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neurodegeneration
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Abstract
Objective To determine the differences in motor pathways
and selected non-motor pathways of the basal ganglia in
Parkinson’s disease (PD) patients compared to healthy con-
trols (HCs).
Methods We analysed diffusion weighted imaging data of 24
PD patients and 26 HCs. We performed deterministic
tractography analysis using the spherical deconvolution-
based damped Richardson-Lucy algorithm and subcortical
volume analysis.
Results We found significantly increased fractional anisotro-
py (FA) in the motor pathways of PD patients: the bilateral
corticospinal tract (right; corrected p=0.0003, left; corrected
p = 0.03), bilateral thalamus-motor cortex tract (right;
corrected p=0.02, left; corrected p=0.004) and the right sup-
plementary area-putamen tract (corrected p=0.001). We also

found significantly decreased FA in the right uncinate
fasiculus (corrected p=0.01) and no differences of FA in the
bilateral supero-lateral medial forebrain bundles (p>0.05) of
PD patients compared to HCs. There were no subcortical vol-
ume differences (p>0.05) between the PD patients and HCs.
Conclusion These results can inform biological models of
neurodegeneration and neuroplasticity in PD. We suggest that
increased FA values in the motor tracts in PD may reflect
compensatory reorganization of neural circuits indicative of
adaptive or extended neuroplasticity.
Key points
• Fractional anisotropy was higher in motor pathways of PD
patients compared to healthy controls.

• Fractional anisotropy was lower in the uncinate fasciculus
of PD patients compared to healthy controls.

• Increased fractional anisotropy could suggest adaptive
neuroplasticity or selective neurodegeneration.
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Abbreviations
AD Axial diffusivity
CST Corticospinal tract
dRL Damped Richardson-Lucy
FA Fractional anisotropy
PD Parkinson’s disease
slMFB Supero-lateral medial forebrain bundle
SMA-PUT Supplementary motor area-putamen tract
THAL-MC Thalamus-motor cortex tract
UNF Uncinate fasiculus
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Introduction

Because the motor symptoms of Parkinson’s disease (PD)
only arise after approximately 80 % depletion of striatal do-
pamine, it has long been thought that compensatory plasticity
must occur both within and outside the basal ganglia as the
pathology progresses [1]. Such compensatory processes, as
well as any long-range deficits arising from degeneration of
the basal ganglia pathways, should ultimately be reflected in
the architecture of the fibre tracts connecting motor cortex,
basal ganglia and thalamus.

To date most diffusion-based studies on PD have only con-
sidered changes within defined regions of interest (ROIs) in
grey matter [2] or whole brain voxel-wise analysis of white
matter using tract-based spatial statistics (TBSS) [3]. These
approaches are prone to partial volume effects and entail dif-
ficulties of spatial alignment across participants. Given that
there are crossing fibres in about 90 % of the voxels of the
brain, allocation of voxel-based findings to specific tracts can
be highly speculative [4]. To overcome these limitations, we
conducted deterministic tractography using the damped
Richardson-Lucy (dRL) algorithm which is more sensitive
to detect group differences than voxel-based approaches and
produces anatomically plausible white matter tracts [4]. This
method improves fibre tracking in areas of complex fibre ar-
chitecture and regions affected by partial volume [5].

We reconstructed the following motor pathways: (i) the
corticospinal tract, (ii) fibre connections between the thalamus
and the motor cortex, and (iii) fibre connections between the
supplementary motor area and the putamen. The corticospinal
tract is crucial for self-initiatedmovements and thus putatively
involved in bradykinesia in PD [6]. Post-mortem and diffusion
studies show direct white matter fibre connections from the
supplementary motor area to the striatum [7]. It is assumed
that these connections are relevant for motor performance in
PD [8]. The thalamus, a relay centre for sensory and motor
information, conveys motor inputs from the basal ganglia to
the cortex and decreased dopaminergic innervation to the thal-
amus is assumed to contribute to the pathophysiology of PD

[9]. These tracts are thus closely related to PD pathophysiol-
ogy and symptoms, and potentially also to their remediation.
We were also interested in potential changes in the non-motor
tracts of (iv) the uncinate fasiculus and (v) the supero-lateral
medial forebrain bundle. The uncinate fasiculus is assumed to
be involved in language, emotional processing and episodic
memory [10], while the supero-lateral medial forebrain bundle
mediates reward-seeking [11], which are also potentially af-
fected in PD. Hence our objective was to determine the dif-
ferences in motor pathways and selected non-motor pathways
of the basal ganglia in PD patients compared to healthy con-
trols (HCs). Additionally we wanted to determine whether
there were any group differences in basal ganglia volumes that
could drive potential group differences in the white matter
measures, therefore we also performed subcortical volume
analysis [12].

Materials and methods

Participants

Twenty-six PD patients in Hoehn and Yahr stages I-III were
recruited from clinics in South Wales by H.M. and collaborat-
ing clinicians (see Acknowledgements). They were scanned
before and after taking part in a trial that compared functional
magnetic resonance imaging (fMRI)-based neurofeedback
and exercise with a gaming console over 12 weeks
(NCT01867827) and will be reported elsewhere. Here we
use the data from the baseline scan, which were unaffected
by the intervention. The study was approved by the local NHS
research ethics committee, and all patients gave informed con-
sent. DiffusionMRI data of 26HCs from a previous study into
the effects of ageing on white matter microstructure [13]
which used the same diffusion imaging protocol as the current
study were included to provide an age-matched healthy com-
parison group (Table 1). Two PD patients’ scans were exclud-
ed from the final analysis due to corrupted data files.

Table 1 Demographics of the
Parkinson’s disease (PD) patients
and healthy controls (HCs)

Demographic PD patients (n = 24) HCs (n = 26) Analyses

Age 63.42 ± 10.82 64.88 ± 8.06 P = 0.5918, Two sample t-test

Sex (M:F) 22:2 17:9 P = 0.06, Chi squared test

Handedness (R:L) 20:4 24:2 P = 0.3293, Chi squared test

H and Y Stage 1.75± 0.47 NA -

UPDRS score 25.04 ± 11.01 NA -

MOCA 26.54 ± 2.01 NA -

LEDD (mg) 537.64± 340.69 NA -

MOCA The Montreal Cognitive Assessment, H and Y Hoehn and Yahr stage, UPDRS Unified Parkinson’s
Disease Rating Scale (pre-intervention and off medication), LEDD Levodopa Equivalent Daily Dose, M male,
F female, R right, L left
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Magnetic resonance (MR) data acquisition

Diffusion weighted MRI data were acquired on the 3T GE
Signa HDx system (General Electric Healthcare) in Cardiff
University Brain Research and Imaging Centre (CUBRIC)
using a peripherally gated twice-refocused pulse-gradient
spin-echo echo-planar imaging sequence providing whole
oblique axial (parallel to the commissural plane) brain cover-
age. Data were acquired from 60 slices of 2.4-mm thickness,
with a field of view (FOV) of 23 cm, and an acquisition matrix
of 96×96 (yielding isotropic voxels of 2.4× 2.4×2.4 mm,
reconstructed to a resolution of 1.9×1.9×2.4 mm). Echo time
(TE) was 87 ms and parallel imaging (ASSET factor=2) was
used. Diffusion encoding gradients (b=1,200 s/mm2) were
applied along 30 isotropically-distributed directions [14] as
the optimal b-value for deriving good estimates of fractional
anisotropy (FA), mean diffusivity (MD) and fibre orientation
is 750–1,300 s/mm2 [15, 16].

T1-weighted structural scans were acquired using an
oblique-axial, 3D fast spoiled gradient recalled sequence
(FSPGR) with the following parameters: 178 slices; TE=3 ms,
TR=7.9 ms, voxel size 1.0×1.0×1.0 mm3, 256×256 FOV.
These structural images were acquired for co-registration and
anatomical localization of regions of interest for the tracts.
These FSPGR images were also used as a template to draw
ROIs for the virtual dissection of the tracts and for the subcortical
volumes analyses.

Diffusion MR Imagining (MRI) data processing

The diffusion MRI data were corrected for subject motion,
echo planar imaging (EPI) distortions and Eddy Current
(EC) distortions in ExploreDTIv4.8.3 [17]. We performed an

affine registration to the non-diffusion-weighted images, with
appropriate re-orienting of the encoding vectors [18]. A single
diffusion tensor model was fitted [19] to the data in order to
compute the quantitative parameters: FA, MD, radial
and axial diffusivity (RD and AD). The fibre orientation
density function (fODF) was estimated with the dRL
algorithm in each voxel [5]. Data were also corrected
for cerebrospinal fluid (CSF)-based partial volume arte-
facts using the Free Water Elimination (FWE) method
[20]. The rationale for this correction was that ageing and
neurodegeneration are associated with grey and white matter
tissue loss, and CSF-based partial volume effects have been
shown to lead to artificial decreases in FA and increases in
MD.

Deterministic tractography

Whole brain dRL-based deterministic tractography was per-
formed in ExploreDTIv4.8.3 [17] using the spherical
deconvolution-based dRL algorithm following peaks in the
fODF reconstructed from dRL [4, 5]. The dRL algorithm pre-
serves angular resolution and reduces the number of false
positive fibre orientations. For each voxel in the data set,
streamlines were initiated along any peak in the fODF that
exceeded an amplitude of 0.05. This enables multiple fibre
pathways to be generated from any voxel. Each streamline
was continued in 0.5 mm steps following the peak in the
ODF that subtended the smallest angle to the incoming trajec-
tory. The termination criterion was set to an angle threshold
greater than 45°, thus streamlines that had angles above this
threshold were excluded from the final tracts. Three-
dimensional fibre reconstructions were obtained by applying
waypoint ROI gates (BAND^, BOR^ and BNOT^ gates

Fig. 1 Reconstructed motor
tracts. (a) Corticospinal tract: (i)
Axial slice of T1 image showing
BSEED^ region. (ii) Axial slice of
FA image showing BAND^
region. (iii) Sagittal slice of T1
image showing the reconstructed
CST. (b) Reconstructed
supplementary area-putamen tract
and (c) thalamus-motor cortex
tract on sagittal slices of T1 image
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following Boolean logic) to isolate specific tracts from the
whole brain tractography data.

Corticospinal tract (CST)

For the segmentation of the CST, the primary motor cortex
was identified in the axial slice of a T1 image using a BSEED^
region (in blue) (Fig. 1a (i)). Further, an BAND^ region (in
green) was drawn in the brain stem (identified as the blue
colour of the pons in the anterior part of the brain stem) in
the axial slice of an FA image (Fig. 1a (ii)). The CST of a
representative subject on a sagittal slice of a T1 image is
shown in (Fig. 1a (iii)).

Thalamus-motor cortex (THAL-MC) and supplementary
area-putamen (SMA-PUT) tracts

The ROIs for segmentation of THAL-MC and SMA-PUT
tracts were derived by creating masks chosen from the AAL
(Anatomical Automatic Labelling) atlas in the MNI (Montreal
Neurological Institute) space. These masks were warped to the
individual native space of each subject using inverse parame-
ters derived from warping the T1 image to the AAL template.
These masks were then used as BSEED^ and BAND^ regions
in ExploreDTI for segmenting out the respective tracts.
Unwanted regions and spurious tracts were removed by using
the BNOT^ gate. The final SMA-PUT and THAL-MC tracts
in a sagittal slice of a T1 image of a representative subject are
shown in Fig. 1b and c, respectively.

Uncinate fasiculus (UNF)

For segmentation of the UNF, the most posterior slice in the
coronal view of a T1 image where the frontal and the temporal
lobes are separated was chosen. The BSEED^ region (in blue)

was drawn around the temporal lobe (Fig. 2d (i)) and the
BAND^ region (in green) was drawn around the basal fore-
brain (Fig. 2d (ii)). The UNF tract of a representative subject
on a sagittal slice of a T1 image is shown in (Fig. 2d (iii)).

Supero-lateral medial forebrain bundle (slMFB)

For reconstruction of the slMFB one horizontal BAND^ region
was placed surrounding the ventral tegmental area. The ana-
tomical borders for this AND region were laterally the
substantia nigra, anteriorly the mammillary bodies and poste-
riorly the red nucleus (Fig. 2e (i)). Another BAND^ region was
drawn surrounding the caudate and putamen on a coronal
section at the height of the nucleus accumbens (Fig. 2e (ii))
[21]. The slMFB tract of a representative subject on a sagittal
slice of a T1 image is shown in (Fig. 2e (iii)).

Each reconstructed tract was visually inspected and any
obvious outlier streamlines that were not consistent with their
known anatomy were excluded by drawing BNOT^ regions
and the entire procedure was performed separately for both
hemispheres.

Subcortical volumes

We measured volumes of subcortical brain structures using
FSL's FIRST software (FMRIB Image Registration and
Segmentation Tool) [12]. The structures of the thalamus, cau-
date, putamen, pallidum, hippocampus, amygdala, nucleus
accumbens and ventricles were extracted for both hemi-
spheres and their volumes measured for all T1-weighted MR
images of the PD patients and HCs. The extracted volumes
were normalized using the scaling factor obtained from brain
tissue normalization for subject head size, using SIENAX
(Structural Image Evaluation using Normalization of
Atrophy) [22].

Fig. 2 Reconstructed non-motor
tracts. (d) Uncinate fasiculus tract:
(i) Coronal slice of T1 image
showing BSEED^ region for
uncinate fasiculus segmentation.
(ii) Coronal slice of T1 image
showing BAND^ region. (iii)
Sagittal slice of T1 image
showing reconstructed uncinate
fasiculus tract. (e) Supero-lateral
medial forebrain bundle: (i) Axial
slice of T1 image showing
BAND^ region. (ii) Coronal slice
of T1 image showing BAND^
region. (iii) Sagittal slice of T1
image showing reconstructed
supero-lateral medial forebrain
bundle
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Statistical analysis

All the statistical analyses were carried out in the R statistical
software v2.15.3 [23]. Before data analysis, all variables were
checked for Gaussian distribution using the Shapiro-Wilk test
(p<0.05) and were transformed using appropriate transforma-
tions if necessary.

We performed multivariate analyses of covariance
(MANCOVAs) in each hemisphere for each of the five
tracts separately with FA, MD, AD and RD as depen-
dent variables and group (PD and HC) as independent
variable, along with age and gender as covariates. These
analyses were corrected for multiple comparisons using
Bonferroni correction with a corrected threshold of
p < 0.05 (0.05/10 = 0.005). Significant results were fur-
ther analysed using post-hoc univariate ANOVAs also
corrected for multiple comparisons using Bonferroni
correction with a corrected threshold of p < 0.05 (0.05/
32 = 0.00156). The inter-rater reliability of diffusion ten-
sor indices derived from the manually reconstructed
tracts was investigated using the inter-class correlation
coefficient (ICC).

For the subcortical volumes analysis, we performed two
sample t-tests comparing the corrected subcortical volumes
of the PD patients and HCs.

We also extracted additional tractography measures of the
number of reconstructed streamlines, number of voxels occu-
pied by tract, tract volume and tract length for tracts with
significant results from the MANCOVA also corrected for
multiple comparisons using Bonferroni correction with a
corrected threshold of p<0.05 (0.05/32=0.00156).

The results of a complementary TBSS analysis are reported
in the Supplementary material.

Results

In all PD patients and HCs, we obtained reliable reconstruc-
tion results of all investigated fibre tracts (Supplementary
Table 1).

PD patients showed significantly higher FA in the motor
(CST, SMA-PUT and THAL-MC) tracts but not in the non-
motor (UNF and slMFB) tracts. These effects were statistical-
ly supported by significant multivariate effects for group,
followed up by the relevant significant univariate effects.

Multivariate effects

The MANCOVAs demonstrated a significant effect of group
(PD and HC) on the multivariate diffusion tensor indices (FA,
MD, AD and RD) in the CST, SMA-PUT, THAL-MC and
UNF, but not in the slMFB (Table 2).

Univariate group effects

Post-hoc analyses showed significantly increased FA and AD
in right CST, and significantly increased FA in the left CST of
the PD patients compared to HC (Table 3). In PD patients,
there was significantly increased FA and AD in the right
SMA-PUT tracts and significantly increased AD in the left
SMA-PUT tracts. Similarly, there was significantly increased
FA in both right and left THAL-MC tracts of the PD patients
compared to HCs (Table 3). Conversely, in the UNF of PD
patients, there was significantly decreased FA and significant-
ly increased RD in the right UNF, and significantly increased
MD in the left UNF (Table 3).

Subcortical volumes analysis

We found no significant volume changes between PD patients
and HCs in the FSL FIRST analysis of subcortical and ven-
tricular volumes (Supplementary Table 3).

Additional tractography measures

We found a significantly higher number of reconstructed
streamlines, higher number of occupied voxels and larger tract
volume in the tracts of PD patients compared to HCs
(Supplementary Table 4).

Discussion

Patients with early-stage PD relative to age-matched controls
demonstrated a specific increase in FA and AD in the white
matter of motor tracts which was not present for two non-
motor comparison tracts.

In the previous literature, neurodegenerative disorders have
generally been associated with decreased FA in the major
pathways, which has been attributed to primary white matter
degeneration, demyelination, reduced gliosis or axonal dam-
age as a result of grey matter loss [24–26]. Diffusion tensor-
based ROIs and whole brain analyses in PD have shown re-
duced FA or increased MD in a priori regions such as the
substantia nigra and putamen [2, 3, 27]. Thus only our finding
of decreased FA and increased RD in the UNF, but not our
findings of increased FA and AD in the CST and cortico-basal
ganglia tracts, would be compatible with a general neurode-
generative process.

Neurodegenerative models

Our findings may reflect selective neurodegeneration. AD,
which is the measure of diffusion in the principal fibre direc-
tion, is sensitive to the number of axons and their coherence
[28] while RD, the measure of diffusion perpendicular to the
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principal diffusion direction, is thought to reflect decreased
myelination [29]. Therefore, in our data the results of elevated
FA in combination with elevated AD could suggest selective
neurodegeneration causing lower neural branching, decreases
of axonal diameter and thus higher coherence along the prin-
cipal orientation. Increased FA in these tracts may also occur
as a primary pathogenic consequence of altered pallido-
thalamic activity in PD. A combined diffusion tensor and
histology-based study of rat model of traumatic brain injury
showed that an increase in FA in the cortical regions was
correlated with gliosis [30]. It has been suggested that FA is
more related to axonal package density and less tomyelination
[31]. Along these lines, our data could suggest a higher axonal
package density of motor pathways as there were no signifi-
cant differences in RD in our cohort.

Neuroplastic models

Alternatively, our findings might reflect early compensatory
mechanisms associated with increases in axonal density in
pathways of the cortico-basal-ganglia-thalamo-cortical loop.
Such compensatory changes might preserve neural functions
despite loss of the dopaminergic input [1]. A recent study in
PD patients showed an increase in striato-cortical connectivity
mediated by levodopa intake [32], hence it could also be sug-
gested that increased FA in the SMA-PUT and THAL-MC
tracts may be an adaptive response to abnormal dopaminergic
modulation and levodopa intake.

Our results agree with the suggested compensation stages
of PD where structures outside the basal ganglia, especially
the SMA, would undergo change to counterbalance the

Table 2 Multivariate effects
Tract F statistic Pillai's trace P-value

Right CST Group F(4,43) = 4.6907 0.3 0.003132 ***

Age F(4,43) = 3.3356 0.23 0.018252

Gender F(4,43) = 3.1088 0.22 0.024736

Left CST Group F(4,43) = 8.5394 0.44 3.66E-05 ***

Age F(4,43) = 2.7190 0.2 0.04189

Gender F(4,43) = 2.5850 0.19 0.05026

Right SMA-PUT Group F(4,43) = 6.4230 0.38 0.000363 ***

Age F(4,43) = 10.5065 0.48 1.00E-05 ***

Gender F(4,43) = 0.5654 0.04 0.730037

Left SMA-PUT Group F(4,43) = 4.8551 0.31 0.002546 ***

Age F(4,43) = 5.5182 0.34 0.001123 ***

Gender F(4,43) = 0.3259 0.02 0.859045

Right THAL-MC Group F(4,43) = 4.7410 0.31 0.002939 ***

Age F(4,43) = 4.4941 0.29 0.00402 ***

Gender F(4,43) = 0.6916 0.06 0.601839

Left THAL-MC Group F(4,43) = 5.5699 0.34 0.001054 ***

Age F(4,43) = 4.4365 0.29 0.004326 ***

Gender F(4,43) = 1.4269 0.11 0.241373

Right UNF Group F(4,43) = 5.7824 0.28 0.002011 ***

Age F(4,43) = 2.5327 0.15 0.069178

Gender F(4,43) = 3.2413 0.18 0.030894

Left UNF Group F(4,43) = 5.0908 0.32 0.001898 ***

Age F(4,43) = 3.8483 0.26 0.009263

Gender F(4,43) = 2.6825 0.19 0.044023

Right slMFB Group F(4,43) = 1.2095 0.1 0.320719

Age F(4,43) = 5.1433 0.32 0.001778 ***

Gender F(4,43) = 1.9735 0.15 0.115659

Left slMFB Group F(4,43) = 1.1442 0.09 0.348703

Age F(4,43) = 4.3186 0.28 0.005032 ***

Gender F(4,43) = 3.2387 0.23 0.020777

*** = Bonferroni corrected p < 0.05 (0.05/10= 0.005)

CST corticospinal tract, SMA-PUT supplementary motor area-putamen tract, THAL-MC thalamus-motor cortex
tract, UNF uncinate fasiculus, slMFB supero lateral medial forebrain bundle
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putative abnormal activity in the thalamus and basal ganglia
[1]. Considering the long time-course from the onset of PD-
related pathology to the onset of clinical symptoms [33], the
subcortical and cortical motor pathways may well have under-
gone compensatory and adaptive structural and functional re-
organization long before PD patients have been diagnosed
clinically. Such a model would be supported by our observa-
tion (Supplementary table 2) that changes in the diffusion
metrics were not confined to the hemisphere contralateral to
the side of dominant symptoms.

Recent evidence from PD rodent models showed axonal
sprouting as compensatory mechanism [34], but this has not
been studied in detail outside the nigrostriatal system. Based

on our present findings, we suggest that there may be com-
pensatory sprouting in motor tracts in response to decreased
input from the thalamus and striatum as a consequence of PD
pathology. We would further suggest that sprouting should
also be assessed in corticospinal and thalamo-cortical motor
tracts, both in animal models and in human brains post-
mortem.

Methodological considerations

Diffusion tensor metrics are highly sensitive to white matter
microstructural changes; however, they are non-specific indi-
ces with complex measures, hence one has to be cautious

Table 3 Univariate group effects on diffusion tensor indices of tracts between Parkinson’s disease (PD) patients and healthy controls (HCs)

Tract Diffusion tensor index HC (n = 26) mean ± SD PD (n = 24) mean ± SD F statistic p-value Corrected p-value

Right CST FA 0.54 ± 0.025 0.58 ± 0.024 F(1,48) = 24.32 1.02E-05 0.0003264 ***

MD (1.0e-03) 0.71 ± 0.018 0.72 ± 0.032 F(1,48) = 2.601 0.1133 1

RD (1.0e-03) 0.46 ± 0.022 0.45 ± 0.028 F(1,48) = 4.068 0.04932 1

AD (1.0e-03) 1.21 ± 0.048 1.25 ± 0.072 F(1,48) = 16.24 0.000198 0.006336 ***

Left CST FA 0.53 ± 0.027 0.56 ± 0.030 F(1,48) = 12.25 0.001017 0.032544 ***

MD (1.0e-03) 0.72 ± 0.023 0.73 ± 0.024 F(1,48) = 2.098 0.154 1

RD (1.0e-03) 0.48 ± 0.025 0.47 ± 0.025 F(1,48) = 3.138 0.08285 1

AD (1.0e-03) 1.20 ± 0.045 1.26 ± 0.058 F(1,48) = 7.556 0.008406 0.268992

Right SMA-PUT FA 0.42 ± 0.041 0.47 ± 0.029 F(1,48) = 20.63 3.76E-05 0.0012032 ***

MD (1.0e-03) 0.71 ± 0.024 0.73 ± 0.034 F(1,48) = 4.459 0.03995 1

RD (1.0e-03) 0.53 ± 0.027 0.52 ± 0.026 F(1,48) = 2.486 0.1214 1

AD (1.0e-03) 1.07 ± 0.06 1.15 ± 0.071 F(1,48) = 16.47 0.000181 0.0057920 ***

Left SMA-PUT FA 0.44 ± 0.041 0.46 ± 0.036 F(1,48) = 3.695 0.06052 1

MD (1.0e-03) 0.72 ± 0.024 0.74 ± 0.033 F(1,48) = 6.4 0.01475 0.4720000

RD (1.0e-03) 0.54 ± 0.033 0.54 ± 0.028 F(1,48) = 0.08 0.7775 1

AD (1.0e-03) 1.10 ± 0.045 1.16 ± 0.075 F(1,48) = 10.32 0.002347 0.0751040

Right THAL-MC FA 0.49 ± 0.031 0.52 ± 0.036 F(1,48) = 13.96 0.000497 0.0159040 ***

MD (1.0e-03) 0.69 ± 0.018 0.70 ± 0.027 F(1,48) = 1.353 0.2505 1

RD (1.0e-03) 0.48 ± 0.024 0.46 ± 0.025 F(1,48) = 6.618 0.01324 0.4236800

AD (1.0e-03) 1.10 ± 0.044 1.16 ± 0.071 F(1,48) = 8.312 0.005878 0.1880960

Left THAL-MC FA 0.47 ± 0.030 0.51 ± 0.036 F(1,48) = 17.4 0.000126 0.0040320 ***

MD (1.0e-03) 0.71 ± 0.022 0.71 ± 0.027 F(1,48) = 0.7209 0.4 1

RD (1.0e-03) 0.51 ± 0.027 0.49 ± 0.027 F(1,48) = 6.13 0.01687 0.53984

AD (1.0e-03) 1.11 ± 0.042 1.16 ± 0.076 F(1,48) = 10.64 0.002037 0.0651840

Right UNF FA 0.43 ± 0.024 0.41 ± 0.019 F(1,48) = 14.36 0.000421 0.0134656 ***

MD (1.0e-03) 0.77 ± 0.018 0.78 ± 0.024 F(1,48) = 3.56 0.06524 1

RD (1.0e-03) 0.57 ± 0.018 0.59 ± 0.022 F(1,48) = 13.91 0.000506 0.0161856 ***

AD (1.0e-03) 1.11 ± 0.048 1.14 ± 0.049 F(1,48) = 2.934 0.09319 1

Left UNF FA 0.42 ± 0.039 0.40 ± 0.024 F(1,48) = 3.973 0.05193 1

MD (1.0e-03) 0.75 ± 0.017 0.77 ± 0.021 F(1,48) = 15.13 0.000309 0.0098720 ***

RD (1.0e-03) 0.57 ± 0.028 0.59 ± 0.024 F(1,48) = 10.11 0.002579 0.0825280

AD (1.0e-03) 1.18 ± 0.043 1.15 ± 0.051 F(1,48) = 4.512 0.03884 1

*** = Bonferroni corrected p < 0.05 (0.05/32= 0.00156)

CST corticospinal tract, SMA-PUT supplementary motor area-putamen tract, THAL-MC thalamus-motor cortex tract, UNF uncinate fasiculus, FA
fractional anisotropy, MD mean diffusivity, RD radial diffusivity, AD axial diffusivity, SD standard deviation
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when inferring any specific biological mechanisms underly-
ing changes in these measures [35]. Before interpreting our
findings in terms of putatively increased structural connec-
tions in PD we need to exclude the possibility that they are
influenced by methodological artefacts. We used the dRL al-
gorithm which reduces the number of spurious fibre orienta-
tions that can produce artefactual reconstructions of tracts and
is said to be robust in mapping cortical connectivity [5]. In
patient and clinical studies, presence of degeneration makes
the estimated tract reconstructions prone to isotropic partial
volume effects [36] but the spherical deconvolution methods
make it possible to obtain accurate white matter fibres that are
corrected for partial volume effects and crossing fibres.
Additionally, we found a higher number of reconstructed
streamlines in PD patients than in HCs in the motor tracts
and the UNF even though only the motor tracts showed in-
creased FA whereas the UNF showed decreased FA. We can
thus exclude that higher FAvalues were driven by the increase
in number of reconstructed streamlines or number of occupied
voxels or tract volume.

Because FA is a normalized measure it can be affected by
changes in any of the compartments of white matter. For a
better understanding of the specific contributions of axonal
microstructural changes and myelination to changes in the
white matter architecture in PD, future studies can apply com-
plex diffusion microstructural models such as Composite
Hindered and Restricted Model of Diffusion (CHARMED)
or AxCaliber [26]. However, their clinical application in pa-
tients with movement disorders is limited by the long duration
of scanning protocols. Recently developed myelin water frac-
tion mapping and quantitative magnetization transfer tech-
niques could also be used in future studies to better quantify
myelination [37].

Conclusion

This first comprehensive deterministic tractography study of
motor and non-motor tracts in PD revealed increased FA in the
cortico-basal ganglia and CSTs, which may indicate compen-
satory mechanisms or structural changes related to altered
pallido-thalamic activity in PD. We suggest that tractography
be incorporated in longitudinal imaging studies of PD in order
to evaluate the role of white matter changes in neurodegener-
ative and neuroplastic processes.
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