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Abstract

This paper is presented in the context of a gradual move from energy management at a Building level to

energy management at Component level. This move requires specific energy consumption and power

demand benchmarks to allow measured component energy use and power demands to be put into

context. The paper presents a methodology for collecting and collating the data needed for producing

these benchmarks from measured operational data. This methodology was tested in the European

iSERVcmb project. Example benchmarks from iSERVcmb are provided along with links to the full published

data. The paper concludes that large scale measurement and comparison of detailed operational data are

possible and useful in support of achieving operationally low energy buildings.

Practical application: The explosion of low-cost operational data availability at the level of individual

components can be used to improve understanding of their operational energy efficiency in the context of

the overall efficiency of a building. The paper shows this data can:

. Be collected from all types of buildings across all EU Member States

. Produce benchmark ranges of operational energy consumption and power demands at the level of individual
components serving given activities

Applying this benchmarked data in the design and operation of buildings will:

. Improve their operational energy efficiency,

. Enable legislation using this data to show compliance

Keywords

Energy, power, benchmarks, HVAC, components, measurements, Europe, standards

Introduction

This paper examines how detailed energy con-
sumption data can be used to help produce
benchmarks of operational energy use and
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power demands in building HVAC components.
It is part of a wider body of work started
in the IEE HARMONAC Project (www.harm
onac.info) and continued through into the
iSERVcmb project (www.iservcmb.info). The
individual HVAC component operational per-
formance data derived from the measured data
for iSERVcmb are available to download from
the iSERVcmb website.

The paper presents the methodology used for
collecting and collating detailed, physically-
based data about HVAC components and the
buildings in which they operate. The use of a
common framework is a pre-requisite to enable
comparisons to be drawn between the consump-
tion and the power demands of individual com-
ponents in different buildings.

The use of Operational Data to Benchmark
Buildings is now gaining commercial credence,
with schemes such as the Australian NABERS
Rating System1 using operational data at their
core, and the mass collection of building oper-
ational data underpinning the database2 operated
by the US Office of Energy Efficiency &
Renewable Energy. CIBSE also provide a guide
to evaluating the operational energy performance
of buildings3 and there is a growing body of work
around the world that is now using these new
operational data streams to provide a better
understanding of the use of energy in buildings
and systems. From a bottom-up viewpoint,
manufacturers are also attempting to leverage
this information in the form of add-on commer-
cial products with companies now starting to
market the abilities of their products to provide
real-time insights into their performance.
However, this information often exists with no
context of what is being serviced by the compo-
nent, and therefore whether the data provided are
indicating good or poor behaviour from an
energy viewpoint.

At present, iSERVcmb is believed to be the
only approach currently benchmarking oper-
ational performance at the level of individual
components and activities, right up to whole
buildings and Estates.

This look at detailed operational energy use
and power demand data is timely because
low cost energy use data at the level of individ-
ual components and processes is now becoming
available from all aspects of the built environ-
ment. This new data availability heralds an
inevitable move from theoretical assessment of
building energy performance to measured
assessment, with all the benefits that the cer-
tainty of measurement should bring.

The aims of iSERVcmb in the context of this
paper were to establish firstly that it was prac-
tical to collect and collate data at this level of
detail, secondly to understand which parts of the
procedure were simple and which problematic
from a practice viewpoint and, finally, to estab-
lish a first set of published data on the measured
energy and power demands of the HVAC com-
ponents in the participating buildings

As this is the first time that a comparison of
European-wide continuous sub-hourly data
collection on HVAC component energy use ser-
vicing given end use activities has been
undertaken, the data produced should be con-
sidered only as a first indication of the energy
consumption and power demands being
achieved by these components in practice in
operational buildings.

Whilst not the subject of this paper directly, it
should be noted that a driving motivation for
the iSERVcmb project was the observation
from HARMONAC that providing detailed
information on the operational energy use and
power demands of individual HVAC compo-
nents often led to rapid improvements in their
performance, as the operators could see clearly
what needed to be addressed. Data obtained at
this level of detail can therefore be seen to be
applicable to both energy management practice
and legislative procedures via benchmarking.

There are many other operational and man-
agement benefits of having this data, including
business continuity, cost-optimality calculations,
etc., but the rest of this paper focusses on the
process of obtaining the energy and power
demand data.
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Background

The Energy Performance of Buildings Directive
(EPBD)4 legislation to formally provide more
accountability for energy use in European
Buildings was introduced over 11 years ago in
2002. This had at its heart measures and require-
ments which were suitable for the technology
and knowledge of building energy use at the
time. It also reflected the skills available in
the marketplace, with an eye on improving
requirements over time.

Since 2002, however, we have had a revolution
in computing, metering and communication. It is
now commonplace for us to be able to use mobile
devices to control and access information from
almost anywhere in the world. Despite their rela-
tively slow pace of change compared with other
markets, Buildings Services have not been
immune to this change and we can now use
mobile phones to turn our domestic heating on
or off, or to interrogate individual items of
Building Services plant.

It therefore seems an appropriate time to
reappraise the information we have available
to us to understand and control the energy use
of our buildings, and in particular the energy use
of Heating Ventilation and Air Conditioning
system components, to see if there is a more
effective way of assessing building energy use
which allows better understanding of opportu-
nities for reducing this consumption.

The current mainstream approach to under-
standing energy end use in buildings has been to
model the building and then use either top-down
or bottom-up approaches to estimate where the
energy is being used e.g. CIBSE TM22.5 This
has led to the emergence of the ‘performance
gap’ term where the energy consumed by the
building as a whole does not match that pre-
dicted by these models and techniques.

There is a wide body of research dealing with
the need to use measured data to calibrate
models to reduce this gap, with some examples
given in the references.3,6–9 At present, their
main conclusions are that it is possible to tune

some building models to accurately predict what
the measurements are providing – meaning
that for those particular buildings the elements
creating the energy demand are reasonably well
understood. However, most buildings do not yet
have models and are unlikely to have access to
the resources and expertise to undertake such an
exercise.

Other research examining the development of
benchmarking methodologies10–13 shows that
almost all benchmarking approaches are under-
pinned by modelling. There are at present no
building benchmarking and performance assess-
ment approaches implemented which use
operational data to provide both the bench-
marks and assessment. This paper forms part
of a procedure which proposes to introduce
such an assessment approach.

The approach used in this paper arises from
research at both the UK and European level. The
EU IEE AUDITAC project14 aimed to show the
likely impact on energy use in AC systems of
Inspection as required by EPBD Article 9.4

AUDITAC concluded that the EPBD would
not have the impact on energy use in AC systems
hoped for, mainly due to a lack of skilled
Inspectors to implement Article 9 across the
AC systems falling within its scope but also
due to a severe lack of independent data on
the actual energy use of AC systems in oper-
ational buildings. There was also a concern
(borne out by the subsequent development of
the Inspection market into primarily a compli-
ance market) about the lack of feedback on the
impact of Inspection as there was no mechanism
for assessing energy savings achieved as a result
of Inspection.

The IEE HARMONAC project15 was pro-
posed and coordinated by the author between
2007 and 2010. It obtained information from
across Europe on the energy savings identified
by Inspections compared with the energy sav-
ings identified from detailed energy metering of
42 AC systems across Europe. One of the main
conclusions was that a good Inspection would
on average identify only �37% of the energy

Knight 3

 at Cardiff University on November 24, 2015bse.sagepub.comDownloaded from 

http://bse.sagepub.com/


savings that sub-hourly energy metering sug-
gested existed. However, perhaps more import-
antly, it was clear from HARMONAC that
owners would act on the detailed meter data to
implement many of the savings identified, as the
benefits could be clearly calculated and hence
the investment risk was reduced.

iSERVcmb16 built on the findings from
HARMONAC. It proposed that empirical data
from automatic metering and physical observa-
tions should be obtained at the level of individual
HVAC components. This data, in conjunction
with knowledge of the activities served by these
components and other parameters, such as the
floor area being serviced, allowed benchmark
ranges of achieved performance to be produced,
enabling comparisons to then be made across
buildings and systems.

An important part of the procedure is that
iSERVcmb obtains the area and activity being
serviced by an HVAC component through con-
necting each HVAC component via an HVAC
system to the specific areas they service within
buildings. This means that the energy and the
power demand benchmarks derived are based
on a more focussed understanding of the actual
load being imposed on a component, rather than
whole building areas which are more commonly
used in benchmarking at present. A consequence
of this is that iSERVcmb can benchmark HVAC
system performance at the level of individual
spaces and activities – a feature that is of value
in determining appropriate benchmarks for
HVAC systems in buildings which cross trad-
itional sectoral definitions. This data also have
the potential to be of value to legislation.

The debate about how we might reappraise our
method of assessing energy use in buildings and
systems is one that the HARMONAC and
iSERVcmb projects have presented to Europe as
a whole17 and will not be covered in depth in this
paper. However, the project also demonstrated
that the actual energy use in operational buildings
can be reduced significantly and cost-effectively
through the use of detailed operational energy
use data at the level of individual HVAC
components.

The value of detailed operational data in
achieving operational energy efficiency has
already been recognised by the European
Commission following the finding from the
IEE HARMONAC project that detailed moni-
toring can help identify and reduce excessive
energy consumption in Air-Conditioning sys-
tems. As a result, the recast of the EPBD in
201018 incorporates the requirement for
Member States to ‘encourage the introduction
of intelligent metering systems’ in Article 8 as
well as specifically noting in Articles 14 and 15
(relating to the Inspection of Heating and Air-
Conditioning Systems) that ‘Member States
may reduce the frequency of such inspections
or lighten them as appropriate, where an
electronic monitoring and control system is in
place’.

The rest of this paper deals only with the
issues surrounding the derivation of compara-
tive energy use and power demands in HVAC
components and systems.

Data collection methodology

Data collection – spaces, activities,
meters and HVAC

The iSERVcmb project revealed that the great-
est uncertainty in the use of operational data is
when the data themselves are clearly ‘wrong’ for
some reason. This uncertainty most often comes
from the following:

. Poor data collection techniques and proto-
cols, including frequent meter errors and
missing data (which is particularly import-
ant for pulse meters which simply record
consumption per interval, not overall
consumption)

. Poorly installed meters, leading to larger
inaccuracies than expected

. Poor understanding of the installed metering
systems and what they are connected to

. Lack of certainty over where the HVAC com-
ponents/systems the meters are connected to
actually serve

4 Journal of Building Services Engineering Research & Technology 0(0)

 at Cardiff University on November 24, 2015bse.sagepub.comDownloaded from 

http://bse.sagepub.com/


The key to achieving meaningful results, as
with any comparative process, is to minimise
the uncertainty in the data that underpins the
benchmark ranges we intend to create. A stand-
ard methodology for collecting this data was
trialled during iSERVcmb. An Excel spread-
sheet (available for free from www.iservcmb.info
or www.k2nenergy.com) was produced as a
framework for describing a buildings’ HVAC
components, the spaces and activities they
serve, and their meters. Figure 1 shows how
the iSERVcmb spreadsheet is structured to cap-
ture these details and, as importantly, connect
the various elements to each other. The figure
also shows many of the fields to be completed.

Figure 2 shows in graphical form how the
asset data in the spreadsheet is inter-connected.

The feedback from the project for this
approach from end users is promising. The con-
cept is easy to understand as it relies on physical
data which can be described, measured and ver-
ified on site – which means the data have value
beyond the task of helping establish bench-
marks. Essentially, the spreadsheet acts as an
enhanced asset register for many of the physical
assets of the building that influence its energy
consumption. The main omission, for practical
reasons, were most of the physical descriptions

of the building and its fabric, meaning that at
this stage the framework could not be used to
model heating and cooling demands for a build-
ing in much detail. However, given that we were
recording the actual energy use of the building
which incorporated all the interactions between
occupancy, climate and fabric then this was con-
sidered an acceptable compromise at this stage.

The main hurdles to overcome for the wide-
spread use of the process are:

. It became clear from undertaking the
HARMONAC and iSERVcmb studies that
few buildings in Europe have records of this
basic information, let alone understand how
their services work in detail. This means there
is a time investment needed to provide the
initial details required. There is a case to
argue that this information should be
known by any professional before any
energy efficiency retrofit measures are
attempted, but practical and economic rea-
sons have meant that these have not been
valued in operational buildings until recently.

. With any measurement and descriptive exer-
cise there is also the scope for uncertainty.
This includes the choice of activity to describe
the primary use of a space and the more

Figure 1. Empty iSERVcmb spreadsheet showing some of the data fields to be collected.
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obvious potential for errors in the measure-
ment of area and energy use already noted.

. Achieving robust operational data collection
and transmission on a continuous basis

Data collection – energy consumption
and sensor data

Having collected and collated each building’s
physical elements, iSERVcmb then collected
the sub-hourly data for its ELECTRICAL
energy meters, and any provided sensors, at
least once a month. The iSERVcmb project col-
lected information from 330 buildings in 20 EU
Member States. The data covered 2 831 HVAC
systems, 7 685 HVAC components, 2 230m, 11
173 Spaces, 72 different Activity Types and 1
551 638 m2 of floor area. The sub-hourly data
collected for these systems covers from a few
months to over 5 years, including some historic
data. Most of this information is at 15 or 30min
time intervals.

Figure 3 shows an example of this data in the
form of a 15min carpet plot, taken from
October 2012. It shows the measured consump-
tion through the electricity meter serving a
Portuguese HVAC system consisting of
Chillers, Pumps and AHUs. This carpet plot
separates the data into 10 energy use bands,
enabling periods of high and low energy use to
be quickly identified by day and time over a spe-
cific month.

We can also view this information in the form
of scatter graphs showing time of day power
demand or energy use over an extended period.
Figure 4 shows the range of average recorded
power demand per m2 over a year for a complete
HVAC system serving the activity of ‘Generic
Check-In’ for each hour of the day for weekdays
in Portugal.

The maximum, minimum and average power
demands for the system can be clearly seen by
hour of the day for the weekdays across a whole
year. From knowledge, taken from the spread-
sheet, of the components, their nominal power

1. The meters, spaces and HVAC systems are described first in the spreadsheet
2. Then connect the meters to the HVAC components and spaces they serve
3. Then connect the HVAC components to the systems they serve
4. Finally, connect the HVAC systems to the spaces they serve

Incoming
meter

Meter 1

Chillers

Small power and lighting

HVAC system 1

HVAC system 2

NB: AN HVAC system is a
collection of components

CHW
pumps

HW pumps

AHU 1

Room 1

Room 2

Room 3

Room 4

Room 5

AHU 2

Boilers

Meter 2

Meter 3

Meter 4

Meter 5

Figure 2. Connecting the building assets.
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ratings and other components on the same meter
serving the same end uses, along with analysing
the profiles from various parts of the year, we
can apportion the power demand between the
various HVAC components that comprise the
system being metered.

The same information can be used for oper-
ational, diagnostic and benchmarking purposes.

Data reliability and accuracy

The production of benchmarks of any kind
requires confidence in the data from which

they are derived – in this instance that includes
measurements of area, activity, etc., as well as
the recorded consumed energy. For any initial
attempt at deriving this information in the real
world then, as noted earlier, there will always be
uncertainties, especially when applied across dif-
fering cultures in the EU, as with the iSERVcmb
dataset.

iSERVcmb used the RICS definition of Gross
Internal Area19 ‘the area of a building measured
to the internal face of the perimeter walls at each
floor level’ as its measure of area – which means
that individual spaces should be measured to the
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Figure 3. A Carpet Plot showing the 15-min energy use of a Portuguese HVAC system consisting of Chillers, Pumps

and AHUs in October 2012.
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centreline of any internal walls or partitions.
However, floor area within buildings submitted
to the database may not always adhere to this
standard. The paper by Warren20 on the world-
wide variation in measurement standards of
floor area across commercial buildings indicates
that the largest likely floor area measurement
variation due to different measurement practices
will be around 5% (4.8% in the paper by
Warren) across all areas supplied to the project
database. As iSERVcmb refers to spaces by indi-
vidual sizes, it is likely the room areas supplied
have been taken to the inner faces of the room
partitions rather than the partition centre lines, so
it is also more likely that the areas supplied will
be up to 5% too small rather than too large. The
error ranges calculated for iSERVcmb take this
into consideration by assuming the actual area is
in the range of 99 to 104% of the area provided.

For electricity meters, the project assumes
they have been installed correctly when the read-
ings are not clearly erroneous (in which case
these data are queried and checked by the rele-
vant iSERVcmb Partner for the EU Member

State) so a general error of �2% has been
allowed for each reading, based on UK
OFGEM guidance21 indicating a range of
+2.5% to �3.5% to be acceptable in such
meters. Other significant sources of error include
multiplication errors and corrupted data
streams, though these are relatively simpler to
identify and either correct or discard.

However, the greatest error likely to be pre-
sent with the data is associated with uncertainty
over exactly what energy end uses each meter
serves. A common finding across Europe, from
both the HARMONAC and iSERVcmb pro-
jects, has been that, along with a lack of detail
about their services, very few buildings have up-
to-date records of exactly what is served from
their metered distribution boards. When this is
combined with the uncertainty over which areas
some of the HVAC systems service, it is clear
that deriving quantitative values for ranges of
normalised ‘in use’ energy consumption and
power demands for the 2 831 EU HVAC sys-
tems in iSERVcmb requires both subjective and
objective approaches at this initial stage.

System power : Weekdays : Portugal, ANAM, P1_PULICO_PARTIDAS
50

40

30

20

W
/m
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0
0 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21

1
2
3
4
5

22 23
Timeslot

10

Figure 4. A Scattergraph plot of the average weekday power demand per m2 by time of day for an HVAC system

serving the ‘Generic Check-In’ activity in Portugal.
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For iSERVcmb, the approach used to record
the in-use energy consumption and power
demands of HVAC systems and components is
empirically-based. At this stage of their develop-
ment, benchmarks derived from this data rely on
the subjective judgement and experience of the
author to interpret the reliability of the objective
data being collected and produced. This inter-
pretation is undertaken with reference to the
larger dataset to ensure outliers are spotted
and discussed with the original provider of the
data before deciding whether to include or dis-
card the data.

The author has been continuously involved in
monitoring, analysing and predicting the energy
use of operational buildings and HVAC systems
since 1987 and has published numerous outputs
ranging from UK Energy Consumption Guides,
through Building and HVAC system energy use
publications, to the final reports from
iSERVcmb.22 This experience is important to
provide confidence in the initial operational
energy use and power demand benchmark
ranges published by iSERVcmb, examples of
which are presented here.

To summarise, iSERVcmb produced a signifi-
cant amount of information of the type pre-
sented in Figures 3 and 4 for individual
operational HVAC components. These were
metered either individually, or as part of a
system, in buildings located across 20 EU MS.
The reliability of this data for use in the bench-
marks has been manually examined and queried
where it varied significantly from other data for
the same activities and components.

It is important that the benchmarks presented
from this data are understood to be an initial
view of what is happening in practice, based
on pre-installed metering systems and building
owners understanding of their Estate assets. No
claim is made for their absolute accuracy as this
was not possible to do over such a scale and
variety of cultures within the project funding
and time constraints. What is presented there-
fore is what the participating buildings and com-
ponents would report as their energy use and
assets (including floor areas) if queried.

Operational data benchmarks

A benchmark, for the purposes of this paper, is
defined as a figure or range of figures encom-
passing the measured performance of oper-
ational components in buildings. They are
NOT considered to be STANDARDS to be
met, but the approach could form the basis of
operational data standards if needed.

Benchmark types

From the iSERVcmb data, it is clear that there
are categories of electrical energy use and power
demand that are comparable across the EU.
There are also other categories, usually to do
with geographical location and climate, which
are better dealt with through self-reference or
reference only to local consumption figures.
iSERVcmb had insufficient data to enable this
latter analysis, so the range of achieved con-
sumption and power demand figures presented
covers all systems in the EU countries – though
some of these figures are also presented at coun-
try level on the iSERVcmb website to enable
these figures to be assessed further if needed.

We will further normalise some of the data
for weather data in a later paper, but felt it was
more important at this stage to produce a set of
actual operational energy use figures with as
little normalisation as possible to enable rela-
tively ‘raw’ operational energy consumption
data to be available for the debate on what
role building services should play in achieving
low or zero energy buildings in the near future.
The only normalisation used in this paper is by
floor area in m2.

If benchmarks are to have an impact in help-
ing reduce the operational energy use of real
buildings and systems then, from iSERVcmb
and HARMONAC, they need to provide infor-
mation in a way that allows clear connections to
actions that can be taken to improve energy use
or power demand.

We can produce two main types of bench-
mark from sub-hourly Operational Data –
energy consumption (kWh) and power demands
(W). Each can be normalised by a variety of
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parameters including floor area served – the
most commonly used parameter at present.

The operational energy consumption bench-

mark is used for Operational Buildings in exist-
ing procedures, including Energy Performance
Certificates and Display Energy Certificates,
usually normalised by total floor area and
assessed over a full year i.e. kWh/m2.a. It has
the advantage of being easy to calculate for a
building through using its billed annual energy
use. At this level of detail, it has the disadvan-
tages, amongst others, of:

. Insufficient detail to know WHERE action
should be taken to improve.

. Building descriptions are too vague to allow
meaningful comparison

. Floor area is not a good parameter for bench-
marking some important activities, notably
Server rooms, LAN rooms and high density
IT rooms.

. Ignoring the value of the more detailed sub-
hourly data often available for the main
meter

. Requiring a full years’ data before a view on
the operational performance can be derived.
This makes it of limited use to commissioning
of new build or evaluation of the impact of
changes.

The main failing of this energy consumption
benchmark however, is that reductions or
increases in the kWh/m2.a figure for a building
are very difficult to attribute to their causes. This
makes it difficult to claim success from a particu-
lar energy conservation strategy or to under-
stand what has caused the increase i.e. it tells
you WHAT has happened, but not WHY or
WHERE. This leads to increased risk in
making investment decisions and poor recogni-
tion of the value of energy efficiency. This prob-
lem has led to the emergence of protocols such
as IPMVP23 to try and remedy this deficiency.

Conversely, an operational power demand

benchmark which looks at peak and average
power demands from individual components or
systems, can quickly identify where components

or systems are consuming more than would be
expected, and can do so during the important
commissioning and design phases. This bench-
mark is more suited to achieving action in redu-
cing the overall energy use of buildings but
needs to be used in conjunction with the oper-
ational energy consumption benchmark to pro-
vide an overall view of the energy efficiency of a
specific building.

For both benchmark types, the approach
used enables benchmark ranges to be produced
from measured data at the resolution level of
individual components serving individual activ-
ity types. This enables unique, tailored bench-
mark ranges for any building, space or system.
iSERVcmb showed that this level of detail
prompted action to be taken where the bench-
marks suggested savings were possible.

Having ranges of achieved performance as
the benchmarks also allows use of the measured
energy data to predict potential ranges of energy
and cost savings for each situation, enabling
cost-optimality to be quickly addressed. This
ability to predict savings is key to much existing
and future legislation.

Operational energy use and power demand
benchmark figures. The initial benchmark
types produced from the measured data, for
each HVAC component serving a specific end
use activity, are:

. ‘Annual energy use’ in kWh/m2

. ‘Power in use’ in W/m2

Future benchmark sub-types possible once
more data sources are available could include:

. ‘Monthly energy use’ in kWh/m2 for each
month of the year

. ‘Power in use’ in W/m2 by time of day and
month of year

These are likely to need to be location and
climate specific.

The data analysis undertaken to produce the
first benchmarks compared the normalised

10 Journal of Building Services Engineering Research & Technology 0(0)

 at Cardiff University on November 24, 2015bse.sagepub.comDownloaded from 

http://bse.sagepub.com/


0.9

0.8

0.7
w

/m
2

0.6

0.5

0.4

0.3

0.2

0.1

0.0

8.0

7.0

w
/m

2
w

/m
2

6.0

5.0

4.0

3.0

2.0

1.0

0.0

0.0

5.0

10.0

15.0

25.0

20.0

Min w/m2 (meas)

Average w/m2 (meas)

Min w/m2/a (bench)

Max w/m2 (meas)

Max w/m2/a (bench)

50% w/m2/a (bench)

Number of component plus sub-component samples - all activities

Minimum measured and benchmark power demands
Air handling units: Supply with heating and cooling variants

Average measured and benchmark power demands
Air handling units: Supply with heating and cooling variants

Maximum measured and benchmark power demands
Air handling units: Supply with heating and cooling variants

Number of component plus sub-component samples - all activities

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35
Number of component plus sub-component samples - all activities

Figure 5. Example of measured data vs predicted power demand/m2 benchmarks for a Supply AHU component

serving various end use activities.
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measured data with initial predictions prepared
by the author of HVAC component power and
benchmark ranges when servicing specified
activities. This was done to provide a ‘sanity

check’ to the figures produced from the mea-
sured data. The 73,000+ initial separate bench-
mark predictions were based primarily on
existing confidential commercial datasets

Air handling units - average annual kWh/m2 by activity type served
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Figure 6. Example of normalised average annual energy consumption benchmark by activity and component type.
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available to the author, along with reference to
other publications dealing with operational
energy use benchmarks, such as VDI380724

and CIBSE Guide F.25,26

An example of how operational data and
these predicted benchmarks compared for a lim-
ited sample drawn from the ‘Air Handling
Units: Supply with Heating and Cooling vari-
ants’ subset of data is shown in Figure 5. The

graphs show the minimum, average and max-
imum power demand/m2 values measured and
predicted are generally similar across a number
of end use activities taken from a range of build-
ings across the EU from warm to cold countries.

At present all benchmarks produced by
iSERVcmb are based on the /m2 parameter for
all combinations. These will evolve as the pro-
cedure is taken forward. For example, data

Air handling units - average W/m2 by activity type served
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Figure 7. Example of normalised average power demand benchmark by activity and component type.
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collected by iSERVcmb indicate that IT LAN
rooms and Servers, along with their associated
services, should be separately metered to enable
their consumption to be removed from that of
the building as a whole. This is because volume
or space occupied is a very poor guide to con-
sumption efficiency for this activity.

Other activities and processes show similar
characteristics regarding poor correlation with
floor area, and these will be discussed further
in other papers as the data are analysed in
more detail. It is important to note that the
iSERVcmb procedure is using the operational
data to show what is happening in practice
rather than assuming any form of relationship
with any parameter. This means that the oper-
ational data benchmark ranges produced can
show their derivation very clearly. Improving
the accuracy of these benchmarks will be a
trade-off between which normalisation param-
eter is the most accurate and which is the most
practical to apply in operational buildings.

Figures 6 and 7 are examples from the
iSERVcmb project27 of the average annual
energy use and power demand figures found
for operational AHUs serving various end use
activities around Europe.

From the figures, it can be seen that the mea-
sured energy use and power demands generally
confirm what might be expected for each activity
and component pair/m2, providing confidence
that this data provide a reasonable indication
of performance being achieved in use.

Conclusions

This paper presents a first look at deriving EU
Member States operational energy consumption
and power demands at the level of individual
components and activities in operational build-
ings. The key hurdles to overcome in implement-
ing such an approach are:

. The initial description of each building in the
iSERVcmb template

. Producing standards for products and pro-
cesses to meet in providing the data

. Obtaining the support of the main actors in
this area to implement the approach

. Producing legislation that supports the
approach as an alternative or complement
to existing Member State legislation

The operational data collected show that the
procedure used in iSERVcmb can be success-
fully used in all EU MS to provide information
at this level of detail. This is a key finding as the
EU strives to provide practical guidance to
achieving operationally low energy buildings in
the transition to a lower energy intensity future.
Without information at this level of detail then
achieving and maintaining low energy use and
reduced power demands in operational buildings
will be difficult to manage.

The findings are also of great value to build-
ing energy modellers as they provide potential
boundary parameters that can be used in the
modelling process to improve the accuracy
with which models can be used to predict con-
sumption and power demands in operational
buildings.

Further work is already underway to help
address many of the hurdles identified, with
practical experience in operating the approach
across a large estate being a key component of
this work. It is hoped to recruit more Estates to
the approach in the coming months.
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