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ABSTRACT 

Triple-negative breast cancer (TNBC) is a subtype of poor prognosis, highly invasive and 

difficult-to-treat breast cancers accounting for around 15% of clinical cases. Given the poor 

outlook and lack of sustained response to conventional therapies, TNBC has been the subject 

of intense studies on new therapeutic approaches in recent years. The development of targeted 

cancer therapies, often in combination with established chemotherapy, has been applied to a 

number of new clinical studies in this setting in recent years. This review will highlight recent 

therapeutic advances in TNBC, focusing on small molecule drugs and their associated 

biological mechanisms of action, and offering the possibility of improved prospects for this 

patient group in the near future. 

 

KEY TERMS: 

Triple negative breast cancer 

Triple negative breast cancer is a heterogeneous disease that accounts for approximately 15-

20% of all breast cancers. The disease is characterised by the lack of expression of oestrogen 

and progesterone receptors (ER/PR), and lack of human epidermal growth factor 2 (HER2) 

amplification. TNBC is associated with higher relapse and lower survival rates. 

 

Cytotoxic chemotherapy 
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Cytotoxic chemotherapy drugs are compounds that primarily target DNA and cellular 

replication processes, causing cell death within proliferating cell (i.e. those progressing 

through active cell cycle). Although these compounds have a broad spectrum of activity in 

numerous malignancies, they are non-specific; consequently the major drawbacks of 

chemotherapy are dose limiting toxicological side effects and drug resistance. 

 

Tyrosine kinase inhibitors 

TKIs are small molecule inhibitors, which target one or more components of receptor tyrosine 

kinases (RTKs), normally located at the cell surface. Inhibition of RTKs is characterised by 

deregulation in the signal transduction pathways involved in key cellular regulatory 

processes, such as proliferation, differentiation, cell survival and metabolism, cell migration, 

and cell cycle control.  

 

PARP inhibitors 

PARP inhibitors are small molecule inhibitors of the DNA repair enzyme, poly(ADP-ribose) 

polymerase (PARP). Inhibition of PARP is characterised by multiple double strand DNA 

breaks, which cannot be repaired in tumour cells with BRCA1/2 mutations, thus resulting in 

efficient and selective cell death. 

 

Heat shock protein family 

Heat shock protein family are a diverse group of molecular chaperone proteins that interact 

with unfolded, aggregated or misfolded proteins to prevent cell damage. They are also 

thought to be involved many other cellular processes, including cell proliferation, and cell 

survival and death. 

 

 

INTRODUCTION 

Triple negative breast cancer (TNBC) is a subtype used to characterize invasive breast 

cancers that lack expression of the oestrogen and progesterone receptor (ER/PR) and HER2 

[1]. Clinical surveys reveal that approximately 15% of all breast cancers are diagnosed as 

TNBC, occurring more frequently among younger women (<40 years old) and more common 

in black women compared to Caucasian women [2]. TNBC is associated with a poor disease 

prognosis, high risk of recurrence and a worse disease-free survival [2]. The median survival 

of patients with metastatic TNBC is only 13 months and virtually all women with metastatic 

TNBC ultimately die of their disease despite systemic therapy. TNBC tumours are associated 
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with a high histological grade and an increased risk of distant recurrence to develop visceral 

metastasis early in the course of their disease [2].  

The development of gene array profiling has allowed for the classification of breast 

cancer into several subtypes based on distinctive gene expression signatures [3]. One such 

subtype includes basal-like breast cancer which shows a high expression of characteristic 

basal epithelial proteins which include cytokeratin 5 and 6 (CK5/6), CK14, CK17, P-

cadherin, p53 mutations, epidermal growth factor receptor (EGFR) and αB-crystallin [4,5]. 

Although the terms “triple negative” and “basal-like” are not synonymous, most (80%) basal-

like breast cancers do not express ER, PR receptors and HER2 [6].  Since the hormone 

receptors and HER2 are central to the biologic variance among breast cancers, clinicians tend 

to categorise TNBC by routine immunohistochemical staining as a surrogate profiling for the 

basal-like breast cancer in the clinical settings. Further gene expression analysis has identified 

six distinct TNBC subtypes, including two basal-like (BL1 and BL2), immunomodulatory, 

mesenchymal (M), mesenchymal stem like (MSL) and luminal androgen receptor (LAR) 

[6,7]. Different TNBC subtypes exhibit unique biology and tend to present distinct responses 

to a given therapy. Even so, distinguishing one TNBC subtype from another can be a 

challenge at clinical histologic examination and therefore it is inappropriate to treat all 

TNBCs as a single entity. Additionally, triple negative breast cancers are characterized by a 

wide spectrum of genomic alterations and instability, some of which are the result of DNA 

repair defects such as homologous recombination, discussed in more detail below with 

reference to the use of PARP inhibitors in this setting. Studies of TNBC gene signature and 

their different response to therapeutic intervention are an active area of study that will inform 

future biomarker and drug target discovery. 

TNBC patients do not benefit from hormonal or trastuzmab-based therapy because of 

the loss of target receptors such as ER, PR and HER2 [8]. Surgery and/or cytotoxic 

chemotherapy remains the standard course of TNBC treatment despite the lack of long-term 

effectiveness [9]. These factors make treatment options for TNBC particularly problematic, 

and the development of new and improved therapeutics for TNBC as one of the highest 

priorities of current breast cancer research. Recent studies highlight the important roles of 

certain proteins such as EGFR (expressed by 66% of TNBC), c-Kit and αB-crystallin in the 

progression of TBNC and suggest potential targets for new therapeutic drugs (Figure 1).  

This review provides a selective overview of recent developments in therapeutic 

approaches to the treatment of TNBC. The focus of the review is firmly on small molecule 

drugs and drug candidates; important developments in antibody-based therapies are not 

covered here except for passing mention as part of combination therapy. In addition, our 

selective coverage mainly focuses on approaches that have progressed to at least pre-clinical 
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development in the setting of TNBC. Early stage molecules acting on relevant targets within 

the in vitro context receive only minimal focus here. 

 

Figure 1: The importance of the TNBC microenvironment (top) and potential targets for new 

therapeutic drugs against TNBC (bottom). 

 

CURRENT THERAPY AGAINST TNBC 

 

Systemic cytotoxic chemotherapy 

Therapy of TNBC is based on surgery, radiotherapy, and chemotherapy, because currently 

there are no targeted treatment options available [10]. Combination cytotoxic chemotherapy, 

administered in a dose-intensive or metronomic regimen used as an adjuvant or neoadjuvant 

therapy, remains the standard treatment for early-stage TNBC. The most common cytotoxic 

agents are a combination of taxanes, anthracyclines and cyclophosphamide. Although TNBC 
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has a high recurrence rate, it has a better initial response to conventional chemotherapy than 

breast cancers that are hormone-receptor positive [11,12]. 

 

Platinum-based chemotherapy (PBC) 

Platinum agents are one of the established drug classes that are finding new applications in 

the treatment of TNBC. Platinum-based compounds are DNA interacting agents which lead to 

DNA cross-link strand breaks resulting in impairment of DNA repair/synthesis. Tumours with 

BRCA 1/2 mutations, including the majority of TNBC,
 
have deficient double-stranded DNA 

break repair which leads to an increased sensitivity to chemotherapeutic agents that cause 

DNA damage [13]. 

Recently, in the GeparSixto trial (Phase II), the addition of neoadjuvant carboplatin to 

a regimen consisting of taxane-anthracycline chemotherapy and targeted therapy significantly 

increases pathological clinical response in patients with stage II or III triple negative breast 

cancer [14]. Sikov and collaborators have studied the addition of other drugs such as 

carboplatin and/or bevacizumab in a neoadjuvant chemotherapy regimen to sequential 

taxane–anthracycline in a Phase II trial [15]. The results indicate that pCR breast rates were 

higher with the addition of carboplatin (60% vs 44%; P=0.018) or bevacizumab (59% vs 

48%; P=0.0089), whereas only carboplatin (54% vs 41%; P=0.0029) significantly raised pCR 

breast/axilla in both clinical stage II and III TNBC.
 
 Taking into account the studies 

mentioned above, the potential of carboplatin is evident when used as a new treatment option 

for patients with TNBC. Another interesting trial is the comparison of cisplatin vs carboplatin 

with docetaxel neoadjuvant therapy in 144 patients with TNBC [16]. The cisplatin-based 

regimens were superior to the carboplatin-based regimens in terms of overall and progression 

free survival. It was concluded that the treatment with cisplatin/docetaxel was well tolerated 

and a potentially effective therapy in locally advanced TNBC. 

There are two Phase III trials in progress evaluating the benefit of platinum-based 

chemotherapy versus standard chemotherapy in TNBC patients. One is comparing carboplatin 

versus docetaxel (NCT00532727), and the other contrasting the use of gemcitabine/cisplatin 

versus gemcitabine/paclitaxel (NCT01287624) [17]. 

 

DNA Repair Pathways 

DNA-repair mechanisms play a crucial role in maintaining the integrity of DNA. There are 

numerous different DNA repair pathways, including non-homologous end joining, 

homologous recombination, mismatch repair, nucleotide excision repair and base excision 

repair. Deregulation of DNA-repair mechanisms is associated with the development of 
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cancer, most notably in breast tumours with mutations BRCA1 and BRCA2 genes, a concept 

known as synthetic lethality 

 

PARP inhibitors 

Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP), an enzyme which 

regulates the DNA base-excision repair pathway to repair single-strand breaks (SSBs), has 

emerged as an exciting therapeutic target for TNBC [18]. Mutations in the breast cancer 

susceptibility genes known as BRCA1 and BRCA2, that code for tumour suppressor proteins 

involved in DNA repair, account for around 5-10 % of all breast cancers and around 15% of 

ovarian cancers. Pioneering studies have demonstrated that BRCA-deficiency dramatically 

and selectively sensitizes tumours to the effects of PARP inhibition due to the inability to 

effect DNA repair in these cells, a concept known in biology as synthetic lethality [19]. It has 

been established that triple-negative tumours are likely to have a deficiency in BRCA1/2 and 

therefore be more susceptible to the targeting of DNA repair machinery through PARP 

inhibition.  

Iniparib (BSI-201) (1, Table 1) was one of the first anticancer PARP inhibitors 

described in preclinical models. In a Phase II study it has been shown that the addition of 

iniparib to gemcitabine and carboplatin significantly improved all measures of clinical 

efficacy in metastatic TNBC, including overall survival (OS), progression-free survival 

(PFS), and the rate of objective complete or partial response [20]. However, in a Phase III 

clinical trial with the same treatment combination among 516 patients with TNBC, the results 

suggest that iniparib did not meet the criteria for significance for co-primary endpoints of OS 

and PFS [21]. Disappointingly, iniparib was discontinued due to loss of efficacy and 

associated toxicity in Phase III clinical trials [22,23]. Furthermore, recent studies suggest that 

iniparib may not actually inhibit the PARP enzyme [24,25].  

The most important PARP inhibitor studied in TNBC to date is olaparib (AZD2281), 

a drug also registered for the treatment of ovarian cancer (2, Table 1). In recent years, Phase 

I/II clinical trials have shown that PARP inhibition by olaparib in breast cancer is confined to 

BRCA-mutated breast cancer, including TNBC [26,27]. In a recent Phase I trial, 28 patients 

(8 with TNBC) have been treated with olaparib in combination with the anti-angiogenic drug, 

cediranib and the results for TNBC patients showed limited clinical activity [28]. The 

combination of olaparib and weekly paclitaxel is being evaluated in an ongoing Phase I trial 

but the effectiveness of this treatment has not been determined due to a significant clinical 

interaction [29]. Ongoing trials are being held for olaparib combined with other 

chemotherapeutic agents (see Supplementary Information). 

Although there are few papers supporting the PARP inhibitor veliparib (ABT-888)  

(3, Table 1) as a promising treatment in combination with standard chemotherapy in TNBC, 
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there are a large number of trials being carried out in the last few years. Significantly, positive 

data was recently observed in the ISPY-2 trial looking at the combination of veliparib and 

carboplatin plus standard chemotherapy in neoadjuvant settings in TNBC. The trial found that 

patients who received the combination of veliparib and carboplatin combination plus standard 

chemotherapy were more likely to attain pathologic complete response (52%) compared 

chemotherapy alone (26%) [30]. A Phase III clinical trial (NCT02032277) is currently 

recruiting participants for the above treatment combination, and there is a high probability 

that this study will generate successful results.   

One relevant paper that evaluates in vitro activity of four PARP inhibitors suggests 

that rucaparib (4, Table 1) is the most cytotoxic compound in three TNBC cell lines tested. 

These PARP inhibitors exhibited differential antitumour activities, with the relative potencies 

of rucaparib > olaparib > velaparib > iniparib [31]. Comparing the efficacy of iniparib against 

olaparib in seven TNBC cell lines it was concluded that olaparib, in contrast to iniparib, is a 

strong inhibitor of breast cancer cell growth and may have efficacy in TNBC [32]. Recently, 

E7449 (5, Table 1), a novel orally bioavailable small molecule PARP inhibitor has been 

tested in TNBC as either a monotherapy or in combination with other anticancer therapies. 

E7449 inhibits both PARP 1 and PARP 2 with IC50 values of 1.0 and 1.2 nM, respectively. 

Additionally, E7449 showed dose-dependent selective inhibition of PARP activity and a 

potent antitumour activity against BRCA-deficient breast cancer cell line in in vivo models, 

with no observed toxicity [33]. Furthermore, E7449 in combination with eribulin or 

carboplatin in several TNBC xenograft models showed a significant increase in antitumour 

activity in the MDA-MB-468 subtype of TNBC [34]. A Phase I/II trial of E7449 as a single 

agent or in combination with chemotherapy drugs in advanced solid tumours including TNBC 

is ongoing (Table 1). 

Table 1 shows the chemical structures of PARP inhibitors under comparative clinical 

investigation in TNBC. Table 2 (Supplementary Information) gives further information on 

combination study clinical trials that are being carried out with PARP inhibitors in TNBC.  

 

Table 1: Chemical structures and comparative study of PARP inhibitors in clinical trials for 

TNBC. 

 

PARP 

inhibitors 

 

Molecular Structure 

 

Study 

design 

 

Drugs 

 

Clinical trial 

identifier 

 

Ref 

Iniparib 

(BSI-201) 

 

 

Phase III 

Iniparib 

+ gemcitabine and 

carboplatin 

NCT00938652 

 

 

[22,35] 
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Olaparib 

(AZD2281) 

 

 

Phase I  
Olaparib + 

BKM120/BYL719  
NCT01623349 

 

 

 

 

 

[29,36] 

Phase I Olaparib NCT02227082 

Phase I  

Olaparib + 

Carboplatin and/or 

Paclitaxel 

NCT00516724 

Phase I  
Olaparib + 

Carboplatin 
NCT01445418 

 

 

 

 

Veliparib 

(ABT-888) 

 

 

 

 

 

 

N/A 
Veliparib + 

Lapatinib 
NCT02158507 

 

 

 

 

 

 

[37,38] 

 

 

 

 

 

 

Phase I  

Veliparib + 

Cisplatin and 

Vinorelbine 

ditartrate 

NCT01104259 

Phase II  

Veliparib + 

Carboplatin and 

standard 

chemotherapy 

NCT01818063 

Phase III  

Veliparib + 

Carboplatin and/or 

standard 

chemotherapy  

NCT02032277 

Phase II  
Veliparib + 

Cyclophosphamide 
NCT01306032 

Rucaparib 

(AG014699) 

 

 

Phase II  
Rucaparib  

+ Cisplatin 
NCT01074970 

 

 

 

[39] 

E7449 

 

Phase I/II 

E7449 alone, 

 E7449 + 

Temozolomide or 

Carboplatin and 

Paclitaxel  

NCT01618136 

 

 

 

 

 

[33] 

 

 

Targeting molecular pathways in TNBC 

Receptor-tyrosine kinases (RTKs) are cell surface receptors, many of which are key 

regulators of critical cellular processes, such as cell proliferation and differentiation, cell 
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survival and metabolism, cell migration, and cell cycle control. Deregulation of RTKs is 

prevalent in many cancers. In basal-like cancers (the major subtype of TNBC), amplification 

of several components of RTKs have been observed including PIK3CA, KRAS, EGFR, 

FGFR, IGFR, MET, and PDGFRA, to name but a few. Thus, there is scope for the 

development of small molecule kinase inhibitors that block or attenuate RTK activity to target 

TNBC [40-42]. Figure 2 summarises the major kinase-based signalling pathways discussed 

with respect to treatment of TNBC using small molecule inhibitors. 

 

Figure 2: Major signaling pathways relevant to the development and progression of TNBC 

 

Small molecule Tyrosine Kinase Inhibitors (TKIs)  

EGFR inhibitors 

The epidermal growth factor receptor (EGFR) and its downstream signalling pathway is 

important for regulating cell growth, survival, and apoptosis. Many cancers have been shown 

to convey deregulation of the EGFR-mediated signalling by distinct molecular mechanisms, 

such as over-expression, acquired mutations of the receptor, and activation induced by ligands 

[43,44]. Approximately 60% of all basal-like breast cancers, which is the major subtype of 

TNBC tumours over-express EGFR [42,45-49]. This high expression of EGFR has been 

shown to be a negative prognosis factor in TNBC, thus EGFR is considered to be a potential 

therapeutic target against TNBC [50]. Many EGFR inhibitors have since been clinically 

investigated against TNBC. 
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Gefitinib (6, figure 3) and erlotinib (7, Figure 3) are both quinazoline substituted small 

molecule EGFR inhibitors, initially approved for the treatment of non-small cell lung cancer 

(NSCLC) [51]. Phase II trials of gefitinib as monotherapy in metastatic breast cancers (MBC), 

did not show any significant improvement in response rate (RR) [52,53]. A Phase II 

multicenter study of erlotinib as monotherapy also showed minimal activity in unselected 

previously treated women with advanced breast cancer [54]. However, in vitro studies in 

TNBC cell lines established that the combination of EGFR inhibitors and chemotherapy 

agents could be more effective against TNBC [46,55]. A combination of erlotinib with 

capecitabine and docetaxel showed significant improvement in patients with MBC, with an 

overall response rate (ORR) of 67% [56]. A Phase II study of gefitinib in combination with 

docetaxel in patients with MBC also showed the combination to be active and well tolerated 

in untreated patients with MBC [57]. A randomised Phase II trial assessed the combination of 

erlotinib with carboplatin and docetaxel in the neoadjuvant treatment of TNBC patients, the 

trial demonstrated promising activity with pathological complete response rate of 40% and 

minimal increased toxicity [58]. A Phase II trial of erlotinib with chemotherapy is currently 

underway to assess the pathological clinical response of neoadjuvant chemotherapy plus 

erlotinib in patients with TNBC (NCT00491816). 

 

Figure 3: Chemical structures of small molecule EGFR inhibitors tested in TNBC 

Several new EGFR inhibitors are currently under investigation including lapatinib, a 

quinazoline substituted inhibitor (8, Figure 3) [59], and neratinib, a substituted quinolone 

inhibitor (9, Figure 3) [60]. Both compounds are orally bioavailable dual inhibitors of EGFR 

and human epidermal growth factor receptor 2 (HER2). Several trials are evaluating these 

compounds as either monotherapies, or in combination with other drugs. Neratinib is 
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undergoing a Phase I/II trial in combination with the mTOR inhibitor, temsirolimus in 

patients with metastatic HER2-amplified or TNBC (NCT01111825). The results from a Phase 

I trial showed the combination was well tolerated with a response rate (RR) of 67% [60]. 

However, lapatinib showed a lack of activity in combination with paclitaxel in patients with 

advanced TNBC [61]. Recently, lapatinib was shown to elicit activation of nuclear factor 

(NF)-κB to sensitise TNBC cell lines to proteasome inhibitors. This result suggest that a 

combination therapy of a proteasome inhibitor with lapatinib may be beneficial to TNBC 

patients [62]. In a recent preclinical study, Tao et al also showed that the combination of a 

dual EGFR and HER3 inhibitor, MEHD7945A with either ipatasertib (AKT inhibitor) or 

GDC-0941 (PI3K inhibitor) inhibited the growth of xenografts derived from TNBC patient 

tumours [63]. From these studies, it appears that EFGR inhibition alone is not effective in 

targeting TNBC, therefore a likely scenario will be a combination therapeutic strategy 

comprising of different components of RTK pathways. 

 

VEGFR inhibitors  

Angiogenesis is the development of new blood vessels from existing vasculature. This 

process is regulated by vascular endothelial growth factor (VEGF) and VEGF receptors 

(VEGFR), and it is essential in early stage tumourigenesis and subsequently, metastasis. 

TNBC is a highly vascularised disease which correlates with high levels of intratumoural 

VEGF. The high levels of VEGF is a negative prognostic factor in TNBC, providing the 

foundation for clinically evaluating VEGFR inhibitors [64]. 

Sunitinib (10, Figure 4) is a multi-targeted TKI, which potently inhibits VEGFR-

1/2/3, PDGFR and KIT. It is an orally bioavailable pyrrole substituted 2-indolinone inhibitor 

approved by the FDA in 2006 for the treatment of renal cell carcinoma [65]. Sunitinib was 

evaluated in a Phase II multicentric trial in patients with MBC formerly treated with 

anthracyclines and taxanes. Seven patients achieved a partial response (median duration, 19 

weeks), giving an ORR of 11%. Interestingly, a RR of 15% was observed in patients with 

metastatic TNBC [66]. Moreover, a randomised open-label Phase II study constructed to 

evaluate the efficacy of sunitinib monotherapy with that of single-agent standard-of-care 

(SOC) chemotherapy in patients with previously treated advanced TNBC, found that mean 

PFS with sunitinib was 2.0 months, compared with 2.7 months with SOC chemotherapy. 

Furthermore, the mOS was not prolonged with sunitinib compared with SOC (9.4 months 

compared with 10.5 months, respectively) [67]. Sunitinib has also been assessed in 

combination with first-and second-line chemotherapy, with docetaxel and capecitabine, 

respectively, in two large Phase II trials in patients with HER2-negative MBC. However, 

neither trial observed any benefit pertaining to the combination therapies [68]. Results are 
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awaited for a neoadjuvant Phase I/II trial examining the combination of sunitinib with 

paclitaxel and carboplatin in TNBC (NCT00887575). 

 

Figure 4: Chemical structures of small molecule VEGFR inhibitors tested in TNBC 

Sorafenib (11, Figure 4) is another multi-targeted TKI, which exhibits anti-proliferative and 

anti-angiogenic activity by inhibiting VEGFR-1/2/3 and Raf [59]. It is an orally available 

biarylurea inhibitor first approved for the treatment of hepatocellular carcinoma (HCC). As 

monotherapy for patients with MBC, sorafenib showed modest activity, with patients 

demonstrating 2% RR and 13% SD at 6 months [65]. However, a series of four randomized, 

double-blind, placebo-controlled Phase IIb trials, known as Trials to Investigate the Efficacy 

of Sorafenib (TIES) evaluating the effect of the drug in patients with HER-2 negative 

advanced or metastatic BC, revealed the therapeutic potential of sorafenib in combination 

with selected chemotherapies. The studies also concluded that Phase III trials are necessary 

for confirmatory purposes [66,69]. Recruitment is currently underway for a neoadjuvant 

Phase II trial involving sorafenib in combination with cisplatin followed by paclitaxel for 

patients with early stage TNBC (NCT01194869). 

Apatinib (12, Figure 4) is a highly potent, orally available TKI selective inhibitor of 

VEGFR2. It is currently undergoing a Phase II trial as monotherapy in patients with MTNBC 

(NCT01176669). Another quinazoline derivative TKI, cediranib (13, Figure 4) has advanced 

to Phase II clinical trial in TNBC. It is being evaluated with olaparib in patients with recurrent 

TNBC (NCT01116648). Cabozantinib (14, Figure 4) is a quinoline derivative VEGFR2 and 

MET inhibitor. A Phase II trial to evaluating its safety and effectiveness in MTNBC is 

ongoing (NCT01738438). 
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IGFR inhibitors  

The insulin-like growth factor (IGF) signalling pathway is activated in breast cancers, with 

one of the receptors of this pathway, IGF-IR expressed in approximately 90% of breast 

cancers. This was found to correlate with poor prognosis in patients with ER+ breast cancer 

[70,71]. There is evidence that mutations in tumour suppressor genes such as p53 and BRCA1 

represses the IGF-IR promoter, leading to elevated IGF-IR levels in TNBC. This evidence 

established the role of IGF-IR in TNBC and provided a rationale for developing IGF-IR 

therapies against TNBC. Recently, Litzenburger et al examined the sensitivity of TNBC cell 

lines with IGF gene expression, by reversing the gene expression signature in three different 

models (cancer cell lines or xenografts) of TNBC, with different anti-IGF-IR therapies. The 

TNBC cell lines were particularly sensitive to the dual IGF-IR/InsR inhibitor, BMS-754807 

(15, Figure 5), and sensitivity correlated to the expression of the IGF gene signature. A 

combination of the same inhibitor with docetaxel showed growth inhibition and tumour 

regression that was associated with reduced proliferation, increased apoptosis, and mitotic 

arrest [72]. These studies support the combination of IGF-IR/InsR and chemotherapy in 

TNBC patients. Results are presently pending for a Phase I study of BMS-754807 in 

combination with paclitaxel and carboplatin in patients with advanced or metastatic solid 

tumours (NCT00793897). 

Since IGF-1R signalling through the PI3K pathway is a key regulator for metabolism 

control, a combination therapy with mTOR and IGF inhibitors has been proposed based on 

the results of several preclinical studies. In these studies, the combination showed a 

synergistic effect by disrupting IGF-1R mediated AKT activation mechanism induced by 

mTOR inhibition [70]. Dual inhibition of IGF-IR and mTOR has also shown improved 

antitumour activity in some human cancer cell lines including breast cancer [73]. The results 

of the following trials are expected to demonstrate the benefits of this co-targeting approach; 

Phase I/II trial of temsirolimus and cixutumumab (NCT00699491), and Phase I trial of 

everolimus IGF-1R inhibitor AMG479 for patients with advanced solid tumours 

(NCT01122199).  
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Figure 5: Chemical structures of small molecule inhibitors of IFGR, FGFR, and MET tested 

in TNBC 

 

FGFR inhibitors  

The rational for targeting fibroblast growth factor receptor (FGFR) is due to the amplification 

of this receptor in TNBC; approximately 9% and 2-4% of TNBCs show amplification of 

FGFR1 and FGFR2, respectively [42,48]. In a preclinical study where 56 TNBCs were 

subjected to high-resolution microarray-based comparative genomic hybridisation (aCGH), 

cell lines with FGFR were highly sensitive to a dual FGFR/ VEGFR inhibitor PD173074 (16, 

Figure 5), and to RNAi silencing of FGFR2 [74]. A study of 31 breast cancer cell lines by 

Sharpe et al. also showed that TNBC cell lines and other FGF expressing breast cancer cells, 

were sensitive to PD173074, with 47% of TNBC cell lines showing significant growth 

reduction [75]. There are currently no selective FGFR inhibitors in clinical testing, however 

due to the structural similarity between FGFR and VEGFR kinase domains [76], some 

inhibitors of both receptors are under investigation in TNBC. Lucitanib (17, Figure 5) is a 

potent inhibitor of FGFR1/2/3, VEGFR1/2/3, and PDGFR. A Phase II trial is recruiting 

patients to participate in the evaluation of lucitanib monotherapy in FGF aberrant metastatic 

breast cancers, including TNBC (NCT02202746).  

 

MET inhibitors 
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MET is a cell surface receptor of the growth and motility factor, hepatocyte growth 

factor/scatter factor (HGF/SF). These play a fundamental role in cancer, including 

uncontrolled cell survival, growth, angiogenesis and metastasis, thus, providing a clear 

rationale for targeting this pathway in cancer [77]. An over-expression of MET and HGF have 

been reported in 46% of breast cancers and it is associated with negative prognosis [70,78]. 

Gastaldi et al. recently shown that constitutive activation of MET facilitated cell commitment 

towards the basal lineage [79]. Since the major subtype of TNBC is basal-like, MET could 

potentially play a crucial role in the development of this disease therefore, MET inhibitors 

could be potential therapeutic targets against TNBC. In a Phase II trial, the MET inhibitor 

tivantinib (18, Figure 5) was well tolerated in patients with MTNBC, however as 

monotherapy, tivantinib was mainly inactive [80]. As mentioned in a previous section, 

cabozantinib (9, Figure 4), a VEGFR2 and MET inhibitor, is under evaluation in patients with 

MTNBC (NCT01738438). Interestingly, recent reports suggest concomitant targeting of MET 

and EGFR pathways could have a beneficial effect in TNBC. This hypothesis was based on 

preclinical studies, which showed that dual inhibition of MET and EGFR produces a 

synergistic effect in TNBC cell lines [78,81]. 

 

PI3K/AKT/mTOR pathway inhibitors  

The phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) / mammalian target of 

rapamycin (mTOR) signalling pathway is associated with cell cycle regulation, survival, and 

proliferation [73,82-86]. This pathway is highly significant in breast cancer because it 

represents the most frequently mutated pathway. A growing body of evidence has shown that 

mutation, and/or up-regulation of this pathway affects almost all its downstream molecular 

components, resulting in resistance and disease progression. Across all TNBC subtypes, there 

is an elevated frequency of aberration in PI3K, p53, and PTEN (a protein that inhibits 

activation of AKT/mTOR pathway) [6,42,83,87], making this pathway a desirable target for 

therapies against TNBC. Furthermore, a recent study by Sohn et al. in patients with residual 

TNBC after standard anthracycline-taxane chemotherapy, showed that several PI3K pathway 

components were activated; the authors concluded that this pathway may present potential 

therapeutic targets in this disease [88]. Multiple small molecule targets of this pathway are 

currently under investigation in TNBC including: PI3K inhibitors, mTOR inhibitors, dual 

PI3K/mTOR inhibitors, and AKT inhibitors. 

 

PI3K inhibitors 

BKM120 (19, Figure 6) is an oral pan-PI3K inhibitor, which inhibits all forms of PI3K. A 

partial response was confirmed in a TNBC patient in a Phase I trial [89]. A study by Juvekar 

et al. showed that a combination of the PARP-inhibitor olaparib and BKM120 produced a 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Gastaldi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22562252
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synergistic activity, resulting in a tumour doubling time of over 70 days, compared with 26 

and 16 days for BKM120 and olaparib alone, respectively [82,90]. This observation has also 

been demonstrated in TNBC cell lines without BRCA mutations where, Ibrahim et al. proved 

that PI3K blockage resulted in impairment and sensitisation to PARP inhibition in TNBCs 

without BRCA mutations, providing a rationale for combined PI3K and PARP inhibitors 

therapies [91]. 

Several trials are presently ongoing to evaluate BKM120 in TNBC including; a Phase 

II trial where BKM120 is administered in combination with paclitaxel in patients with HER2-

negative, locally advanced or metastatic BC, with or without PI3K pathway activation 

(BELLE-4 trial) (NCT01790932). A Phase II trial evaluating BKM120 as monotherapy in 

patients with MTNBC is also in progress (NCT01790932). Finally, a Phase II trial is looking 

at BKM120 with capecitabine for TNBC patients with brain metastases (NCT02000882) 

[73,92].  
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Figure 6: Chemical structures of small molecule PI3K inhibitors tested in TNBC. 

BYL719 (20, Figure 6) is a 2-aminothiazole-substituted selective PI3K inhibitor. In 

preclinical studies, BYL719 shown preferential antiproliferative activity against PIK3CA-

mutant and/or amplified breast cancer cell lines, and their corresponding tumour xenografts 

with promising results shown in a Phase I clinical trial [70]. As previously mentioned, 

BYL719 is under evaluation in combination with olaparib in patients with recurrent TNBC or 

high-grade serous ovarian cancer (NCT01623349). GDC-0941 (21, Figure 6) is another PI3K 

inhibitor being evaluated in combination with chemotherapy in TNBCs; a Phase IB trial is 

investigating GDC-0941 in combination with paclitaxel, with or without bevacizumab 

(NCT00960960). Furthermore, a Phase I/II trial looking at a combination of GDC-0941 and 

cisplatin in patients with androgen receptor negative TNBC is currently recruiting participants 

(NCT01918306). Recently, Lehmann et al have shown that the combination of GDC-0941 or 

the dual PI3K/mTOR inhibitor GDC-0980 (22, Figure 6) with or with the anti-androgen, 
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bicalutamide significantly reduced the growth and viability of androgen receptor-positive 

TNBC. This result provides a rationale for the pre-selection of TNBC patients with AR 

expression who are less likely to benefit from the current standard of care chemotherapy 

regimens [93]. 

Several preclinical studies have demonstrated that certain PTEN‐deficient tumours 

are dependent on p110β pathway for activation, growth and survival. These findings 

prompted a new clinical trial with the p110β‐selective inhibitor GSK2636771 (23, Figure 6) 

in patients with PTEN‐deficient advanced solid tumours including patients with TNBC 

tumours (NCT01458067) [87,94]. BEZ235 (24, Figure 6) is a competitive dual PI3K/mTOR 

inhibitor. The rationale for evaluating this drug in TNBCs was based on the fact that BEZ235, 

exhibited significant antiproliferative and antitumour activity in cancer cells with activating 

mutations in PI3KCA [73,94,95]. A Phase I/II study of a combination of BEZ235 with the 

MEK inhibitor MEK162 in different cancer types that also included TNBC was recently 

concluded and results are awaited (NCT01337765). AZD8186 (25, Figure 6) is a novel potent 

small molecule TKI that selectively targets PI3Kβ as opposed to PI3Kα. In vivo studies 

showed that AZD8186 alone or in combination with docetaxel inhibits PI3K pathway 

biomarkers in both prostate and TNBC tumours [96]. NCT01884285 is a Phase I clinical trial 

investigating AZD8186 in patients with advanced castrate-resistant prostate cancer (CRPC), 

squamous non-small cell lung cancer (sqNSCLC), TNBC, and known PTEN-deficient 

advanced solid malignancies. 

AKT inhibitors 

In cancer cells, the main biological consequences of the activation of AKT are survival, 

proliferation, and growth [84]. AKT is also thought to be involved in the development and 

progression of breast cancer [82]. The four main AKT inhibitors under investigation in 

TNBCs are shown in Figure 7. 
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Figure 7: Chemical structures of small molecule AKT inhibitors tested in TNBC. 

MK-2206 (26, Figure 7) is a highly selective, non-ATP competitive allosteric inhibitor of 

AKT1/2/3. Preclinical studies revealed MK-2206 was able to inhibit AKT signalling and cell 

cycle progression, and increased apoptosis in breast cancer cell lines. A significant increase in 

sensitivity to MK- 2206 has been reported in BC cell lines with PTEN or PIK3CA mutations. 

Finally MK-2206 was shown to have a synergistic effect with paclitaxel, both in vitro (cell 

lines) and in vivo (xenograft models) [97]. MK-2206 is currently in a Phase II trial for 

advanced BC patients with PI3K/AKT mutation or PTEN alterations (NCT01277757). Two 

ramdomised Phase II trials are recruiting patients to estimate the efficacy of ipatasertib (27, 

Figure 7), a selective pan-AKT inhibitor, combined with paclitaxel in MTNBC patients 

(NCT02162719), as well as patients with early stage TNBC (NCT02301988). GSK2141795 

(28, Figure 7) is an orally bioavailable potent and selective pan-AKT inhibitor; recruitment is 

ongoing for a Phase II trial in combination with trametinib (MEK inhibitor) in patients with 

advanced TNBC (NCT01964924).  

A pyrrolopyrimidine derived AKT inhibitor, AZD5363 (29, Figure 7) is being 

developed in a Phase II trial with PARP inhibitor olaparib, and mTORC1/2 inhibitor 

AZD2014 in patients with recurrent endometrial, TNBC, ovarian, primary peritoneal, or 

fallopian tube cancer (NCT02208375). Additionally, a randomised Phase II placebo-

controlled study in combination with paclitaxel in advanced or metastatic TNBC is recruiting 

patients. 

 

mTOR inhibitors 

The mammalian target of rapamycin (mTOR) is an effector of the PI3K pathway regulated by 

AKT and PTEN. Growth factors and hormones, such as insulin, signal to mTORC1 via AKT 

to regulate critical cellular processes such as growth, proliferation, transcription, protein 

synthesis, and ribosomal biogenesis [41,98]. Preclinical studies confirmed that upregulation 

of mTOR or aberrant PI3K/AKT pathways confer sensitivity to mTOR inhibitors. These 
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studies suggested that mTOR could be a good target for breast cancer therapy, especially in 

tumours with AKT activation or loss of PTEN function [49]. Currently, there are three mTOR 

inhibitors under investigations in TNBCs as either monotherapies or in combination with 

other drugs (Figure 8).  

 

Figure 8: Chemical structures of mTOR inhibitors tested in TNBC. 

Everolimus (30, Figure 8) is an orally bioavailable small molecule inhibitor of mTOR1. 

Several clinical trials have reported the effectiveness of everolimus when used in combination 

with trastuzumab or hormone therapy against HER2-overexpressing or hormone-receptor- 

overexpressing breast cancer, respectively. One trial reported a PFS of 34% PFS [73]. 

Yunokawa et al examined the effects of everolimus against nine different TNBC cell lines; 

five of the nine cell lines were found to decrease proliferation. This study confirmed 

everolimus as a promising therapeutic agent for targeting basal-like subtypes of TNBC, with 

CK5/6 as positive predictive markers, while cancer stem cell markers are negative predictive 

markers [99]. Several clinical Phase I and II trials of everolimus alone or in combination with 

other agents in TNBC malignancies are ongoing including: carboplatin, which was recently 

completed and is awaiting results (NCT01127763), neoadjuvant cisplatin and paclitaxel, 

which is ongoing (NCT00930930), and finally a Phase I/II trial of gemcitabine and cisplatin 
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with everolimus in patients with MTNBC which is currently recruiting patients 

(NCT01939418). Temsirolimus (31, Figure 8) is another inhibitor of mTOR, which is 

administered intravenously. Results are awaited for a Phase I study designed to determine the 

maximum tolerated doses of cisplatin, temsirolimus, and erlotinib in a combination treatment 

for TNBC patients (NCT00998036), and recruitment is in progress for a Phase I/II clinical 

trial of temsirolimus in combination with neratinib in MTNBC (NCT01111825). Meanwhile, 

results are awaited for a randomized Phase II trial of ridaforolimus (32, Figure 8) and 

dalotuzumab (NCT01234857). 

 

Src inhibitors 

Src is a non-receptor protein tyrosine kinase, an important mediator of many downstream 

effects of RTKs, including the EGFR family. Src also plays a significant role in several signal 

transduction pathways involved in cell growth, survival, motility, and angiogenesis. 

Numerous studies have shown Src to be overexpressed in TNBC, which correlates with 

metastatic disease progression. Furthermore, TNBC cells were shown to be susceptible to 

growth inhibition by dasatinib, a Src inhibitor, in preclinical studies [100-102]. These results 

supported the development of Src inhibitors against TNBCs. Dasatinib (33) is an oral, small 

molecule multi-kinase inhibitor that targets Bcr-Abl and the Src family of kinases. In a 

preclinical study using baseline gene expression profiling of a panel of 23 breast cancer cell 

lines that correlate with response to dasatinib, TNBC cell lines demonstrated greater response 

to dasatinib compared with other BC subgroups [103,104].  

 

 

 

However, the results of a Phase II trial of dasatinib monotherapy in patients with MTNBC 

were disappointing. Dasatinib showed only modest efficacy; of the 43 response-evaluable 

patients, 2 had PRs lasting 14 and 58 weeks (ORR of 4.7 %), 11 patients had SD (9.3 %), and 

median PFS was 8.3 weeks [105]. Recently, some preclinical studies have demonstrated the 

ability of dasatinib to undergo synergism with chemotherapy and other RTK inhibitors [106-

109], providing justification for re-evaluation of dasatinib in combination therapies. 

 

MAPK signalling pathway inhibitors 
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The Raf/MEK/ERK pathway, also known as the mitogen-activated protein kinase (MAPK) 

pathway, is vital for normal human physiology, and it is commonly found to be dysregulated 

in several human cancers, including breast cancer through activation of the Ras oncoprotein. 

Although Ras-related genetic alterations in BC are rare, deregulation of this pathway at the 

gene expression level may be potentially significant in TNBC. Several preclinical studies 

have reported a high expression of several gene sets related to the Raf/MEK/ERK pathway in 

TNBC compared with other BC subtypes [110]. Recently, Bartholomeusz and co-workers 

have found the over-expression of ERK2 (a result of aberrant Ras function) to be a negative 

prognostic factor in TNBC patients [111]. This data support the clinical development of 

inhibitors of the MAPK pathway in TNBC. 

In a preclinical study of 21 breast cancer cell lines with MEK1/2 inhibitor trametinib (34, 

Figure 9), 11 TNBC cell lines were highly sensitive to the inhibitor. A phosphatase DUSP6, 

that decreases pERK2 activity upon MAPK activation, was identified as a potential marker of 

sensitivity to the drug [112]. Currently, a clinical trial is recruiting patients to define the 

TNBC kinome response to treatment with trametinib in order to identify potential biomarkers 

(NCT01467310). Another MEK inhibitor, cobimetinib (35, Figure 9) is under evaluation in a 

Phase II trial in combination with paclitaxel in MTNBC patients (NCT02322814). 

Interestingly, many preclinical data have demonstrated synergism between the PI3K pathway 

and MAPK pathway by evaluating a combination of PI3K and MEK inhibitors [110,113]. 

These findings imply that a possible combination therapeutic strategy for targeting TNBC 

may be more efficacious. A Phase II trial is currently in development to evaluate this 

combination using trametinib and the AKT inhibitor, GSK2141795 (28) in patients with 

advanced TNBC (NCT01964924). Recently, El Touny and co-workers showed that 

concomitant MEK and Src inhibition eliminated a population of dormant tumour cells, thus 

this combination could also prevent BC recurrence [114]. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bartholomeusz%20C%5Bauth%5D
http://www.discoverymedicine.com/tag/mapk/


 23 

 

Figure 9: Chemical structures of small molecule inhibitors of MEK and HSP90 tested in 

TNBC. 

 

Heat-shock protein family inhibitors 

The heat-shock protein 90 (HSP90), a member of the heat-shock protein family, is a 

chaperone protein involved in the proper folding and conformational stability of various 

oncogenic signalling proteins, including AKT, HER2, EGFR, PDGF-, and CDK4 [66,68]. 

Preclinical studies have shown that HSP90 is overexpressed in many human tumours, and 

appears to play a major role in facilitating tumour progression by chaperoning mutated and 

over-expressed oncogenes [115]. A HSP90 inhibitor PU-H71 (36, Figure 9) has since shown 

potent and sustained antitumour effects in TNBC xenografts, including a complete response 

and tumour regression, without evidence of resistance or toxicity to the host over a 5 month 

period [116]. This provided justification for the evaluation of Hsp90 inhibitors in TNBC 

patients. Recently, a triazolone derivative HSP90 inhibitor, ganetespib (37, Figure 9), showed 

simultaneous deactivation of multiple oncogenic pathways resulting in the reduction of 

TNBC cell viability, and the suppression of lung metastases in experimental models [117]. 

Ganetespib also potentiated the cytotoxic activity of doxorubicin through enhancement of 

DNA damage and mitotic arrest, conferring better efficacy to a doxorubicin–

cyclophosphamide regimen in TNBC xenografts [117]. Patients are presently being recruited 
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for an open-label multicenter Phase II study of ganetespib in patients with HER2-positive BC 

and TNBC (NCT01677455).  

Another member of the heat-shock protein family, B-crystallin (CRYAB), is found to be 

prevalent in high frequency in basal-like breast carcinomas. CRYAB is thus used as a 

biomarker and corresponds with poor prognosis in TNBC [118]. The main function of 

CRYAB is thought to be as a chaperone to bind and correct intracellular misfolding of VEGF 

in tumour microenvironment [119]. Recently, Jun and co-workers identified 3-

methylglutamic acid (38, Figure 9) as a very potent inhibitor of the interaction between 

CRYAB and VEGF [120]. In vitro studies showed an inhibitory effect of 3-methylglutamic 

acid on the proliferation and invasion of TNBCs. Additionally, 3-methylglutamic acid also 

decreased tumour growth and vasculature development in human breast cancer xenografts 

[120]. 

 

Aurora kinase inhibitors 

The Aurora kinase family, which consists of Aurora A, B, and C, are serine/threonine kinases 

that are major regulators of mitosis and multiple signalling pathways. Aurora A and B are 

found to be over-expressed in many human cancers and are associated with tumour formation 

and progression. The Aurora A gene, formally known as breast tumour activated kinase 

(BTAK) because its mRNA is over-expressed in breast tumors, plays a crucial role in the 

transformation of breast tumour cells [121,122]. Recently, Aurora A was confirmed to be 

over-expressed in TNBC, with this effect correlating with poor overall survival (P = 0.002) 

and progression-free survival (P = 0.012) [123]. Aurora kinases were thus deemed potential 

therapeutic targets for TNBC treatment. The efficacy of Aurora kinase inhibitors has since 

been shown both in vitro and in vivo in TNBCs. In an in vitro study, human TNBC cells 

demonstrated higher sensitivity to AS703569 (39, Figure 10), an orally available competitive 

inhibitor of all three Aurora kinases, compared with other breast cancer cells. In vivo, 

AS703569 administered alone significantly inhibited tumour growth in 7 of 11 breast cancer 

xenografts. Furthermore, a combination of AS703569 and doxorubicin-cyclophosphamide 

resulted in significant inhibition of tumour recurrence. These findings support the use of 

Aurora inhibitors as either monotherapy or in combination with other anticancer agents [124]. 

Currently, a Phase II trial is investigating the selective Aurora kinase A and angiogenesis 

inhibitor ENMD-2076 (40, Figure 10) in advanced and metastatic TNBCs (NCT01639248).  
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Figure 10: Chemical structures of aurora kinase inhibitors tested in TNBC. 

Developmental signalling pathway targets 

The biology and targeting of developmental pathways in cancer, such as those involved in 

tumour initiation and cancer stem cell maintenance, has been the subject of widespread study 

in recent years. The aberrant activation of signalling pathways such as Wnt, Notch and 

Hedgehog (Hh) through mutations or ligand over-expression has received particular attention. 

In parallel, studies on identification of small molecule pathway inhibitors have continued to 

flourish, exemplified by the approval in 2012 of the Hedgehog pathway inhibitor, 

Vismodegib (41, Figure 11) developed by Genentech for the treatment of basal-cell 

carcinoma [125]. Application of developmental pathway inhibitors to the specific setting of 

TNBC is currently at an early stage of development, compared to the therapies discussed in 

the sections above.  

Generally, agents acting on these pathways have not yet entered clinical development 

in TNBC, with some notable exceptions mentioned below. A study using an oral inhibitor of 

smoothened (SMO, a transmembrane receptor required for Hh signalling) known as 

LDE225/erismodegib (42, Figure 11) in combination with docetaxel in TNBC is currently 

recruiting (NCT02027376) [126]. In addition the triazole-based antifungal agent itraconazole 

(43, Figure 11) has also been reported to possess anticancer properties based on inhibition of 

both hedgehog signalling and angiogenesis [127]; on this basis evaluation of itraconazole 

pharmacokinetics in patients with metastatic breast cancer is ongoing (NCT00798135). The 

observation that non-steroidal anti-inflammatory drugs (NSAIDS) are associated with 

decreased incidence of breast cancer and can inhibit the Wnt/-catenin pathway [128] 

provides further encouragement in the search for drugs targeting developmental pathways that 

may have value in the setting of TNBC. 

An example of an agent broadly targeting developmental pathways in TNBC is 

provided by CDDO-Im (44, Figure 11), a potent synthetic triterpenoid derivative shown to 

induce growth inhibition in a range of cellular cancer models. Previous studies had shown that 

CDDO-Im inhibited tumour growth and inflammatory in breast cancer cells in vivo [129]. 

More recent studies focused on effects on tumorspheres from the triple-negative breast cancer 
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cell line SUM159, where the cancer stem cell subpopulation (CD24-/EpCAM+) was 

markedly enriched. The ability of CDDO-Im to reduce tumorsphere-forming capacity was 

related to down-regulation of key stem cell signalling pathway molecules, such as Notch, 

TGF-/Smad, Hedgehog and Wnt [130].  

Promising candidate drug molecules targeting developmental pathways such as those 

described above provide confidence that this area of work within TNBC therapy will continue 

to flourish in the near future. 

 

 

Figure 11: Chemical structures of compounds targeting developmental signalling pathways. 

 

CONCLUSIONS 

This review article focuses on the development of small molecule agents to treat triple-

negative breast cancer, which represent an important and clinically challenging subset of 

breast cancers patients characterised by poor prognosis and long-term survival. We hope that 

the review helps to capture and reinforce the extensive and strenuous effects being made to 

improve prospects for this important patient group. This is exemplified by the wide range of 

ongoing clinical trials and application of molecularly targeted agents and chemotherapy, 

many of which are highlighted in this overview. 

 

EXECUTIVE SUMMARY 
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Background 

Triple-negative breast cancer (TNBC) represents around 15% of clinical breast cancer cases, 

characterised by a lack of expression of oestrogen receptor (ER), progesterone receptor (PR) 

and HER2. This disease sub-group, often referred to as basal-like breast cancer patients (with 

significant overlap between these designations), have a particular poor prognosis and outlook 

compared to other types of breast cancer. 

 

Therapy 

TNBC patients are still most commonly treated with cytotoxic chemotherapy, with poor 

overall survival prospects in many cases. The introduction of a range of targeted therapies 

into TNBC patient trials, most often alongside chemotherapy, is likely to improve prospects 

for this patient group in the near future, although long-term benefits will be marginal in many 

cases. This review provides an update on many of the targeted agents being trialled in TNBC, 

for example belonging to the diverse class of tyrosine kinase inhibitors and modulators of 

related signalling pathways. 

 

The future 

Current research efforts delineating developmental signalling pathways (e.g. Wnt/-catenin, 

Notch and Hedgehog signalling) in this setting, associated with the identification of new drug 

targets involved in processes such as tumour initiation and stem cell maintenance, offer great 

encouragement as part of future combination therapy strategies. Translation of drug discovery 

efforts to developmental pathway targets offer the prospect of more durable responses and 

improved patient outlook in the medium- to long-term. 

 

FUTURE PERSPECTIVE 

Over the next 2-5 years, current clinical trials utilising targeted therapies alongside cytotoxic 

chemotherapy would offer improved prospects for patient in terms of progression-free and 

overall survival. However these developments are only likely to yield marginal benefits for 

the patient within this notoriously difficult disease setting. 

More promising over the next 5-10 years will be the further stratification of triple-

negative patients into the six subtypes described in the introductory section, and further 

personalisation of medicines most appropriately matched to the patient’s tumour at the 

individual level. For example, in future the luminal androgen receptor sub-type might be 

treated with a combination regiment including an approved androgen receptor antagonist. 

Further longer term developments that will improve patient prospects will see the translation 

of drugs developed against targets central to tumour initiation and stem cell maintenance 
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incorporated into therapeutic strategies. This is likely to offer both improved efficacy and 

reduced incidence of drug resistance through targeting of this tumour initiating sub-

population.  

The next 5-10 years will see the further development and inhibition of new molecular 

targets not previously exploited in the context of TNBC therapy. An increasing focus on 

development of new drug targets implicated in tumour initiation and stem (progenitor) cell 

maintenance, such as Wnt/b-catenin, Notch and Hedgehog signalling is anticipated. 

Alongside the development of new pathway signalling inhibitors, the development of more 

informative model systems for drug candidate testing is eagerly anticipated. For example, 

primary stem cells and progenitor cells from the breast can be enriched within mammospheres 

in the form of tumorspheres, to offer great potential for more sophisticated in vitro screening 

to inform further drug development. The design and development of drug candidates against 

newly validated targets in TNBC, alongside more informative and patient tumour 

representative model systems, presents a powerful combination for the identification of new 

drug candidates for future treatment of this difficult disease.  
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