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Abstract: The article briefly reviews some developments in gear tribology research against the
background of three articles from the Institution’s archives that have particularly influenced
the authors’ own contributions to the subject. The articles considered relate to three different
aspects of gearing namely elastohydrodynamic lubrication, tooth contact phenomena, and the
lubrication and wear of gears having a three-dimensional geometry.
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1 INTRODUCTION

Three articles [1–3] from the Institution’s archives have
been selected and reprinted in this anniversary issue
of Journal of Mechanical Engineering Science ( JMES)
as representative of the many important publications
that have influenced subsequent research on gear
tooth contact tribology. The following three sections
give a brief introduction to each of the three articles
together with some examples of the work that has
been inspired by or has built on the ideas elucidated
in them.

2 DOWSON AND HIGGINSON (1959)

It is appropriate that the first of these, the land-
mark 1959 article of Dowson and Higginson [1] on a
numerical solution of the elastohydrodynamic lubri-
cation (EHL) problem, appeared in Volume 1, Part
1 of JMES (reproduced on page 54 of this issue).
Using the rudimentary computers of the time, these
authors found the first detailed solution for pres-
sure and film thickness in a heavily loaded lubricated
line contact in which the two crucially important
effects of pressure-dependent viscosity of the lubri-
cant and elastic deformation of the surfaces were taken
into account. Dowson and Higginson continued their
effort to refine their solutions to reveal greater detail,
in particular the first calculated existence of the ‘pres-
sure spike’ at the exit of the contact (which had not
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appeared in their first solutions), and to take account
of thermal effects. Their 1966 book [4] included a
formula for minimum film thickness under isother-
mal conditions, and the practical relevance of EHL to
gears was acknowledged by their inclusion of a short
chapter entitled ‘A Note on Gear Lubrication’. It had
been known for many years previous to this work that
gears benefited from effective hydrodynamic lubri-
cation. For example, it was reported that when the
main propulsion gears of the transatlantic liner ‘Queen
Mary’ were examined after 11 years’ operation ‘…no
wear could be detected on the gear teeth’ [5]. In spite
of such overwhelming evidence for effective oil-film
lubrication, it was not until the appearance of Dowson
and Higginson’s EHL theory that a detailed physical
explanation for the successful operation of gear tooth
contacts could be provided.

Developments since Dowson and Higginson’s arti-
cle have been concerned with refinements such as
the study of ‘point’ contacts, the inclusion of non-
smooth features in the surfaces like bumps, dents,
regular waviness and, more recently, real, or measured,
roughness. Early analyses of EHL were based upon the
assumption of a Newtonian lubricant and an exponen-
tial (Barus) dependence of viscosity on pressure. These
assumptions are generally adequate for the estimation
of film thickness because this is determined under the
relatively low-pressure conditions in the entry region
of the overall contact, but they lead to gross over-
estimates in calculations of the viscous traction. To
predict traction and frictional heating, it is necessary
to adopt a non-Newtonian, shear-thinning model for
the lubricant.

Initial attempts to model rough surface EHL were
based on idealized rough surface features such as
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104 R W Snidle and H P Evans

single irregularities [6] and sinusoidal waviness [7–9].
Later, the study of real (measured) roughness was car-
ried out by Kweh et al. [10]. This model was limited to
the time-independent case of simple sliding in which
a smooth surface slides against a stationary rough sur-
face.To model‘moving roughness’, the transient effects
due to interaction of asperities must be considered in
a time-dependent solution. Chang and Webster [11]
simulated the interactions of sinusoidal roughness
on both surfaces in a transient analysis. Venner and
Lubrecht [12] investigated indentation features and
waviness in a transient analysis and showed the
effects of the slide–roll ratio on the pressure and film
thickness profile. Chang and Zhao [13] continued to
study the differences between Newtonian and non-
Newtonian lubricant models in transient micro-EHL
and showed that the non-Newtonian effect was signif-
icant, particularly with roughness of relatively short
wavelength. A study of micro-EHL under point con-
tact conditions using measured roughness was carried
out by Xu and Sadeghi [14] and Zhu and Ai [15]. In
these studies, however, the amplitude of the rough-
ness was relatively small compared to the thickness of
the films generated.

The study of micro-EHL leads naturally to ‘mixed’
lubrication, where part of the load is carried by a
hydrodynamic film and part of it is supported by
‘dry’ or boundary-lubricated contact between asper-
ity features. The incorporation of these effects into
a consistent mass-conserving physical model repre-
sents a particularly difficult challenge. In recent years,
attempts have been made to address the problem
using different numerical approaches. Chang [16] pre-
sented a deterministic model for line contacts that
incorporates asperity contact and transient hydrody-
namic behaviour. Jiang et al. [17] and Zhao et al. [18]
solved the point contact problem by partitioning the
overall contact area into subregions corresponding to
solid contact or hydrodynamic separation. Hu and
Zhu [19] developed a unified approach for full film,
mixed lubrication, and boundary lubrication by using
a simplification of the Reynolds equation for thin
film conditions. The ability to model conditions in
which the film was relatively thin compared to rough-
ness was aided by the introduction of a radically new
approach to solve the EHL problem developed by
Hughes et al. [20] and Elcoate et al. [21]. The essen-
tial feature of the new technique is the ‘differential
deflection’ approach to the elastic deformation aspect
of the problem, which allows close coupling of the
hydrodynamic and elasticity equations. In this way,
the primary variables of film thickness and pressure
can be treated as simultaneously active throughout
the solution process. This leads to a highly robust
and rapidly convergent numerical scheme that can
cope with severe conditions of thin films/high rough-
ness. Using the new technique, Elcoate et al. [21] were
able to model the behaviour of real gear lubrication

Fig. 1 Pressure (heavy curve) and film thickness (light
curve) profiles at one particular time-step in a
transient EHL analysis of two rough surfaces

conditions in which surface roughness was at least an
order of magnitude greater than the minimum film
thickness. Figure 1 shows the pressure and film thick-
ness profiles at one particular time-step in a transient
EHL analysis of two rough surfaces whose profiles
have been taken from gear teeth used in a micropit-
ting test. In this case, the equivalent smooth surface
solution gives a maximum pressure of 1.0 GPa. The
pressures developed at micro asperity contacts are
considerably higher and are found to rise to the lev-
els of 2–3 GPa. Later, the technique was extended to
point contacts by Holmes et al. [22] and to incorporate
mixed lubrication behaviour [23].

3 MERRITT (1962)

EHL theory could explain the successful operation of
gears but it could not be relied upon to predict when
failure occurred as a result of the numerous destruc-
tive forces at work in practical gear tooth contacts.
The state of understanding of gear tooth contact phe-
nomena in the early 1960s was admirably reviewed (in
the second article reprinted here as Appendix 2) by
Merritt [2]. The article was in the form of an Insti-
tution ‘Nominated Lecture’ and, as was the custom
in those days, it attracted a considerable amount of
in-depth written discussion from leading gear practi-
tioners and researchers including W. A. Tuplin, A. W.
Crook, B. A. Shotter, J. F. Archard, and H. J. Watson. At
the time the article was published, scuffing (Fig. 2) was
seen as particularly troublesome because it happened
unexpectedly, often after only a few hours of opera-
tion. Scuffing still occurs from time to time in some
heavily loaded, high-speed applications, particularly
where high tooth surface temperatures are allowed
to develop due to inadequate design of the cooling
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Some aspects of gear tribology 105

Fig. 2 Scuffing at the tips of helical gear teeth. Pho-
tograph courtesy of design unit, Newcastle
University

arrangements. In the majority of transmissions, the
problem has largely been overcome by the use of
chemically active ‘extreme pressure’ oil additives and
by careful attention to tooth geometry and alignment
(tip relief and crowning) of the gears so as to avoid
highly stressed and damaging edge contacts. It cannot
be claimed that a ‘cure’ for scuffing has been discov-
ered, however, and its exact physical mechanism, in
particular the way in which EHL can totally break
down under certain conditions, remains unexplained.
In his article, Merritt drew attention to the influence
of surface finish both in relation to scuffing and pit-
ting. He made some particularly interesting comments
about pitting behaviour as observed in disc tests and
in actual gears. He noted that pitting (rolling contact
fatigue) in gears occurred at nominal contact stresses
lower than those which produced similar results in
discs. He attributed this to ‘macro errors’ of tooth
alignment and profile; but he went on to consider
‘micro errors’ (which may be interpreted as roughness
effects), which can convert a nominally uniform band
of contact into a series of small pressure areas. This,
he said, produced effects analogous to the leakage
effects seen in short journal bearings in which oil can
escape laterally from the pressure areas. These com-
ments (made almost half a century ago) remain highly
relevant to current ideas on the lubrication of rough
contacts and the attempts to model what has become
known as ‘micro-EHL’. In the case of scuffing, Merritt’s
particular idea of transverse leakage in a rough con-
tact was in fact the basis of an EHL failure model
proposed by the present authors [24]. This model pre-
dicted severe thinning of the lubricant film close to
the edge of an elliptical contact due to sideways leak-
age of the lubricant in the transverse valley features
present between rough surfaces even when in contact
at a heavy load. In corresponding scuffing tests, using

transverse-ground discs, it was found that scuffing
invariably occurred at this location as predicted.

Among the contributions to the discussion on
Merritt’s article was an item from Shotter [25] who
showed the results of pitting tests on Wildhaber–
Novikov (W–N) gears.The sliding and entraining veloc-
ities at the tooth contact are roughly perpendicular
because of the peculiar geometry of W–N gears (see
below). Shotter noted that although the start of a
pit pointed down the tooth flank (the sliding direc-
tion) its subsequent growth was along the tooth (the
entraining, or rolling direction). These facts suggested
that pitting was initiated by sliding (friction) but that
subsequent propagation was assisted by hydraulic
pressurization of the crack due to the rolling motion
as had been suggested in an early article by Way [26].
Shotter continued to point out that real gear tooth
surfaces did not have the perfect geometry assumed
in the EHL models (at this time the models were
based on the assumption of perfectly smooth sur-
faces). Due to this, the stresses that produced pitting
were to be found at the contacts between roughness
asperities rather than the nominal Hertzian contact
because of the general curvature of the teeth. Shot-
ter considered that these asperity contact effects were
of importance in scuffing as well as pitting – a view
that has been reinforced by the subsequent research in
the field.

It is of interest to note that these ideas of sur-
face roughness and crack pressurization effects being
responsible for the initiation of surface distress are
highly relevant to present day research on ‘micropit-
ting’, which is currently identified as the main factor
limiting gear performance and competitiveness [27].
It is a serious surface distress problem directly asso-
ciated with roughness effects in gears finished by
grinding. It causes serious wear and can develop into
large-scale damage in the form of cracks that jeopar-
dize tooth integrity. It is characterized by local plastic
deformation and the formation of small pits some
10–30 µm in diameter and 5–10 µm deep that grow
from surface initiated cracks at 10–30◦ inclination
(Fig. 3). Micropitting may be classified as a form of
erosive wear leading to serious loss of tooth profile
accuracy and a consequent, unacceptable, increase
in noise from the gears. A particularly serious fea-
ture of micropitting in hardened steels is subsurface
crack branching that leads to large-scale pitting and
eventual tooth fracture and total gear failures [28].
The problem of micropitting has a severe economic
impact on industry and, to enhance national com-
petitive advantage, is currently being investigated by
several leading gear trade organizations (BGA in UK,
FVA in Germany, and AGMA in USA). Key features of
micropitting in gears are:

(a) damage occurs on the prominent parts of asperity
features;
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Fig. 3 Optical image of replica taken from a dam-
aged gear tooth showing characteristic micropits
occurring at the high points of surface texture.
Arrow indicates rolling/sliding direction. Photo-
graph courtesy of QinetiQ

(b) damage occurs across the whole face width of
the gear;

(c) damage takes place in areas of the tooth profile
that are subject to high sliding during the meshing
cycle;

(d) micropitting predominantly occurs at the root of
the teeth and does so without damage to the
corresponding contacting part of the meshing
tooth;

(e) shallow cracks grow in the opposite direction to
that of the surface traction due to sliding (i.e.
towards the pitch point on the driver and away
from the pitch point on the driven wheel).

To achieve a fundamental understanding of the
causes of the clearly observed and characteristic fea-
tures of the damage produced as described above, it is
necessary to establish the detailed nature of the tooth
loading in terms of the transient asperity pressure, sur-
face traction and subsurface stress, and temperature
fields.

To model the conditions under which micropitting
occurs, the theoretical treatment must include:

(a) low � ratios (ratio of calculated smooth-surface
oil-film thickness to composite roughness), typi-
cally 0.1 or less;

(b) the transient effects brought about by two rough
surfaces moving relative to each other;

(c) non-Newtonian lubricant behaviour caused by
high shear rates in the film at the parts of the
meshing cycle subject to high sliding;

(d) thermal effects brought about by high sliding,
general temperature increase in the film and con-
tacting bodies, and potentially catastrophic local-
ized ‘flash’ temperatures at the site of asperity
collisions.

Surface pressure distributions obtained from the
foregoing transient micro-EHL analyses can be used
to calculate elastic stress distributions in the highly
stressed surface layer of the gear surfaces involved.
Fatigue and accumulated damage may then be pre-
dicted on the basis of the available fatigue theories.
In work being carried out by the authors, the stress
components are evaluated at each time-step from
a transient micro-EHL solution. This task is made
more manageable by the use of the discrete convo-
lution fast Fourier transform technique described by
Liu et al. [29]. The time-varying stress distribution
obtained in this way is related to a position fixed in the
body concerned so that a ‘history’ of stress variation
is obtained at a grid of points in a volume of material
as it passes through the contact region as illustrated
schematically in Fig. 4. Three different multi-axial
fatigue criteria based on a critical plane approach
(Findley [30], Matake [31], and Dang Van et al. [32])
were applied to the test volume and the results com-
pared. In addition, a varying amplitude multi-axial
fatigue theory based on shear strain cycles was also
applied (Fatemi and Socie [33]). The cycle counts were
obtained using the rainflow counting method [34] and
the accumulated damage in a single pass through the
contact area was calculated (i.e. the accumulated dam-
age per gear meshing cycle). In comparing the results
obtained, the various fatigue models were found to
identify the same asperity features as being those most
prone to fatigue. Results were obtained using a gear
tooth profile from previously reported FZG tests [35].
The profile was run against itself in a transient EHL
simulation and the time-varying stress field obtained
as outlined above. A local friction coefficient of 0.1
was assumed where ‘direct contact’ events occurred
in the simulation. Figure 5 shows a comparison of the
fatigue parameter (FP) contours predicted by the three
different critical plane models. The operating condi-
tions correspond to a maximum equivalent Hertzian
pressure of 10 GPa, an entraining speed of 25 m/s,
and a slide–roll ratio of 0.5. The lubricant properties
assumed are those of Mobiljet 2, a gas-turbine engine
oil at a bulk temperature of 100 ◦C. It is clear that failure

Fig. 4 Solid surface to which transient EHL pressure and
shear stress (not shown) distributions are applied
showing block of material that passes under the
contact region
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Some aspects of gear tribology 107

Fig. 5 Contours of FP for fatigue at 107 cycles determined by using (a) Findley, (b) Matake, and (c)
Dang Van criteria. The upper graph shows the surface profile

zones are concentrated close to the surface of certain
asperity features (arrowed in the figure). The results
predicted by the Findley and Matake models are very
similar, whereas the Dang Van model gives slightly
lower predicted fatigue.

Thin hard coatings have the potential to improve
the surface durability of gears, and several suc-
cessful applications have been reported [36–38].
Diamond-like carbon coatings show promise because
of their high hardness and low friction behaviour,
and their deposition methods and wear properties
have therefore been studied extensively in recent years
[39–41]. Naik et al. [42] carried out experiments on
two coatings of this type by using both disc and
gear rigs and reported promising results. Alanou

et al. [43] performed experiments in a disc machine
at high sliding speeds and reported a significant
improvement in scuffing resistance although poor
adherence was found for one particular combina-
tion of coating and substrate. More recently, Amaro
et al. [44] reported good adhesion, low friction,
excellent scuffing, and wear protection with a hard
carbon/chromium coating.

A surface treatment that has recently been shown
to be highly effective in increasing the surface fatigue
(pitting) lives of gears is the application of a hard
coating of the metal-containing diamond-like carbon
(Me-DLC) type designed specifically for aerospace
gearing applications. Krantz et al. [45] carried out
accelerated surface fatigue experiments on both

JMES1168 © IMechE 2009 Proc. IMechE Vol. 223 Part C: J. Mechanical Engineering Science
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Me-DLC-coated and uncoated hardened steel gears
at a maximum Hertzian contact pressure of 1.7 GPa
and demonstrated an approximately 4-fold increase in
pitting life compared to that obtained with uncoated
gears made from the same batch of steel. Some of
the coated gears were operated at a maximum con-
tact pressure of 1.9 GPa and showed good durability
even at this relatively high loading.

Recent work [46] was carried out to investigate the
scuffing resistance of the Me-DLC coating as used
by Krantz et al. under conditions of high sliding
and high Hertzian contact pressure representative of
extreme gearing applications. The experiments were
performed using axially ground carburized and hard-
ened steel discs lubricated with a gas-turbine engine
oil at a lubricant temperature of 100 ◦C. In addition
to improving the scuffing resistance of test discs, the
hard coating also gave a striking reduction in fric-
tion when applied to discs that had been ground.
Figure 6 shows measured friction for four different
surface conditions. Curve A shows the relatively high
friction of ground/uncoated surfaces and curve B is
the measured variation when the hard coating was
applied. In both cases, the friction coefficient reduces
with load, an effect which is attributed to running
in and partial smoothing of the rough ground sur-
face. Curve C shows the corresponding variation for
superfinished/uncoated discs. In this case, friction
tends to increase slightly with load; this is probably
due to slight roughening of the very finely polished
surfaces as a result of running. Although hard-coating
of the superfinished discs (curve D) gave the lowest
friction at a relatively light load, the behaviour deteri-
orated at heavier loads. This was found to be due to the

Fig. 6 Variation of friction coefficient with load
during stages preceding scuffing. (A) ground
versus ground; (B) ground/coated versus
ground/coated; (C) superfinished versus
superfinished; (D) superfinished/coated versus
superfinished/coated

coating becoming partly detached leading to a signifi-
cant increase in the effective roughness of the surfaces.

4 FRENCH (1965)

As mentioned above, Shotter’s example of pitting
failure occurred on the teeth of W–N gears. Unlike
conventional involute gears, the teeth of W–N gears
(Fig. 7) are not conjugate in the transverse plane. In
the version of W–N gears used by Shotter (‘Circarc’),
the teeth were of convex circular arc form on the pin-
ion and the teeth on the wheel were of concave circular
arc form, the radius of curvature being slightly larger
than the radius of the teeth on the pinion. To pro-
vide a constant velocity ratio between the gears, they
must be of helical form. The elastic contact between
the teeth under load is elliptical in shape, the long
axis of the ellipse lying roughly along the teeth (i.e.
the axial direction). When the gears rotate the con-
tact moves across the gears in the axial direction but
remains at the same height on the teeth. Entrain-
ment (rolling motion) occurs in this axial direction,
and this is accompanied by what may be described
as conventional sliding in the direction up and down
the teeth as in involute gears. In the gears described
by Shotter (and later adopted by Westland helicopters
in the Lynx aircraft), the teeth on the pinion were ‘all
addendum’ and the mating teeth on the wheel ‘all
dedendum’ so there was no position of zero sliding
in the direction up/down the teeth. Such gears are
described as having a recess action.

W–N gears acquired their name because they were
patented by Ernest Wildhaber in USA in 1926 [47] and
independently re-invented by Novikov in Soviet Russia
in 1956 [48]. In spite of what were thought to be the
theoretical advantages of W–N gears (reduced con-
tact pressure and superior film formation), they were

Fig. 7 Wildhaber–Novikov gears. The pinion (with con-
vex teeth) is above and the wheel (with concave
teeth) is below

Proc. IMechE Vol. 223 Part C: J. Mechanical Engineering Science JMES1168 © IMechE 2009
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not generally adopted in the West with the notable
exceptions of the ‘Circarc’ and Westland Lynx designs
mentioned above. Analysis of the geometry and kine-
matics of these gears had not progressed significantly,
but the publication by French [3], which is the third
article reproduced in this anniversary volume (as

Appendix 3), stimulated the present authors to begin
an investigation of the geometry of W–N gears which
could be used as a firm basis for their design. French
carried out an approximate analysis of the geometry
of circular arc W–N gears and predicted that the elastic
contact area was probably banana-shaped rather than

Fig. 8 EHL of a Wildhaber–Novikov gear tooth contact. (a) Illustration of wheel tooth showing
orientation of Hertzian contact and its motion relative to the tooth; (b) contours of film thick-
ness obtained from EHL analysis; and (c) section on A–A of film showing severe thinning at
the transverse edges with increasing load
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the ellipse previously assumed. The consequence of
this suggestion was that an elongated contact would
not spread along the teeth but would curve towards
the tooth edges, thus limiting the conformity which
could, in theory, be achieved by reducing the helix
angle of the teeth. French had assumed in his anal-
ysis that the degree of mismatch between the radii
of the contacting teeth in the transverse plane was
small. In practical designs, being considered in the UK,
however, significant mismatch was being proposed
to reduce the sensitivity of the gears to variations
in centres-distance setting due to deflection under
load and thermal expansion. It was therefore decided
to pursue an exact analysis of the geometry of W–N
gears free from any assumptions about the degree
of tooth conformity. This work was carried out with
the help of Dr Alan Dyson, a retired Shell employee
who had previously published a general theory of
three-dimensional gears based on classic differential
geometry techniques [49].

A detailed analysis [50] was developed and used to
reveal the exact geometry and kinematics of the tooth
contact from which the entraining velocity and its ori-
entation relative to the contact could be obtained. This
analysis was subsequently extended [51] to determine
a number of properties of the gears, which are of direct
relevance to their design and which could be used as
a basis of a design optimization process. The contacts
in gears of this type are relatively heavily loaded with

maximum Hertzian contact pressures of up to 2 GPa.
A special point contact EHL solver [52] was devel-
oped based on the inverse hydrodynamic techniques
as used by Dowson and Higginson in their pioneering
line contact solution. The elastic contact area in these
gears is elliptical in shape with lubricant entrainment
in the direction of the major axis. Due to the elongated
shape of the contact side-leakage of the lubricant in
the entry region of the contact was a dominant effect.
This caused considerable thinning of the film at the
edges of the nominal contact region as shown in Fig. 8.
Thus, in spite of the relatively high entrainment speed
at the contacts in W–N gears (which had often been
cited as a principal film-forming advantage of the
system), the oil-film generation in this type of gear was
unfortunately not as favourable as had been expected.

Longitudinally entrained elliptical contacts also
occur in worm gear designs. Worm gears are widely
used in transmission arrangements in which a com-
pact, high reduction, relatively low-speed drive is
required. Due to the high degree of sliding present
between the teeth of worm gears, it is an accepted
practice to adopt a hard/soft combination of mate-
rials to prevent scuffing, the usual configuration being
a hard steel worm and a softer worm wheel of bronze.
An inevitable consequence of this arrangement is that
the bronze gear teeth are subject to a rate of wear which
is much higher than that which might be expected
in conventional gearing. But in view of the other

Fig. 9 Contours of wear rate/µm/s calculated at a series of meshing positions on a worm wheel
tooth surface. Solid curve indicates path of nominal contact point over the meshing cycle

Fig. 10 Contours of wear/µm showing calculated worm wheel tooth wear over a single meshing
cycle
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advantages of worms this situation is largely tolerated,
and indeed the process of ‘bedding in’ of new gears,
in which an initially higher rate of wear occurs, is seen
as beneficial in terms of the subsequent operation and
life of the gears. In a recent project, the detailed geome-
try of wear in worm gears under lubricated conditions
has been predicted on the basis of full EHL analysis
combined with an empirical wear law.

The starting point for an EHL analysis of worm gears
is the geometry and kinematics of the tooth surfaces
close to their contact. The contact area over which the
load is carried tends to be a long thin ellipse that is dis-
torted into a banana shape by the enveloping nature
of the surfaces. Such a configuration could yield rel-
atively thick lubricant films if lubricant entrainment
was in the direction of the minor axis, i.e. across the
contact area. Unfortunately, this is not the case as the
sweeping action of the worm means that the entrain-
ment is effectively along the major axis of the contact
ellipse. The authors have previously examined the film
forming capability of a large number of worm gear
designs [53, 54] based on a full thermal EHL analysis,
and this study identified locations of particularly thin
films within the contact area caused by the relatively
unfavourable kinematic action of the gears.

The EHL film forming analysis was extended to
include a calculation of the wear rate at each point
on the wheel tooth surface [55, 56]. The following
Archard-type wear law was adopted, which takes
account of the local values of both contact pressure
and film thickness in relation to the roughness of the
surfaces

Wear rate = k
H

p us

(
Ra

h

)n

where k is a wear constant, H is the hardness, p is
the local contact pressure, us is the sliding speed, Ra

is the roughness average, and h is the local film thick-
ness. The local wear pattern is then integrated over
the meshing cycle to obtain the tooth wear per wheel
rotation. The wear is not uniform and modifies the
effective contact area. This effect of wear on wheel
tooth geometry is taken into account by recalculat-
ing the EHL film and pressure distributions at the end
of a series of wear stages (or steps) and the calcu-
lated change in wheel tooth shape is incorporated into
the subsequent calculations. In this way, the develop-
ment of the pattern of wear and its effect on contact
and lubrication performance can be studied. Figure 9
shows calculated contours of wear rate on the wheel
tooth at six different meshing positions. The material
removed by wear over the whole tooth during a com-
plete meshing cycle is then obtained by a process of
summation over the meshing cycle. A typical result
of this process is shown in Fig. 10, where the contours
plotted are the depth of material removed per meshing
cycle.

5 CONCLUSION

Each of the three articles that were selected for reprint-
ing in this anniversary issue had a marked influence
on the development of fundamental research on gear
lubrication, design and prevention of wear, and sur-
face failure. It is hoped that the present authors’ brief
review of some subsequent developments demon-
strates that significant progress towards a better
understanding of gear tribology has been made, at the
same time showing that further research is required,
particularly on the surface fatigue phenomenon of
micro-pitting.
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