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Numerical method for a moving solid object in flows
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We propose a numerical method for dealing with a moving solid body that interacts with a complex liquid
surface. The method is based on the level set method, the CIP method, and the ghost fluid method. The validity
of the method was shown by applying it to Poiseuille and Couette flow problems. The method can precisely
capture the boundary layer as well as a moving solid object.
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Fluid phenomena, in which there is an interaction be-is widely used as the level set function. To track the interface
tween a moving solid object and fluid are often observed irin the velocity fieldu, the advection equation
daily life. Although numerical studies on these phenomena
are important for various research fields, the numerical stud- Iy
ies are difficult because of complicated treatments for a mov- gt +u-Vy=0 @
ing boundary and its boundary condition. There is a need for
a numerical method that can treat interaction of a movings used. To maintain the property of the sign distance func-
solid body with fluid without complicated treatments such astion, reinitialization is done by solving the following prob-
mesh generation, marker particles, and cut cells for movingem to a steady state,
boundaries.

Numerical simulation of interaction between a rigid body P
and a complex interfacial flow has been conducted by using a_hzs(‘ﬂo)(l— V), 3
the TFT (tangent function transfgmethod as an interface-
capturing method in a finite difference framework on a Car-wheret, is a fictitious time andis a smoothed sign function
tesian fixed grid systerfil,2|. As different type of methods, g(y )= ol U2+ 2. See Ref[7] for more details.
the immersed boundary methd8] and the Cartesin grid ~ An advantage of the level set method is that the method
projection method4] have been widely used for the prob- can automatically treat topological change in interfaces with-
lem. Xiao's method can automatically satisfy the continuity oyt special treatment. Smoothing of the interface must be
conditions across the interface by solving a Poisson equatiogarried out to precisely capture interfaces in a Cartesian grid.
of pressure over the entire computational domain, includingp, the level set formulation, the thickness of the interface can

the solid region. The force and torque for a solid object arge easily maintained. The unit normal is always well defined
calculated by summing the force and torque over all of thg,gm the level set function

grid points in the region of the solid. Although the method is
useful, there are some problems with interface treatments. Vi

Figure 1 shows snapshots of the numerical simulation by the n= w
TFT method. The flat interface becomes bumpy because of

tr;1e mflger:ge if tﬂi g]es_lt]h.'n a small numbe_lr_':o_lf g”?ﬁ gsl'he unit normal is useful for detecting the position of the
shown in Fig. (=1.8). This is ecause the method jnterface by using the distance function and for estimating
captures the interface as a sharp discontinuity. Sometimes thig, curvature, which is used to calculate the surface tension

uneven ir_1terface generates an unrea] pressure fi(_ald. An.Othﬁfrce[lz]. These properties play an important role in captur-
problem is that an appropriate no-slip condition is not im-

posed on the solid body. In this Rapid Communication, we
modify the method1,2] to overcome these problems by in- t=0.0 t=1.8
corporating the level set methd8—7] and the ghost fluid
method[8,9].

The level set method is an interface-capturing method and
has been applied to various moving boundary problems
[6,10,17. This method expresses the surface ohNanl di-
mension as the zero levébr contouj of an N-dimensional
level set functiony. In general, the signed distance function

4

FIG. 1. Snapshots of the numerical simulation by the TFT
method. The rectangular rigid body falls into a liquid surface. The
left and right figures show the initial condition and the snapshot at
t=1.8, respectively. The TFT method has been used only for the
solid interface. For the liquid interface, the level set method has
been used. 4040 computational grids are used. The initial rectan-
|Vy|=1 forthe whole region (1)  gular rigid body is represented byx82 meshes.

=0 at the interface,
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ing a flat interface in a Cartesian grid and in implementing
the ghost fluid method for a boundary condition on the solid
object.

To impose a boundary condition on a solid object, we use
the ghost fluid metho@8] or the zero-velocity fix technique
[9]. The ghost fluid method is simple and effective for imple-
menting a boundary condition on a solid body in finite dif-
ference framework. In this method, imaginary cells called the FIG. 2. Schematic figure of the ghost fluid method. The curve
ghost cells are placed within a few grids from the interface inéPresents the solid interface. This is #gnose>0. If ¥gnosi<0.
the solid region. The variables of fluid near the interface ardePlace—n by n.
extrapolated into the ghost cells to satisfy the boundary con-
dition on the solid surface. We have used the ghost fluid ) ) . L
method only for the calculation of velocity. The pressure 1° iMPose a no-slip condition on the solid interface, the
boundary condition is computed by solving the pressur/€/0City Ughost ON the ghost cells is estimated by a linear
Poisson equation over all the computational domain, includ€Xtrapolation using the level set function as follows:
ing the solid region like Xiao's workl,2]. The zero-velocity

fix technique to impose a no-slip condition for a stationary Pghost Pghost

solid wall has been proposed. Therefore, we modified the ughost:lp—_ufluid'i_ 1—11,—, Usurf s (7)
method in order to be able to apply it to a moving solid fluid fluid

object.

here, us,ig and ug,,s are the velocity near the solid in the
fluid and the velocity of the solid surface, respectively, as
shown in Fig. 2.¢gn0stiS the level set function at the posi-

We use the following governing equations,

V-u=0, (3 tion whereugpos;is defined. From the definition of E¢7),

the order of accuracy of the velocity boundary condition is of
Ju Vp V.7 f the first order. In this study, we useft, ;= + AX, where
5 Tu-Vju=-— 7+ T+ o (6)  *—"sign is used forys,ig<<0 and “+” is used for ¢ iq

>0. usyiq is derived by solving the following equation:

whereu is the velocity,p is the pressurey is the densityr

is the viscous stress tensor, ahds the body force. The a—u+n.Vu=0 ®)
governing equations are solved by the CIP-Qld&bic inter- aty '

polated propagation combined unified procedungethod

[1,2,13. In this method, a fractional step approach on time ishere “+” sign is for ¢gnese>0, “—"is for gnes<0, and

used. The governing equations are split into an advectiony is an artificial time, in this case\ty=|gnos{ + | ¥fiuidl -
step and a nonadvection step. The advection step and the We use a semi-Lagrangian approach to solve (Bybe-
nonadvection step are computed by the CIP method and thmusenAtg is usually more thax (i.e., CFL number> 1)
CUP method, respectively. The CIP methd6,17 is aless- as shown in Fig. 2. We use a first-order semi-Lagrangian
diffusive and stable algorithm for solving the advectionscheme. Although we also tried a high-order semi-
equation. The CUP method, which is based on a pressuteagrangian scheme based on the CIP mefl26d, there was
Poisson equation such as the Mac methbg] and the pro- almost no difference in the results. Therefore, the first-order
jection method[4,15], is used for treating the multiphase scheme seems to be sufficient for the calculation of (Bg.
flows. In the first-order semi-Lagrangian formulation, the inter-
To track the interface, we use a modified level set methogbolation function is constructed using the grid points sur-
[18] to avoid a reinitialization error that arises in the reini- rounding the position wherey,,;4 is defined, marked by the
tialization procedure. In this method, a functign,,thatis  black circles in Fig. 2. We use the following interpolation
not reinitialized is used to track the interface. The interface igunction:
tracked through the zero contour ®f,,,, which is free from
reinitialization errors. The time evolution of,.,, is calcu-
lated by advection equatid@). In this study, we use the CIP
method[16,17 as an advection equation solver. Although
the CIP method requires a relative large amount of compu- X=X=Xirjr, Y=y—Virj,
tational memory, it achieves good performance. To capture ’ '
the interface(i.e., to compute unit normal, smoothing, etc.
the level set function) is constructed from the zero-contour o _
of ¥,er0 Dy using the fast marching meth¢@,19] and the X Ax oy Ay '
level set methodl7]. A color (density function ¢ that is used
to define the physical properties for different materials can
be generated from a smoothed Heaviside function. See Ref. a _fiwprjupr —firj - fAX+TyAy
[18] for details. e AxAy AxAy

F(x,y)=ap XY+ X+f Y+ 5 0, (9)

fiUp',j/_fi',j’ f fi’,jup’_fi’,j’

045701-2



NUMERICAL METHOD FOR A MOVING SOLID OBJECT IN FLOWS

RAPID COMMUNICATIONS

PHYSICAL REVIEW B7, 045701R) (2003

0 0.01 T
Radius=2.7mm =
-0.05 Radius=4.3mm  +
’ Exact solution -
-0.1 0.005 g
2 015 T
.E. E‘ ﬁ",.m
P 02 = O 2 @ 8 @8 8 8 O ,‘m".‘ D DB B B @ @ &
(3] S .
o 8 o
2 025} 2 o
ke
03 g -0.005 | ’ g
¥ ,,*'/
-0.35 | *®
-0.4 . . . 0.01 L~ . . )
-0.01 -0.005 0 0.005 -0.01 -0.005 0 0.005 0.01
x [m] Radius [m]

FIG. 3. Comparison between the numerical and theoretical ve- FIG. 5. The dots and lines represent the numerical and theoret-
locity profiles for various wall widths. The dots and lines representical solutions, respectively. As the radii of the cylinder, 2.7 and 4.3
the numerical and theoretical solutions, respectively. The viscositynm are used. The angular velociby,,=1.0.
coefficient u=4.9x 103 Pas, dp/dy=100 Pa/m, andAx=Ay
=1 mm are used.

in Fig. 4. Liquid is put in a cylinder and the cylinder is
rotated at a constant angular velocity, . Then the theoret-
ical solution of the velocity profile i® (r)=wcyrcy, here
I'cy1 IS the radius of the cylinder. In this simulation, the shape
F(x;r ; —mod(nyAty/|AX]), Yir jr—mod(nyAty/|Ay]), of the cylinder is imposed through the level set function
where modé/b) means the reminder af/b. analytically (x,y) = \x>+y?—r.y,. Therefore, the shape is
To check the validity of our method, we used it for solv- represented well in the grid system. The rotation of the

here i’ =i+int(—nAty/|AX|), iup’=i’+sgn(—nAty),
AX=Xjypr,j»—Xir,j, int(@) means the integer part .
Usiuig can be computed frork (x; ;—nAtg,y; ;—nyAtg) or

a2

U= 7g

ing the two-dimensional Poiseuille and Couette flow prob-figid body is expressed throughg,+ on the ghost cells,
lems. Usurfx™ — @WeylYeyl™ — Wcyil cyiNy and Usurf,y™ @WeyXeyl
The theoretical solution of the Poiseuille flow is = eyl cyNy here,idgnose> 0. If ¢ghosi<0, replacen, andny,
with —n, and —n,. Figure 5 shows a comparison between
the numerical and theoretical solutions. The dots showythe
dp %2 velocity component on the axis. The results show that Eq.
- d_y) 1- a_ , (7) is appropriate and that the method is appropriate for treat-
ing a circular shape in a Cartesian grid.

Numerical convergence studies are performed for the Poi-

) ) ) ) seuille problem of the wall width of 3.8 mm and the Couette

wherea is a wall width. Figure 3 shows a comparison be- ,oplem of the cylinder of radius 4.3 mm. The error is de-

tween the qumencal results _and thgoretlcal solutlons_for Varifined asEMor=|Usim— Uexact/|Uexacl, NEr€Uayact and Ui,

ous wall widths. The velocity profiles agree well with the zra the velocities of the exact solution and the simulation,
analytical solutions even in a small number of grids. respectively. These errors are declined linearly as shown in
To validate Eq/(7) for a moving wall and the influence of Tapje | The results show that the method has first-order ac-
a rectangular grid for a circular shape, the method was aRsyracy.
plied for a Couette flow problem. The configuration is shown e applied the method to a fluid problem in which a rigid
body interacts with a complex liquid interface in a gravita-
tional field. The motion of a solid body suspended in a flow
is determined byugojig= Ucentert I X @, WhereUgapier is the

TABLE |. Results of the numerical convergence studisor
andError, are the errors for the velocity at=0 in the Poiseuille
flow problem and atadius of about 4.0 mm in the Couette flow
problem, respectively.

Grid spacing 1 mm 0.5 mm 0.25 mm
Error, 216102  1.03x102  4.67x10°®
Error, 3.75x10°2 2.00x10 2 1.23x10°2

FIG. 4. Configuration of a Couette flow.
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1-0.6 and

d du
au-w):T:f rXpa)d)st, (11)

t=0.0
hereM is the mass of the solid; is the force for the solid

are calculated by a volume force formulation. See Réfg]
- for more details. In this calculationy,, ; of Eq. (7) is cal-
: culated from Ugys=Ugentert [T +|¥gnost(—N) X ®. The
time series of the results are shown in Fig. 6. The rectangular
rigid body is fixed on the liquid surfad®1] initially and is
t-1.8 t=2.1 t=2.4
rigid body is represented by>812 grids.
We have proposed a numerical method based on the level
set method, CIP method, and the ghost fluid method for cap-
turing a moving solid object that interacts with fluid in a
Cartesian fixed grid. The validity of the method has been
) ) _ ) _ _ ~ shown by the test problems of the Couette and Poiseuille
FIG. 6. Time series of the numerical simulation of interaction fj\ws  The results of simulation of a rigid falling into the
between the rigid body and the liquid surface. The density ratio Oﬁiquid show that the method precisely captures a moving

-- body, ¢ is the color function of the solid, is the tensor of
released with a perturbation in angular speed. This simula-
gas:liquid:solid is 1.25:1000:500. The movies are available on Ref

=0.9 t=1.2 =15 inertia moment, and is the torque. The force and the torque
tion was done on 4040 rectangular fixed grids. The initial
solid object and liquid surface in a small number of grids and

[21]. that the model is robust.
velocity at the mass center, is the vector from the mass I would like to thank Feng Xiao and Hao Liu for their
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dt dt financial support and the Basic Science Grant.
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