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Numerical method for complex moving boundary problems in a Cartesian fixed grid
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We propose a numerical method to capture and track complex moving boundaries advected in flows. Our
method is based on the level set method, but it overcomes the problem of accumulation of reinitialization error
in the level set method.
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Fluid phenomena with complex moving boundaries~gas-
liquid, liquid-liquid, gas-liquid-solid, etc.! appear every-
where, such as flows in rivers, kitchens, bodies, and pla
Studies on these phenomena are considered challenging
are important for various fields such as physics, industry,
medicine. However, numerical studies on these phenom
are difficult because two different scales of a phenomena
a complex moving boundary must be treated simultaneou
and boundary conditions of complex shapes must be con
ered. Therefore, numerical studies for these problems h
hardly been done. In this work, a numerical algorithm
these problems is proposed.

In our approach, a Cartesian fixed grid is used. One
vantage of using such a grid is that a grid for complex m
ing boundaries need not be generated. Large deformation
topological change of interfaces can be treated because
grid is never distorted. However, there are some proble
such as numerical diffusion at the interface and influence
the grid. Various techniques have been proposed to overc
such problems. In these techniques, we consider the leve
method@1,2# to be suitable for complex moving bounda
problems. The level set method has been applied to var
moving boundary problems@2–4#.

The level set method is an interface-capturing meth
The method expresses the surface of an (N21) dimension as
the zero contour of anN-dimensional function. The function
and the zero contour are called the level set function and
zero-level set, respectively. In the level set method, the in
face ~zero-level set! is not tracked directly but implicitly
through the level set function. In this paper, the function t
satisfies Eq.~1! is used as a level set functionf ls

f ls50 at the interface,

u“ f lsu51 for the whole region. ~1!

The function is also called a signed distance function t
represents the distance from the interface. For example,
3~d! shows the level set function of a cut-out cylinder~initial
condition of the Zalesak problem! as shown in Figs. 3~a!–
3~c!. The time evolution of the level set function is calc
lated by the advection equation

] f ls

]t
1u•“ f ls50. ~2!
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The level set method has various features. The met
can automatically treat topological change in interfaces w
out special treatment. To precisely capture interfaces i
Cartesian grid, smoothing of the interface must be int
duced. In the level set formulation, the thickness of the
terface can be easily maintained because the distance
the interface can be obtained from the distance function.
level set method is useful for estimating the curvaturek. To
compute the curvature, the divergence of a normal vecto
the interface is required. In the formulation, the normal ve
tor is always well defined from the level set function. Th
curvature is calculated as follows:

k5“•S “ f ls

u“ f lsu
D . ~3!

From the curvature, the surface tension force can be ca
lated easily by using the continuum surface force model@5#.

Although the level set method is a useful interfac
capturing method as mentioned above, there is a problem
reinitialization error, which is discussed below. The initi
level set functionf ls satisfies the property of the signed di
tance function. However, after calculation of the advect
equation~2!, f ls does generally not satisfy the feature of t
signed distance function as shown in Fig. 1~b!. Therefore, the
function must be rebuilt as the signed distance function w
out changing the position of the zero-level set; here, it
assumed that the zero-level set has represented the inter
This procedure is called reinitialization@3#. However, the
position of the zero-level set moves slightly in this procedu
@Fig. 1~c!#. This error is the reinitialization error. Althoug

FIG. 1. Schematic figure of reinitialization by the original lev
set method.
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the error is small, the error accumulates in each time s
because the next time evolution is calculated fromf ls with
the error@Fig. 1~d!#. Therefore, the accumulation of errors
not negligible in some cases@for example, Figs. 5 and 6~c!#.
The accumulation of errors will be a serious problem in ca
of complex moving boundaries.

In this Rapid Communication, we propose a method
prevent the accumulation of reinitialization errors. First,
outline of the numerical method is given. After the explan
tion of the numerical procedure of the method, a compari
of results obtained using the present method and those
tained using the original method is presented.

An outline of our method is presented using Fig. 2. In o
method, a functionf zero that is not reinitialized is used to
track the interface. The interface is tracked through the ze
contour of f zero @13#. The time evolution off zero is calcu-
lated by the advection equation@(a)→(b) in Fig. 2!#. To
capture the interface~i.e., to compute curvature, smoothin
etc.!, the level set functionf ls is constructed from the zer
contour off zero @Fig. 2~c!#. This gives rise to an error simila
to the error that occurs in the original level set method. Ho
ever, there is no accumulation of errors in the present met
because the time evolution is calculated fromf zero without
the error@Fig. 2~d!#.

We will now explain the numerical procedure. The tim
evolution of f zero to track the zero-level set is calculated b
the advection equation,

] f zero

]t
1u•“ f zero50, ~4!

@(a)→(b) in Fig. 2!#. As a solver of the advection equatio
we use the CIP~cubic interpolated propagation! method
@6,7#, which is less diffusive and robust. To construct t
level set functionf ls from the zero contour off zero @Fig.
2~c!#, we use the fast marching method@2,8# and an iterative
reinitialization scheme proposed by Sussmanet al. @9# ~re-
ferred to hereafter as Sussman’s method!. Before using these
methods, the position of the zero contour off zero is calcu-
lated by interpolating between grids. In this time, linear
terpolation is used. From the zero contour,f ls within Dh
~whereDh is the grid spacing! from the zero contour off zero
are computed by the fast marching method, solving the
konal equation

u“ f lsu51. ~5!

FIG. 2. Schematic figure of the present method.
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Other f ls are calculated by Sussman’s method. In the cal
lation, f ls computed by the fast marching method is fixe
Sussman’s method solves the following problem to a ste
state:

] f ls

]t
5S~ f ls!~12u“ f lsu!, ~6!

where,t is artificial time andS is a smoothed sign function

S~ f ls!5
f ls

Af ls
2 1«2

. ~7!

In the calculation of Eq.~6!, a narrow band approach@2,3# is
used. The procedure is repeated usingf zero without the reini-
tialization error as the initial state of the next time step.

We give supplementary explanations of the procedure
construct the level set functionf ls from the zero contour of
f zero. f ls developed by Eq.~2! should be used as an initia
condition of the iterative calculation of Eq.~6! in each time
step. If the value of the former time step or 1,21 is used as
an initial condition of the iteration, the number of iteration
will become large. For the calculation of Eq.~2!, high-order
schemes such as the CIP method may not be needed be
the error in the advection calculation disappears in the ite
tive calculation of Eq.~6!. In this paper, we used a first-orde
upwind scheme. The fast marching method can also be u
for the calculation off ls beyondDh from the interface. In
this time, we did not use this method because it requ
more calculation time than that required in the pres
method. Although the calculation time in Sussman’s meth
is generally short, the reinitialization error is large. Howev
in our method, the error does not arise because the v

FIG. 3. ~a! Configuration of the Zalesak problem. The value
f color inside the cut-out cylinder is 1, others is 0,~b!, ~c!, and~d! are
perspective views off color , the zero-level set and the level s
function ~signed distance function! of the initial condition, respec-
tively. The rotation speed is such that one complete revolution
performed in 628 steps. Cartesian fixed grids of 1003100 were
used.
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around the zero-level set computed by the fast march
method has been fixed in the iteration.

A color ~density! function f color that is used to define th
physical properties for different materials can be genera
from a smoothed Heaviside function

f color5Ha~ f ls!, ~8!

FIG. 4. Results after one revolution@~a! and ~b!# and ten revo-
lutions @~c! and ~d!# by using the present method.~a! and ~c! show
the zero-level set with the exact solution.~b! and ~d! show the
profiles of f color.
05570
g

d
Ha~ f ls!5H 0 if f ls,2a

1

2 F11
f ls

a
1

1

p
sinS p

a
f lsD G if u f lsu<a

1 if f ls.a,
~9!

where 2a represents the thickness of the interface. In
level set formulation, the thickness can be easily control
because the level set function has a feature of the dista
function.

As a testing problem, we applied the present method
two-dimensional rigid body rotation problem, called a Za
sak problem@10#, as shown in Fig. 3. As an initial condition
of the Zalesak problem

f zero~x,y!5H 1, A~ i 251!21~ j 276!2,16

and j >86 oru i 251u.2

21, others,

~10!

and u52p( j Dy251Dy), v522p( iDx251Dx) were
used. Hereu andv are the velocity components ofx andy,
respectively. Figure 4 shows the results after one revolu
and ten revolutions by the present method. The interfa
have been captured well after ten revolutions as well as
revolution.

As a comparison, the original method was also applied
the Zalesak problem. The results are shown in Fig. 5. De
tion of the zero-level set can be seen. The error is the re
tialization error because the same advection equation so
the CIP method, was used. The error increases with time

FIG. 5. Zero-level set andf color after one revolution by Suss
man’s reinitialization with the CIP method.
1-3
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As another example, the present method was applied
hydrodynamic problem including a rigid body. In this calc
lation, we used the CIP-CUP~combined unified procedure!
method@11# based on a Poisson equation of the pressure

FIG. 6. The rectangular rigid body falling into the liquid,~a! is
the initial condition,~b! and ~c! are the snapshots after 600 tim
steps by the present method and the original level set method
spectively. A Cartesian fixed grid of 40340 was used. The rectan
gular rigid body is represented by 8312 meshes. The density rati
of gas:liquid:solid is 1.25:1000:500. The movies are available
Ref. @12#.
ds

ys
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a
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solver of multifluid flows. The results are shown in Fig. 6~b!.
The present method captured the shape of the rigid b
well, though the grid number is small. Figure 6~c! shows the
results obtained by using the original method for treatmen
the interface of the rigidbody. The results show that t
shape cannot be maintained by using the original met
because of the reinitialization error.

We have proposed a numerical method based on the l
set method for capturing moving interfaces in a Cartes
fixed grid. This method overcomes the problem of accum
lation of reinitialization error in the original method. We be
lieve that the method is useful for numerical studies of flu
phenomena with complex moving boundaries, such as b
bling flows, droplet breaking, hydraulic jumps, and bloo
flows.
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