
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 67, 045701~R! ~2003!
Numerical method for a moving solid object in flows

Kensuke Yokoi
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~Received 10 January 2003; published 29 April 2003!

We propose a numerical method for dealing with a moving solid body that interacts with a complex liquid
surface. The method is based on the level set method, the CIP method, and the ghost fluid method. The validity
of the method was shown by applying it to Poiseuille and Couette flow problems. The method can precisely
capture the boundary layer as well as a moving solid object.
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Fluid phenomena, in which there is an interaction b
tween a moving solid object and fluid are often observed
daily life. Although numerical studies on these phenome
are important for various research fields, the numerical s
ies are difficult because of complicated treatments for a m
ing boundary and its boundary condition. There is a need
a numerical method that can treat interaction of a mov
solid body with fluid without complicated treatments such
mesh generation, marker particles, and cut cells for mov
boundaries.

Numerical simulation of interaction between a rigid bo
and a complex interfacial flow has been conducted by us
the TFT ~tangent function transfer! method as an interface
capturing method in a finite difference framework on a C
tesian fixed grid system@1,2#. As different type of methods
the immersed boundary method@3# and the Cartesin grid
projection method@4# have been widely used for the prob
lem. Xiao’s method can automatically satisfy the continu
conditions across the interface by solving a Poisson equa
of pressure over the entire computational domain, includ
the solid region. The force and torque for a solid object
calculated by summing the force and torque over all of
grid points in the region of the solid. Although the method
useful, there are some problems with interface treatme
Figure 1 shows snapshots of the numerical simulation by
TFT method. The flat interface becomes bumpy becaus
the influence of the mesh in a small number of grids
shown in Fig. 1 (t51.8). This is because the TFT metho
captures the interface as a sharp discontinuity. Sometime
uneven interface generates an unreal pressure field. Ano
problem is that an appropriate no-slip condition is not i
posed on the solid body. In this Rapid Communication,
modify the method@1,2# to overcome these problems by in
corporating the level set method@5–7# and the ghost fluid
method@8,9#.

The level set method is an interface-capturing method
has been applied to various moving boundary proble
@6,10,11#. This method expresses the surface of anN21 di-
mension as the zero level~or contour! of an N-dimensional
level set functionc. In general, the signed distance functio

c50 at the interface,

u“cu51 for the whole region ~1!
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is widely used as the level set function. To track the interfa
in the velocity fieldu, the advection equation

]c

]t
1u•“c50 ~2!

is used. To maintain the property of the sign distance fu
tion, reinitialization is done by solving the following prob
lem to a steady state,

]c

]t l
5S~c0!~12u“cu!, ~3!

wheret l is a fictitious time andS is a smoothed sign function
S(c0)5c0 /Ac0

21«2. See Ref.@7# for more details.
An advantage of the level set method is that the meth

can automatically treat topological change in interfaces w
out special treatment. Smoothing of the interface must
carried out to precisely capture interfaces in a Cartesian g
In the level set formulation, the thickness of the interface c
be easily maintained. The unit normal is always well defin
from the level set function

n5
“c

u“cu
. ~4!

The unit normal is useful for detecting the position of t
interface by using the distance function and for estimat
the curvature, which is used to calculate the surface ten
force @12#. These properties play an important role in capt

FIG. 1. Snapshots of the numerical simulation by the T
method. The rectangular rigid body falls into a liquid surface. T
left and right figures show the initial condition and the snapsho
t51.8, respectively. The TFT method has been used only for
solid interface. For the liquid interface, the level set method
been used. 40340 computational grids are used. The initial recta
gular rigid body is represented by 8312 meshes.
©2003 The American Physical Society01-1
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ing a flat interface in a Cartesian grid and in implement
the ghost fluid method for a boundary condition on the so
object.

To impose a boundary condition on a solid object, we u
the ghost fluid method@8# or the zero-velocity fix technique
@9#. The ghost fluid method is simple and effective for imp
menting a boundary condition on a solid body in finite d
ference framework. In this method, imaginary cells called
ghost cells are placed within a few grids from the interface
the solid region. The variables of fluid near the interface
extrapolated into the ghost cells to satisfy the boundary c
dition on the solid surface. We have used the ghost fl
method only for the calculation of velocity. The pressu
boundary condition is computed by solving the press
Poisson equation over all the computational domain, incl
ing the solid region like Xiao’s work@1,2#. The zero-velocity
fix technique to impose a no-slip condition for a stationa
solid wall has been proposed. Therefore, we modified
method in order to be able to apply it to a moving so
object.

We use the following governing equations,

“•u50, ~5!

]u

]t
1~u•“ !u52

“p

r
1

“•t

r
1

f

r
, ~6!

whereu is the velocity,p is the pressure,r is the density,t
is the viscous stress tensor, andf is the body force. The
governing equations are solved by the CIP-CUP~cubic inter-
polated propagation combined unified procedure! method
@1,2,13#. In this method, a fractional step approach on time
used. The governing equations are split into an advec
step and a nonadvection step. The advection step and
nonadvection step are computed by the CIP method and
CUP method, respectively. The CIP method@16,17# is a less-
diffusive and stable algorithm for solving the advecti
equation. The CUP method, which is based on a pres
Poisson equation such as the Mac method@14# and the pro-
jection method@4,15#, is used for treating the multiphas
flows.

To track the interface, we use a modified level set meth
@18# to avoid a reinitialization error that arises in the rein
tialization procedure. In this method, a functionczero that is
not reinitialized is used to track the interface. The interfac
tracked through the zero contour ofczero, which is free from
reinitialization errors. The time evolution ofczero is calcu-
lated by advection equation~2!. In this study, we use the CIP
method @16,17# as an advection equation solver. Althoug
the CIP method requires a relative large amount of com
tational memory, it achieves good performance. To cap
the interface~i.e., to compute unit normal, smoothing, etc!,
the level set functionc is constructed from the zero-contou
of czero by using the fast marching method@6,19# and the
level set method@7#. A color ~density! functionf that is used
to define the physical properties for different materials c
be generated from a smoothed Heaviside function. See
@18# for details.
04570
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To impose a no-slip condition on the solid interface, t
velocity ughost on the ghost cells is estimated by a line
extrapolation using the level set function as follows:

ughost5
cghost

c f luid
uf luid1S 12

cghost

c f luid
Dusur f , ~7!

here,uf luid and usur f are the velocity near the solid in th
fluid and the velocity of the solid surface, respectively,
shown in Fig. 2.cghost is the level set function at the pos
tion whereughost is defined. From the definition of Eq.~7!,
the order of accuracy of the velocity boundary condition is
the first order. In this study, we usedc f luid57Dx, where
‘‘ 2 ’’ sign is used forc f luid,0 and ‘‘1 ’’ is used for c f luid
.0. uf luid is derived by solving the following equation:

]u

]tg
6n•“u50, ~8!

here ‘‘1 ’’ sign is for cghost.0, ‘‘ 2 ’’ is for cghost,0, and
tg is an artificial time, in this case,Dtg5ucghostu1uc f luidu.

We use a semi-Lagrangian approach to solve Eq.~8! be-
causenDtg is usually more thanDx ~i.e., CFL number. 1!
as shown in Fig. 2. We use a first-order semi-Lagrang
scheme. Although we also tried a high-order sem
Lagrangian scheme based on the CIP method@20#, there was
almost no difference in the results. Therefore, the first-or
scheme seems to be sufficient for the calculation of Eq.~8!.

In the first-order semi-Lagrangian formulation, the inte
polation function is constructed using the grid points s
rounding the position whereuf luid is defined, marked by the
black circles in Fig. 2. We use the following interpolatio
function:

F~x,y!5a11XY1 f xX1 f yY1 f i 8, j 8 , ~9!

X5x2xi 8, j 8 , Y5y2yi 8, j 8 ,

f x5
f iup8, j 82 f i 8, j 8

Dx
, f y5

f i 8, jup82 f i 8, j 8
Dy

,

a115
f iup8, jup82 f i 8, j 8

DxDy
2

f xDx1 f yDy

DxDy
,

FIG. 2. Schematic figure of the ghost fluid method. The cu
represents the solid interface. This is forcghost.0. If cghost,0,
replace2n by n.
1-2
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here i 85 i 1 int(2nxDtg /uDxu), iup85 i 81sgn(2nxDtg),
Dx5xiup8, j 82xi 8, j 8 , int(a) means the integer part ofa.
uf luid can be computed fromF(xi , j2nxDtg ,yi , j2nyDtg) or
F(xi 8, j 82mod(nxDtg /uDxu), yi 8, j 82mod(nyDtg/uDyu),
where mod(a/b) means the reminder ofa/b.

To check the validity of our method, we used it for sol
ing the two-dimensional Poiseuille and Couette flow pro
lems.

The theoretical solution of the Poiseuille flow is

ux5
a2

2m S 2
dp

dyD S 12
x2

a2D ,

wherea is a wall width. Figure 3 shows a comparison b
tween the numerical results and theoretical solutions for v
ous wall widths. The velocity profiles agree well with th
analytical solutions even in a small number of grids.

To validate Eq.~7! for a moving wall and the influence o
a rectangular grid for a circular shape, the method was
plied for a Couette flow problem. The configuration is sho

FIG. 3. Comparison between the numerical and theoretical
locity profiles for various wall widths. The dots and lines repres
the numerical and theoretical solutions, respectively. The visco
coefficient m54.931023 Pa s, dp/dy5100 Pa/m, andDx5Dy
51 mm are used.

FIG. 4. Configuration of a Couette flow.
04570
-

-
i-

p-

in Fig. 4. Liquid is put in a cylinder and the cylinder i
rotated at a constant angular velocityvcyl . Then the theoret-
ical solution of the velocity profile isv(r )5vcylr cyl , here
r cyl is the radius of the cylinder. In this simulation, the sha
of the cylinder is imposed through the level set functi
analyticallyc(x,y)5Ax21y22r cyl . Therefore, the shape i
represented well in the grid system. The rotation of t
rigid body is expressed throughusur f on the ghost cells,
usur f,x52vcylycyl52vcylr cylny and usur f,y5vcylxcyl

5vcylr cylnx here,cghost.0. If cghost,0, replacenx andny

with 2nx and2ny . Figure 5 shows a comparison betwe
the numerical and theoretical solutions. The dots show thy
velocity component on thex axis. The results show that Eq
~7! is appropriate and that the method is appropriate for tre
ing a circular shape in a Cartesian grid.

Numerical convergence studies are performed for the P
seuille problem of the wall width of 3.8 mm and the Coue
problem of the cylinder of radius 4.3 mm. The error is d
fined asError5uusim2uexactu/uuexactu, hereuexact and usim
are the velocities of the exact solution and the simulati
respectively. These errors are declined linearly as show
Table I. The results show that the method has first-order
curacy.

We applied the method to a fluid problem in which a rig
body interacts with a complex liquid interface in a gravit
tional field. The motion of a solid body suspended in a flo
is determined byusolid5ucenter1r3v, whereucenter is the

TABLE I. Results of the numerical convergence studies.Errorp

andErrorc are the errors for the velocity atx50 in the Poiseuille
flow problem and atradius of about 4.0 mm in the Couette flow
problem, respectively.

Grid spacing 1 mm 0.5 mm 0.25 mm

Errorp 2.1631022 1.0331022 4.6731023

Errorc 3.7531022 2.0031022 1.2331022

e-
t
ty

FIG. 5. The dots and lines represent the numerical and theo
ical solutions, respectively. As the radii of the cylinder, 2.7 and
mm are used. The angular velocityvcyl51.0.
1-3
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velocity at the mass center,r is the vector from the mas
center, andv is the angular velocity. The dynamics is dete
mined by the equations

d

dt
~Mucenter!5F5E r

du

dt
fsdV ~10!

FIG. 6. Time series of the numerical simulation of interacti
between the rigid body and the liquid surface. The density ratio
gas:liquid:solid is 1.25:1000:500. The movies are available on R
@21#.
ds

04570
and

d

dt
~ I•v!5T5E S r3r

du

dt DfsdV, ~11!

hereM is the mass of the solid,F is the force for the solid
body,fs is the color function of the solid,I is the tensor of
inertia moment, andT is the torque. The force and the torqu
are calculated by a volume force formulation. See Refs.@1,2#
for more details. In this calculation,usur f of Eq. ~7! is cal-
culated from usur f5ucenter1@r1ucghostu(2n)#3v. The
time series of the results are shown in Fig. 6. The rectang
rigid body is fixed on the liquid surface@21# initially and is
released with a perturbation in angular speed. This sim
tion was done on 40340 rectangular fixed grids. The initia
rigid body is represented by 8312 grids.

We have proposed a numerical method based on the l
set method, CIP method, and the ghost fluid method for c
turing a moving solid object that interacts with fluid in
Cartesian fixed grid. The validity of the method has be
shown by the test problems of the Couette and Poiseu
flows. The results of simulation of a rigid falling into th
liquid show that the method precisely captures a mov
solid object and liquid surface in a small number of grids a
that the model is robust.
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