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Generalized form of anhysteretic magnetization function for Jiles–Atherton
theory of hysteresis
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A generalized form of anhysteretic magnetization function to extend Jiles–Atherton theory to
different forms of anisotropy has been derived. The general equation for the function has been
compared with those of calculations made on the basis of known equations for specific cases:
axially anisotropic �one-dimensional�, planar anisotropic �two-dimensional�, and isotropic
�three-dimensional�. The Jiles–Atherton model using the proposed functional form of generalized
anhysteretic magnetization function for anisotropy dependence has been validated and the necessary
equations derived. It has been shown in this work that this functional form of anhysteretic
magnetization with necessary boundary conditions can be reduced to the familiar specific model
equations in the particular cases. © 2009 American Institute of Physics. �doi:10.1063/1.3249581�

In ferromagnetic materials, the magnetization path fol-
lowed by the specimen changes with applied field. According
to the Jiles–Atherton �JA� theory,1 the total magnetization,
M, of a ferromagnetic material is a sum of contributions of
irreversible, Mirr, and reversible, Mrev, magnetization compo-
nents:

M = Mirr + Mrev. �1�

In the model, Mirr is attributed to domain wall pinning
whereas Mrev is attributed to reversible bowing of domain
walls. Deriving these two magnetization components from
micro-structural processes, the differential equation describ-
ing the dependence of magnetization, M, on magnetic field,
H, can be constructed:

Mirr = Man − k�
dMirr

dHe
, �2�

Mrev = c�Man − Mirr� , �3�

where Man is the anhysteretic magnetization which is a func-
tion of energy of the moments in a domain and can have
different forms depending on the anisotropy.

The effective field term, H+�M, arises from the contri-
butions of applied field and magnetic interaction between
domains. The domain coupling, �, and density, a, affect the
slope of the hysteresis loop. The microstructural parameter k,
being proportional to the pinning site density and energy,
primarily determines the coercivity of the hysteresis loop.2

The reversibility factor c is the representative of domain wall
bowing. The directional parameter � takes the value +1 when
H increases and �1 when H decreases.

The JA theory has been previously extended to incorpo-
rate magnetoelastic3,4 and thermal effects.5,6 The previous
works on extending JA model to include anisotropy7,8 were
based on expressing anhysteretic magnetization in terms of
known model equations shown later in Eqs. �4�–�6� for spe-
cific cases: axially anisotropic �so-called one-dimensional
�1D�� with applied field along the easy axis, planar aniso-

tropic �two-dimensional �2D�� with applied field in the easy
plane, and isotropic �three-dimensional �3D��.

Anhysteretic function for an axially anisotropic material
�1D case� with applied field along the easy axis,9 is

Man = Ms�tanh�h�� , �4�

for a planar anisotropic material �2D case� with applied field
in the easy plane,10

Man = Ms� �n=0
� h2n+1

�n + 1� ! 22n+1

1 + �n=0
� h2�n+1�

�n + 1� ! 22�n+1�
� , �5�

and for isotropic materials �3D case�,2

Man = Ms�coth�h� −
1

h
	 , �6�

where h=He /a, a= �kBT� / ��0m�, and kB is the Boltzmann
constant; T is the temperature, �0 is the permeability of
vacuum, and m is the magnetic moment of a typical domain.

As there is no known generalized form of anhysteretic
magnetization derived so far, the hysteresis behavior of an-
isotropic or isotropic materials can be modeled only by solv-
ing the respective known anhysteretic magnetization func-
tion using JA theory. This work focuses on deriving a
functional form of anhysteretic magnetization that would
generalize the anisotropy dependence of JA theory and also,
with necessary boundary conditions, be reduced to the spe-
cific known model equations in limiting cases given in Eqs.
�4�–�6�. In this work, the functional form is generalized to
uniaxial anisotropy of arbitrary direction, which also in-
cludes easy plane. When subjected to an external field, each
magnetic moment has a potential energy that tries to align it
parallel to the applied field. This energy is given by

Em = − �0m · He = − �0mHe cos � . �7�

The anisotropy energy, for uniaxial materials, can be written
to lowest order asa�Electronic mail: arunkumarr@cardiff.ac.uk.
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Ea = Ku sin2 � , �8�

where Ku is the anisotropy constant, � and � are the angles
made by magnetic moment with unique axis and applied
field, respectively.

According to statistical thermodynamics, considering
there is no direct interaction between the domains, the indi-
vidual partition function can be represented as9

Zm = �
states

exp�− �Em + Ea�
kBT

	 = �
states

exp�h cos �

− � sin2 �� , �9�

where h and � are energy ratios and are given by h=He /a,
�=Ku / �kBT�, and a= �kBT� / ��0m�. The interaction in this
case depends on an indirect mean field coupling. The total
partition function, Z, associated with N independent mo-
ments is given in terms of individual partition functions by
�Zm�N. The Gibbs free energy can be calculated from the total
partition function as

G = − kBT ln Z = − NkBT ln Zm. �10�

The anhysteretic magnetization, Man, which is a function of
energy of N moments occupying a volume 	V in a domain,
can be expressed as a change in Gibbs free energy with re-
spect to the field at constant temperature,9

Man = −
1

�0	V
� �G

�He
	

T

. �11�

To derive the functional form of anhysteretic magnetization,
the partition function should be in a generalized form. Hence
the generalized integral form of individual partition function,
Zm, based on spherical coordinate system shown in Fig. 1, is
written as

Zm = 

0

2
 

0




exp�h cos � − � sin2 ��sin �d�d� . �12�

Using the individual partition function shown in Eq. �12�, the
Gibbs free energy can be calculated from Eq. �10�. The an-
hysteretic magnetization can then be derived from Gibbs free
energy as

Man =
NkBT

�0	V

�

�He
�ln�


0

2
 

0




exp�h cos �

− � sin2 ��sin �d�d�	� .

Substituting values of h and a in the above equation and
taking the partial derivative we get,

Man = Ms

0
2
0


exp�h cos � − � sin2 ��sin � cos �d�d�

0
2
0


exp�h cos � − � sin2 ��sin �d�d�
,

�13�

where Ms is the spontaneous magnetization and is given by
Ms= �Nm� / �	V�.

In order to generalize the anhysteretic magnetization
function shown in Eq. �13�, the angle made by moments
with anisotropy axis, �, should be represented in terms
of other angle parameters. This can be achieved by
defining the direction cosines of Ku�sin � ,0 ,cos �� and
m�sin � cos � , sin � sin � , cos �� from the spherical coordi-
nate system �see Fig. 1�. The scalar product yields m ·Ku
= �m��Ku�cos �, which leads to

cos � = sin � sin � cos � + cos � cos � . �14�

Hence, the generalized functional form of anhysteretic mag-
netization, shown in Eq. �13� can be rewritten using a trigo-
nometric identity as

Man = Ms

0
2
0


exp�h cos � − ��1 − cos2 ���sin � cos �d�d�

0
2
0


exp�h cos � − ��1 − cos2 ���sin �d�d�
.

�15�

This functional form can be validated against specific model
equations shown in Eqs. �4�–�6� by applying the necessary
boundary conditions for specific cases: axially anisotropic,
planar anisotropic, and isotropic.

Consider first that the anisotropy is positive and the ap-
plied field is parallel to the anisotropic easy direction, i.e.,
�=0. In the case of extremely high anisotropy, this case can
be reduced to a 1D problem as shown in Fig. 2. On substi-
tution of the boundary condition ��=0� in the generalized
functional form given in Eq. �15�, we get

FIG. 1. Representation of vectors in the spherical coordinate system. The
field H is applied along Z direction, Ku is the direction of anisotropy, m is
the moment direction, and angles � and � are polar coordinates.

FIG. 2. Anhysteretic magnetization curves for various values of anisotropy
constants numerically calculated from generalized functional form. The
�Ku0, �=0� represent uniaxial anisotropy with applied field along the
easy axis, �Ku�0, �=
 /2� represents planar anisotropy with applied field
in the easy plane, Ku=0 represents isotropy, and �Ku0, �=
 /2� repre-
sents the hard direction anhysteretic magnetization when the applied field is
orthogonal to the uniaxial easy axis.
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Man = Ms

0
2
0


exp�h cos � − ��1 − cos2 ���sin � cos �d�d�

0
2
0


exp�h cos � − ��1 − cos2 ���sin �d�d�
.

�16�

Integrating with respect to � and introducing a new variable
x=cos �, the second order polynomial in the exponent can be
rearranged, enabling us to write both numerator and denomi-
nator terms in the form of Dawson’s integral,11

F�z� = exp�− z2�

0

z

exp�t2�dt , �17�

and on simplification we get,

Man = Ms

��exp�2h� − 1��� + hF�h − 2�

2��
� − exp�2h�hF�h + 2�

2��
�	

2��− F�h − 2�

2��
� + exp�2h�F�h + 2�

2��
�	 . �18�

From the asymptotic expansion of Dawson’s integral,11 for
large �z�, the function F�z��1 / �2z�. Applying the above
boundary condition in Eq. �18�,

Man = lim
�→�

Ms

��exp�2h� − 1��� + h� ��

h − 2�
� − exp�2h�h� ��

h + 2�
�	

2��− � ��

h − 2�
� + exp�2h�� ��

h + 2�
�	 . �19�

Neglecting higher order terms, rearranging and applying lim-
its we get,

Man � Ms�tanh�h�� . �20�

This solution is same as in Eq. �3�. Hence this shows that the
new generalized function can reduce to the known form for
specific examples, such as the uniaxial case.

Now, consider that the anisotropy is negative and the
applied field is perpendicular to the anisotropy direction, i.e.,
�=
 /2. As shown in Fig. 1�b�, the preferred direction in this
case is a plane. Hence this case can be reduced to a 2D
problem in case of the extremely high negative anisotropy.
Substituting the condition �=
 /2 in Eq. �14�, we get

Man = Ms

0
2
0


exp�h cos � − ��1 − sin2 � cos2 ���sin � cos �d�d�

0
2
0


exp�h cos � − ��1 − sin2 � cos2 ���sin �d�d�
.

�21�

Rearranging Eq. �21� and applying trigonometric identities in
order to integrate with respect to � we get,

Man = Ms

0

exp�h cos � −

�

4
�3 + cos 2���sin 2��0

2
exp��

2
sin2 � cos 2��d�	d�

20

exp�h cos � −

�

4
�3 + cos 2���sin ��0

2
exp��

2
sin2 � cos 2��d�	d�

.

�22�

To evaluate the integral with respect to �, Sonine’s expan-
sion for modified Bessel function10,11 was used,

exp�y cos �� = I0�y� + 2�
p=1

�

Ip�y�cos�p�� , �23�

where I�y� are modified Bessel functions of first kind. As the
contributions of higher order �p�0� Bessel functions to Eq.
�23� are negligible,10 only I0�y� is considered. Substituting

Eq. �23� into Eq. �22� and integrating with respect to � will
yield,

Man = Ms

0

exp�h cos � −

�

4
�3 + cos 2���I0��

2
sin2 ��sin � cos �d�

0

exp�h cos � −

�

4
�3 + cos 2���I0��

2
sin2 ��sin �d�

. �24�

The procedure to solve this integral is similar to the one
shown by Jiles et al.10 The solution given in Eq. �4�. has no
closed form but can be solved numerically to yield hard axis
anhysteretic curve of planar anisotropic materials.

When there is no preferred direction in a material, that is
anisotropy is zero, i.e., Ku=0 and hence �=0, this case has
three-dimensional solution as shown in Fig. 2. On substitu-
tion of boundary condition in Eq. �15�, we get

Man = Ms

0
2
0


exp�h cos ��cos � sin �d�d�

0
2
0


exp�h cos ��sin �d�d�
. �25�

Solving the above integral yields Langevin’s function and is
given by

Man = Ms�coth�h� −
1

h
	 . �26�

This solution is the same as for the isotropic case, shown in
Eq. �6�. This Langevin’s function gives the anhysteretic mag-
netization of isotropic materials.

As an example, the plots of anhysteretic magnetization
for various values of Ku and � are shown in Fig. 2. These
plots were obtained by numerically solving the generalized
functional form, shown in Eq. �15�, for various values of Ku
and �. The anisotropy energy, shown in Eq. �8�, can also be
extended for the easy cone or the multiaxial case by consid-
ering more than one anisotropy constant.

In this work, the JA theory was extended to incorporate
anisotropy by deriving a generalized functional form of the
anhysteretic magnetization. It was shown that the derived
generalized functional form, with necessary boundary condi-
tions, can be reduced to the known specific model equations
for specific cases: axially anisotropic �1D�, planar anisotropic
�2D�, and isotropic �3D�.
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