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An ANN-GA Semantic Rule-Based System to
Reduce the Gap Between Predicted and Actual

Energy Consumption in Buildings
Baris Yuce, Member, IEEE, and Yacine Rezgui

Abstract—This paper addresses the endemic problem of the gap
between predicted and actual energy performance in public build-
ings. A system engineering approach is used to characterize en-
ergy performance factoring in building intrinsic properties, occu-
pancy patterns, environmental conditions, as well as available con-
trol variables and their respective ranges. Due to the lack of histor-
ical data, a theoretical simulation model is considered. A semantic
mapping process is proposed using principle component analysis
(PCA) and multi regression analysis (MRA) to determine the gov-
erning (i.e., most sensitive) variables to reduce the energy gap with
a (near) real-time capability. Further, an artificial neural network
(ANN) is developed to learn the patterns of this semantic mapping,
and is used as the cost function of a genetic algorithm (GA)-based
optimization tool to generate optimized energy saving rules fac-
toring in multiple objectives and constraints. Finally, a novel rule
evaluation process is developed to evaluate the generated energy
saving rules, their boundaries, and underpinning variables. The
proposed solution has been tested on both a simulation platform
and a pilot building – a care home in the Netherlands. Validation
results suggest an average 25% energy reduction while meeting oc-
cupants’ comfort conditions.

Note to Practioners—This study presents a novel semantic rule
generation process using GA and ANN with the objective to re-
duce the gap between predicted and actual energy consumption
in public buildings. Due to the absence of historical energy con-
sumption data, a theoretical simulation approach is used that takes
into account a wide range of factors, including building fabric, oc-
cupancy patterns, and environmental conditions. Energy sensitive
variables are then identified using PCA and MRA. These sensi-
tive variables as well as available control variables (set points) are
used to train an ANN to learn energy consumption patterns and
behavior within the considered buildings. This trained network is
then used as a cost function engine (predictor) for a GA-based op-
timization process to generate the optimized energy saving rules.
Finally, a novel rule evaluation process is devised and implemented
to assess energy saving rules quality and boundaries. All generated
rules have been tested on both the proposed simulation environ-
ment and real buildings. Validation results suggest an average 25%
energy reduction.
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I. INTRODUCTION

O UR BUILT environment is responsible for some of the
most serious global and local environmental changes [1],

[2]. Creation and operation of the built environment account
for at least 50% of all energy consumption in Europe [1], [2].
The EU is promoting conservation and rational use of energy
in buildings as part of the Energy Performance Building Di-
rective [3]. The demand for building energy consumption will
continue to increase based on current predictions [2]. This fore-
casted growth has triggered stringent regulatory requirements to
reduce energy demand and CO2 emission [3], [4].
Buildings consist of highly complex and interdependent sys-

tems. The holistic control of a building, and its systems, is nec-
essary to achieve targeted regulatory performance objectives
[4]. Current commercial products are supervisory control and
data acquisition (SCADA) based and only provide a limited
logic-based control capability, using predefined static schedules
and set-points for available control points. These static sched-
ules/set-points are limited in the way they address continuously
changing environmental and building usage and occupancy con-
ditions, requiring a (near) real-time inference capability.
The conceptualization of such a complex system and associ-

ated energy gap problem can be addressed through: (i) a detailed
physical model; (ii) a black-boxmodel; or (iii) a gray-boxmodel
[5], [6]. If the physical and mathematical relationships of the
underpinning complex variables can be inferred, the choice of a
detailed physical model would provide a most reliable and rig-
orous approach. However, the difficulty resides in the capability
to determine the detailed and accurate mathematical relation-
ship linking input and output variables [6]. A similar problem is
posited for gray-box models, which also require prior informa-
tion about the physical model of the building from a thermal
perspective. Conversely, a black-box approach such as ANN
does not require any prior information about the model, which
makes it a preferred option to intelligently manage energy in
buildings [7].
In recent years, energy optimization in buildings has become

a popular research area as evidenced by the existing scientific
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literature [7]. Reported techniques include artificial neural net-
work (ANN) [4], fuzzy logic [8], ANFIS [9], expert systems
[10], multi-agent systems [11], genetic algorithm (GA) [12], ge-
netic programming [13], tabu search [14], and statistical pre-
dictive algorithms [15]. However, as noted earlier, the under-
standing of the complex energy behavior of a building can only
be approached effectively using a holistic (systems engineering)
approach [16], [17]. This is an area where ontology research of-
fers interesting solutions.
Ontology is a computer and human readable conceptualiza-

tion of a domain whereby knowledge is represented as sets of
semantically related concepts through classes, their properties,
and relationships [18]. Ontologies have attracted a lot of interest
in the Building and Infrastructure domains [19]. Ontology de-
velopment is a highly demanding task, requiring expert knowl-
edge to identify and conceptualize underpinning domain arti-
facts [20]. The most popular ontology development languages
are Resource Description Framework (RDF) schema (in a form
of multigraph) and Web Ontology Language (OWL) [21]. RDF
schemas can be used for a wide range of applications and they
proceed by defining the types and properties of the domain re-
sources. However, RDF lacks reasoning capability [22]. Con-
versely, OWL is designed to describe the structure of a domain
with expressive modeling constructs using Boolean operations
and universal quantification. OWL is better adapted for machine
processing and interoperability compared with other ontology
languages. However, both RDF and OWL are limited in the
way they handle rules. Several rule extension frameworks have
been proposed to address this limitation, including TRIPLE and
SWRL [21]. Another challenge is faced when developing rules
from several heterogeneous data sources or without domain ex-
pert knowledge [23]. Since data mining algorithms are capable
of performing association, cluster generation and knowledge
derivation using a large number of variables and datasets, they
have been very popular in addressing the above issues [24]. Sev-
eral data mining techniques have been developed to generate
rules using classification and feature extraction methods such
as decision trees [24], [25], ANN [26], inductive learning and
rule family [27], [28], principle component analysis (PCA) [29],
ANN-GP [30], Fuzzy systems [31], Neuro-Fuzzy systems [32],
and SVM [33].
Our vision is that a holistic management of building energy

can be addressed through a dedicated ontology developed with
a language, OWL, with a high semantic expressiveness, aug-
mented with self-updating semantic rules capable of dealing
with heterogeneous data sources and (near) real-time condi-
tions. A divide-and-conquer approach is used in that building
energy complexity is broken down into a set of discrete but re-
lated scenarios, each of which formally described and detailed
in terms of dependent and independent governing variables and
their complex interactions through mathematical approxima-
tions. Our proposed approach addresses the limitations of cur-
rent SCADA-based commercial energy systems.
Moreover, our approach factors in the intrinsic relationship

between: (a) the network of sensing nodes present in a building
and (b) the actuation system delivered through a BMS (building

management system). This relationship is defined through rule-
based semantic mappings that augment a purposely developed
building ontology with real-time reasoning capabilities [16],
[17].
This paper takes the overarching hypothesis that an in-depth

understanding of building physics (through energy modeling
and simulation) combined with recent advances in Information
and Communication Technologies (in areas such as artificial in-
telligence, decision support science, optimization, and complex
systems) can alleviate and help address the current energy defi-
ciencies of our existing building stock.
In this study, a novel theoretical optimized semantic rule gen-

eration and implementation process is proposed to deal with all
the complexities presented above. This consists of an optimized
learning-based strategy. During the rule generation process, GA
is utilized to generate optimized rules using ANN as a cost func-
tion predictor. The generated rules deliver optimized values to
deal with multi-objective problems. In the building environ-
ment, these optimal values should be based on set points for
control variables available in a given building. Hence, the the-
oretically generated rules will be able to respond to real world
(multi-objective) requirements such as energy/ emission re-
duction, and thermal comfort enhancement.
This paper is organized as follows. In Section II, related

work is presented, followed (Section III) by the method-
ology that underpins the research, involving a preprocessing
stage (Section IV), the ANN-based learning (Section V),
and GA-based optimized rule generation (Section VI). The
boundary determination and rule selection stage are pre-
sented in Section VII. Testing and validation are presented in
Section VIII. Section IX discusses the results and concluding
remarks and directions for future research are provided in
Section X.

II. RELATED WORK

Building control research has recently addressed limitations
of proprietary communication protocols between the BMS and
the various sensing and control nodes present in a building
[34]–[36]. This paved the way to more advanced solutions for
the control and management of energy in buildings [4], [12]
that can deal with complex and stochastic problems [37], [38].
Conceptualization of energy problems through semantics (i.e.,
ontology) has been proposed in [17] and [39]. However, the
proposed semantic rules required expert knowledge for the
elicitation of the complex variables involved which revealed to
be an intensive and time consuming effort [39]. Thus, several
intelligent rule generation techniques have been proposed in the
literature not requiring domain experts. Moreover, real-world
problems involve both discrete and continuous input/output
attributes in their rule formulation. Rule generation from mixed
attribute data involves converting continuous type attributes to
discrete attributes, with the drawback of reducing the accuracy
of the rules [40]. However, a neural network-based solution can
deal with this problem with a well-trained network [41].
Setiono et al. [40] proposed a recursive neural network (NN)

with decision tree approach to extract the rules from data sets
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with mixed attributes, a mix of discrete and continuous valued
attributes of credit score data set. They have compared their re-
sults with several algorithms, and the NN-based solution per-
formed best compared to the other algorithms.
Setnes [42] proposed an orthogonal transform and fuzzy

clustering approach to extract fuzzy rules, which were applied
to the identification of Takagi-Sugeno type rules. One of the
major drawbacks with fuzzy rule generation is the need for
domain expert(s) [42]. A data-driven approach with defined
objectives is more appropriate. Setnes [42] determined the
antecedent parts with fuzzy clustering, then the parameters of
the rules were determined with least square estimation. One
of the weaknesses of the approach is to determine the cluster
number using a threshold value.
Pal and Chakraborty [43] proposed a fuzzy rule-based-clas-

sifier from a decision tree for real data. They utilized a gradient
descent-based pruning stage to remove the non-necessary rules.
They compared their results with a C4.5 decision tree and the
results showed that the fuzzy-based solution performed better
than a C4.5 decision tree.
Although the above techniques performed well with lower

number of attributes, they fail in their majority to generate rules
when faced with a higher number of attributed data sets [44].
Therefore, a preprocessing stage is required for the reduction of
the number of attributes to deliver an accurate rule generation
system. PCA is of the most popular and powerful attribute re-
duction algorithm which may increase the accuracy of the rule
generation process. Qiu et al. [45] proposed a PCA-ANN-based
solution to have a better learning process for higher dimen-
sional data sets. Qiu et al. [45] recommend a PCA-based prepro-
cessing stage to increase the accuracy of the learning process.
Therefore, a rule generation process with higher dimensional
attributed data set requires a dimension reduction to deliver a
more accurate solution. PCA is well suited for the reduction of
the dimension of attributes. However, one of the major draw-
backs with PCA is that class separability is not supported. To
overcome this difficulty, a PCA with multi regression analysis
(MRA) helps accurately determine key attributes. While PCA
can determine the required number of attributes, a MRA gen-
erates the highest interactional attributes with their coefficients
and significance.
The academic literature provides rich insights into energy

optimization algorithms. Deng et al. [46] proposed a dynamic
programming and mixed-integer linear programming solution
to control a chiller schedule. They modeled the problem with
a predictive control problem. Although their addressed energy
management problem is of a heuristic nonlinear type [9], a time
dependent binary schedule of the chiller is developed. Also, the
dynamic programming-based solution cannot handle large state
spaced problems [36].
GA is one of the most popular stochastic optimization

algorithms capable of dealing with complex problems as expe-
rienced in the building energy domain [47], [48]. GA has been
used to generate the ontology. Wicaksono et al. [17] proposed a
knowledge driven solution underpinned by an ontology frame-
work. This methodology was implemented using historical
data to determine energy consumption anomalies in domestic
and public buildings. Although Wicaksono et al. [17] have

Fig. 1. The block diagram of the proposed method.

attempted to propose a knowledge-based (i.e., semantic) solu-
tion, the latter lacked the Artificial Intelligence (AI) dimension
to fully exploit the (near) real-time readings (from sensor data)
of their proposed solution.
The above limitations constitute a real gap that forms the

focus of the present paper. This paper proposes a holistic user
friendly negotiation approach using dynamically generated
energy saving rules, underpinned by ontology. The proposed
system is available through web-services that seamlessly and
securely interface with the BMS to actuate negotiable energy
reduction plans. This negotiation process allows the Facility
Manager (FM) to control each objective (output) with a cer-
tain level of flexibility guided by his/her judgment. The rule
generation has been completed through a high performance
computing facility which includes a cluster of 96 cores.

III. METHODOLOGY

This section gives an overview of the optimized learning-
based rule generation process used to implement negotiable en-
ergy saving plans in public buildings and its overall energy em-
bedding framework.
The proposed rule generation method consists of four main

stages, illustrated in Fig. 1: (a) preprocessing; (b) ANN-based
learning; (c) GA-based optimized rule generation; and (d) an
adaptive boundary determination process for the environmental
variables and rule selection.
The preprocessing stage covers thermal model development,

holistic scenario definition, data generation, sensitive environ-
mental variables determination, and a semantic mapping stage.
The ANN-based learning stage covers the development of a pre-
diction engine. GA is used to generate optimized rules based on
a negotiation process. Moreover, ANN is embedded into the GA
to predict the optimization objectives. Finally, a rule selection
and boundary determination stage is implemented to evaluate
the boundary conditions and accuracy of the generated rules.
The proposed methodology has been successfully embedded

and tested on a care home building in The Netherlands (the
“forum” building) and validation results are presented in
Section VIII. This is delivered in the form of an energy manage-
ment framework, illustrated in Fig. 2, consisting of: (a) an OWL
knowledge base (ontology) providing a semantic description of
the building and its properties, augmented with the proposed
rules; (b) a fuzzy logic real-time controller (RTC), which fires
proposed energy saving rules when triggering conditions are
met; (c) a graphical user interface (GUI) at the disposal of the
FM to negotiate energy saving plans, and thus interact with
the solution; (d) a RDF (Triple/quad store)/SPARQL mapper,
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Fig. 2. Proposed system architecture.

which is used to query current energy consumption and
emission and suggested energy saving rules from the OWL
knowledge base, and compare these with (i) baseline data
obtained from our simulation model and (ii) mean historical
values, and necessary warnings and recommendations to the
FM via the GUI; and (e) a building-specific system, which
provides rich information about the building as well as the lo-
cation of each available sensor and actuator accessible through
a 3D-Graphical User Interface (GUI). Fig. 2 illustrates the
interfaces between these various components, whereby the
simulated and metered data are utilized to provide a dynamic
and system engineering characterization of the building energy
dimension within the building. Each of the above stages is
elaborated in the following sections.

IV. PREPROCESSING STAGE
The preprocessing stage is the first and most fundamental

stage for this novel rule generation process. This process con-
sists of thermal energy simulation model generation, a holistic
use case scenario definition, simulation data generation, sensi-
tive environmental variables determination, and a mapping of
the sensitive variables to available sensing nodes. The overall
preprocessing stage is illustrated in Fig. 3.
As highlighted above, energy management problems are

highly complex and difficult, and an analytical solution is
not convenient. We have therefore adopted a Cartesian (di-
vide-and-conquer) approach through the identification and
formulation of discrete use case scenarios. Use case scenarios
help reduce the complexity and contextualize the addressed
energy problem and the required optimal solution.
The preprocessing stage starts with the thermal energy model

generation using a software platform, namely, DesignBuilder
(a commercial 3D modeler and energy simulation software

Fig. 3. The preprocessing stage.

platform). The Thermal energy model includes: geometrical in-
formation of the building enriched with occupancy information,
material and envelope properties, overall intrinsic (including
thermal properties) of the building, schedules for heating and
cooling devices. The atrium zone (zone id: RC0.13) of the
Forum building, situated on the ground floor, is selected as the
pilot zone. The thermal model of the Forum building and the
pilot zone is illustrated in Fig. 4.
Next, the generated thermal model is simulated based on a

use case scenario. A system engineering approach requires a
clear definition of the optimization objectives, while all avail-
able control variables and their ranges have to be considered.
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Fig. 4. Energy model of pilot building and floor plan.

TABLE I
A HOLISTIC SCENARIO DEFINITION FOR THE ATRIUM ZONE

Our scenario involves minimizing energy consumption in the
forum building, while maintaining acceptable comfort condi-
tions of the elderly occupants of the care home. A description
of the scenario is given in Table I. The next step of the prepro-
cessing stage is to simulate the system based on the different
combinations of control variables. Initially, the thermal model
generated using DesignBuilder was exported into EnergyPlus
(an open-source and cross-platform energy simulation environ-
ment). The simulation of the building was then carried out 40
times using 40 different combinations of set points (as an ex-
ample: (16, 0, 1, 0) which means , window: off,
light: on and shade: off).
Each simulation has been run for a year of data and recorded

every 15 min. The main objective in generating this huge
amount of data is to determine accurately the most sensitive
variables (as 954 environmental variables have been found
in every simulation) and then to utilize this data set to train

Fig. 5. PCA results of the FORUM building Scenario.

a neural network which can then be used as a cost function
predictor.
The next stage of preprocessing involves a sensitivity anal-

ysis to determine the most sensitive variables. A PCA and
MRA-based sensitivity analysis process have been introduced.
PCA is used to determine the number of most sensitive vari-
ables (expressed as “ ”). It is a statistical approach using the
covariance matrix and its Eigen values for dimensionality
reduction.
The PCA result for the selected use case scenario is 38 com-

ponents (based on its eigenvalue), as illustrated in Fig. 5 (sorted
from lowest to highest).
A MRA is then used to determine the coefficient of

each of the “ ” variables. This process is modeled as in
(1) and (2)

(1)
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(2)

where and denote heating (thermal) energy consumption
and predicted mean vote (PMV – an indicator of human comfort
with a scale of to ), respectively. denotes all the vari-
ables generated from the simulation model, and denote
the coefficient of variable for heating rate and PMV, respec-
tively, and is the total number of variables in the simulation
model ( for this case).
In this process, the absolute highest values of 38 and

are determined, which represent the most sensitive variables.
Then, a mapping process is performed between the deter-

mined 38 variables and the existing sensors on the pilot zone.
This process has been carried out using a cross comparison ma-
trix between the list of existing sensors and the 38 environ-
mental variables determined by the above sensitivity analysis.
The mapped value of the variables’ diagonal element value is 1
and the rest is found as 0. As a result, ten variables are mapped
to the existing installed sensors: 1) outdoor air drybulb; 2) wind
speed; 3) wind direction; 4) direct solar radiation; 5) solar az-
imuth angle; 6) solar altitude angle; 7) zone mean air tempera-
ture; 8) zone air system sensible heating rate; 9) zone ideal load
total cooling rate; and 10) occupancy. The next stage of the pro-
posed algorithm is to train a neural network to create a relation-
ship between variables (environmental and control variables)
and objectives in line with the scenario definition of Table I.

V. ANN-BASED LEARNING STAGE

The learning stage of the proposed algorithm is based
on a multilayer perceptron (MLP) structure ANN used via
MATLAB. ANN is one of the most popular techniques to deal
with complex type problems such as energy management [4].
A well-trained ANN is able to create a relationship between
inputs and outputs without having a mathematical relationship.
In this section, several ANN learning algorithms and topologies
have been tested to determine the best performing ANN. The
topology of the proposed ANN is presented in Fig. 6 and
consists of 17 inputs; the 10 sensitive environmental variables,
the control variables (temperature set point, window set point,
lighting set point and shading set point), and time information
(month, day and hour). The outputs of the ANN are the objec-
tives of the considered scenario, i.e., heating (thermal) energy
consumption (KhW) and predicted mean vote (PMV) used to
measure levels of comfort.
In order to find the best performing ANN, the first step is to

find the most efficient learning algorithm, while keeping con-
stant the number of process elements (five process elements)
and transfer functions (both are tangent-sigmoid functions).
The second step is to find the required number of process
elements in the hidden layer, while keeping constant the best
performing learning algorithm and transfer function (both are
tangent-sigmoid functions). The last step is to find the transfer
functions in the hidden layer and output layer, while keeping
constant the best performing learning algorithm and number
process elements in the hidden layer. All the analysis is carried
out with a maximum of 4000 iterations; with the desired mean
squared error level of 0.0001 set as a termination condition.

Fig. 6. The proposed topology of the ANN.

TABLE II
TRAINING RESULTS OF THE ANN BASED ON THE LEARNING FUNCTIONS

TABLE III
TRAINING RESULTS OF THE ANN BASED ON THE LEARNING FUNCTIONS

The flowing learning algorithms have been tested: 1) BFGS
quasi-Newton backpropagation (trainbfg); 2) conjugate gra-
dient backpropagation with Powell-Beale restarts (traincgb);
3) conjugate gradient backpropagation with Fletcher – Reeves
updates (traincgf); 4) conjugate gradient backpropagation
with Polak-Ribiere updates (traincgp); 5) gradient descent
backpropagation (traingd); 6) gradient descent with adaptive
learning rate backpropagation (traingda); 7) gradient descent
with momentum backpropagation (traingdm); 8) gradient
descent with momentum and adaptive learning rate backprop-
agation (traingdx); 9) Levenberg–Marquardt backpropagation
(trainlm), and 10) scaled conjugate gradient backpropagation
(trainscg). The results are illustrated in Table II.
According to Table II, Levenberg–Marquardt backpropaga-

tion (trainlm) provides the best performance; hence, the fol-
lowing analysis will be based on this algorithm. Once the most
efficient learning algorithm is found then the number process
elements is determined using a different number of process ele-
ments in the hidden layer. In this section, the number of process
elements in each experiment was selected as (10-20-30-50), re-
spectively. The results are illustrated in Table III.
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TABLE IV
TRAINING RESULTS OF THE ANN BASED ON THE TRANSFER FUNCTION IN

HIDDEN AND OUTPUT LAYERS

Fig. 7. The training performance of the best performed ANN.

According to Table III, the best performing ANN was found
with 30 process elements in the hidden layer. The following
experiments will therefore use this number as the number of
process elements. Finally, the different transfer function types
in the hidden layer and output layer are used to find the best
performing ANN. The following functions have been analyzed:
tangent-sigmoid (tansig), logarithmic-sigmoid (logsig), and
linear function (purelin). The results are illustrated in Table IV.
According to Table IV, the best performing ANN topology

was found using trainlm as the learning function, 30 process
elements in the hidden layer, and the logarithmic sigmoid and
tangent sigmoid function ([logsig tansig]) in the hidden layer
and output layer, respectively. The training of ANN has been
carried out using the best combination of the topology with de-
fined inputs and outputs. To train ANN with this topology, the
data set was divided into two parts as training and test data. The
training data is 80% of the raw data, selected randomly. The
rest of the data is used for the testing of the network. During
the training, the error rate has been set to 0.0001. The proposed
network achieved the target level in 70 epochs (Fig. 7). Fol-
lowing that stage, the trained network was tested using the test
data (remaining 20% of the original data). According to testing
results, 0.0083 MSE error rate is achieved from the network.
This trained network was then selected as a prediction engine
for GA to generate the semantic rules for the ontology.

Fig. 8. The crossover operation of proposed GA model for the rule generation
process.

VI. GA-BASED OPTIMIZED RULE GENERATION STAGE
This section presents the optimized rule generation process

which allows the Facility Manager (FM) to reduce energy con-
sumption while maintaining thermal comfort conditions in the
selected scenario/zone. Energy management and control prob-
lems in the building environment are highly complex, multi-
dimensional, non-linear and stochastic [50]. A GA-based op-
timization solution is used. GA is a population-based stochastic
optimization algorithm which utilizes a global search process to
find the optimum solution for complex and non-linear type op-
timization problems. It has successfully been implemented for
building energy management problems [51], [52].
In the proposed novel rule generation process, each chromo-

some string consists of two main groups: variation group and
constant group. The variation group contains the control vari-
ables and the constant group is the non-varied group which is
composed of date and environmental variables. The crossover
operation is carried out among the variation group of two par-
ents chromosome strings with multi point gene exchange opera-
tion. The mutation operation is also carried out on the variation
group of parent chromosome string. These operations are shown
in Figs. 8 and 9.
GA utilizes crossover and mutation operations and carries out

the search process until it finds the optimum value of set points,
which are the control variables of the systems; and evaluation
is carried out based on the objectives defined in the holistic sce-
nario definition (Table I). The proposed optimization problem
has four control variables, three date information and ten envi-
ronmental variables which are given in (3)–(7). Moreover, ANN
is utilized as a cost function predictor and embedded into GA.
The overall process of the proposed GA is given in Fig. 10.
Subject to:

(3)

Contraints:

(4)
(5)
(6)
(7)

where is the objective function for the selected
case, i.e., “Heating Energy Consumption”; repre-
sents overall variable vector which consists of control
variables, time information and environmental variables,
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Fig. 9. The mutation operation of proposed GA model for the rule generation
process.

Fig. 10. The proposed GA model for the rule generation process.

; represents control
variable vector, ; , , ; and
are control variables of the problem which are temperature set
point, window set point, shading set point and lighting set point,
respectively; , , and are month, day and hour infor-
mation, respectively. Finally, are the environmental
variables. , and , and .

represents the absolute value of the predicted
mean vote (i.e., thermal comfort level); represents the
lower boundaries for the control variables; represents
the upper boundaries for the control variables.
The proposed rule generation is devised based on predeter-

mined negotiation processes, designed for energy reduction
levels of 5%, 10%, 15%, 20%, 25%, and 30%, while using
thermal comfort as the constraint of the problem. Therefore, the
proposed method does not allow the system to make reduction
infinitely or to run continuously. Once the optimum set points
are found, the optimized rules can be generated by placing
the environmental variables in the input section (condition
– antecedent part) and the optimized set points in the action
section.
Each variable of the input section is designed with an ini-

tial value range of ( ) 0.05. This represents the
designed error condition for á during MRA (90% accurately
determined). This value is then updated according to an adap-
tive boundary range process which will be explained in detail
in the boundary determination section. Moreover, each rule has
also been weighted based on the accuracy of the optimization
process. When the target reduction value is found this value will
be 1 (100%).
The antecedent and consequent parts of the rules are given in

Fig. 11, and an example of rule formation is given in Fig. 12.

Fig. 11. Variables utilized in the antecedent and consequent parts of the rules.

Fig. 12. Example of an optimized generated rule using GA and ANN.

Fig. 13. The fitness value of the heating energy consumption in each iteration.

In the above example rule, 5% heating energy reduction
is desired by the facility manager in the atrium zone RC0.13
(negotiated reduction level). The initial energy consumption
was 3.13 KWh and the desired energy consumption level is
2.974 KWh. In this example, the GA seeks for the optimum
value of the control variables to achieve the negotiated level.
The optimization process has found an optimum solution and
recommends the user to set control variables as 17.53 C, off
(0), off (0) and off (0) for temperature set point, window set
point, shading set point and lighting set point, respectively,
to achieve this reduction level. The optimization process has
found the global optimum solution in 20 iterations based on the
fitness evaluation using ANN as a predictor engine. The fitness
of the best individual is illustrated in Fig. 13.

VII. ADAPTIVE BOUNDARY DETERMINATION AND
RULE SELECTION STAGE

This section presents the final stage of the proposed rule
generation process. To implement rules in real-life, upper
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Fig. 14. Flow chart of the adaptive boundary determination rule selection
process.

and lower boundaries of environmental variables have to be
satisfied. However, the data generated through the simulation
system may not be matched with real-life conditions. This is
related to the unavailability of the most recent weather data
used in the simulation model (EnergyPlus Epw-file). To start
the rule generation process, the original raw data set is used
and sensitivity analysis is carried out using this data set at a
confidence rate of 90% and an error rate of 010. This error rate
value is used as the initial the upper and lower boundaries of
the rules as 0.05 for ( ) value. However, the rules may
not be fired with this boundary range. Additionally, the large
number of generated rules with the lower boundary range may
hinder a (near) real-time response. Therefore, the generated
rules had to be reduced, and factor in information of recent
weather conditions. Thus, the value of needs to be adaptive
according to the most recent historical data. Therefore, the
selected upper ( ) and lower ( ) boundaries of each
variable in each rule has been updated by comparing the current
range with the average upper and lower range of the historical
data sets. In this study, the average values of seven consecutive
day’s weather conditions are selected to update the value of .
The average historical data value of environmental variable
( ) is given according to (8)

(8)

where is the average weather data, is the historical
data value of variable ( ), and is the selected
number of the historical data for environmental variables.
To keep the generated rules within an acceptable range, the

total number of rules (TOTNORULE) is kept in the range
of 100–2000, empirically. A lesser number of rules may not
be able to give an efficient solution and a higher number of
rules increase the response time of the overall solution. The
overall process is illustrated in Fig. 14. After the rule gener-
ation process, these rules are implemented in the pilot zone
after conversion into SWRL and then inclusion in the OWL
ontology. The rules are fired by an inference engine when the
user request is received. The inference engine seeks for the rule
which contains the desired objective and the desired reduction
level with the highest weight. Among the matched rules, if
any of these rules’ antecedent parts range match the sensor

Fig. 15. The SWRL form of the example rule.

readings and has the highest weight, then that rule will be fired
by the inference engine, and update the control set points value
according to the rules consequent parts. In SWRL, the output
has to be single. The SWRL form of the example rule given in
Fig. 11 is shown in Fig. 15.
The implementation of the rules is elaborated in the experi-

ments section.

VIII. EXPERIMENTS

The selected pilot zone (an atrium) has an area of 274.9 m2.
Hence, the thermal comfort level (PMV) will be kept at ideal
conditions. As highlighted in the optimization section, this con-
dition is guaranteed by the generated rules to keep the thermal
comfort level measured by PMV in the level of ( , 1).
Generated rules were initially tested on a simulation environ-

ment using EnergyPlus. In order to evaluate the performance
of the proposed approach, additional rules were also generated
using three popular rule generation techniques, namely, C4.5
[25], Rule3, and Rule5 [27]. The antecedent and consequent
parts of the rules are selected identical to the ones used in our
proposed approach. The number of generated rules by each tech-
nique was found as 3830, 4894, 4012, and 3983 with the average
accuracy of 98.6%, 76.5%, 92.3%, and 96.3% for the proposed
rule generation method, C4.5, Rule3, and Rule5, respectively.
An overall comparison, including from an accuracy perspective,
between the proposed and above (C4.5, Rule3, and Rule5) al-
gorithms is given in Table V.
Based on results illustrated in Table V, it is worth noting that

while the computational time is on average comparable (not sig-
nificantly different), the accuracy of the proposed algorithm is
higher than all other algorithms with the lowest standard devi-
ation. Experiments have initially been carried for 1 day (1st of
September), then for three months (October–December) on a
simulation environment. The control variables in all base cases
were set to 21 , 0, 0 and 1 for temperature set point, windows
set point, shading set point, and light set point. The test has
been carried out on an Intel Pentium i-5 processor with 6 GB
RAM desktop. Experimental results for simulation are given in
Figs. 16 and 17.
According to the one day simulation results, total energy

consumption has been found as 258.449 KWh, 259.155 KWh,
258.962 KWh, 258.292 KWh, and 201.3719 KWh for the
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TABLE V
COMPARISON OF THE PROPOSED ALGORITHM WITH

OTHER RULE GENERATION ALGORITHMS

Fig. 16. Energy consumption results comparison for the base-case, proposed
solution, RULE5, RULE3, and C4.5.

Fig. 17. Comparative analysis of temperature set point results (the base-case,
proposed solution, RULE5, RULE3, and C4.5).

base-case, C4.5, Rule3, Rule5 and the proposed solution,
respectively. As illustrated in Fig. 16, the rules generated with
the proposed solution achieve about 22.08% energy saving in
one day. The thermal comfort level indicator, PMV, is kept in
the range of and 1 with the proposed solution (Fig. 18). The
other control variables were found similar to the base-case and
the consequent part of the rules generated with the benchmark
techniques. Furthermore, the other control variables have been
found as similar to the base-case and the consequent part of
the rules generated with the benchmark techniques. This estab-
lishes the temperature set point as the key control. Therefore,
this control variable has been considered as the major control
variable while the others were kept constant.
The simulation program was run for three months between

1st of October and 31st of December. The heating energy con-
sumption during this period was repeated for the base-case ini-
tially without the proposed rules and a 21 C fixed temperature
set point, and then with the fired rules. The results are illustrated
in Fig. 19.

Fig. 18. PMV results comparison using the base-case, proposed solution,
RULE5, RULE3, and C4.5 for a selected day.

Fig. 19. Comparative analysis of energy consumption (the base-case, proposed
solution, RULE5, RULE3, and C4.5.).

According to the three months simulation results, the
total energy consumption in the atrium zone was found
as 22327.34 KWh, 23621.271 KWh, 21371.62 KWh,
20605.93 KWh and 17442.33 KWh, for the base-case and the
rules generated using C4.5, Rule3, Rule5 and the proposed
technique, respectively. In accordance with these results,
the proposed methodology allows the user to reduce energy
consumption by 21.88%. However, the rules generated using
C4.5 increase energy consumption by 5.7% in the simulation
environment. During the simulation, 2208 rules have been fired
from the proposed rules to achieve this figure. Generated rules
have been fired every hour, on a continuous basis. The generated
rules were also tested on site. Initially, two consecutive days
were selected for comparison, 1st and 2nd of October. In the
first day, the energy consumption of the building was measured
between 8 am and 6 pm without using any rule. The following
day the rules have been implemented on site for the same time
scale. Finally, when the energy consumption is measured it has
been corrected with outdoor temperature degree days to avoid
comparison errors. The results are illustrated in Fig. 20.
Energy consumption of 76.74 KWh and 58.24 KWh have

been recorded for the first and second day, respectively. 24.11%
heating energy reduction has thus been achieved. Moreover,
the analysis has been carried out for two months for both the
base-case and rules generated with the proposed solution. The
heating energy consumption for both cases is adjusted with de-
gree days and illustrated in Fig. 21.
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Fig. 20. The real energy consumption comparison in Forum-Atrium (first day
without rules, the next day with rules of the proposed solution).

Fig. 21. Real energy consumption comparison (two months without rules, two
months with rules).

The two months energy meter reading using the base case
reported a heating energy consumption of 7512.57 KWh. For
the following two months, the rules have been implemented
and degree days corrected; energy consumption was reduced to
5581.30 KWh. The total energy saving within these two months
came up to 25.71%.
Based on results from the simulation and real testing cases,

our experimentation work reveals an energy reduction of 25%
on average, taking into account acceptable comfort conditions
for the elderly in the care home.

IX. DISCUSSION

A generic energy saving rule generation approach is pro-
posed, demonstrated and validated on a public building, a care
home in The Netherlands. Public buildings represent 25%
of useful floor space in Europe, estimated at 6.25 billion m2
[52]. The selected home care provides a comprehensive case
which involves: (i) complex user behavior, given the nature
of the occupants (older people with health conditions that im-
pose stringent comfort requirements); (ii) interesting building
controllable features such as automatic blinds and windows;
(iii) energy renewable generation sources; (iv) a wide range
of sensing nodes deployed across the various zones of the
building; and (v) a state-of-the-art building management system
(BMS). These interesting characteristics are now common to

Fig. 22. The generic and specific dimension of the proposed approach.

new and energy retrofitted public buildings and provide an ideal
context to develop a generic and scalable approach. Within
the selected home care, various scenarios have been identified,
following a divide-and-conquer approach, which helps break
down the energy management complexity into discrete and
manageable use cases. The selected scenario in this paper
is generic in nature as it addresses the common objective of
minimizing energy consumption, taking into account a wide
range of sensed environmental and building variables, while
maintaining required comfort conditions. It factors in all the
above considerations (i.e., user behavior, building controllable
components and systems, rich-sensed environment, and an
open BMS).
Although the building case study is specific, the method-

ology and underpinning algorithms are generic and scalable
requiring simple modifications/adaptations, such as determina-
tion of the number of input and output and boundary ranges.
Further, from a scalability perspective, the proposed approach
involves the following generic steps: (i) a preprocessing stage,
including thermal energy modeling and sensitivity analysis;
(ii) ANN-based learning; (iii) GA-based optimized energy
saving rule generation; and (iv) adaptive boundary determina-
tion and rule selection. The transition from the generic to the
building specific approach is illustrated in Fig. 22.
The preprocessing stage covers thermal modeling and sen-

sitivity analysis. Thermal modeling principles are applied to
a specific building to generate the building specific thermal
model in line with the building specific features (including
geometry, fabric, and occupancy patterns) conveyed by the
building ontology. This specific thermal model is then utilized
to generate data sets to perform a sensitivity analysis based
on generic techniques, namely PCA and MRA, with a view
to determine the most sensitive variables given the imposed
environmental and building specific conditions. Based on the
sensitive variables, a specific topology is determined to deliver
an ANN-based learning process. Further, the sensitive variables
with the specified trained network are embedded into a generic
optimization algorithm with specific control variables and
ranges. Moreover, a generic and adaptive boundary determi-
nation and rule selection process is introduced. Specific data
boundary ranges and rules are then determined.

X. CONCLUSION
A hybrid rule-based energy-saving approach using Arti-

ficial Neural Network and Genetic Algorithm is presented.
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This is underpinned by a comprehensive semantic referential
(building ontology) that provides real-time characterization
of the building and its zones. The proposed method utilizes
a thermal energy model to identify the building governing
variables through a PCA and MRA-based statistical process.
The resulting information is used in the ANN to learn energy
patterns and form the basis for a GA-based optimization process
to reduce energy consumptions taking into account a wide
range of objectives (including comfort) and constraints. The
generated rules were initially tested on a simulation platform
to evaluate their performance through a benchmarking process
involving the base-case, C4.5, Rule3, and Rule5. The testing
was carried out for four months in the winter term (two months
without and two months with the proposed solution) and was
thus focused on heating energy consumption. Initial results
suggest that the generated rules were able to reduce heating
energy consumption by 21.88% while satisfying occupants’
(elderly people) comfort conditions. Next, the testing involved
real-world experimentation where reduction by 25.71% within
two months was recorded.
The rules generated via this methodology are underpinned

by a conceptualization of the building (ontology) and form to-
gether a building specific energy knowledge base. The latter
is routinely updated based on feedback via the installed sen-
sors. Future development for the rule-based process is to uti-
lize other optimization algorithms such as the Bees Algorithm;
Ant Colony Technique, and Particle Swarm Optimization, to
increase the performance of the generated rules. An enhanced
fuzzy boundary determination process will also be explored to
generate a rapid solution to adjust the boundaries of the gen-
erated rules. It is critical to note here that the number of gen-
erated rules can be reduced by proposing more generic rules
which may cover more than one time step. This process will
be explored by analyzing the historical data and implementing
adapted data mining techniques such as enhanced fuzzy clus-
tering approaches.
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