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Abstract: Human cytomegalovirus (HCMV) is an important pathogen that infects the 

majority of the population worldwide, yet, currently, there is no licensed vaccine. Despite 

HCMV encoding at least seven Natural Killer (NK) cell evasion genes, NK cells remain 

critical for the control of infection in vivo. Classically Antibody-Dependent Cellular 

Cytotoxicity (ADCC) is mediated by CD16, which is found on the surface of the NK cell in a 

complex with FcεRI-γ chains and/or CD3ζ chains. Ninety percent of NK cells express the 

Fc receptor CD16; thus, they have the potential to initiate ADCC. HCMV has a profound 

effect on the NK cell repertoire, such that up to 10-fold expansions of NKG2C+ cells can 

be seen in HCMV seropositive individuals. These NKG2C+ cells are reported to be  

FcεRI-γ deficient and possess variable levels of CD16+, yet have striking ADCC functions. 

A subset of HCMV cell surface proteins will induce robust antibody responses that could 

render cells susceptible to ADCC. We will consider how the strong anti-HCMV function 

of NKG2C+ FcεRI-γ-deficient NK cells could potentially be harnessed in the clinic to treat 

patients suffering from HCMV disease and in the development of an efficacious  

HCMV vaccine. 
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1. Introduction 

Human cytomegalovirus (HCMV), the prototype member of the β-herpesvirus family, establishes 

lifelong infections in immunocompetent individuals, which only rarely results in overt disease. 

However, in certain populations, HCMV is a major cause of clinical problems. Allograft and AIDS 

patients with an active HCMV infection often suffer from end organ disease, such as pneumonitis, 

hepatitis, gastrointestinal ulceration and retinitis. Targeted use of antivirals can significantly reduce 

disease burden; however, drugs can be toxic and resistance can occur, reducing their effectiveness [1–3]. 

The transmission of HCMV from mother to foetus during gestation occurs in 0.5%–2% of births and is 

the leading infectious cause of congenital birth defects worldwide, including sensorineural hearing loss 

(SHNL) and neurodevelopmental delay [4]. As a result of the lifelong burden of congenital HCMV 

infection, the U.S. institute of medicine has designated a HCMV vaccine as highest priority [5]. 

CD8+ T-cells are implicated in the control of HCMV in vivo. Healthy HCMV seropositive 

individuals have large clonal expansions of CD8+ T-cells, and bone marrow transplantation studies 

demonstrate a strong correlation between the recovery of the CD8+ T-cell population and protection 

from HCMV disease [6–10]. Furthermore, adoptive transfer studies of HCMV-specific T-cell clones or 

polyclonal T-cell lines into T-cell-suppressed transplant patients is associated with decreased HCMV 

viraemia and disease [11–14]. Natural Killer (NK) cells are also important for the control of HCMV  

in vivo, and individuals with impaired NK cell-mediated immunity are particularly susceptible to 

HCMV disease [15–21]. NK cells express a plethora of activating and inhibitory receptors, and it is the 

balance of signals received by these receptors that determines the NK cell response to a pathogen or a 

transformed cell [22]. Members of the Killer Immunoglobulin Receptor (KIR) family may be 

stimulatory or inhibitory and, along with the inhibitory receptor LIR-1, recognise the classical major 

histocompatibility complex (MHC) class Ia molecules, Human Leukocyte Antigen (HLA)-A, -B and -C 

on the surface of cells. Downregulation of MHC class I by HCMV should render infected cells more 

susceptible to lysis by NK cells. However, HCMV encodes a number of NK immunomodulatory 

functions that protect infected cells from NK cell attack (reviewed in Table 1). It has also been known for 

some time that HCMV has profound effects on the NK cell repertoire: expansions of NK cells 

expressing the activating lectin-like receptor, CD94-NKG2C, are readily detectable in a large 

proportion of HCMV seropositive individuals [23]. However, the role of these cells in controlling 

infection remains poorly understood. This review will focus on new and exciting findings suggesting 

that NKG2C+ NK cells are highly functional and recognise HCMV infected target cells through 

Antibody-Dependent Cellular Cytotoxicity (ADCC). 

2. NK Cell Control of HCMV 

Patients suffering from reduced NK cell numbers as a result of Absolute NK Cell Deficiency 

(ANKD) or because of unknown aetiology are reported to suffer from recurrent HCMV infections and 

potentially life-threatening HCMV disease [15,19–21]. Similarly, individuals who have normal numbers 

of NK cells, but whose NK cells are deficient in their cytotoxic capacity, such as patients suffering 

from hypohidrotic ectodermal dysplasia with immunodeficiency (HED-ID), are also more susceptible 
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to HCMV disease [17,24]. Alterations in the NK cell phenotype may also impact on NK cell function in response to HCMV: a patient who had normal 

numbers of NK cells, but every NK cell expressed the inhibitory Killer Immunoglobulin-like Receptor (KIR), 2DL1, suffered from recurrent HCMV 

infections, suggesting that the prevalent expression of this inhibitory receptor resulted in a reduced functional response to HCMV [25]. The importance of 

NK cells is further demonstrated in a severe combined immunodeficiency (SCID) patient, who was T-cell-deficient, but whose NK cells were able to 

effectively control HCMV infection [26]. 

Table 1. Natural Killer (NK) immunomodulatory functions encoded by Human cytomegalovirus (HCMV). MHC, major histocompatibility 

complex; MICB, major histocompatibility complex (MHC) class I chain related protein B; ULBP, UL16 binding protein; PVR, poliiovirus 

receptor; TRAILR, tumour necrosis factor-related apoptosis inducing ligand receptor. 

HCMV 
Gene/locus 

Comment 

UL18 MHC class I homologue. Binds to inhibitory receptor LIR-1, as well as an unknown NK activating receptor [27,28] 
SP-UL40 Upregulates HLA-E, the ligand for the inhibitory receptor, CD94-NKG2A [29–31] 
UL83 Directly binds to the activating receptor, NKp30 [32] 
UL16 Retains the NKG2D ligands, MICB, ULBP1, 2, 4, 5 (immature form) and 6, intracellularly [33–39] 
miR-UL112 Suppresses gene expression of the NKG2D ligand, MICB [40,41]  
UL142 Retains the NKG2D ligands, MICA and ULBP3, intracellularly [42–45] 

UL141 
Downregulates surface expression of PVR (CD155) and Nectin-2 (CD112), ligands for DNAM-1 (CD226), TACTILE (CD96) and 
TIGIT [46,47] 

 Retains TRAILR2, the ligand for TRAIL, intracellularly [48,49] 

3. Mechanisms of Action of NK Cells 

In humans, NK cells are classically divided into two subsets, immature CD56bright and mature CD56dim NK cells. Ninety percent of circulating NK cells 

are CD56 dim; they secrete high levels of cytokines and cytotoxic granules when stimulated through their activating receptors and are capable of ADCC. In 

contrast, the CD56 bright population, which make up the remaining 10% of circulating NK cells, are not as cytotoxic, but produce high levels of interferon-γ 

(IFNγ) and interleukin-12 (IL-12) in response to stimulation [50]. NK cells express activating and inhibitory receptors on their surface, and it is the 

balance of these signals, brought about by interaction with ligands, that determines the NK cell’s response; if the NK cell receives an overall inhibitory signal, 
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it will leave a potential target cell intact; however, if the overall signal is activatory, it will set in motion a 

cascade of events that lead to the death of the target cell [50]. NK cells have a number of ways in which 

they can kill targets: (1) the perforin/granzyme pathway brought about by ligation of activating NK 

receptors such as NKG2D; (2) ligation of death receptors which leads to activation of the death 

inducing signal complex (DISC) complex and caspases in the target cell; and (3) perforin/granzyme 

release brought about by CD16 ligation by antibody bound to cell surface antigens, causing ADCC. 

4. HCMV UL40 and HLA-E 

HCMV encodes several proteins that reduce surface expression levels of MHC class Ia proteins and 

interfere with transporter associated with antigen processing (TAP) function, limiting the CD8+ T-cell 

response [51–55]. The non-classical MHC Ib molecule, HLA-E, is stabilised on the surface of the cell 

by binding to conserved nonameric signal peptides normally derived from the MHC class Ia in a  

TAP-dependent manner. HLA-E, therefore, provides an additional mechanism for surveying 

endogenous MHC class Ia and TAP function [56]. NK cells are thought to be highly sensitive to MHC 

class Ia downregulation because of the loss of inhibitory signals via KIR. However, during HCMV 

infection, HLA-E is preserved on the surface of the infected cell by the HCMV UL40 protein leader 

sequence (SP-UL40), which shows consensus with the canonical HLA-E binding peptide 

(VMAPRTLIL) and is delivered to HLA-E in a TAP-independent manner [29,31,57]. 

CD94-NKG2A is a member of the CD94-NKG2 family that consists of an invariant CD94 subunit 

covalently associated with either inhibitory (NKG2-A or -B) or activating (NKG2-C, -E or -F) 

molecules [58–60]. The inhibitory CD94-NKG2A (herein referred to as NKG2A) and the activating 

CD94-NKG2C (herein referred to as NKG2C) bind to peptide stabilised HLA-E. The leader sequence 

of SP-UL40 is polymorphic between strains of HCMV, and this has been shown to impact on the 

binding affinities of NKG2A and NKG2C to HLA-E [61–64]. In the context of an HCMV infection, 

HCMV strain AD169 SP-UL40 has been shown to preferentially elicit protection against NKG2A+ NK 

cells, which are able to recognise peptide stabilised HLA-E [30]. The functional effect of SP-UL40 

stabilised HLA-E on activating NKG2C+ cells is complicated; however, in expression systems, the 

peptide sequence and surface levels of NKG2C impact the functional responses of these cells [65,66]. 

5. NKG2C+ NK Cell Expansions in HCMV 

Expansions of NKG2C+ NK cells in healthy HCMV seropositive donors were first described in 

2004 [23]. Subsequently, a number of papers have described expansions of NKG2C+ cells occurring in 

both healthy HCMV seropositive individuals and in patients infected with Hantavirus, chikungunya 

virus (CHIKV), HIV, hepatitis B and hepatitis C and in individuals suffering from B-cell chronic 

lymphocytic leukaemia (B-CLL), but only in those who had prior exposure to HCMV [67–73]. 

Additionally, children with symptomatic congenital HCMV infections have higher proportions of 

NKG2C+ NK cells than asymptomatic or non-infected children [74]. In the clinical setting, NKG2C+ 

cells have been shown to expand during the acute phase of HCMV reactivation after haematopoietic 

stem cell transplantation (HSCT) and umbilical cord blood transplantation (UCBT), and increased 

percentages of NKG2C+ CD57+ cells are detected in solid organ transplant (SOT) recipients shortly 
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after the detection of HCMV viraemia [75–77]. More recently, a number of studies have described 

associations with HCMV seropositivity and NK cells expressing KIR [70,78–80]. 

All these data indicate that the NK cell repertoire can be profoundly altered by HCMV infection; 

however, the mechanism responsible for the expansion of NKG2C+ cells in HCMV seropositive 

donors is currently not known. Indeed, the role and importance of NKG2C+ NK cells in control of 

HCMV is an area of current debate; whilst complete deletion of the NKG2C gene occurs with 

approximately 4%–8% homozygosity in Dutch, Japanese and Spanish cohorts, there have been no 

reports correlating the NKG2Cnull genotype with overt HCMV disease [81–85]. Similarly, no 

differences in the NKG2C genotype distribution between HCMV+ and HCMV− donors have been 

observed [82]. However, in allogeneic stem cell transplant recipients, peak numbers of NKG2C+ NK 

cells correlated with the resolution of HCMV DNAemia, suggesting that NKG2C+ NK cells may be 

involved in the clearance of HCMV [86]. 

6. Functional Responses of NKG2C+ NK Cells 

NKG2C+ NK cells show enhanced degranulation and IFNγ production in response to HCMV strain 

TB40/E infected autologous macrophages in the presence of human serum containing HCMV 

antibodies [87]. However, whilst NKG2C+ NK cells have been shown to expand in vitro in response to 

HCMV infected fibroblast cells, it is not clear whether this is in response to UL40 stabilised HLA-E, 

or whether they can lyse HCMV infected cells through ligation of NKG2C with HLA-E [74,88]. In 

response to HLA-E expressing, but otherwise MHC class I-deficient, targets, a higher percentage of 

NKG2C+ NK cells degranulate compared to their NKG2C− counterparts, whilst in response to the 

MHC class I-deficient targets, K562, NKG2C+ NK cells degranulate less well, but produce more IFNγ 

and tumour necrosis factor-α (TNFα) than NKG2C− NK cells [67,70,75,87]. NKG2C+ cells also show 

more robust cytokine and degranulation responses to plate-bound anti-CD16 antibody and anti-NKG2C 

antibody and to B-cells coated with an anti-CD20 antibody, than NKG2C− cells [70,77]. In response to 

antibody coated B-cells not only did a greater percentage of NKG2C+ cells degranulate, but a higher 

proportion released IFNγ and TNFα, and overall, a higher proportion of these cells were “tri-functional” 

compared to their NKG2C− counterparts [70]. In redirected killing assays using P815 cells coated with 

an anti-CD16 antibody, NKG2Chi NK cells were more responsive than NKG2C− cells despite having 

similar levels of surface CD16, and crosslinking NKG2C enhanced the responsiveness of these cells [87]. 

Taken together, these data suggest that NKG2C+ NK cells are cytotoxic, but are triggered into action 

by a mechanism that is not measured in standard NK assay protocols that measure responses to MHC 

class I-deficient target cells in the absence of antibody. 

Receptor expression levels and ligation of receptors by cellular ligands can alter the threshold 

required for the activation of NK cells. In this respect, ligation of NKG2A on 

NKG2C+NKG2A+KIR−cells has been shown to significantly decrease the ADCC responsiveness and 

proliferative potential of these cells in response to NKG2C crosslinking, suggesting that in the absence 

of inhibitory KIR, NKG2A could provide a regulatory feedback mechanism for controlling the 

activating NKG2C receptor, thereby preventing potential autoreactivity against self-HLA-E+ cells [89]. 

It is therefore interesting that a number of groups have observed that in HCMV seropositive donors 

with expansions of NKG2C+ NK cells, a higher percentage of these cells are NKG2A−, but express a 
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KIR that specifically recognises self-MHC class-I molecules [87,89,90]. Engagement of these 

inhibitory KIR in a redirected killing assay using anti-NKG2C antibody-coated P815 cells significantly 

decreased degranulation, suggesting that a bias towards self-KIR expression may dampen the 

responsiveness of NKG2C+ self KIR+ cells to normal tissues with intact MHC class I expression [70]. 

7. Role of CD16 in NK Cell Responses 

CD16, also known as FcεRI-γIII, is a multichain receptor consisting of an α-chain that is associated 

in the membrane with either an FcεRI-γ or CD3ζ homodimer or a heterodimer comprised of FcεRI-γ 

and CD3ζ and confers ADCC to CD56l° NK cells on which it is predominantly found (Figure 1) [91]. 

The extracellular domain of the α-chain has two Ig-like subunits that bind to the Fc portion of 

Immunoglobulin-G (IgG) molecules with medium to low affinity. A bi-allelic functional 

polymorphism at position 158 in the membrane proximal Ig-like domain of the α-chain results in either 

a valine (V) or phenylalanine (F) and determines the level of receptor interaction with different IgG 

subclasses, as well as the efficiency of the IgG-induced effector functions [92]. Crosslinking of CD16 

by IgG causes activation of src family protein tyrosine kinases (PTKs) and phosphorylation of tyrosine 

residues on the FcεRI-γ and CD3ζ chain immunoreceptor tyrosine-based activation motifs (ITAMs), 

setting in motion a biochemical cascade that results in NK cell activation and the release of cytotoxic 

granules [93]. Whilst there is little work studying the effect of FcεRI-γ or CD3ζ deletions in humans, 

FcRγ-deficient mice have impaired ADCC activity [94,95]. 

Figure 1. Structure of CD16. A schematic drawing of CD16 showing the two Ig-like 

extracellular subunits, D1 and D2, and the α-chain (blue) in complex with FcεRI-γ (purple) 

or CD3ζ (green) chains. Immunoreceptor tyrosine-based activation motifs (ITAMs) motifs 

are shown in red. 

 

8. FcεRI-γ Chain-Deficient NK Cells 

A novel population of NK cells that express surface CD16, but lack the FcεRI-γ chain, are present 

in approximately one third of healthy individuals and, despite lacking the FcεRI-γ chain, are capable of 
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ADCC [96]. Phenotypic analysis showed that these cells share similar receptor expression patterns to 

the NKG2C+ NK cells previously described in HCMV seropositive donors; low levels of NKp30 and 

NKp46, normal levels of NKp44, CD69, CD25, DNAM1, NKG2D, 2B4 and perforins and granzymes. 

Analysis of KIR expression on the FcεRI-γ-deficient NK cells suggested that approximately 50% of 

the individuals analysed had skewed KIR expression patterns. In contrast to NKG2C+ NK cells, which 

have normal levels of CD16, levels of CD16 on the FcεRI-γ deficient cells was approximately 60% 

lower than on FcεRI-γ+ NK cells [87,96]. However, despite the reported reduced expression of CD16, 

the FcεRI-γ-deficient cells were able to produce more IFNγ and TNFα in response to plate-bound  

anti-CD16 antibody and degranulated better and produced more of these cytokines in response to 

antibody-coated P815 cells than FcεRI-γ+ cells [96]. Like the NKG2C+ NK cells, FcεRI-γ-deficient 

cells were not as responsive towards the classic MHC class I-deficient target K562 or 721.221 cells. 

These data suggested that the functional capacity of FcεRI-γ-deficient NK cells differed markedly 

from FcεRI-γ+ NK cells and shared many characteristics with the NKG2C+ NK cells previously 

described in HCMV seropositive individuals. Significantly, it was shown that the presence of  

FcεRI-γ-deficient NK cells correlated with previous exposure to HCMV [96]. Like NKG2C+ cells, the 

FcεRI-γ-deficient cells produced more IFNγ and TNFα and were able to degranulate in response to 

HCMV infected targets, but only in the presence of HCMV-specific antibodies [87,97]. In light of the 

expansion of FcεRI-γ-deficient cells in HCMV seropositive donors, it is of particular interest that that 

these cells were also able to respond to target cells infected with herpes simplex virus-1 (HSV-1), but 

only in the presence of HSV-1-specific antibodies [97]. This suggests that whilst HCMV infection can 

drive the expansion of this cell subset, they are still able to act with innate characteristics and clear 

viral infections that they may not necessarily have expanded in response to. 

Both FcεRI-γ-deficient and NKG2C+ NK cells express low levels of NKp46, an NK phenotype 

known to be associated with HCMV seropositivity [23,87,96]. NKp46 is an activating receptor found 

on a high proportion of NK cells and recognises viral haemagglutinin (HA) and highly charged heparin 

sulphate/heparin epitopes [98,99]. In standard degranulation assays, blocking antibodies have shown 

that NKp46 is important for the recognition of HCMV strain TB40/E-infected macrophages [100,101]. 

Perhaps surprisingly, given the lower surface expression levels of NKp46 on NKG2C+ cells, 

crosslinking of this receptor with a plate-bound monoclonal antibody elicited a better degranulation 

response than crosslinking NKp46 on NKG2C− cells, which have much higher levels of NKp46 on 

their surface [87]. However, it is interesting to note that NKp46 and CD16 both use FcεRI-γ and CD3ζ 

as part of their intracellular signalling machinery, and it is therefore possible that in FcεRI-γ-deficient 

cells, CD16 and NKp46 have to rely solely on the CD3ζ chain for their intracellular signalling 

cascade [102,103]. In this scenario, it may be that signalling solely through the CD3ζ chain, which has 

three ITAMs compared to the single ITAM in the FcεRI-γ chain, may be enhanced. 

9. Clinical Importance of NK Cell-Mediated ADCC in Vaccine Design and Therapeutics 

Since NKG2C+ cells are capable of ADCC, administration of antibody preparations or vaccines that 

induce robust antibody responses may offer advantages in the treatment of HCMV disease. The use of 

HCMV-specific immunoglobulins (Iv-Ig) to treat transplant patients and mothers who have active 

HCMV infections indicate that Iv-Ig has a clinical benefit [104–108]. However, the results of these 
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studies have been met with a certain amount of controversy [109,110]. Because of the large economic 

burden incurred by HCMV, there is now a real need for the development of an effective HCMV 

vaccine, and this will probably involve inducing both the humoral and cellular arms of the immune 

response to work in concert. 

All sera from HCMV seropositive individuals contain antibodies to gB, and up to 70% of the 

neutralising antibody responses have been reported to be gB-specific [111]. Virion glycoproteins and 

complexes involved in entry, such as gH/gL/gO or gH/gL/pUL131A/pUL30/pUL128, are also major 

targets for neutralising antibodies in vivo [112–121]. However, as naturally-induced immunity to 

HCMV from pre-existing infections is not enough to provide complete protection from re-infection, it 

is extremely unlikely that vaccines using attenuated strains of HCMV can provide a sufficient 

immunogenic stimulus to provide protection from HCMV disease [122–124]. Research is therefore 

focussing on subunit vaccines that provide specific immunogenic viral proteins designed to elicit excellent 

cellular and humoral immune responses in the absence of HCMV’s immunomodulatory functions. 

The recombinant subunit vaccine, gB + M59 adjuvant, has been shown to induce neutralising gB 

antibody levels similar to that observed in naturally acquired infection and confer protection against 

congenital HCMV infection in mothers who acquired primary HCMV infection during gestation and in 

those who had pre-existing immunity to HCMV [125–127]. Furthermore, in transplant patients, the 

vaccine was able to induce significant levels of neutralising gB antibody, and this had an inverse 

correlation with the duration of viraemia [128]. However, whilst neutralising antibodies do not always 

lead to reduced viral load, Iv-Ig, which contains both neutralising and non-neutralising antibodies, can 

reduce disease burden, suggesting that CMV-specific IgG can elicit effective immune responses 

besides virus neutralization [104,108]. 

MSL-109 is a naturally occurring human IgG antibody that recognises the surface gH antigen 

complex and is able to block infection of fibroblast, epithelial and endothelial cell lines by both 

laboratory and clinical strains of HCMV in vitro [129,130]. However, phase 2/3 clinical trials in AIDS 

patients demonstrated that the in vivo efficacy of MSL-109 was not sufficient to prevent disease [131,132]. 

Development of resistance to neutralising antibody therapies is well documented and often occurs after 

genetic mutations in one or more proteins, rendering the virus insensitive to the antibody 

neutralisation. The rapid nature and reversibility of the resistance to MSL-109 suggested that this was 

not the underlying mechanism, and it was shown that a gH-MSL-109 complex was formed that was 

incorporated into gH/gL complexes, leaving the Fc portion of MSL-109 decorating the virion, thereby 

allowing the MSL-109 Fc domain to play a role in the infection of target cells [130]. This meant that 

not only was MSL-109 ineffective as a neutralising antibody, but that it enhanced the virus’s ability to 

infect fibroblasts. These data, and the often lethal Antibody-Dependent Enhancement (ADE) after 

re-infection with dengue virus, suggest that there is much to learn regarding antibody therapies for 

viral infections. Indeed, recent work on HIV and influenza has begun to focus on the interplay between 

humoral and cellular immunity [133,134]. Taken together, processes, such as the MSL-109 effect and 

ADE, need to be considered along with cell-mediated responses, such as ADCC, when developing 

antibody therapies/immunisation protocols for HCMV. 
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10. Conclusions 

Recent advances in the understanding of the function of NKG2C+ NK cells in ADCC opens the path 

to a new area of HCMV vaccine research. Whilst neutralising antibodies have been studied and their 

formation has been considered in vaccine design strategies, the protection generated is only partial. 

The fact that individuals can be superinfected with a number of HCMV strains indicates that 

neutralising antibodies do not provide complete protection [135]. One potential explanation could be 

that the spread of HCMV in vivo is primarily by cell-to-cell contact, rather than the release of free 

virions. By generating a vaccine that is able to harness the ability of the immune system to clear 

HCMV-infected cells by ADCC, clinicians would be able to target infected cells, as well as to 

neutralise free virions. A vaccine capable of expanding and/or maintaining a pool of NKG2C+ NK cells, 

whilst also generating a strong, appropriately targeted, antibody response, could provide a novel and 

efficacious system of protection against this virus. Excitingly, the fact that these NKG2C+ NK cells are 

also able to respond to other viral infections suggests that these cell populations may have the potential 

to treat other diseases, such as cancer and HIV, provided antibodies of the right specificity are present. 
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