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Sectoral Technology and Structural Transformation∗

By Berthold Herrendorf, Christopher Herrington, and Ákos Valentinyi

We assess how the properties of technology affect structural transfor-
mation, i.e. the reallocation of production factors across the broad sec-
tors agriculture, manufacturing, and services. To this end, we estimate
sectoral CES and Cobb–Douglas production functions on postwar US
data. We find that differences in technical progress across the three sec-
tors are the dominant force behind structural transformation whereas
other differences across sectoral technology are of second–order im-
portance. Our findings imply that Cobb–Douglas sectoral production
functions that differ only in technical progress capture the main techno-
logical forces behind the postwar US structural transformation.
JEL: O11; O14
Keywords: capital share; CES production function; Cobb–Douglas pro-
duction function; elasticity of substitution; structural transformation

The reallocation of production factors across the broad sectors agriculture, manufac-

turing, and services is one of the important stylized facts of growth and development. As

economies develop agriculture shrinks, manufacturing first grows and then shrinks, and

services grow. A growing recent literature has studied this so–called structural transfor-

mation and has shown that it has important implications for the behavior of aggregate

variables such as output per worker, hours worked, and human capital.1 The current

paper is part of a broader research program that asks what economic forces are behind

structural transformation. Herrendorf, Rogerson and Valentinyi (2013) addressed the

preference aspect of this question and quantified the importance of the effects of changes

in income and relative prices for changes in the composition of households’ consumption

bundles. In the current paper, we focus on the technology aspect and ask how important

for structural transformation are differences across sectors in technical progress and the

technology parameters, including the capital share and the elasticity of substitution be-

tween capital and labor.

There are two different views in the literature about this question. Many papers on

structural transformation use sectoral production functions of the Cobb–Douglas form,
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herringtoncm@vcu.edu. Ákos Valentinyi, Cardiff University, Institute of Economics HAS, and CEPR, Cardiff Business
School, Aberconway Building, Colum Drive, United Kingdom, valentinyi.a@gmail.com. For comments and suggestions,
the authors thank two anonymous referees, Alexander Bick, Cristiano Cantore, Miguel León–Ledesma, Stuart Low,
Rachel Ngai, Todd Schoellman, Brian Silker, and the participants of the Workshops on Structural Transformation at
the Universities of Cagliari and Surrey, the North American Summer Meetings of the Econometric Society, the SED
Meetings, and the Macro Workshop at ASU. Herrendorf thanks the Spanish Ministry of Education for research support
(Grant ECO2012-31358) and Valentinyi thanks the Hungarian Scientific Research Fund (OTKA) (Project K-105660-ny).

1The recent literature started with Echevarria (1997) and Kongsamut, Rebelo and Xie (2001); see Herrendorf, Roger-
son and Valentinyi (2014) for a review.

1



2 AMERICAN ECONOMIC JOURNAL

which have equal exponents and differ only in technical progress. The advantage of

this way of proceeding is that under the additional assumptions of perfect competition

and profit maximization, the exponent on capital equals the share of capital in aggregate

income (capital share for short), which is easily calculated. The potential disadvantage

of this way of proceeding is that it restricts our attention to forces behind structural

transformation that result directly from technical progress.

Some contributions to the recent literature on structural transformation suggest that

sectoral differences in the capital share and the substitutability between capital and la-

bor also have important implications for structural transformation. To see how these

features of technology may matter for structural transformation, suppose first that labor–

augmenting technical progress is even across sectors and compare two sectoral produc-

tion functions that are of the Cobb Douglas form and only differ in the capital share.

If GDP per capita is relatively low, then capital is relatively scarce compared to labor,

the rental price of capital relative to the rental price of labor is relatively high, and the

relative price of the output of the sector with the higher capital share is relatively high.

As technical progress takes place, GDP per capita increases, capital becomes less scarce

compared to labor, and the relative price of the output of the sector with the higher cap-

ital share falls. Given standard preferences, this leads to the reallocation of resources

towards this sector. Acemoglu and Guerrieri (2008) emphasized this economic force

behind structural transformation.

Suppose instead that the sectoral production functions only differ in the substitutability

between capital and labor (and that technical progress again is even). If GDP per capita

is relatively low, then capital is scarce and the relative price of the output of the sector

with the low substitutability between capital and labor is relatively high. As technical

progress takes place, GDP per capita increases and the relative price of the output of

the sector with low substitutability falls. Given standard preferences, this again leads to

the reallocation of resources towards this sector. Alvarez-Cuadrado, Long and Poschke

(2013) emphasized this economic force behind structural transformation.

The goal of this paper is to assess how important these different features of sectoral

technology are quantitatively for structural transformation. We will estimate CES pro-

duction functions for agriculture, manufacturing, and services on postwar US data. To

have a reference point, we will also estimate Cobb–Douglas production functions with

sector–specific capital shares and Cobb–Douglas production functions with a common

capital share. Before we proceed to the details of the estimation, we need to decide

whether the sectors produce gross output or value added. The difference between the

two, of course, is that gross output counts everything that the sector produces whereas

value added counts only what the sector produces beyond the intermediate inputs that

it uses. While the literature typically uses value–added production functions, it is not

clear that they exist in general. We start with a production function for gross output and

derive conditions under which a production function for value added exists. We then pro-

vide evidence suggesting these conditions are met in the data and focus on value added

production functions.

Turning now to the details of the estimation, one contribution of this paper is to derive
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a normalization of value–added production functions that considerably simplifies the

estimation. Essentially the normalization implies that the weights on capital and labor in

the CES production function equal the average income shares of capital and labor. We

may therefore proceed as researchers typically do for the special case of Cobb–Douglas

production functions and calibrate the weights of the CES production functions before

we estimate the other parameters. While León-Ledesma, McAdam and Willman (2010)

also normalize the CES production function, there is a subtle but important difference

between the two papers: their normalization involves an approximation and may not

be accurate far away from the point of approximation; in contrast, our normalization is

exact and applicable everywhere. We combine our normalized production function with

the first–order conditions for the optimal choices of capital and labor, assuming that there

is exogenous exponential capital– and labor augmenting technical progress. We estimate

the resulting three–equation system for each sector and for the aggregate economy via a

non–linear version of the method by Cochrane and Orcutt (1949).

The estimation of the sectoral CES production functions yields the following results.

First, labor–augmenting technical progress is quantitatively much more important than

capital–augmenting technical progress, and at the aggregate level, capital–augmenting

technical progress is not statistically different from zero; labor–augmenting technical

progress is fastest in agriculture and slowest in services, and the differences in the growth

rates are sizeable. Second, agriculture has the highest capital share, services have the

second–highest capital share, and manufacturing has the lowest capital share. The find-

ing that services have a higher capital share than manufacturing reflects the fact that ser-

vices include owner–occupied housing. Third, capital and labor are most substitutable in

agriculture and least substitutable in services; moreover, in agriculture capital and labor

are more substitutable than in the Cobb–Douglas case and in manufacturing and services

they are less substitutable. The finding that in agriculture capital and labor are more sub-

stitutable than in the Cobb–Douglas case is consistent with the view that after the second

world war a wave of mechanization led to massive substitution of capital for labor in US

agriculture; see for example Schultz (1964).

In order to assess how quantitatively important the different features of the estimated

sectoral production functions are for structural transformation, we endow competitive

stand–in firms in each sector with the estimated technologies and ask how well their op-

timal choices replicate structural transformation, taking as given the observed prices for

value added, the observed rental prices for capital and labor, and the estimated technical

progress at the sectoral level. We focus on two important features of structural transfor-

mation: the observed allocation of labor across sectors, which is the most widely avail-

able measure of sectoral activity, and the changes in sectoral relative prices, which deter-

mine the sectoral composition of consumption at the household side. We find quantita-

tively that uneven technical progress is the dominant force behind these features, whereas

sectoral differences in the capital shares and substitution elasticities have second–order

implications only. This implies that Cobb–Douglas sectoral production functions that

differ only in technical progress capture the main forces behind the postwar US struc-

tural transformation that operate on the technology side. Perhaps somewhat surprisingly,
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this statement holds even in agriculture where the capital share and the elasticity of sub-

stitution are largest. The reason why this does not give the CES production function a

notable advantage over the other specifications is that the effects on structural transfor-

mation of the large capital share and the large elasticities in agriculture work in opposite

directions and largely cancel each other, leaving the effects of uneven labor–augmenting

technical progress as the dominating force. All three production functions capture that

force similarly well.

Our findings lend support to a key assumption in the seminal paper on structural trans-

formation by Ngai and Pissarides (2007), who used Cobb–Douglas production functions

with equal capital shares. Nonetheless, our findings should not be interpreted to imply

that always and everywhere the Cobb–Douglas production function with equal factor

shares is the best modeling choice. For example, if one is interested in the level of

employment in agriculture instead of secular changes in employment, then it is impor-

tant to model that the labor share in agriculture is much lower than in the other sectors.

A Cobb–Douglas production function with equal shares would overpredict the level of

employment in agriculture considerably, even though it does capture the main changes

in employment. Moreover, one should keep in mind that our results are obtained for the

postwar period, during which the US was fairly developed and agriculture had a relatively

small share in overall employment and value added. It would therefore be premature to

conclude that Cobb–Douglas sectoral production functions will do a good job at captur-

ing structural transformation also in less developed economies in which agriculture has

much larger employment and value added shares than in the US economy.

Our work belongs to a large literature that estimates production functions at the ag-

gregate level, the industry level, or the firm level. Antràs (2004), Klump, McAdam and

Willman (2007) and León-Ledesma, McAdam and Willman (2010) are the contributions

to this literature which are most closely related to our work. They asked the question

how substitutable capital and labor are at the level of the aggregate US economy and

found that they are less substitutable than in the Cobb–Douglas case. In contrast, we

focus on the disaggregate level of the three broad sectors that are relevant in the context

of structural transformation. We stress that for the aggregate US economy our exercise

yields very similar findings to those obtained by the above papers. Our work is also

related to that of Oberfield and Raval (2014), who develop a framework to estimate the

aggregate elasticity of substitution between capital and labor by aggregating the choices

of individual plants. Using micro data for the US manufacturing sector, they come up

with a value for the aggregate elasticity of substitution of the manufacturing sector that

is fairly similar to our estimate.

The remainder of the paper is organized as follows. In Section I we introduce the con-

cept of value–added production functions. Section II derives the system of equations that

we estimate, including the normalization of the production function, and it discusses the

issues that arise in the estimation. Section III describes the data that we use. In Section

IV, we present the estimation results and in Section V we compare the performance of

CES production functions with the performance of Cobb–Douglas production functions.

Section VI discusses the implications of our results for building multi–sector models and
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Section VII concludes.

I. Value–added Production Functions

We start with the question of whether to write production functions in gross–output

form or in value–added form. Since gross output equals the sum of value added and

intermediate inputs (all expressed in current prices), the difference between the two pos-

sibilities lies in whether one counts everything that the sector produces (“gross output”)

or whether one counts only what the sector produces beyond the intermediate inputs that

it uses (“value added”). To appreciate the difference between the two possibilities, it is

useful to start with the aggregate production function. In a closed economy, GDP equals

value added by definition. Therefore, GDP G is ultimately produced by combining do-

mestic capital K and labor L. Many authors therefore specify the aggregate production

function as a value–added production function:

G = F(K, L)

In an open economy, GDP is in general not equal to domestic value added because some

intermediate inputs are not produced domestically but are imported from other countries.

Therefore, GDP is produced with domestic capital, labor, and imported intermediate

inputs Z:

G = H(K, L,Z)

While imported intermediate inputs are often abstracted from, they can be quantitatively

important, in particular in small open economies that import most of the resources and

many of the agricultural and manufactured intermediate goods that they use.

Turning now to sectoral production functions, the question of which type of production

functions to use arises even in a closed economy. The reason for this is that a typical

sector uses intermediate inputs from other sectors, and so sectoral output does not equal

sectoral value added even in a closed economy. Therefore, it is natural to start with a

production function for gross output and ask under what conditions a production function

for value added exists.

Denoting the sector indexes for agriculture, manufacturing, and services by i ∈ {a,m, s},

the production function for sectoral gross output can be written as:

Gi = Hi(Ki, Li,Zi)

where Zi denotes the vector of intermediate inputs in sector i that are produced by all

sectors including sector i: Zi = [Zi1, ...,Zin]. The question we ask here is under which

conditions do value–added production functions Fi(Ki, Li) exist such that sectoral value

added is given by:

Yi ≡
PgiHi(Ki, Li,Zi) −

∑

j Pi jZi j

Pyi

= Fi(Ki, Li)(1)
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where Pgi, Pi j, and Pyi denote the prices of gross output, intermediate input Zi j, and value

added (all expressed in current dollars).

Sato (1976) showed that a value added production function exists if there is perfect

competition, if firms behave optimally, and if the other input factors are separable from

intermediate inputs, that is, the gross–output production function is of the form

Gi = Hi(Fi(Ki, Li),Zi)(2)

where Hi and Fi satisfy the usual regularity conditions, that is, they are positive, finite,

twice continuously differentiable, monotonically increasing in both arguments, strictly

concave, homogeneous of degree one, and satisfy the Inada conditions. To understand

Sato’s argument, consider the problem of a stand–in firm that takes prices and gross

output as given and chooses capital, labor, and intermediate inputs to minimize its costs

subject to the constraint that it produces the given output:

min
Ki,Li,Zi

RiKi +WiLi +

∑

j

Pi jZi j s.t. Hi(Fi(Ki, Li),Zi) ≥ Gi(3)

where Ri and Wi denote the rental rates for capital and labor, both expressed in current

dollars. The first–order conditions for an interior solution to this problem imply:2

Pyi = λi

∂Hi(Fi(Ki, Li),Zi)

∂Yi

(4)

Ri = λi

∂Hi(Fi(Ki, Li),Zi)

∂Yi

∂Fi(Ki, Li)

∂Ki

(5)

Wi = λi

∂Hi(Fi(Ki, Li),Zi)

∂Yi

∂Fi(Ki, Li)

∂Li

(6)

where λi is the multiplier on the constraint. Substituting the first equation into the second

2To obtain (4), we start with the interior first–order condition for the optimal choice of Zi j:

Pi j = λi
∂Hi

∂Zi j

The assumption that H is homogeneous of degree one implies that

Gi = Yi
∂Hi

∂Yi
+

∑

j

Zi j
∂Hi

∂Zi j

Solving this equation for ∂Hi/∂Zi j, substituting the result into the first–order condition for Zi j, and rearranging gives:

Yi =
λiGi −

∑

j Pi jZi j

λi∂Hi/∂Yi

Using that via the envelope theorem, λi = Pgi, (4) follows by comparing the denominator of the previous equation with
the denominator of (1).
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and third equations gives:

Ri = Pyi

∂Fi(Ki, Li)

∂Ki

(7)

Wi = Pyi

∂Fi(Ki, Li)

∂Li

(8)

These conditions are the first–order conditions for an interior solution to the problem of

a stand–in firm that takes prices and value added as given and chooses capital and labor

to minimize its costs subject to the constraint that it produces the given value added:

min
Ki,Li

RiKi +WiLi s.t. Fi(Ki, Li) ≥ Yi(9)

where we have used that by the envelope theorem the multiplier on the new constraint

equals the price of value added Pyi.

The question remains if condition (2) holds for the postwar US economy. A sufficient

(but not necessary) condition is that the sectoral production function is of the Cobb–

Douglas form between value added and an aggregator Xi of all intermediate inputs:

Gi = [Fi(Ki, Li)]
ηi[Xi(Zi)]

1−ηi(10)

In this case, perfect competition and firm optimization imply that the share of interme-

diate inputs is constant over time. Figure 1 plots the intermediate good shares for the

postwar US economy. We can see that while they are not strictly constant none of them

has a pronounced long–run trend, which is consistent with the Cobb–Douglas form (10).

An additional piece of evidence in favor of the Cobb–Douglas form is that when we

regress the changes in the intermediate good share of a given sector on the changes in the

price of intermediate goods relative to value added in that sector, the regression coeffi-

cient is not significant.3 We interpret these pieces of evidence to mean that the functional

form (10) is a reasonable starting point when one is interested in long–run secular trends

that the literature on structural transformation focuses on. We will therefore proceed

under the assumption that sectoral value–added production functions exist. In the next

section, we will discuss the issues involved in estimating them.

3For this exercise we use postwar US data from WorldKLEMS. We thank an anonymous referee for suggesting to do
this.
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Figure 1. Intermediate Inputs Shares in the US
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II. Estimating Value Added Production Functions

We focus on the class of CES production functions that was introduced to economics

by Arrow et al. (1961):4

Fi(Kit, Lit) =

[

αi

[

exp(γikt)Kit

]

σi−1
σi + (1 − αi)

[

exp(γilt)Lit

]

σi−1
σi

]

σi

σi−1

(11)

where i ∈ {a,m, s} denotes the sector, σi ∈ [0,∞) is the (constant) elasticity of substi-

tution between capital and labor, γik and γil are the growth rates of capital– and labor–

augmenting technical progress, and αi is the relative weight on capital. For σi → 1, the

CES production function (11) converges to the Cobb–Douglas production function:

Fi(Kit, Lit) =
[

exp(γikt)Kit

]αi
[

exp(γilt)Lit

]1−αi(12)

4In contrast, Jorgenson, Gollop and Fraumeni (1987) estimated translog production functions for 45 disaggregate US
industries during 1948–79. Since a translog is a Taylor–series approximation of the unknown production function, the
parameters of translogs are not “deep” and the elasticity of substitution is not constant. Translogs are therefore not very
useful for general equilibrium models that require calibration, although they are often preferred when flexibility is valued
in empirical work.



VOL. NO. SECTORAL TECHNOLOGY AND STRUCTURAL TRANSFORMATION 9

For σi → 0, the CES production function (11) converges to the Leontief production

function:5

Fi(Kit, Lit) = min
{

exp(γikt)Kit, exp(γilt)Lit

}

One might worry that assuming constant technical progress is overly restrictive, in par-

ticular since recent papers like León-Ledesma, McAdam and Willman (2010) also con-

sidered different specifications. However, as we will see below, the estimated production

functions do a good job at fitting the secular trends of sectoral capital, employment and

relative prices. It is important to realize that to identify the parameters of the model one

needs to put some structure on technical progress. To see why, consider the case where

γi may change freely over time. We could then fit the data irrespective of the values of

σi. Even in the extreme case of a Leontief production function that allows for no substi-

tutability between capital and labor, we could rationalize years with low capital–to–labor

ratios by choosing high γik/γil and years with high capital–to–labor ratios by choosing

low γik/γil. As a result, σi would not be identified.

We assume that there is perfect competition in product and factor markets and that each

sector has a stand–in firm that minimizes costs.6 The firm takes as given value added,

Yit, the price of value added, Pyit, and the rental prices for the production factors, Rit and

Wit, and chooses capital and labor to minimize its costs subject to the constraint that it

produce at least the given value added. We denote the rental prices in term of sector i’s

value added by rit and wit:

rit ≡
Rit

Pyit

wit ≡
Wit

Pyit

The problem of the stand–in firm can then be written as:

min
Kit ,Lit

ritKit + witLit s.t. Fi(Kit, Lit) ≥ Yit(13)

5Some authors raise the weights in the CES function to the power 1/σi. The reason for this is that for σi → 0 the
limit of the CES is the generalized Leontief production function

Fi(Kit , Lit) = min
{

αi exp(γikt)Kit , (1 − αi) exp(γilt)Lit
}

This is relevant if one wants to use unequal weights in the limiting Leontief case; see for example Herrendorf, Rogerson
and Valentinyi (2013). Since we are not interested in the Leontief case here, we continue with the functional form (11)
for simplicity.

6We don’t let the stand–in firm maximize profits here because with constant returns profit maximization results in an
indeterminate scale of production. In contrast, cost minimization results in a determinate scale of production even with
constant returns to scale. Otherwise profit maximization and cots minimization are equivalent.
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The first–order conditions for an interior solution to this problem are:

rit = αi exp (γikt)
σi−1
σi

(

Yit

Kit

)

1
σi

(14)

wit = (1 − αi) exp (γilt)
σi−1
σi

(

Yit

Lit

)

1
σi

(15)

For future reference, we note that these first–order conditions imply that the income

shares of the production factors are given as:

θit ≡
ritKit

Yit

= αi

[

exp (γikt)
Kit

Yit

]

σi−1
σi

(16)

1 − θit ≡
witLit

Yit

= (1 − αi)

[

exp (γilt)
Lit

Yit

]

σi−1
σi

(17)

where we have used the fact that constant returns and perfect competition imply that the

income shares add up to one. In the Cobb–Douglas case, σi = 1 and θit = αi, implying

the well known result that the capital share equals the exponent of capital.

For estimation purposes it is advantageous to normalize the CES production function

(11) so that the relative weights on capital and labor equal the averages of the income

shares. To achieve this, we divide and multiply each variable other than time by its

geometric average:

Fi(Kit, Lit) = Y i





























αi

















exp
(

γikt
)

Ki

Y i

















σi−1
σi













exp(γikt)Kit

exp(γikt)Ki













σi−1
σi

+(1 − αi)

















exp
(

γilt
)

Li

Y i

















σi−1
σi













exp(γilt)Lit

exp(γilt)Li













σi−1
σi





























σi

σi−1

where Y i, Ki and Li are the geometric averages of output, capital and labor over the

sample period and t is the arithmetic average of the time index. Using (16)–(17), we

have:

αi













exp
(

γikt
) Ki

Y i













σi−1
σi

= θi(18)
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(1 − αi)













exp
(

γilt
) Li

Y i













σi−1
σi

= 1 − θi(19)

where θi and 1 − θi are the average income shares of the sample period. Since the income

shares are observed, their geometric averages are readily calculated and we can substitute

their values into the production function prior to estimating the other parameters:

Fi(Kit, Lit) = Y i























θi













exp(γikt)Kit

exp(γikt)Ki













σi−1
σi

+ (1 − θi)













exp(γilt)Lit

exp(γilt)Li













σi−1
σi























σi

σi−1

(20)

In other words, our normalization generalizes to CES production functions the property

of Cobb–Douglas production functions that the exponents equal the income shares, given

the maintained assumption of perfect competition and firm optimization.

León-Ledesma, McAdam and Willman (2010) normalized the CES production func-

tion in a similar way and demonstrated that the resulting two–step procedure reduces

the numerical complexity of the estimation procedure. There is a subtle but important

difference between their and our normalization: they used arithmetic averages of the

variables and the income shares whereas we use geometric averages. This implies that

in their paper the normalized CES is an approximation to the actual CES, which may not

be accurate far away from the point of approximation. In contrast, in our paper (20) is an

identity that holds everywhere.

The first–order conditions (14)–(15) can be rewritten in terms of normalized variables:

rit =
θiY i

Ki

exp

(

σi − 1

σi

γik(t − t)

) (

Yit/Kit

Y i/Ki

)

1
σi

(21)

wit =
(1 − θi)Y i

Li

exp

(

σi − 1

σi

γil(t − t)

) (

Yit/Lit

Y i/Li

)

1
σi

(22)

Our goal is to estimate the parameter values in (20)–(22). To this end, we multiply each

equation with an error term, which we think of as productivity shocks or measurement

error that may be correlated over time. Taking logs and rearranging gives:

log

(

Yit

Y i

)

=
σi

σi − 1
log





















θi

(

exp(γik(t − t))
Kit

Ki

)

σi−1
σi

(23)

+(1 − θi)

(

exp(γil(t − t))
Lit

Li

)

σi−1
σi





















+ ǫyit
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log(rit) = log













θiY i

Ki













+
σi − 1

σi

[

γik(t − t)
]

+
1

σi

log

(

Yit/Kit

Y i/Ki

)

+ ǫrit(24)

log(wit) = log













(1 − θi)Y i

Li













+
σi − 1

σi

[

γil(t − t)
]

+
1

σi

log

(

Yit/Lit

Y i/Li

)

+ ǫwit(25)

where (ǫyit, ǫrit, ǫwit) denote the errors.7

We now turn to the details of estimating the system (23)–(25). As mentioned above,

θi and 1 − θi equal the geometric averages of the income shares in sector i. The first

step therefore is to calculate the geometric averages of the income shares from the data

according to the method of Gollin (2002). Given the values of θi and 1 − θi, the second

step is to estimate σi, γik, and γil for the three sectors. Note that for the special case of

a Cobb–Douglas production function, this two–step procedure boils down to the usual

way of proceeding: first calibrate the exponents by setting them equal to the average

factor income shares; then estimate the Solow residuals. In order to tie our work to the

literature, we also estimate σ, γk, and γl for the aggregate economy and compare the

results with those in the literature. For the aggregate economy this results in a three–

equation system and for the sectoral estimation in a nine–equation system with three

equations for each of the three sectors. By estimating the equations for the three sectors

together, we allow for the possibility that the error terms across equations and sectors are

correlated.

We employ a non–linear version of the method of Cochrane and Orcutt (1949). More

specifically, we use the non–linear, feasible, generalized three–stage least squares esti-

mation routine offered by Eviews. The first stage obtains the instruments by running a

linear least squares regression of the endogenous right–hand side variables on the one–

period lags of all variables plus time trends. Fair (1970) showed that the Cochrane–Orcutt

approach delivers consistent estimates in a system of simultaneous equations with auto-

correlated errors if one includes all lagged variables as instruments. The second stage is a

non–linear least squares regression with the instruments as the right–hand side variables.

This stage takes into account the AR(1) structure of the error terms via the Cochrane–

Orcutt procedure.8 The third stage uses the estimated error terms from the previous stage

to correct for heteroscedasticity and cross–equation correlation of the error terms using

the non–linear, feasible, generalized least square estimator. Since the estimation in the

second stage is non–linear, the results are obtained numerically and may depend on the

starting values. We vary the starting values widely. If different starting values result

in different parameter estimates (that is, the procedure converges to a local rather than

a global maximum), then we choose the one with the smallest log determinant of the

residual covariance matrix.

The choice of instruments warrants further discussion. As we have just described, the

7To avoid confusion, note that there will be a problem with estimating σi if it exactly equals one, because then the
first equation converges to the log of the Cobb–Douglas limit of (20) and σi disappears from it. However, this is not an
issue in the current context because our estimates of σi are significantly different from one.

8Using boldfaced symbols to denote vectors and matrices, the system (23)–(25) can be written as yt = h(xt) + ǫt .
Eviews estimates the system as yt = h(xt) + ρ[yt−1 − h(xt−1)] + νt .
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non–linear Cochrane–Orcutt method uses one–period lagged values (appropriate to each

sector or the aggregate economy) of the log rental rates of capital and labor, log normal-

ized value added, log normalized capital, log normalized labor and the time trend. To

be valid instruments, the lags need to satisfy two conditions: (i) they are correlated with

the variable for which they instrument; (ii) they are uncorrelated with the unobserved

determinants of the dependent variable. If the one–period lagged values are correlated

with the contemporaneous values, then condition (i) is met. This is the case in the data.

However, the one–period lagged values are also correlated with the contemporaneous

error terms, because, as it will turn out, the error terms follow an AR(1) process:

ǫ jit = ρ jiǫ jit−1 + ν jit

where ρ ∈ (−1, 1) and ν is a current–period innovation. However, since the instruments

are lagged values of the right–hand side variables, they are predetermined in the current

period and are uncorrelated with ν jit if ν jit is i.i.d. with mean zero and finite variance,

which we test for via Box–Ljung Test. Appendix D reports that the test does not reject

the null hypothesis that the innovations to the errors are not serially correlated after

estimating our equation with an AR(1) process. Condition (ii) is then also met. In other

words, this specification gives no reason to reject the validity of the lagged values of the

right–hand side variables as instruments.

A potential problem arises from the fact that system (23)–(25) features several non

stationary variables (Yit, Kit, Lit, and log(wit)) and two trends governed by γik and γil.

Standard asymptotic theory does not in general apply anymore and it is not clear whether

the parameter estimates are consistent. However, in our context the parameter estimates

will be consistent if the error terms ν jit are white noise and the estimated autocorrelated

error processes are stationary, that is, |ρ ji| < 1; see Chang, Park and Phillips (2001) for

further discussion. We addressed the former in the previous paragraph. We test for the

latter via the Augmented–Dickey–Fuller Test. As Appendix D reports, the test rejects

the null hypothesis that the errors are not stationary.

III. Data

We use annual US data for the period 1947–2010. We start in 1947 because before

hours worked by sector are not available. We use the North American Industrial Classi-

fication (NAICS) to the extent possible and define the three broad sectors in the obvious

way: agriculture comprises farms, fishing, forestry; manufacturing comprises construc-

tion, manufacturing, and mining; services comprise all other industries (i.e. education,

government, real estate, trade, transportation, etc.).9

We obtain nominal and real value added from the BEA’s “GDP–by–Industry” tables.

An issue arises in agriculture because NIPA reports “Rent paid to nonoperator landlords”

as value added in the real estate industry although conceptually it is value added gener-

9Although industry might seem a better term for the sector comprising construction, manufacturing, and mining, we
use the term manufacturing because industry typically refers to a generic production category.
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ated in agriculture. We therefore add “Rent Paid to Nonoperator Landlords” (as reported

by the BEA in NIPA Table 7.3.5 “Farm Sector Output, Gross Value Added, and Net

Value Added”) to the value added of agriculture and subtract it from the value added

of services. Since the BEA does not publish the quantity of value added at the level of

our broad sectors, we have to construct the sectoral quantities from the underlying BEA

data ourselves. An additional complication arises when doing this because the reported

real quantities are constructed according to the chain–weighted method, implying that

they are not additive. We use the so–called cyclical expansion procedure to calculate real

quantities of sectoral aggregates; see Appendix A for the details.

We calculate the capital stocks by sector from the BEA’s “Fixed Asset” tables, which

contain the year–end current costs and quantity indexes in 2005 prices of the net stock of

fixed assets. The capital stocks during year t are the geometric averages of the year–end

capital stocks in t − 1 and t, again using the cyclical expansion procedure to aggregate

real capital stocks to the sectoral level. Since the BEA does not include agricultural land

in its fixed assets, we construct capital in agriculture by aggregating capital and land

following the methodology of Jorgenson and Griliches (1967). The data for the quantity

of agricultural land in acres are from “Land in Farms” and “Farm Real Estate Values”

tables of the “U.S. and State Farm Income and Wealth Statistics” tables from the U.S.

Department of Agriculture (USDA). To aggregate capital and land, we use the rental

rates for their services. Note that this does not require them to be perfect substitutes, but

requires that aggregate capital in agriculture Ka is separable from labor: Ya = Fa(Ka, La)

where Ka = f (K1a,K2a), f is a production function with the standard regularity condi-

tions (differentiability, constant returns etc), and K1a and K2a denote reproducible capital

and land in agriculture. If K1a and K2a are paid their marginal products, which is implied

by our maintained assumptions of perfect competition and cost minimization, then con-

stant returns imply that Ka = R1K1a +R2K2a where Ri are the corresponding rental rates.

Appendix B contains a more detailed discussion of how we obtain aggregate capital in

agriculture.

We calculate sectoral labor inputs as hours worked by persons engaged. The princi-

pal data sources are the BEA’s “Income–and–Employment–by–Industry” Tables, which

contain information about hours worked by full– and part–time employees by indus-

try, full–time equivalent employees by industry, self–employed persons by industry, and

persons engaged in production by industry. Unfortunately, the industry classification

system changes in these tables: SIC72 applies to 1948–1987, SIC87 to 1987–1997, and

NAICS to 1998–2010. Fortunately, the “GDP–by–Industry Tables” tables report full–

and part–time employees by industry consistently according to NAICS throughout the

whole period. We merge the two data sources using the GDP–by–Industry Tables for

full– and part–time employees by industry and using the ‘Income–and–Employment–

by–Industry” Tables for all other statistics. Appendix C contains the details.

Lastly, we calculate the rental prices of the factors of production by sector according

to

rit =
θitYit

Kit
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wit =
(1 − θit)Yit

Lit

where, as before, θi denotes the share of capital income in sector i’s value added. Given

that we have already described the construction of Y , K and L, we only need to de-

scribe the calculation of the factor shares. We split value added reported in the BEA’s

“Components–of–Value–Added–by–Industry” Tables in the standard way: “Compensa-

tion of Employees” is labor income; “Gross Operating Surplus minus Proprietors’ In-

come” is capital income; proprietors’ income is split into capital and labor income using

the above shares. In the case of agriculture, we add “Rent Paid to Nonoperator Land-

lords” to “Gross Operating Surplus minus Proprietors’ Income” since it is capital income.

An issue arises because again the industry classification in these tables changes twice.

We calculate the sectoral capital shares for each subperiod during which the classification

remains unchanged and assume that the same share applies to the corresponding NAICS

classifications as well. Since our three sectors are fairly broad, this is unlikely to affect

our results in a quantitatively important way.

IV. Estimation Results

Table 1— Estimation Results

Aggregate Agriculture Manufacturing Services

σ 0.84∗∗∗ 1.58∗∗∗ 0.80∗∗∗ 0.75∗∗∗

(0.041) (0.068) (0.015) (0.020)

γk −0.010 0.023∗∗∗ −0.045∗∗∗ −0.002

(0.006) (0.003) (0.009) (0.004)

γl 0.022∗∗∗ 0.050∗∗∗ 0.044∗∗∗ 0.016∗∗∗

(0.003) (0.004) (0.007) (0.002)

θ 0.33 0.61 0.29 0.34

Standard errors in parentheses; ∗∗∗ Significant at the 1 percent level.

We are now ready to report the estimation results, which are summarized in Table 1.

We find that capital and labor are most substitutable in agriculture and least substitutable

in services. In agriculture capital and labor are more substitutable than in the Cobb–

Douglas case, which is consistent with the observation that a mechanization wave led

to massive substitution of capital for labor in agriculture after World War II. In manu-

facturing and services capital and labor are less substitutable than Cobb–Douglas. Our

estimate of 0.80 for the elasticity of substitution in manufacturing is close to that Ober-

field and Raval (2014) obtain from micro data for manufacturing plants. Aggregating

the actions of individual plants, they find elasticities of 0.67 in 1970 and 0.75 in 2007
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for the manufacturing sector. On the aggregate, we find that capital and labor are less

substitutable than Cobb–Douglas, which is consistent with the previous results of Antràs

(2004), Klump, McAdam and Willman (2007) and León-Ledesma, McAdam and Will-

man (2010).10

Labor–augmenting technical progress is fastest in agriculture and slowest in services

and the differences in technical progress are sizeable: while the growth rates were 5.0%

per year in agriculture and 4.4% in manufacturing, they were only 1.6% in services; these

growth rates result in an average of 2.2% annual growth of aggregate labor–augmenting

technical progress. The fact that technical progress is slowest in services while the share

of value added produced in services is growing is sometimes referred to as Baumol “dis-

ease”. Baumol (1967) was the first to point out that these two facts imply decreasing

growth rates of real GDP. Moreover, if the current trends of structural transformation

continue, then services will dominate the economy in the limit and aggregate labor–

augmenting technical progress will fall to the low technical progress in services.

We find mixed results regarding capital–augmenting technical progress. At the ag-

gregate it is negative but not significant.11 At the sectoral level, capital–augmenting

technical progress is significantly different from zero in agriculture and manufacturing

and not significantly different from zero in services. Moreover, in agriculture capital–

augmenting technical progress is positive and in manufacturing it is negative and the

negative growth rate in manufacturing is relatively large. At first sight, negative techni-

cal progress in manufacturing is challenging to interpret. However, if one thinks of the

decline of sizeable parts of US manufacturing during the postwar period, then negative

technical progress in manufacturing may just reflect that the BEA underestimated the

depreciation of manufacturing capital. Since this issue is not central to our study, we

leave further investigation of it for future research.

The last row of Table 1 reports θ, that is, the average capital share in the post war pe-

riod. We can see that the aggregate capital share comes out as the standard value of 1/3.

The sectoral capital shares differ from the aggregate capital share: while the agricultural

capital share is considerably larger than the aggregate capital share, the capital shares in

manufacturing and services are fairly close to the aggregate capital share. The capital

share in agriculture is much larger than the other two capital shares because agriculture

is intensive in both physical capital and land, which have income shares in agricultural

value added equal to 0.54 and 0.07, respectively. The capital share in services is larger

than in manufacturing because owner–occupied housing is part of services and is very

capital intensive.

10Appendix D contains further information. In particular, it shows that the fit is good. It also reports an Augmented–
Dickey–Fuller Test, which tests for the stationarity of the autocorrelated error processes, and the multivariate Ljung–Box
Adjusted Q–statistics, which test for autocorrelation in the residuals. The null hypothesis of no higher–order autocorrela-
tion is not rejected. To conserve space we only report the test statistics for the second lag, but the results for higher order
autocorrelation are similar.

11Antràs (2004) studies the aggregate US production function during the period 1948–1998 and also finds that capital–
augmenting technical progress was negative.



VOL. NO. SECTORAL TECHNOLOGY AND STRUCTURAL TRANSFORMATION 17

V. Sectoral Technology and Structural Transformation

A. CES versus Cobb–Douglas production functions

In this section, we evaluate the implications of the different features of sectoral pro-

duction functions for structural transformation. To this end, we compare the unrestricted

CES production functions that we have estimated above with two Cobb–Douglas pro-

duction functions which we estimate now. They result when we impose that σi = 1 and

that the exponents on capital equal the arithmetic average of the sector–specific capital

shares, αi = θ̃i, or the arithmetic averages of the aggregate capital shares, αi = θ̃.
12 It is

convenient to rewrite (20) in the three cases as follows:

Fi(Kit, Lit) =
[

θi (AiktKit)
σi−1
σi + (1 − θi) (AiltLit)

σi−1
σi

]

σi

σi−1(26)

Fi(Kit, Lit) = (AiktKit)
αi (AiltLit)

1−αi(27)

Fi(Kit, Lit) = (AiktKit)
α (AiltLit)

1−α(28)

where Aikt and Ailt are defined as:

Aikt ≡ exp(γik[t − t])
Y i

Ki

and Ailt ≡ exp(γil[t − t])
Y i

Li

if Fi is CES(29)

Aikt = exp(γi[t − t])
Y i

Ki

and Ailt = exp(γi[t − t])
Y i

Li

if Fi is Cobb Douglas(30)

The reason for the difference between the two rows is that in the Cobb–Douglas case it

is not possible to identify γik and γil separately so that we are left with just the growth

factors of TFP γi. In contrast, for the CES production function, γi cannot be obtained be-

cause the rates of capital– and labor–augmenting technical progress cannot be translated

into an observationally–equivalent rate of TFP growth.

We calculate the values of Ai jt according to the expressions in (29) and (30). We obtain

the geometric averages Y i, Ki, and Li directly from the data. While we use the values

from Table 1 for γik and γil in the CES case, we estimate γi from the output equations

(23) for the special case of the Cobb–Douglas production function jointly for the three

sectors given the values of the exponents and again assuming AR(1) error terms. Table 2

reports the resulting average annual growth rates of TFP. They are somewhat larger than

what other studies like Jorgenson, Gollop and Fraumeni (1987) tend to find. The most

likely reason for this is that we have not taken into account improvements in the quality

of sectoral labor (e.g., through increases in years of schooling), which therefore show up

as technical progress in our estimation.

12In case of the Cobb–Douglas function we use arithmetic instead of geometric averages because we want the capital
and labor shares to add up to one so that the Cobb–Douglas production function has constant returns to scale. Geometric
averages of the capital and labor shares do not add up to one in general.
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To obtain the exponents of the Cobb–Douglas production function, we use that under

our maintained assumptions of perfect competition in factor and product markets and

cost minimization the exponent on capital equals the capital share. This is the case in

each period and for the arithmetic average. We calibrate the exponents on capital by

setting them equal to the observed arithmetic average of the sectoral capital share or the

observed arithmetic average of the aggregate capital shares.

Table 2— Average Annual Growth Rates of TFP (in percent)

Aggregate Agriculture Manufacturing Services

CD with αi 1.1 3.3 1.5 1.0

CD with α 1.1 3.9 1.4 1.0

B. Sectoral labor allocations

We now turn to the sectoral labor allocations that result from the optimal choices of

stand–in firms which are endowed with the production functions (26)–(28). Solving the

first-order conditions to the firm problem for sectoral labor, we obtain for the different

functional forms:

Lit =

















θi













θi

1 − θi

Aiktwit

Ailtrit













1−σi

+ (1 − θi)

















−
σi

1−σi Yit

Ailt

(31)

Lit =

(

αi

1 − αi

Aiktwit

Ailtrit

)−αi Yit

Ailt

(32)

Lit =

(

α

1 − α

Aiktwit

Ailtrit

)−α
Yit

Ailt

(33)

Note that to derive these expressions we did not impose that the marginal product of

labor be equalized across sectors. While that is a common assumption in multi–sector

models, it may not hold in the data and, in any case, it is not required for studying the

labor allocations that are implied by the different production functions. In section VI.A

we will discuss further how our results relate to multi–sector models that assume that

marginal products are equalized across sectors.

It is worth taking a moment to build intuition for how the different features of tech-

nology affect the allocation of labor across the three broad sectors. The term Yit/Ailt is

common to the right–hand sides because more labor–augmenting technical progress im-

plies that less labor is needed to produce the given quantity Yit of sectoral value added.

The other right–hand–side terms differ among the different functional forms. It is easiest
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to start with the Cobb–Douglas cases. The term [αi/(1 − αi)]
−αi has a local maximum

at αi = 0.22, and so it is decreasing for αi ∈ (0.22, 1) which includes the standard value

1/3. This captures that for empirically relevant values of the capital share, a sector with

a larger capital share receives less labor than a sector with a smaller capital share. The

term [(Aiktwit)/(Ailtrit)]
−αi captures that an increase in the relative rental price of capital

to labor (where both rental rates are expressed relative to the relevant A) leads to a de-

crease in the sectoral capital–labor ratio and an increase in sectoral labor. These effects

are larger when the sectoral capital share is larger.

To see how these features of technology may matter for structural transformation, re-

call the intuition developed earlier in the introduction. Acemoglu and Guerrieri (2008)

showed that sectoral differences in the capital share could drive structural transforma-

tion. To see how, consider two sectors that have production functions which differ only

in their capital share. When technical progress occurs at equal rates in both sectors, GDP

per capita increases, “capital deepening” occurs, and the relative price of value added

output in the sector with the higher capital share decreases. This prompts a realloca-

tion of resources toward the sector with a falling relative price of output under standard

preferences.

Turning now to the case of the CES production functions, we have an additional sub-

stitution effect: if the elasticity of substitution is larger than one, a higher rental rate of

capital relative to labor leads to a larger reduction of the capital–labor ratio than in the

Cobb–Douglas case; if the elasticity of substitution is smaller than one, a higher rental

rate of capital relative to labor leads to a smaller reduction of the capital-labor ratio than

in the Cobb-Douglas case. If we consider two sectors that differ only with respect to their

capital–labor substitutability, then we observe the force described by Alvarez-Cuadrado,

Long and Poschke (2013), notably, as technical progress occurs at equal rates in both

sectors and GDP per capita increases, the relative price of value added in the sector with

low capital–labor substitutability falls. Given standard preferences, this again leads to

the reallocation of resources towards this sector.

Figure 2 plots the labor allocations that are implied by equations (31)–(33) when we

plug in the estimated parameter values for σi, θi, Aikt, and Ailt and the data values of the

exogenous variables of Yit, rit, and wit. Note that we have divided the hours series from

the data and from the model by the hours worked in the data in 1948. This implies that

in each sector hours worked in the data in 1948 are equal to one, but hours implied by

the model in 1948 are equal to one only if the model gets the level in 1948 right.

All three functional forms do a reasonable job at capturing the secular changes in

sectoral hours worked. The main differences between them are that the CES form does

marginally better at mimicking the short–run fluctuations in the service sector whereas

the Cobb–Douglas production function with unequal shares does somewhat better in

mimicking the labor allocations in agriculture and manufacturing.13 The Cobb–Douglas

production function with equal shares performs similarly to the one with unequal shares

13To avoid confusion, we should emphasize that there is nothing strange about the finding that a Cobb–Douglas
production function outperforms CES production function regarding sectoral employment. The reason for this is that
when we estimated the production function, we did not target the labor allocations.
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Figure 2. Hours Worked (Data=1 in 1948)
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in the service and manufacturing sector. Moreover, it does a reasonable job at capturing

the secular change in agriculture, but overpredicts the level of employment in agriculture.

The root–mean–square percentage deviations in Table 6 in Appendix D confirm these

observations.

The reason for the differences in the performance of the two Cobb–Douglas produc-

tion functions in agriculture is that the one with equal shares misses that agriculture

has a much smaller labor share than the aggregate, and so it systematically allocates

too much labor to agriculture. Nonetheless, even the Cobb–Douglas production function

with equal shares captures the main changes in hours worked.14 The reason why the CES

production function does not outperform the other production functions in agriculture is

that it has both by far the largest capital share and the largest elasticity of substitution.

Hence, the effects on structural transformation of the large capital share and the large

elasticities in agriculture work in opposite directions and largely cancel each other, leav-

ing the effects of uneven labor–augmenting technical progress as the dominating force.

All three production functions capture that force.

C. Relative prices

We continue by assessing how well we can match relative prices of sectoral value

added with the three production functions. Relative prices are of interest in the context

of structural transformation because they influence not just the sectoral composition of

value added, but also that of employment. To be concrete, if preferences were homo-

thetic, then the observed decrease in the relative price of agriculture to manufacturing

during the postwar period would have led to an increase in the share of agricultural value

added in total consumption. The fact that share decreased in the data suggests that pref-

erences are not homothetic and that the income elasticity of agricultural consumption

is smaller than one. Herrendorf, Rogerson and Valentinyi (2013) assessed in detail the

preferences aspect of structural transformation, in particular the importance of the effects

of changes in relative prices and in income on the composition of household consump-

tion. The goal of this subsection is to assess how well each of the three functional forms

does in terms of the implied prices of agriculture and services relative to manufacturing

compared to those in the data. We proceed under the maintained assumption that the sec-

toral stand–in firm behaves competitively and minimizes its costs subject to a production

constraint.

The first–order conditions to the firm problem (13) imply that the real wage wit ex-

pressed in units of sector i’s value added equals the marginal product of labor. Hence,

the price of sector i’s value added relative to manufacturing is given by:

(34)
Pit

Pmt

=
Wit

Wmt

MPLmt

MPLit

14In a different context, Herrendorf and Valentinyi (2012) obtained a similar finding: conducting a development ac-
counting exercise at the sectoral level, they found that Cobb–Douglas production functions with equal capital shares
imply similar gaps of sectoral TFP compared to the US as Cobb–Douglas production functions with sector–specific
capital shares.
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Figure 3. Sectoral Prices Relative to Manufacturing (Data and Model =1 in 1948)
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We observe the nominal wages Wit and Wmt in the data. The model implies the values

of the marginal products MPLit and MPLmt as functions of the observed factor prices.

Given these, it is straightforward to calculate the implied relative prices from equation

(34).

Figure 3 reports the implied relative prices for the three functional forms. In plotting

the figure, we have chosen 1948 as the base year, and so by construction the relative

prices equal one in the data as well as in the model. We can see that a similar conclusion

as for the labor allocation emerges: all three functional forms do reasonably well with

respect to changes in the relative prices. In particular, there is little difference among the

implied prices of agricultural value added relative to manufacturing value added. The

root–mean–square percentage deviations reported in Table 6 of Appendix D confirm this

impression. Interestingly, they are largest for the CES and smallest for the Cobb–Douglas

production function with equal capital shares. A similar picture emerges for the implied

relative prices of service value added relative to manufacturing value added, except that

now all functional forms overpredict the relative price of services after 1970. The root–

mean–square percentage deviations reported in Table 6 of Appendix D show that again

the CES does slightly worse than the two Cobb–Douglas production functions which

are now very close. Moreover, the Cobb Douglas with unequal capital shares slightly

outperforms the one with equal capital shares.15

These findings confirm our conclusion that a Cobb Douglas production function with

equal capital shares captures the main technological forces behind structural transforma-

tion in the postwar US economy.

VI. Implications for Building Multi–sector Models

A. Equalizing marginal value products

Many builders of multi–sector models assume that the marginal value products of each

primary factor of production are equalized across sectors. A set of assumptions that

implies this in multi–sector models is: (i) competitive firms rent each factor of production

in a common factor market at a common nominal rental rate; and (ii) each factor of

production can be moved across sectors without frictions or costs. Unfortunately, it turns

out that in the US the nominal rental rates are not equalized across sectors. Figure 4

shows that the marginal value product of labor is somewhat higher in manufacturing

than in services, and is much lower in agriculture than in the other two sectors. Given

this evidence, our estimation strategy of system (23)–(25) has been to use the observed

nominal rental rates and prices of sectoral value added instead of imposing that nominal

rental rates are equalized across sectors.

The previous paragraph raises the question, in which way our estimated sectoral pro-

duction functions may be used for building multi–sector models that equalize marginal

value products across sectors. In order to incorporate our estimated production func-

15Note that there is nothing strange about the finding that a Cobb Douglas production function outperforms the CES
production function also regarding relative prices. The reason again is that we did not target the relative prices either.
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Figure 4. Sectoral Marginal Value Products of Labor (in logs)
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tions in such models, one needs to add a reason for the difference in the marginal value

products across sectors. In the case of labor, the most obvious reason is that there are

difference in sectoral human capital as in Jorgenson, Gollop and Fraumeni (1987) or

Herrendorf and Schoellman (2014). The latter paper, for example, found that average

sectoral human capital is lower in agriculture than in the rest of the US economy, and

that the difference accounts for almost all of the difference in nominal wages. This im-

plies that per efficiency unit of labor the average nominal wages were roughly equal in

agriculture and the rest of the US economy during the last thirty years. In the case of cap-

ital, the reasons for the difference in the marginal value products across sectors include

unmeasured quality differences in the measured stock of sectoral capital and unmeasured

parts of the stock of capital; see Jorgenson, Gollop and Fraumeni (1987) and McGrattan

and Prescott (2005) for further discussion.

B. Value–added versus final–expenditure production functions

So far, we have focused on value–added production functions. While this is a natural

starting point when one studies the forces behind structural transformation on the tech-

nology side, Herrendorf, Rogerson and Valentinyi (2013) pointed out that one can also

interpret the sectoral outputs as final goods that are consumed or invested. In this sub-

section we discuss the implications of our results for models of structural transformation

that interpret sectoral outputs as final goods, instead of as value added.

Before we delve into the details, an example may be helpful. Consider a household

that derives utility from the three consumption categories: agriculture, manufacturing,

and services. Herrendorf, Rogerson and Valentinyi (2013) pointed out that one can take

two different perspectives on what these categories are: the value–added perspective

and the final–goods perspective. The value–added perspective breaks the household’s

consumption into the value–added components from the three sectors and assigns each

value–added component to a sector. For example, if the household consumes a cotton
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shirt, then the value added of producing raw cotton goes to agriculture, the value added of

processing to manufacturing, and the value added of distribution to services. This means

that the consumption categories in the utility function of the household are the value

added that is produced in the three sectors agriculture, manufacturing, and services. In

contrast, the final–goods perspective assigns each consumption good to one of the three

consumption categories. The cotton shirt, for example, would typically be assigned to

manufacturing. This means that the consumption categories in the utility function of

the household become final–goods categories. This changes the meaning of the three

sectors, as the manufacturing sector now produces the entire cotton shirt, implying that

it combines the value added from the different industries that is required to produce the

cotton shirt.

Although the sectoral production functions under the two perspectives are very differ-

ent objects, we emphasize that they are two representations of the same underlying data,

which are linked through intricate input–output relationships. To see the implications

of this, it is useful to think of the sectoral output under the final–goods perspective as

a weighted average of the sectoral value added from the value–added perspective. This

implies that the production functions under the final–goods perspective are a weighted

average of the production functions under the value–added perspective. Valentinyi and

Herrendorf (2008) showed that as a result the capital shares of industry gross output tend

to be closer to the aggregate capital share than the capital shares of industry value added.

This should imply that the sectoral capital shares under the final–goods perspective are

closer to the aggregate capital share than the sectoral capital shares under the value–

added perspective. Following the same logic, we conjecture that the differences among

the elasticities of substitution of the different sectoral production functions are smaller

under the final–goods perspective than under the value–added perspective.

These arguments suggest that under the final–goods perspective the sectoral production

functions are at least as close to the Cobb–Douglas production function with a common

capital share as they are under the value–added perspective. Since we have shown above

that the Cobb–Douglas production functions with a common capital share do a reason-

able job at capturing sectoral employment and relative prices under the value–added

perspective, this suggests that they will also do a reasonable job under the final–goods

perspective. Note that since the aggregate capital share is the same under both perspec-

tives, it is straightforward to parameterize the Cobb–Douglas production functions with

a common capital share under the final–goods perspective.

VII. Conclusion

In this paper, we have assessed the technological forces behind the reallocation of pro-

duction factors across agriculture, manufacturing, and services. In particular, we have

asked how important for structural transformation are sectoral differences in capital–

and labor–augmenting technical progress, the capital share, and elasticity of substitution

between capital and labor. We have estimated CES and Cobb–Douglas production func-

tions for agriculture, manufacturing, and services on postwar US data and have compared

their implications for labor allocations and relative prices. We have found that differences
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in technical progress are the predominant force behind structural transformation and that

sectoral Cobb–Douglas production functions with equal capital shares (which by con-

struction abstract from differences in the elasticity of substitution and in capital shares)

do a reasonably good job of capturing the main trends of US structural transformation.

We have restricted our attention to the postwar US economy. It is also of interest to

extend this analysis to a larger set of countries, in particular to situations which feature

a larger range of real incomes and a higher share of agricultural employment and value

added. This will be useful in assessing the extent to which one can account for the

process of structural transformation with stable sectoral technologies.
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Appendix

Appendix A: Aggregation of Chained Quantity Indices according to the Cyclical Expansion

Method

Chain indices relate the value of an index number to its value in the previous period.

In contrast, fixed–base indices relate the value of an index number to its value in a fixed

base period. While chain indices are preferable to fixed–base indices when relative prices

change considerably over time, using them leads to the problem that real quantities are

not additive, that is, the real quantity of an aggregate does not equal the sum of the real

quantities of its components except in the base year or if relative prices don’t change.

In practice, this becomes relevant when one needs to calculate the real quantity of an

aggregate, but the statistical agency only reports the real quantities of the components of

this aggregate. This appendix explains how to construct the real quantity of the aggregate

according to the so called cyclical expansion procedure.16

Let Yit be the nominal value, yit the real value, Qit the chain–weighted quantity index,

and Pit the chain–weighted price index for variable i ∈ {1, . . . , n} in period t. Let t = b

be the base year for which we normalize Qib = Pib = 1. The nominal and real values of

variable i in period t are then given by:

Yit = Pit

Qit

Qib

Yib = PitQitYib,

yit =
Yit

Pit

= QitYib.

Let Yt =
∑n

i=1 Yit and suppose that the statistical agency reports yit, Qit and Pit for all

components i but not yt, Qt and Pt. Since in general yt ,
∑

i yit, we need to find a way of

calculating yt.

We start by constructing Qt using the “chain–summation” method:17

Qt

Qt−1

=

√

∑

i Pit−1yit
∑

i Pit−1yit−1

∑

i Pityit
∑

i Pityit−1

.

Using this expression iteratively, we obtain Qt as:

Qt =
Qt

Qt−1

Qt−1

Qt−2

. . .
Qb+1

Qb

Qb =
Qt

Qt−1

Qt−1

Qt−2

. . .
Qb+1

Qb

,

where the last step used the normalization Qb = 1. The real value and the price in period

16For a more detailed discussion of the practical issues arising from the non–additivity of chain indexes, see the
excellent discussion in Whelan (2002).

17Conceptually this formula is exact. In practice, it is an approximation because the statistical agency typically uses
more disaggregate categories when calculating sums like

∑

i Pit−1yit than are available to us.
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t then follow as:

yt = QtYb,

Pt =
Yt

QtYb

.

Appendix B: Aggregating Reproducible Capital and Land

To aggregate reproducible capital and fixed capital (i.e., land) to total capital in agricul-

ture, we use the rental rates for the services that they provide. The rental rates of services

from reproducible and fixed capital equal the real rates of return. To calculate them, we

calculate the income shares of agricultural value added that are paid to reproducible cap-

ital and fixed capital, θ1t and θ2t. We only observe θ1t + θ2t = 1− θLt. To calculate θ1t and

θ2t, we will impose that a risk–neutral investor be indifferent between holding the two

assets. Assuming that both assets face the same tax treatments, we obtain:

(1 − δ1t + r1t)
P1t

P1t−1

= (1 − δ2t + r2t)
P2t

P2t−1

where r1t and r2t denote the rates of return on and P1t and P2t are the price levels of repro-

ducible and fixed capital. Using the factor incomes and the asset stocks, this condition

can be rewritten as:18

(

1 − δ1t + θ1t

PYtYt

P1tK1t

)

P1t

P1t−1

=

(

1 − δ2t + θ2t

PYtYt

P2tK2t

)

P2t

P2t−1

where K1t denotes the stock of reproducible capital in real terms, K2t denotes the stock of

fixed capital measured in acres, Yt denotes agricultural value added in real terms, and P1t,

P2t and PYt denote the price levels of reproducible capital, fixed capital, and agricultural

value added. Using the fact that θ2t = 1 − θLt − θ1t, we can rewrite the above equation as

θ1t

(

PYtYt

P1tK1t

P1t

P1t−1

P2t−1

P2t

+
PYtYt

P2tK2t

)

=

(

1 − δ2t +
(1 − θLt)PYtYt

P2tK2t

)

− (1 − δ1t)
P1t

P1t−1

P2t−1

P2t

implying

θ1t =

1 − δ2t +
(1 − θLt)PYtYt

P2tK2t

− (1 − δ1t)
P1t

P2t

P2t−1

P1t−1

PYtYt

P2tK2t

+
P1t

P2t

P2t−1

P1t−1

PYtYt

P1tK1t

We calculate P1tK1t as the current–cost fixed assets in agriculture from the BEA Standard

Fixed Assets tables, P2tK2t as the value of land from USDA calculated as the price of

18We drop the index for agriculture to economize on notation, keeping in mind that everything in Appendix C refers
to agriculture.
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land per acre multiplied by the quantity of land measured in acres, and θLt as labor share.

We assume that δ1t = 0.06 and δ2t = 0, which are standard values.

Since in the real world the previous indifference condition holds only in expectations,

we cannot assume that it holds ex post in all periods. To deal with this problem, we

replace the price of capital relative to land P1t/P2t with its HP filtered version where the

prices both of capital and land are normalized to 1 in 2005. We use a relatively high

value of 1800 for the smoothing parameter so as to ensure that the nominal land rent per

acre implied by our model is close to the one observed in the data.

Appendix B: Construction of Hours by Persons Engaged

In this appendix we describe how we combine the “Income–and–Employment–by–

Industry” tables with the “GDP–by–Industry Tables” in order to obtain hours by persons

engaged by sector. Recall that the ‘Income–and–Employment–by–Industry” contain in-

formation about full–time equivalent employees, self–employed persons, and persons

engaged in production but change classification from SIC to NAICS; the “GDP–by–

Industry Tables” tables contain only full– and part–time employees by industry, but use

NAICS throughout the whole period. We combine them as follows:

full–time–equiv empl =
full–time equiv emplS IC

part & full–time emplS IC

part & full–time emplNAICS

hours full–time equiv empl =
hours full–time equiv emplS IC

full–time equiv emplS IC

full–time–equiv empl

self–empl =
self–emplS IC

part & full–time emplS IC

part & full–time emplNAICS

hours persons engaged = hours full–time equiv empl +
hours full–time equiv empl

full–time equiv empl
self–empl

Appendix D: Estimation Results
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Table 3— Standard Errors of

Regression Equations (23)–(25)

Agr Man Ser

Specification (23)

CES 0.078 0.026 0.010

CD (unequal) 0.078 0.025 0.010

CD (equal) 0.077 0.026 0.010

(24)

CES 0.038 0.050 0.018

(25)

CES 0.052 0.025 0.001

The standard error of an equation is the unbiased
estimator of the root–mean–square error of the
equation.

Table 4— Augmented Dickey Fuller

Test Statistics (23)–(25)

Agr Man Ser

Specification (23)

CES −2.714 −1.793 −2.287

CD (unequal) −2.741 −1.719 −2.365

CD (equal) −4.822 −1.717 −2.341

(24)

CES −3.730 −2.375 −2.013

(25)

CES −2.660 −1.996 −1.911
a H0: The errors are not stationary
b Critical values are −2.603 (p = 0.01), −1.946

(p = 0.05), and −1.613 (p = 0.10)

Table 5— Multivariate Ljung–Box Q–Statistics

Specification # of Lags Degrees of freedom Adj. Q–stat p–value

CES 2 162 186.662 0.090

CD (unequal) 2 18 25.058 0.123

CD (equal) 2 18 20.079 0.328
a H0: The errors are not autocorrelated
b Note that if one does not reject H0 for lag 2, one will not reject it for higher–order lags either.
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Table 6— Root–Mean–Squared Percentage Deviations

Labor Allocation Relative Prices

Specification Ag Man Ser Ag Ser

CES 0.123 0.140 0.025 0.180 0.196

CD (unequal) 0.091 0.074 0.028 0.174 0.124

CD (equal) 0.500 0.098 0.029 0.163 0.128


