements of SD-OCT scan images were reproducible between examiners.

Temporal PPA lengths without BM correlated significantly with vertical tilt

angle and horizontal tilt angle in all three groups. Inferior PPA lengths without

BM correlated significantly with horizontal tilt angle in all three groups.

Transverse diameter correlated significantly with vertical tilt angle in all three

groups. Any PPA lengths with BM did not correlate significantly with any tilt

angle (Table 3).

Horizontal tilt angle was significantly correlated with ovality index in all three

groups but not with disc area. Vertical tilt angle significantly correlated with both

ovality index and disc area in all three groups. Additionally, both transverse and

longitudinal diameters were significantly correlated with ovality index and disc

area in all three groups (S1 Table). The means for each morphological parameters

were compared among the three groups (Table 4). Ovality index, temporal PPA

Table 1. Demographics of Patients and Age-matched Control Subjects with High Myopia.

POAG, n5129 Age-matched Control, n555 P value

with LC Defects, n575 without LC Defects, n554

Age, years 49.0¡13.9 (22 to 78) 50.2¡12.7 (24 to 74) 49.4¡8.9 (22 to 74) 0.88*

Male/Female, n 30/40 31/28 21/34 0.23{

Spherical Equivalent, D 28.3¡3.6 (26.1 to 216.9) 28.5¡2.5 (26.1 to 215.3) 28.4¡3.1 (26.1 to 214.6) 0.89*

Axial Length, mm 27.2¡1.3 (24.7 to 30.4) 27.2¡1.0 (25.7 to 29.9) 27.3¡1.0 (24.9 to 29.3) 0.98*

IOP, mmHg 16.4¡2.2 (11.0 to 19.6) 17.2¡3.1 (10.3 to 18.6) 15.0¡1.6 (13.0 to 18.3) 0.25*

CCT, mm 538.5¡33.4 (477 to 628) 531.9¡40.4 (431 to 604) 524.9¡28.6 (442 to 598) 0.16*

MD, dB 211.2¡7.4 (21.9 to 31.4) 28.6¡7.5 (21.4 to 230.3) 21.4¡1.7 (2.5 to 4.9) ,0.001*

with/without Paracentral Scotoma, n 52/23 25/29 NA 0.008{

Values are shown in mean ¡ SD (range). IOP; intra ocular pressure, CCT; central corneal thickness, MD; mean deviation, LC; lamina cribrosa.
*Comparison performed using 1-way analysis of variance with post hoc Tukey’s test to compare the differences among the 3 groups.
{Comparisons were performed using the chi square test.
MD in POAG eyes with LC defects and without LC defects were significantly worse than the age-matced healthy eyes (P,0.001 in both).

doi:10.1371/journal.pone.0115313.t001
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length without BM, horizontal/vertical tilt angles, and transverse diameter differed

significantly between POAG eyes with LC defects and the other two groups

(ovality index, P50.004; temporal PPA length with BM, P,0.001; horizontal tilt

angle, P50.01; vertical tilt angle, P,0.001; transverse diameter, P50.01).

PICCs were found in 25 of 129 (19.4%) POAG eyes with high myopia and 5 of

55 (9.0%) highly myopic control eyes (P50.08). PICCs were found in 20 POAG

eyes with LC defects, 5 POAG eyes without LC defects, and 5 control eyes

(P50.008, Fig. 2). There were significant differences between the POAG eyes with

Table 2. Reproducibility of SD-OCT Measurements of PPA Length and Tilt Angle (n5184).

ICC

PPA length with BM

Superior 0.929

Inferior 0.917

Temporal 0.916

Nasal 0.931

PPA length without BM

Superior 0.905

Inferior 0.911

Temporal 0.902

Nasal 0.926

Tilt angle

Vertical 0.913

Horizontal 0.965

PPA, peripapillary atrophy; ICC, intraclass correlation coefficients.

doi:10.1371/journal.pone.0115313.t002

Table 3. Correlation of the Disc Morphological Parameters measured with SD-OCT (POAG eyes with LC Defects/POAG eyes with LC Defects/Age-matched
Control Subjects).

Vertical Tilt Angle Horizontal Tilt Angle

PPA Length without BM

Superior 0.40/0.11/0.06 20.03/0.29/0.15

Inferior 0.17/0.08/0.08 0.47/0.65/0.73

Temporal 0.67/0.73/0.65 0.37/0.40/0.31

Nasal 0.11/20.12/20.11 0.01/0.19/0.23

PPA length with BM

Superior 0.11/0.17/0.04 0.08/0.09/0.03

Inferior 0.12/0.09/20.03 20.01/0.24/0.22

Temporal 20.21/0.20/0.10 0.02/0.22/0.08

Nasal 20.02/0.17/20.01 0.01/0.16/0.21

Transverse Diameter 20.48/20.47/20.52 20.18/0.08/0.26

Longitudinal Diameter 20.19/20.17/20.47 20.21/20.07/20.09

Values are expressed correlation coefficient. Significant values (P,0.05) are shown in bold.
PPA; Peripapillary Atrophy, BM; Bruch’s Membrane.

doi:10.1371/journal.pone.0115313.t003
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LC defects and those without LC defects (P50.01) as well as between the POAG

eyes with LC defects and control eyes (P50.01). There was no difference between

the POAG eyes without LC defects and the control eyes (P50.91). In eyes with

POAG, a paracentral scotoma occurred in 9 of 25 (36.0%) eyes with PICCs and in

61 of 104 eyes (58.7%) without PICCs. Though relatively large, this difference was

not statistically significant (P50.24).

In the univariate analysis, the presence of LC defects was significantly associated

with POAG, disc area, ovality index, temporal PPA length without BM, horizontal

tilt angle, vertical tilt angle, and longitudinal diameter. The significant parameters

Table 4. Comparison of Mean Disc Morphological Parameters of among POAG eyes with LC defects, POAG eyes without LC defects, and Age-matched
Control Eyes.

POAG (n5129)

Age-matched
Control
(n555) P value

post
hoc

with LC Defects
(n575) without LC Defects (n554) ANOVA

with vs.
without
LC
Defects

with LC
Defects
vs.
Control

without
LC
Defects
vs.

Control
Disc Area (mm2) 1.95¡0.78 2.38¡0.70 2.12¡0.85 0.01 0.008 0.45 0.21

Ovality Index 0.72¡0.11 0.80¡0.11 0.78¡0.15 0.004 0.005 0.05 0.71

Cyclotorsion of Disc
(degrees)

11.9¡22.1 0.66¡37.3 14.9¡35.2 0.04 0.11 0.85 0.04

PPA Length without
BM (mm)

Superior 63.5¡93.0 40.6¡69.4 48.7¡79.3 0.28 0.26 0.57 0.87

Temporal 560.3¡345.4 361.1¡323.8 392.1¡257.4 ,0.001 ,0.001 0.008 0.87

Inferior 217.7¡241.3 160.5¡199.3 193.6¡182.0 0.33 0.29 0.70 0.80

Nasal 22.4¡117.4 23.6¡76.6 7.1¡31.1 0.54 0.99 0.62 0.59

PPA length with
BM (mm)

Superior 87.2¡103.8 67.1¡80.0 67.7¡77.5 0.34 0.42 0.44 1.0

Temporal 194.5¡116.5 171.7¡116.5 166.0¡116.3 0.32 0.5 0.34 0.97

Inferior 113.0¡83.6 96.7¡109.1 70.9¡106.3 0.06 0.62 0.05 0.36

Nasal 49.8¡124.5 40.8¡107.4 42.4¡118.4 0.90 0.9 0.93 0.99

Horizontal Tilt Angle
(degrees)

3.6¡3.6 1.9¡2.1 2.3¡3.3 0.01 0.02 0.04 0.85

Vertical Tilt Angle
(degrees)

9.5¡5.6 5.7¡5.0 6.3¡5.9 ,0.001 ,0.001 0.005 0.83

Transverse Diameter
(mm)

1479.1¡300.0 1612.1¡308.4 1612.6¡256.6 0.01 0.03 0.03 1.0

Longitudinal Diameter
(mm)

1585.0¡271.1 1646.6¡249.2 1630.4¡195.7 0.32 0.34 0.55 0.94

POAG; primary open angle glaucoma, LC; lamina cribrosa, PPA; peripapillary atrophy, BM; bruch membrane, PICCs; peripapillary intrachoroidal cavitations,
ANOVA; analysis of varience.
Tukey’s test was used for post hoc test.

doi:10.1371/journal.pone.0115313.t004
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identified by multivariate analysis were only POAG (B54.7, P,0.001) and

vertical tilt angle (B50.13, P,0.001) (Table 5).

Discussion

LC defects were found in more than 50% of the POAG eyes with high myopia.

Our report previously showed that LC defects were detected in 6.6% of POAG

eyes without high myopia using the same imaging modality and detection method

[29]. The frequency of LC defects was much higher in POAG eyes with high

myopia than in those without high myopia. Further analysis showed that LC

defects were significantly associated with disc area, ovality index, temporal PPA

length without BM, and horizontal and vertical tilt angles in univariate analysis, as

well as with vertical tilt angle in multivariate analysis, all of which are thought to

represent myopic optic disc morphological changes. Furthermore, the existence of

a paracentral scotoma was associated with the presence of LC defects in the POAG

eyes with high myopia.

The formation of LC defects might be associated with temporal elongation of

the optic disc, because the presence of LC defects was significantly associated with

vertical tilt angle in the multivariate analysis. Additionally, all LC disinsertions

were located in the temporal quadrant in all eyes with LC defects. Temporal

Table 5. Univariate and Multivariate Analysis of Disc Morphological Parameters Associated with LC Defects in High Myopic Eyes.

Univariate Multivariate

B P value B P value

Presence of POAG 0.52 ,0.001 4.7 ,0.001

Disc Area 20.23 0.002 0.13

Ovality Index 20.30 ,0.001 0.10

Cyclotorsion of Disc 0.07 0.33 0.12

PPA Length without BM

Superior 0.11 0.16 0.54

Inferior 0.09 0.23 0.43

Temporal 0.28 ,0.001 0.54

Nasal 0.04 0.61 0.74

PPA length with BM

Superior 0.10 0.18 0.55

Inferior 0.13 0.10 0.38

Temporal 0.09 0.21 0.42

Nasal 0.04 0.68 0.88

Horizontal Tilt Angle 0.20 0.008 0.28

Vertical Tilt Angle 0.30 ,0.001 0.13 ,0.001

Transverse Diameter 20.22 0.002 0.59

Longitudinal Diameter 20.12 0.11 0.56

LC; lamina cribrosa, PPA; peripapillary atrophy, BM; bruch membrane.

doi:10.1371/journal.pone.0115313.t005
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stretching due to PPA was thought to be associated with optic disc tilt [38], and

furthermore, PPA without BM results from an increase in axial length [17]. Our

findings that vertical tilt angle correlated significantly with temporal PPA length

without BM are compatible with these previous reports. Histological analysis has

shown that LC thickness in myopic eyes decreased as PPA length increased [23].

We hypothesized that a thinner LC could be more vulnerable to morphological

changes. Although we did not estimate the effects of optic disc tilting on LC

thickness, a morphological change imposed in a horizontal direction across the

LC contributes to the formation of LC defects in highly myopic eyes.

The creation of LC defects may involve a different mechanism in highly myopic

eyes than typically myopic eyes. As mentioned above, LC defects were detected in

only 6.6% of the POAG eyes without high myopia in our previous study [29].

Though our results were not directly compared with other former studies [26–28]

because of the different methodology, Tahtham et al attributed the formation of

LC defects to structural weaknesses, noting that the superior and inferior portions

of the LC contain thinner connective tissue and larger pores than the temporal

and nasal sectors of the LC in POAG eyes [30]. Because the LC in a highly myopic

eye is thinner than in an eye without myopia [23], the LC may be more vulnerable

to deformation than in a non-myopic eye. Therefore, the hypothesis proposed by

Tahtham et al would not be applicable to our study population. Moreover, in a

study of eyes with degenerative myopia, small laminar pits equivalent to the LC

defects described here were detected by SS-OCT [40]. These studies suggested that

POAG eyes with LC defects might exhibit myopic characteristics more strongly

than POAG eyes without LC defects. Although it can be difficult to differentiate

glaucomatous from degenerative VF defects based on a clinical assessment of optic

disc appearance, our study suggests that highly myopic POAG eyes with LC

defects would more strongly exhibit certain characteristics associated with

degenerative myopia than those without LC defects.

Disc size could be an important parameter in LC defect formation, because

discs in eyes with POAG and LC defects were significantly smaller than in the

other two groups. Using an initial finite element model of the POAG eye, Bellezza

et al showed that IOP stress on the LC varied with optic disc size [39]. The authors

showed that LC structure was more likely to be affected by IOP as disc size

increased. We speculate that myopic optic disc morphological changes may

contribute more strongly than IOP to the formation of LC defects in a small optic

disc. Moreover, LC structure could be vulnerable to the mechanical stress because

the disc size was negatively correlated with vertical tilt angle, though HRT2

imaging may underestimate disc size in eyes with large tilt angles.

Paracentral scotomas were detected more frequently in POAG eyes with LC

defects than those without LC defects even in POAG eyes with MD better than

26.0 dB, which is clinically important for the management of POAG eyes. In the

current study, mean MD values in POAG eyes with LC defects were worse than

those in POAG eyes without LC defects in total POAG eyes and even in POAG

eyes with MD better than 26.0 dB. We could not exclude the possibility that the

difference of MD value affect the frequency of paracentral scotoma, because LC
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defects were more frequently detected in advanced POAG eyes than early POAG

eyes [28]. However, it was reported that the existence of a paracentral scotoma

was associated with acquired pits of the optic nerve in POAG eyes [41], a finding

that supports the results presented here. Furthermore, we previously reported that

a decreased optic disc ovality index was associated with RNFL defects involving

the papillomacular bundle in POAG eyes with high myopia [7], which is also

consistent with our findings in the current study. Tatham et al reported that the

location of LC defects corresponded strongly with the location of RNFL defects

[30]. Further study would elucidate the association between RNFL defects and LC

defects in POAG eyes with high myopia.

In the context of pathologic myopia, PICCs are thought to be formed by tears

in the border tissue located between BM and the sclera, and to be more closely

related to myopic changes rather than glaucomatous disc changes [42–44]. In the

current study, PICCs were more frequently observed in POAG eyes with LC

defects as compared to POAG eyes without LC defects and control eyes. Because

eyes with POAG and LC defects had significantly larger vertical tilt angles, we

speculate that PICC development may occur by a similar mechanism as that

related to morphological optic disc changes resulting from LC defects. PICCs

represent a clinically useful finding that can be used to predict the presence of LC

defects because many PICCs can be detected by standard fundus examination.

Although PICCs were not specifically seen in eyes with POAG, further

examination and analyses are needed to determine if comorbid PICCs and LC

defects are associated with paracentral scotomas.

This study had several limitations. First, some parameters examined are affected

by optic disc tilt or globe curvature. The PPA lengths were measured linearly on

plane images without considering the curvature of the globe. This method might

lead to underestimation of PPA length in eyes with posteriorly sloped PPA.

However, temporal elongation of the eyeball would still affect LC defects, because

posteriorly sloped PPA would increase actual PPA length. Disc area would be

affected by optic disc tilt because flat projections, created by HRT2 imaging, were

used to make these measurements. Therefore, one should keep in mind that these

parameters are potentially biased. Second, because the reference line passing

through the foveal center was not considered in obtaining the radial scan images,

measurements of both PPA length and disc tilt angle may have been affected by

ocular cyclotorsion. The reference line used may have minimized the effects of

ocular cyclotorsion. However, current SD-OCT technology does not have a radial

scan mode for use in combination with such a reference line. In the future, we

plan to use a reference line passing through the foveal center as well as the disc

center when measuring optic disc parameters. Third, we may have overlooked the

presence of LC defects in the nasal region of the optic disc, because the optic disc

structures there lie below a thick nerve fiber layer and are only poorly visible,

especially in eyes with tilted discs. Notably, any morphological effects on the LC

would be least noticeable in the nasal quadrant. However, the limitations of

current OCT technology with respect to deep structural visualization of the optic

disc should not be neglected.
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In conclusion, LC defects were detected in more than 50% of POAG eyes with

high myopia and associated with paracentral scotomas. In highly myopic eyes,

these were primarily attributed to myopic optic disc morphological changes such

as PICCs. LC defects were shown to be clinically important findings in highly

myopic POAG eyes and to involve a mechanism that differs in some respects from

that operating in non-myopic POAG eyes. However, it remains unknown whether

the development of LC defects in highly myopic eyes could be prevented by

reducing IOP. Further longitudinal studies would be needed to clarify this

question.
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