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Abstract. The CCN family of proteins comprises the 
members CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. 
They share four evolutionarily conserved functional domains, 
and usually interact with various cytokines to elicit different 
biological functions including cell proliferation, adhesion, 
invasion, migration, embryonic development, angiogenesis, 
wound healing, fibrosis and inflammation through a variety 
of signalling pathways. In the past two decades, emerging 
functions for the CCN proteins (CCNs) have been identified 
in various types of cancer. Perturbed expression of CCNs 
has been observed in a variety of malignancies. The aberrant 
expression of certain CCNs is associated with disease progres-
sion and poor prognosis. Insight into the detailed mechanisms 
involved in CCN-mediated regulation may be useful in under-
standing their roles and functions in tumorigenesis and cancer 
metastasis. In this review, we briefly introduced the functions 
of CCNs, especially in cancer.
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1. Introduction

The CCN family of proteins is an acronym for cysteine-rich 
protein 61 (CYR61), connective tissue growth factor (CTGF) 
and nephroblastoma overexpressed (NOV), which were 
first identified in mouse, human and chicken in the early 
1990s (1-3). Another three family members exhibiting the 
same basic structure domains of the first three CCN members 
have since been identified. The latter three members are 
involved in the Wnt-1 inducible signalling pathway and consist 
of Wnt-1-induced secreted protein-1 (WISP-1), WISP-2, and 
WISP-3 (4). As each CCN family member has several names 
associated with its structures or functions, the official nomen-
clature has been recommended (Table I).

CCNs are present in vertebrates, including zebrafish, 
poultry such as chickens, rodents including mice and rats, 
as well as humans and have been conserved during evolu-
tion. CCNs, with the exception of CCN5, which lacks a 
cysteine knot domain (CT) module, comprise an N-terminal 
secretory signal peptide and four functional domains: an 
insulin-like growth factor-binding protein domain (IGFBP), 
a Von Willebrand factor domain (VWC), a thrombospondin 
type-1 repeat module (TSP-1), and a CT (Fig. 1A). The two 
N-terminal domains are separated from the two C-domains by 
a variable linking sequence of amino acids (5). According to 
the domains CCNs, except CCN5, share five common exons, 
the first of which codes the signal sequence, while the other 
CCNs sequentially code the four functional domains with 
corresponding numbers of amino acids ranging from 349 to 
381 (6).

The four discrete functional domains have different 
molecular structures that determine the types of binding 
partners and ligands with which they interact, resulting 
in a variety of biological functions. The known binding 
partners of each domain are different: insulin-like growth 
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factors (IGFs) bind with IGFBP; transforming growth 
factor β (TGF-β), bone morphogenic proteins (BMPs) and 
integrins bind with VWC; vascular endothelial growth factor 
(VEGF), LDL receptor proteins (LRPs), heparan sulphate 
proteoglycans (HSPGs) and integrins bind with TSP-1; and 
VEGF, LRPs, integrins, neurogenic locus notch homolog 
protein 1 (Notch1), fibulin C1, HSPGs and integrins bind 
with CT (7,8) (Fig. 1B).

2. Expression profiles and subcellular localization

CCNs exhibit different expression profiles and transcript levels 
in different tissues, organs and tumors (Tables II and III). The 
different expression levels of CCNs observed in embryonic 
tissues compared with that of adult organs indicates a poten-
tial role in development (Table IV). The changing transcript 
levels in tumors mean that CCNs may also be important 
during tumorigenesis.

The subcellular localization of each of the CCNs is also 
different. Immunohistochemical localization of CCN1 protein 
has indicated that invasive carcinoma cells show significant 
cytoplasmic and perinuclear protein overexpression compared 
to non-neoplastic ductal epithelium in invasive ductal 
carcinoma, whereas in ductal carcinoma in situ and lobular 
carcinoma in situ, CCN1 expression was weaker and hetero-
geneous (9). Previous findings have shown that CCN1 was 
detected, albeit not abundantly, in culture medium (10). CCN2 
protein was detected in the nuclei of B16 (F10) cells and at 
the cell membrane, but was rarely detectable in the cytoplasm 
and the cell culture medium (10,11). CCN3 was detected in 
the medium, extracellular matrix (ECM) and at the cell 
membrane (12-14). A previous study revealed strong immuno-
histochemical staining of CCN4, CCN5 and CCN6 in normal 
colorectal epithelial cells, which was confined primarily to 
the cell membrane with slight staining of stromal tissue. In 
colorectal cancer (CRC) tissues, cell membrane and cyto-
plasmic staining were assessed. Membrane staining showed 
a reduction in CCN4, CCN5 and CCN6, whereas cytoplasmic 
staining showed a reduction in CCN5 but an increase in CCN4 
and CCN6 (15). Furthermore, CCN5 is mainly localized to the 
nucleus in rat and human tissues (16).

3. CCN receptors

Similar to some ECM proteins, CCNs mediate cell func-
tions, embryonic development, angiogenesis, wound healing, 
fibrosis, inflammation, tumorigenesis and development 
primarily through binding and interacting with well-known 
receptors, including integrins, HSPGs, IGFs, and lipoprotein 
receptor-related proteins (LRPs). Signalling pathways, such as 
Wnts, TGF-β, insulin receptor signalling (IRS) and Notch, are 
involved in the regulation of these cell functions. The inter-
action of CCNs with receptors and other main cytokines has 
been briefly summarised (Fig. 2).

Role of integrins in CCN functions. Integrins, found as 
heterodimers consisting of α- and β-subunits are common 
transmembrane receptors that mediate cell-to-cell and 
cell-to-ECM adhesive interactions while also transducing 
signals from the ECM to the cell interior and vice versa. 

Currently, there are 24 members in the integrin family that 
have been identified to have 18 α-subunits and 8 β-subunits 
in their structures. In previous decades, it has been shown 

Figure 1. (A) Structure of CCN proteins. The locations of the four structural 
domains (IGFBP, VWC, TSP-1 and CT) are compared. The two N-terminal 
domains are separated from the two C-domains (except CCN5) by hinge 
regions, susceptible to protease cleavage. The arabic numerals display 
the size of each domain and their relative positions. (B) Four domains 
of CCNs and the known binding partners. Integrins can bind with VWC, 
TSP-1 and CT domain, while VEGF, LRPs and HSPGs can bind with 
TSP-1 and CT domain. IGFBP, insulin-like growth factor-binding protein; 
VWC, Von Willebrand factor; TSP-1, thrombospondin type-1; CT, cys-
teine knot; VEGF, vascular endothelial growth factor; LRPs, lipoprotein 
receptor-related proteins; HSPGs, heparan sulphate proteoglycans.

Table I. Nomenclature of the CCN family of proteins.

Official name Alternative names

CCN1 CYR61, CTGF-2, IGFBP10, IGFBP-rP4,
 CEF10
CCN2 CTGF, IGFBP8, IGFBP-rP2, HBGF-0.8,
 HCS24, ecogenin
CCN3 NOV, NOVH, IGFBP9, IGFBP-rP3
CCN4 WISP-1, Elm-1, IGFBP-rP8
CCN5 WISP-2, CTGF-L, CTGF-3, HICP, Cop-1,
 IGFBP-rP7
CCN6 WISP-3, IGFBP-rP9

CYR61, cysteine-rich protein 61; IGFBP, IGFBP-related protein; 
HBGF, heparin-binding growth factor; Hcs, human chondrosarcoma; 
Elm-1, expressed in low metastatic cells; HICP, haparin-induced 
CCN-like protein; Cop-1, card-only protein 1; WISP-1, Wnt-1 
induced secreted protein-1.
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that integrins are associated with the different functions of 
CCNs (8,17) (Table V).

HSPGs. HSPGs are known to serve as co-receptors with 
integrins under certain circumstances (18). Heparin and 

Table II. Expression profiles of CCN family members: Breakdown by body sites.

Breakdown by
body sites CCN1 (TPM) CCN2 (TPM) CCN3 (TPM) CCN4 (TPM) CCN5 (TPM) CCN6 (TPM)

Adipose tissue 1243 621 0 77 0 0
Adrenal gland 212 30 1548 30 0 0
Ascites 75 75 0 0 0 0
Bladder 33 66 0 0 0 0
Blood 0 8 8 0 0 0
Bone 474 1396 69 41 0 0
Bone marrow 61 964 0 0 0 0
Brain 104 106 64 0 2 3
Cervix 123 20 144 0 0 20
Connective tissue 462 1730 33 53 20 0
Ear 310 1677 931 62 0 0
Embryonic tissue 98 244 0 28 0 9
Eye 100 277 4 33 0 0
Heart 122 22 11 0 0 33
Intestine 120 250 4 12 4 0
Kidney 208 521 23 4 9 4
Larynx 170 213 0 0 0 0
Liver 238 107 24 4 0 0
Lung 131 191 8 5 17 0
Lymph 0 0 0 0 0 0
Lymph node 44 33 0 0 0 11
Mammary gland 85 66 13 6 0 6
Mouth 45 513 30 0 0 0
Muscle 37 28 18 28 0 0
Nerve 1223 450 64 0 0 0
Oesophagus 198 49 0 0 0 0
Ovary 167 177 19 9 0 0
Pancreas 168 281 9 14 0 0
Parathyroid 0 0 0 0 0 48
Pharynx 24 24 0 0 0 0
Pituitary gland 0 0 60 0 0 0
Placenta 215 77 0 0 250 0
Prostate 73 121 10 0 10 0
Salivary gland 0 0 0 0 98 0
Skin 227 389 33 0 0 4
Spleen 393 711 0 37 18 0
Stomach 282 553 62 0 0 73
Testis 43 96 2 0 6 6
Thymus 75 100 0 0 0 0
Thyroid 364 472 21 0 0 0
Tonsil 0 0 0 0 0 0
Trachea 308 849 19 0 0 0
Umbilical cord 581 1089 0 0 0 0
Uterus 348 400 21 51 12 0
Vascular 1219 3814 309 0 0 0

TPM, transcripts per million.
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HSPGs play important roles in modulating cell adhesion and 
fibrosis through TSP or CT domains (19,20). CCNs are also 
capable of binding to HSPGs and mediate cell adhesion and 
Wnt signalling in some cell types (21-23). Furthermore, it has 
been previously demonstrated that CCN2 binds to fibronectin 
(HSPG2) through the CT domain and regulates cell func-
tions (24,25).

IGFs. The IGF family, which includes the polypeptide ligands 
IGF-I and IGF-II, two types of cell membrane receptors 
(IGF-IR and IGF-IIR), six binding proteins (IGFBP-1 to 
IGFBP-6) and IGFBP proteases play an important role in 
various types of cancer (26). The IGFs have interactions with 
various molecules that are known to be involved in cancer 
development and progression. CCNs may bind IGFs with low 
affinity (27), however, the impact on several cell functions 
needs to be examined. In previous decades, the regulative 
role of CCNs in co-ordinating cell functions has been a major 
research focus. Overexpression of CCN2 in chondrocytes 
elevates the mRNA transcript levels of IGF-I and IGF-II, 
resulting in increased bone growth (28). Conversely, CCN6 
decreases the IGF-1-induced activation of the IGF-IR, and 

two of its main downstream signalling molecules, insulin 
receptor substrate 1 (IRS1) and extracellular signal-regulated 
kinase (ERK)-1/2 in inflammatory breast cancer cells (29). 
Downregulation of CCN6 enhances the effects of IGF-I and 
increases the growth, motility and invasiveness of human 
mammary epithelial cells (30).

Other receptors. CCNs have been reported to bind receptors, 
such as LRPs (21). CCN2 is known to regulate the cell adhe-
sion and modulation of Wnt signalling in certain cell types 
by binding to LRP-1 and LRP-6 (22,23). CCN2 binds bone 
morphogenetic protein-4 (BMP-4) and TGF-β1 through its 
VWC domain leading to the inhibition of BMP and TGF-β 
signalling (31). CCN2 binds VEGF through its TSP and 
CT domains and inhibits VEGF-induced angiogenesis (32). 
CCN3 binds to the epidermal growth factor (EGF)-like repeat 
region of Notch1 via its CT domain. The CCN3-Notch associ-
ation exerts a positive effect on the Notch signalling pathway 
and suppresses the differentiation of certain myogenic 
cells (33). Other receptors include ECM protein (fibulin 1C), 
a calcium-binding protein (S100A4), ion channels (calcium 
voltage-independent and Cx43 gap junction) and a subunit of 

Table III. Expression profiles of CCN family members: Breakdown by health state.

 CCN1 CCN2 CCN3 CCN4 CCN5 CCN6
Breakdown by pathophysiology (TPM) (TPM) (TPM) (TPM) (TPM) (TPM)

Adrenal tumor 158 0 948 0 0 0
Bladder carcinoma 113 284 0 0 0 0
Breast (mammary gland) tumor 53 42 0 10 0 10
Cervical tumor 57 0 57 0 0 28
Chondrosarcoma 676 1424 108 72 12 0
Colorectal tumor 79 35 0 0 8 0
Oesophageal tumor 231 57 0 0 0 0
Gastrointestinal tumor 278 641 50 0 0 59
Germ cell tumor 87 501 11 18 0 15
Glioma 55 121 37 0 0 0
Head and neck tumor 141 186 14 0 14 0
Kidney tumor 101 188 29 14 29 0
Leukemia 0 31 10 0 0 21
Liver tumor 229 156 52 0 0 0
Lung tumor 58 9 0 0 0 0
Lymphoma 27 0 0 0 0 0
Non-neoplasia 341 1407 0 10 0 0
Normal 187 319 45 10 32 3
Ovarian tumor 183 249 39 13 0 0
Pancreatic tumor 171 419 9 28 0 0
Primitive neuroectodermal tumor 23 0 0 0 0 0
Prostate cancer 48 19 9 0 0 0
Retinoblastoma 0 0 0 0 0 0
Skin tumor 31 71 31 0 0 7
Soft tissue/muscle tissue tumor 526 47 0 0 0 0
Uterine tumor 321 355 44 11 22 0

TPM, transcripts per million.
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RNA polymerase II, which have also been reported to interact 
with CCNs (34-36).

4. Interactions with other cytokines

TNF-α. TNF-α regulates CCN1 and CCN2 in a cell-type-specific 
manner. TNF-α represses CCN1 and CCN2 expression in 
chondrocytes but induces CCN1 expression in osteoblasts and 
CCN2 expression in synovial cells (37-39). Kular et al identified 
that TNF-α stimulated CCN3, CCN4 and CCN6 expression in 
melanocytes, cardiac myocytes and fibroblasts and fibroblast-
like synoviocytes, respectively. By contrast, TNF-α stimulated 
CCN3 expression but exerted an inhibitory effect on CCN4 
expression in cultured astrocytes (40).

TGF-β. TGF-β has been reported to promote the expression of 
CCN1, CCN2, CCN4 and CCN5 but represses the expression 
of CCN3 in chondrosarcoma-derived HCS-2/8 and murine 
osteoblastic cells (37,41). By contrast, the expression levels 
of CCN2, CCN3 and CCN4 were inversely correlated with 
TGF-β in leiomyomas (42). Thus, CCN2 is closely associ-
ated with TGF-β as this interaction represses the expression 
of TGF-β signalling inhibitors (such as Smad7) through the 
VWC domain (43).

5. Other signalling pathways

CCNs have been shown to be associated with the Wnt 
signalling pathway (4,41-49). Knockdown of CCN1 expres-
sion reduced the Wnt3A-induced oestrogenic differentiation 
demonstrating that CCN1 expression may be involved in the 
Wnt3A-induced osteoblast differentiation of mesenchymal 
stem cells (44). On the other hand, overexpression of CCN1 
has also been shown to induce the expression of Wnt/β-catenin 
transcriptional targets and the formation of secondary body 
axes (45). Overexpression of CCN2 has been shown to induce 
the expression of Wnt/β-catenin transcriptional target genes of 
c-myc and cyclin D1 (46), whereas the overexpression of CCN2 
decreased the effects of Wnt3 (47). Notably, CCN3 has been 
shown to inhibit Wnt/β-catenin signalling pathway through 
the suppression of BMP-2 activity (48). WISPs (CCN4, CCN5 
and CCN6) have been associated with Wnt-1-induced trans-
formation (4,49).

CCN2 has been shown to induce chondrocyte differ-
entiation, through a p38 mitogen-activated protein kinase 
(p38/MAPK), and proliferation, through the p44/42 
MAPK/ERK (49).

6. CCNs in pathophysiological disorders

CCNs and pathophysiological cell functions. The func-
tions of CCNs have been revealed in a wide range of cell 
types, regulating their cell functions through a variety of 
mechanisms. CCN1 increased cell adhesion and migration 
through the integrin α6β1-HSPG co-receptors in fibroblasts, 
endothelial cells and vascular smooth muscle cells (50,51). 
In endothelial cells, CCN1 has also been shown to promote 
cell adhesion, migration, survival, growth factor-induced 

Table IV. Expression profiles of CCN family members: Breakdown by developmental stage.

Breakdown by
developmental stage CCN1 (TPM) CCN2 (TPM) CCN3 (TPM) CCN4 (TPM) CCN5 (TPM) CCN6 (TPM)

Embryoid body 214 457 0 57 0 0
Blastocyst 32 48 0 0 0 16
Fetus 53 132 52 25 39 7
Neonate 386 514 32 0 0 0
Infant 0 85 0 0 0 0
Juvenile 377 197 17 0 0 0
Adult 201 289 26 14 40 2

TPM, transcripts per million.

Figure 2. CCN protein interactions with receptors and other main cytokines. 
Top panels: TNF-α, TGF-β and Wnts and their downstream molecules interact 
with CCNs; Wnts: Wnt signalling pathway molecules; middle panel: CCNs 
and their well-known receptors; bottom panel: CCNs regulate cell functions, 
embryonic development, angiogenesis, wound healing, fibrosis, inflammation, 
tumorigenesis and development via different receptors and signaling pathways.
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mitogenesis and endothelial tubule formation via integrin 
α6β1 (52). CCN2 promoted the adhesion and migration of 
microvascular endothelial cells through an integrin-αvβ3-
dependent mechanism (53). CCN3 increased the adhesion of 
normal melanocytes to collagen type IV (54). However, CCN3 
expression was also decreased immediately after wounding 
or re-epithelialization (55), indicating the ability of CCN3 
to negatively regulate fibroblast proliferation. CCN4 stimu-
lated the migration and proliferation through integrin α5β1 
in vascular smooth muscle cells (56). CCN4 has also been 
verified to promote the proliferation of hepatic stellate cells 
in vitro (57). CCN5 increased cell proliferation and survival 
against Streptozotocin in pancreatic cells (58). However, in 
vascular smooth muscle cells, CCN5 negatively regulated 
smooth muscle cell proliferation and motility (59). An 
inhibitory effect on in vitro growth of the human mammary 
epithelial cells function was also assigned to CCN6 (60).

CCNs in embryonic development and angiogenesis. CCN 
expression profiles appear to be integral to the development 
of several key organ systems. CCN1 expression has been 
closely associated with the development of skeletal, cardio-
vascular, and neuronal systems during mice embryogenesis, 
best demonstrated by a CCN1 knockout mice model which 
exhibited aberrations in vascular development (61,62). CCN2 
knockout mice died at birth, due to respiratory failure resulting 
from hypoplastic lungs and poor thoracic development (63). 
A CCN2 knockdown zebrafish model showed bone defects 
and disruption in notochord development (64). CCN3 mutant 
mice exhibited skeletal and cardiac abnormalities, such as 
cardiomyopathy, muscle atrophy, and cataract formation (65). 
Evidence suggests that CCN4 has an an important regulatory 

function in skeletal growth and bone repair (66). The role of 
CCN5 remains unclear; however, it may serve a multifunc-
tional purpose in developing mice and human embryos (67). 
CCN6 mutations in humans cause autosomal recessive skeletal 
disease progressive pseudorheumatoid dysplasia, a juvenile-
onset joint degenerative disease (68). However, CCN6-null or 
CCN6-overexpression mice exhibited no observable pheno-
type (69). These findings from CCN knockout mice models 
together with their known expression profiles in the develop-
mental stages (Table IV) suggest that CCN1 and CCN2 play 
an essential role, while the other four members may play a 
regulatory role, in human embryonic development.

Wound healing. CCN1 and CCN2 are involved in tissue 
repair, as the increased expression of the two CCNs has been 
observed during cutaneous wound healing, liver regenera-
tion, in the heart after myocardial infarction and after bone 
fracture (70-74). Xu et al showed that CCN2 acted as a down-
stream effector of TGF-β enhancing the production of scar 
tissue indicating that the suppression of CCN2 may prevent 
a progressive fibrotic response to TGF-β stimulation (75). Of 
note, CCN3 transcripts were decreased during the first three 
days after wound formation or re-epithelialization (55).

Fibrosis. CCN2 mRNA expression has been observed 
in fibrotic lesions (76-80). However, this pattern has not 
been observed in early non-fibrotic or atrophic lesions. The 
serum level of CCN2 protein was significantly increased and 
correlated with skin sclerosis and lung fibrosis in patients. 
These results indicate that CCN2 co-operates with TGF-β to 
maintain and possibly even exacerbate fibrosis (76). Evidence 
has shown that either CCN2 mRNA or the application of 

Table V. Integrins are associated with the functions of CCN proteins.

Integrins Involved CCN members Cell functions affected Other ligands

α2β1 CCN1 Migration, invasion, motility, Laminin, collagen, thrombospondin, E-cadherin,
  lymphangiogenesis tenascin
α5β1  CCN2, CCN3  Adhesion, growth, survival, Fibronectin, osteopontin, fibrillin, thrombospondin,
  angiogenesis ADAM, COMP, L1
α6β1 CCN1, CCN2, CCN3 Adhesion, growth Laminin, thrombospondin, ADAM
αDβ2 CCN1 Adhesion ICAM, VCAM-1, fibrinogen, fibronectin, vitronectin,
   plasminogen
αMβ2 CCN1, CCN2  Adhesion ICAM, iC3b, factor X, fibrinogen, ICAM-4, heparin
αvβ3 CCN1, CCN2, CCN3  Angiogenesis, adhesion, Fibrinogen, vitronectin, thrombospondin, fibrillin,
  migration, survival, growth tenascin, PECAM-1, fibronectin,
   osteopontin, BSP, MFG-E8, ADAM-15,
   COMP, ICAM-4, MMP, FGF-2, uPA,
   uPAR, L1, angiostatin, plasmin, cardiotoxin,
   LAP-TGF-β, Del-1
αvβ5 CCN1, CCN2, CCN3, Growth, survival, angiogenesis Osteopontin, BSP, vitronectin, LAP-TGF-β
 CCN4
αIIbβ3 CCN1, CCN2  Hemostasis, thrombosis Fibrinogen, thrombospondin, fibronectin, vitronectin, 
   ICAM-4, L1, CD40 ligand

ADAM, a disintegrin and metalloprotease; BSP, bone sialic protein; COMP, cartilage oligomeric matrix protein; L1, CD171; LAP-TGF-β, 
TGF-β latencyassociated peptide; iC3b, inactivated complement component 3; PECAM-1, platelet and endothelial cell adhesion molecule 1; 
uPA, urokinase-type plasminogen activator; uPAR, urokinase-type plasminogen activator receptor; VEGF, vascular endothelial growth factor.
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exogenous CCN2 protein was required for the develop-
ment of persistent fibrosis in a mouse fibrosis model (77,78). 
Lipson et al reported that the inhibition of CCN2 was capable 
of preventing and reversing the process of fibrosis in liver 
and diabetic nephropathy models (79). CCN5 overexpression 
inhibited profibrotic phenotypes via the PI3K/Akt signalling 
pathway in lung fibroblasts and in mice (80).

Inflammation. Bacteria, such as Yersinia, Escherichia coli, 
Pseudomonas aeruginosa, Enterococcus faecalis, and 
Staphylococcus aureus, have been shown to induce CCN1 
and CCN2 expression in epithelial cells, indicating that CCN1 
and CCN2 overexpression may be useful in the adaptation of 
epithelial cells in stressful situations (81). HeLa cells infected 
by Coxsackievirus B3 induced CCN1 activation via JNK to 
mediate cell death (82). Bacteria-derived lipid factors have 
also been shown to induce CCN1 and CCN2 during infec-
tions (83,84).

7. CCNs in cancers

CCNs, except CCN5, have four highly conservative functional 
domains, but play different roles in the same cancer type. 
Each CCN member may also play different roles in varying 
cancer types through different signalling pathways (Fig. 2 
and Table VI). Some CCN members have already been associ-

ated with cancer staging and prognosis as well as contributing 
to tumorigenesis or metastasis formation (85-93). Other 
CCN members have been considered as diagnostic or prog-
nostic markers and therapeutic target genes in certain cancer 
types (46,103,104,119,120).

CCN1. CCN1 mRNA and protein levels are increased in 
ovarian cancer cells and may play an important role in ovarian 
carcinogenesis (85). CCN1 is upregulated in prostate cancer 
cell lines and tumor tissues and is associated with the status 
of the tumor-suppressor gene p53 (86). CCN1 has also been 
shown to enhance prostate cancer cell migration via altera-
tions of function to integrins (87). An immunohistochemical 
analysis of 112 human glioma and normal brain specimens 
showed that the levels of tumor-associated CCN1 protein were 
increased with tumor grade (P<0.001), and this trend was veri-
fied with similar results identified in glioma cells (88). These 
results have identified a CCN1-dependent pathway that medi-
ates cell growth, cell migration, and long-lasting signalling 
events in glioma cell lines and possibly astroglial malignan-
cies. CCN1 is overexpressed in U343 glioma cells and has 
been linked with the integrin-linked kinase-mediated Akt and 
β-catenin-TCF/Lef signalling pathways (89). CCN1 is a tran-
scriptional target of Hh-GLI signalling leading to increased 
vascularity and spontaneous metastasis of breast cancer 
cells (90). Zuo et al demonstrated that the overexpression 

Table VI. Regulations of CCN members in various types of cancer: Clinical specimens and/or cancer cells in vitro.

Tumor type (arranged A-Z) CCN1 CCN2 CCN3 CCN4 CCN5 CCN6

Breast cancer ↑ ↑  ↓ ↑/↓ ↓
Cervical cancer   ↑
Chondrosarcomas ↓ ↑ ↑ ↓
Chronic myeloid leukaemia   ↓
CRC ↑ ↑/↓  ↑ ↓ ↑
Enchondromas  ↑
Endometrial cancer ↑/↓
Esophageal cancer  ↑
Gallbladder cancer     ↓
Gastric cancers ↓     ↑
Glioma ↑  ↓
Liver cancer  ↓   ↑ ↑
Lung cancer ↓ ↓  ↓
Malignant adrenocortical tumors   ↓
Melanoma   ↓ ↓
Oral carcinoma    ↑
Ovarian cancer ↑ ↓
Pancreatic cancer  ↑   ↓
Pituitary tumors     ↑
Prostate cancer ↑  ↑
Salivary gland tumors     ↓
Rhabdomyosarcoma  ↑
Wilms' tumor  ↓ ↑   

↑, positive correlation or upregulation; ↓, negative correlation or downregulation; ↑/↓, controversial regulations; CRC, colorectal cancer.



LI et al:  CCN IN CANCER1458

of CCN1 in breast cancer is associated with the tumori-
genesis, migration and invasion of cancer cells (6). CCN1 
was expressed in ~30% of invasive breast cancer biopsies and 
played a role in breast cancer progression, possibly through its 
interactions with the avb3 receptor (91). CCN1 was found to 
be overexpressed in patients with endometrial carcinoma and 
indicative of a poor prognosis (92). CCN1 has also been shown 
to be overexpressed and correlate with invasion and metastasis 
in CRC (93).

Other studies, however, have shown different results. 
For instance, CCN1 expression was found to be reduced in 
endometrial cancer and lung cancer tissues compared to their 
paired normal tissues (94,95). Notably, the expression levels 
of CCN1 were reduced in high-grade chondrosarcomas and 
advanced gastric cancers (96,97).

CCN2. CCN2 mRNA and protein levels are increased in 
murine and human rhabdomyosarcoma cells (98). Over-
expression of CCN2 increases breast cancer cell migration 
in Boyden chamber assays and promotes angiogenesis in 
chorioallantoic membrane assays compared to control cells 
in vitro (99). By contrast, a reduced expression of CCN2 
in clinical breast cancer samples based on a qPCR study 
is associated with poor prognosis (P=0.021), metastasis 
(P=0.012), local recurrence (P=0.0024) and mortality 
(P=0.0072) (100). Similarly, findings in CRC are controver-
sial. CCN2 may play an oncogenic role in the progression of 
well-differentiated CRC (101). However, Lin et al showed that 
lower CCN2 expression levels in CRC patients were associ-
ated with a higher peritoneal recurrence rate. Additionally, 
CCN2 overexpression decreased the incidence of peritoneal 
carcinomatosis and increased the rate of mice survival, 
but significantly decreased CRC cell adhesion ability 
in vitro (102). CCN2 overexpression was also found to be 
associated with poor prognosis in oesophageal squamous cell 
carcinoma, pancreatic cancer, high-grade chondro sarcomas 
and enchondromas (46,100,103,104).

However, evidence suggests opposing roles for CCN2 
(102,105-109). In these studies, CCN2 acted as an inhibitor, 
tumor suppressor or a positive prognostic indicator. CCN2 
overexpression plays an important inhibitory role on cell 
proliferation in non-small cell lung cancer cell lines (105). By 
contrast, in ovarian tumorigenesis, inactivation of the CCN2 
gene may play a role in disease progression (106). CCN2 
expression is decreased in Wilms' tumors and a high CCN2 
expression exhibits improved prognostic features in intra-
hepatic cholangiocarcinoma and CRC patients (102,107-109).

CCN3. In human prostate cancer, Maillard et al revealed that 
CCN3 overexpression in cancer cell lines compared with 
their epithelial localizations was consistent with a role for 
CCN3 in prostatic tumorigenesis (110). Manara et al found 
the primary musculoskeletal tumors that developed lung and/
or bone metachronous metastases also exhibited CCN3 over-
expression (111). A similar effect was observed for CCN3 in 
bone malignancies and cervical cancer, suggesting it acts as 
a promoter of tumor growth and thus a poor prognostic indi-
cator (112,113). The involvement of CCN3 in cervical cancer 
has been confirmed by a subsequent study (114). CCN3 
transcripts and protein levels were increased in cervical 

cancer tissues when compared with the corresponding 
normal tissues. Overexpression of CCN3 was significantly 
associated with the stage of the disease (P=0.017) and with 
lymph node involvement (P=0.006). These results suggest 
that the overexpression of CCN3 is associated with a poorer 
prognosis in cervical cancer (114).

Other cancer types have resulted in inconsistent results 
compared to those mentioned above. CCN3-transfected 
glioma cells induced tumors to a lesser degree than their 
parental counterparts, which did not express detectable 
amounts of CCN3 (115). In vitro, CCN3 exerted an anti-
proliferative effect and interfered with the S/G2 transition of 
the cell cycle, thereby inducing an artificial accumulation of 
glioblastoma cells (G59) at the S phase (116). CCN3 restored 
cell growth regulatory properties that were absent in chronic 
myeloid leukaemia and sensitized chronic myeloid leukaemia 
cells to imatinib-induced apoptosis (117). CCN3 protein 
levels were significantly modified in malignant adrenocor-
tical tumors, but not in benign adrenocortical tumors (118). 
CCN3 suppressed the cell proliferation via interaction with 
the gap junction protein Connexin43 in glioma cells, and high 
levels of CCN3 reduced tumorigenicity, resulting in a lower 
rate of metastasis (119,120). CCN3 in vitro has been reported 
to decrease the transcription and activation of matrix metal-
loproteinases and suppress the invasion of melanoma cells, 
indicating that the downregulation of CCN3 expression is a 
potential mechanism for melanoma progression (121).

CCN4. CCN4 is downstream of Wnt-1 signalling and CCN4 
overexpression in colon cancer and may play a role in colon 
tumorigenesis (4). It has been revealed that CCN4 transcripts are 
expressed at higher levels in tumor samples compared to normal 
tissue, and are higher in patients with Dukes' stage B and C 
compared to Dukes' A. Thus, CCN4 appears to act as a factor 
for stimulating aggressiveness in colon cancer (15). A similar 
behavior pattern was observed in oral squamous cell carcinoma 
cells as CCN4 enhanced their expression by increasing ICAM-1 
expression through the αvβ3 integrin receptor and the ASK1, 
JNK/p38 and AP-1 signal transduction pathways (122).

By contrast, CCN4 inhibited the growth and metastasis 
of melanoma cells and its expression is increased in low 
metastatic cells compared to high metastatic cells (123,124). 
CCN4 overexpression inhibits the motility and invasion of 
lung cancer cells through the inhibition of Rac activation 
in vitro (125). Similar results have been identified in clinical 
specimens in which CCN4 has been shown to be reduced 
in chondrosarcoma and breast cancer with poor prognosis, 
suggesting it is a putative tumor suppressor (126,127).

CCN5. CCN5 has been shown to be increased in hepato-
cellular carcinoma compared to paired normal tissues (128), 
as well as in adrenocorticotropic hormone-secreting pituitary 
tumors compared to normal pituitaries (129). However, 
previous findings focusing on the role of CCN5 in breast 
cancer remain controversial. Ji et al reported that CCN5 
mRNA and protein levels were increased in some breast 
cancer cells and in breast tumors from patients with poor 
prognosis (130). However, CCN5 mRNA and protein levels 
were significantly reduced as the cancer progressed from a 
non-invasive to invasive type in breast cancer, and CCN5 
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mRNA and protein levels were almost undetectable in poorly 
differentiated cancers compared to the moderately or well-
differentiated samples (131). In vitro studies have shown that 
CCN5 was a negative regulator of growth, migration and 
invasion of breast cancer cells (132,133).

CCN5 exhibits differing effects in other cancer types. For 
example, Yang et al examined CCN5 protein expression in 
46 squamous cell/adenosquamous carcinoma samples and 
80 adenocarcinoma samples using immunohistochemistry. 
The results of that study showed that the loss of CCN5 
expression was associated with the metastasis, invasion 
and poor prognosis of gallbladder cancer (134). CCN5 
mRNA and protein expression levels have been shown to 
be reduced in pancreatic adenocarcinoma, salivary gland 
tumors and CRC compared with the respective paired normal 
tissues (4,15,135,136).

CCN6. CCN6 was overexpressed in 63% of the colon tumors 
analyzed and may be downstream of Wnt-1 signalling, thus 
playing a role in colon tumorigenesis (4). A similar result was 
obtained in a microsatellite instability subtype of CRC (4,137). 
However, previous findings revealed that there is no significant 
difference in CCN6 mRNA levels expressed in the majority 
of CRC in comparison with paired normal tissues (15). CCN6 
transcripts may also play a positive role in the development of 
hepatocellular carcinoma (138). Knockdown of CCN6 expres-
sion suppressed gastric cancer cell proliferation and migration 
via the Wnt/β-catenin signalling pathway in vitro, while a 
high expression of CCN6 indicated poor prognosis in a gastric 
cancer clinical cohort (139).

CCN6 mRNA was reduced in 80% of poor outcome cases 
of breast cancer, and was found to be essential to induce the 
process of epithelial-mesenchymal transition (EMT) in breast 
cancer (60). CCN6 overexpression inhibited cell growth 
and invasiveness in breast cancer cell lines (140) and CCN6 
expression was reduced in breast cancer samples compared 
to paired normal tissues (141). Taken together, the evidence 
suggests CCN6 is a putative tumor suppressor in breast cancer.

8. Conclusion and perspectives

The perturbed expression of CCNs has been observed in a 
variety of malignancies. The aberrant expression of certain 
CCNs is associated with disease progression and poor 
prognosis. Different CCNs may play contrasting roles in the 
same cancer, while the same CCN may play different roles in 
various types of cancer. Further investigations may highlight 
their clinical relevance and application for predicting prog-
nosis. CCNs comprise four functional domains and exhibit 
differential expression and functions in different cells and 
tissues albeit CCN5 lacks a CT module. CCNs can regulate 
cell functions by acting as ligands for integrins, heparin, 
and HSPGs, which are regulated by certain growth factors 
and cytokines, including IGFs, TGF-α and TGF-β, to fulfil 
their role in the consequent physiological and pathological 
events. Additionally, CCNs interact with a variety of recep-
tors and cytokines by modulating downstream signal 
transduction. Insight into the detailed mechanisms involved 
in CCN-mediated regulation may be useful in understanding 
their roles and functions in tumorigenesis and cancer 

metastasis. This may provide new avenues for target therapy 
in certain malignancies.
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