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Numerical method for complex moving boundary problems in a Cartesian fixed grid
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We propose a numerical method to capture and track complex moving boundaries advected in flows. Our
method is based on the level set method, but it overcomes the problem of accumulation of reinitialization error
in the level set method.
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Fluid phenomena with complex moving boundarigas- The level set method has various features. The method
liquid, liquid-liquid, gas-liquid-solid, etg. appear every- can automatically treat topological change in interfaces with-
where, such as flows in rivers, kitchens, bodies, and plantsut special treatment. To precisely capture interfaces in a
Studies on these phenomena are considered challenging ag@rtesian grid, smoothing of the interface must be intro-
are important for various fields such as physics, industry, anduced. In the level set formulation, the thickness of the in-
medicine. However, numerical studies on these phenomenarface can be easily maintained because the distance from
are difficult because two different scales of a phenomena anghe interface can be obtained from the distance function. The
a complex moving boundary must be treated simultaneouslyevel set method is useful for estimating the curvatkrdo
and boundary conditions of complex shapes must be considompute the curvature, the divergence of a normal vector to
ered. Therefore, numerical studies for these problems havge interface is required. In the formulation, the normal vec-
hardly been done. In this work, a numerical algorithm fortor is always well defined from the level set function. The
these problems is proposed. curvature is calculated as follows:

In our approach, a Cartesian fixed grid is used. One ad-
vantage of using such a grid is that a grid for complex mov-
ing boundaries need not be generated. Large deformation and
topological change of interfaces can be treated because the K=V-(
grid is never distorted. However, there are some problems
such as numerical diffusion at the interface and influence of
the grid. Various techniques have been proposed to overcome
such problems. In these techniques, we consider the level SEled easily by using the continuum surface force moEE!
method[1,2] to be suitable for complex moving boundary y by g

problems. The level set method has been applied to various Alth.OUQh tgedlevel set me(;hog IS ah useful mteg‘lace- ¢
moving boundary problemi2—4]. Capturing method as mentioned above, there is a problem o

The level set method is an interface-capturing methodrelnltlahzatmn error, which is discussed below. The initial

The method expresses the surface offdr-(L) dimension as level set fur_wctlonf,s satisfies the property of the signed d'.s'
. . ‘ . tance function. However, after calculation of the advection
the zero contour of ah-dimensional function. The function

and the zero contour are called the level set function and thgquaﬂon@), fis does generally not §at|§fy the feature of the
signed distance function as shown in Figo)1 Therefore, the

zero-level set, respectively. In the level set method, the inter, . . . : ; .
. : L function must be rebuilt as the signed distance function with-
face (zero-level setis not tracked directly but implicitly Ut chanaing the position of the zero-level set: here. it is
through the level set function. In this paper, the function tha® ging P ' s
satisfies Eq(1) is used as a level set functidi, assumed that the zero-level set has r_epresented the interface.
! This procedure is called reinitializatiof8]. However, the
position of the zero-level set moves slightly in this procedure

[Fig. 1(c)]. This error is the reinitialization error. Although

Vf|s)

Vi) ®

om the curvature, the surface tension force can be calcu-

fis=0 at the interface,

|Vf|=1 forthe whole region. (1)

(@) e (o)

The function is also called a signed distance function that
represents the distance from the interface. For example, Fig.
3(d) shows the level set function of a cut-out cylindanitial
condition of the Zalesak problemas shown in Figs. &)—

3(c). The time evolution of the level set function is calcu-
lated by the advection equation

afls

. +U-Vf=0 ) FIG. 1. Schematic figure of reinitialization by the original level

set method.
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FIG. 2. Schematic figure of the present method.

the error is small, the error accumulates in each time step

because the next time evolution is calculated frigwith
the error[Fig. 1(d)]. Therefore, the accumulation of errors is
not negligible in some casér example, Figs. 5 and(6)].
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Otherf g are calculated by Sussman’s method. In the calcu-
lation, f|s computed by the fast marching method is fixed.
Sussman’s method solves the following problem to a steady
state:

dfis
2 =S(fig) (1| Vhig)), ®)

where, 7 is artificial time andSis a smoothed sign function,

fis
S(fis) = \/f= (7)

In the calculation of Eq(6), a narrow band approa¢B,3] is

The accumulation of errors will be a serious problem in casesised. The procedure is repeated udipg, without the reini-

of complex moving boundaries.

tialization error as the initial state of the next time step.

In this Rapid Communication, we propose a method to We give supplementary explanations of the procedure to
prevent the accumulation of reinitialization errors. First, anconstruct the level set functiofs from the zero contour of

outline of the numerical method is given. After the explana-

foero- fis developed by Eq(2) should be used as an initial

tion of the numerical procedure of the method, a comparisorondition of the iterative calculation of E¢6) in each time
of results obtained using the present method and those oltep. If the value of the former time step or-1], is used as

tained using the original method is presented.

an initial condition of the iteration, the number of iterations

An outline of our method is presented using Fig. 2. In ourwill become large. For the calculation of E@), high-order

method, a functiorf,.,, that is not reinitialized is used to

schemes such as the CIP method may not be needed because

track the interface. The interface is tracked through the zerathe error in the advection calculation disappears in the itera-

contour off,e, [13]. The time evolution off ¢, is calcu-
lated by the advection equatidrfa)— (b) in Fig. 2]. To
capture the interfacé.e., to compute curvature, smoothing

tive calculation of Eq(6). In this paper, we used a first-order
upwind scheme. The fast marching method can also be used
for the calculation off i beyondAh from the interface. In

etc), the level set functiorf|s is constructed from the zero this time, we did not use this method because it requires
contour off ., [Fig. 2(c)]. This gives rise to an error similar more calculation time than that required in the present
to the error that occurs in the original level set method. How-method. Although the calculation time in Sussman’s method
ever, there is no accumulation of errors in the present methois generally short, the reinitialization error is large. However,
because the time evolution is calculated frépg,, without  in our method, the error does not arise because the value
the error[Fig. 2(d)].

We will now explain the numerical procedure. The time
evolution off,.,, to track the zero-level set is calculated by
the advection equation,

(a)

(b)

afzero

ot

+U-Vf,ee=0, (4)

[(a)—(b) in Fig. 2]. As a solver of the advection equation,

we use the CIP(cubic interpolated propagatiprmethod (c) (d)
[6,7], which is less diffusive and robust. To construct the

level set functionf,; from the zero contour of,.,, [Fig. 1
2(c)], we use the fast marching methf®8] and an iterative 0-8
reinitialization scheme proposed by Sussnedral. [9] (re- 'Oﬁ

ferred to hereafter as Sussman’s mejh@&ifore using these
methods, the position of the zero contourfgf,, is calcu-
lated by interpolating between grids. In this time, linear in-
terpolation is used. From the zero contofig within Ah FIG. 3. (a) Configuration of the Zalesak problem. The value of
(whereAh is the grid spacingfrom the zero contour of,¢;,  fcolor inside the cut-out cylinder is 1, others is(B), (c), and(d) are

are computed by the fast marching method, solving the Eiperspective views of oo, the zero-level set and the level set
konal equation function (signed distance functigrof the initial condition, respec-
tively. The rotation speed is such that one complete revolution is
performed in 628 steps. Cartesian fixed grids of Q00 were
used.

[Viis[=1 5
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around the zero-level set computed by the fast marching 0 if fle<-—a
method has been fixed in the iteration.

A color (density function f, ., that is used to define the H,(f1s)= } 1+ E + 15in<77f|sﬂ it |fielsa
physical properties for different materials can be generated - A
from a smoothed Heaviside function 1 if fig>a,
9
feoror=Halfis), (8)

where 2« represents the thickness of the interface. In the
level set formulation, the thickness can be easily controlled
because the level set function has a feature of the distance
— function.

As a testing problem, we applied the present method to a
two-dimensional rigid body rotation problem, called a Zale-

g
sak problen]10], as shown in Fig. 3. As an initial condition
of the Zalesak problem

1,  J(i—-51)%+(j—76)?°<16
ferdX,y)=4 and j=86 ofi—51>2 (10
(a) —1, others,

and u=2x(jAy—51Ay), v=-27(iAXx—51Ax) were
used. Heras andv are the velocity components &fandy,
respectively. Figure 4 shows the results after one revolution
and ten revolutions by the present method. The interfaces
have been captured well after ten revolutions as well as one
revolution.

As a comparison, the original method was also applied to
the Zalesak problem. The results are shown in Fig. 5. Devia-
tion of the zero-level set can be seen. The error is the reini-
tialization error because the same advection equation solver,
the CIP method, was used. The error increases with time.

(a) \

FIG. 4. Results after one revolutigfa) and (b)] and ten revo-
lutions [(c) and(d)] by using the present metho@) and(c) show
the zero-level set with the exact solutiofin) and (d) show the FIG. 5. Zero-level set and.,,, after one revolution by Suss-
profiles of f.q/0;- man'’s reinitialization with the CIP method.
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solver of multifluid flows. The results are shown in Figb

The present method captured the shape of the rigid body

well, though the grid number is small. Figur&cbshows the
results obtained by using the original method for treatment of

‘ . the interface of the rigidbody. The results show that the
shape cannot be maintained by using the original method

because of the reinitialization error.

Ioiial Segeel  Bresenh mekhod Origimal meshod We have proposed a numerical method based on the level

FIG. 6. The rectangular rigid body falling into the liqui@) is s_et met_hod f(_)r capturing moving interfaces in a Cartesian
the initial condition, (b) and (c) are the snapshots after 600 time x€d grid. This method overcomes the problem of accumu-

steps by the present method and the original level set method, ré@tion of reinitialization error in the original method. We be-
spectively. A Cartesian fixed grid of 4040 was used. The rectan- l1€ve that the method is useful for numerical studies of fluid
gular rigid body is represented by<8L2 meshes. The density ratio Phenomena with complex moving boundaries, such as bub-
of gas:liquid:solid is 1.25:1000:500. The movies are available inbling flows, droplet breaking, hydraulic jumps, and blood
Ref.[12]. flows.
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