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In a recent paper �Duan et al., Phys. Rev. B 73, 174203 �2006��, we derived explicit expressions for the
effective conductivities of heterogeneous media containing perfectly bonded ellipsoidal inclusions of diverse
shapes, spatial distributions, and orientations. In this paper, we take into account the effect of three types of
imperfect bonding between the inclusions and the matrix by replacing the imperfectly bonded ellipsoidal
inclusions with equivalent perfectly bonded homogeneous inclusions using the average t-matrix approximation
of the multiple-scattering approach. The explicit expressions remain unaltered in form but involve the param-
eters of the equivalent homogeneous inclusions. It is shown that our approximate scheme gives very accurate
predictions of the effective conductivity of the heterogeneous materials, while retaining the simplicity of the
explicit expressions. However, in contrast to the perfectly bonded inclusions, the effective conductivities of a
heterogeneous medium containing imperfectly bonded inclusions depend upon the size of the inclusions. This
size dependence is shown to be captured by simple scaling laws depending upon the type of bond imperfection.
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I. INTRODUCTION

The effect of imperfect interfaces between the inclusions
and the surrounding matrix on the conductivities of a hetero-
geneous medium is often captured by using a low conducting
�LC�, a high conducting �HC� interface model of zero thick-
ness, or an interphase model of finite thickness.1,2 The LC
interface is also called an interface with Kapitza thermal
resistance.3 The effect of LC interface on the effective con-
ductivities of heterogeneous media has been studied since
the 1970s.4–12 For example, Hasselman and Johnson7 ex-
tended the classical work of Maxwell and Rayleigh to derive
effective medium approximations �EMAs� for the effective
thermal conductivity of heterogeneous media containing
spherical particles or cylindrical fibers. Nan et al.11 devel-
oped a more general EMA formulation for the effective ther-
mal conductivity of a two-phase heterogeneous medium con-
taining spheroidal inclusions with interfacial thermal
resistance by exploiting the multiple-scattering approach.
Duschlbauer et al.12 analyzed the effect of an imperfect ther-
mal resistance between matrix and inclusion based on the
idea of alternately replacing the inclusion and the thermal
barrier by an equivalent inclusion with a perfect interface
and lesser conductivity. The effect of an HC-type bond im-
perfection on the effective conductivities of heterogeneous
media has been studied by Miloh and Benveniste,1 Torquato
and Rintoul,10 Cheng and Torquato,13 and Lipton,14 among
others.

The effective properties of a heterogeneous medium are
affected by four factors, namely, the locations �spatial distri-
bution�, orientations and shapes of the inclusions, and the
interface bonding condition. Some work has been reported
on the effect of two or three of these four factors on the
effective conductivities. For example, Nan et al.11 took into
account three factors, namely, the shapes of inclusions �sphe-
roids�, their orientations, and the interface bonding condi-
tion. In a recent paper,15 we have derived explicit expres-
sions for the effective conductivities of heterogeneous media

containing perfectly bonded ellipsoidal inclusions of diverse
shapes, spatial distributions, and orientations. To the authors’
best knowledge, at present, there is no scheme available to
predict the joint effect of all the above four factors on the
effective conductivities of heterogeneous media.

In the present paper, we will take into account the effect
of three types of imperfect bonding identified above by re-
placing the imperfectly bonded ellipsoidal inclusions with
equivalent perfectly bonded homogeneous inclusions using
the average t-matrix approximation of the multiple-scattering
approach. The explicit expressions derived in our recent
paper15 remain unaltered in form but now involve the param-
eters of the equivalent homogeneous inclusions. Thus, the
present scheme takes into account all the four microstruc-
tural parameters that characterize the locations �spatial dis-
tribution�, orientations and shapes of the inclusions, and the
interface bonding condition. It is shown that compared with
the available numerical results, the conductivity tensor of the
equivalent inclusion together with the explicit expressions in
the paper15 give very accurate predictions of the effective
conductivity of the heterogeneous materials, while retaining
the simplicity of these explicit expressions. However, in con-
trast to the perfectly bonded inclusions, the effective conduc-
tivities of a heterogeneous medium containing inclusions
with LC- or HC-type bond imperfection depend upon the
size of the inclusions. It is shown that this size dependence
can be captured by simple scaling laws depending upon the
type of bond imperfection.

II. FORMULATION

For a representative volume element �RVE� of an ergodic
heterogeneous medium with volume V, let q�x� denote the
local heat flux at position, x, H�x� the local intensity field,
and ��x� the temperature field. The local heat flux and
intensity fields within V can be obtained by solving the
so-called local problem described by the following basic
equations:
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� · q�x� = 0, � � H�x� = 0, H�x� = − ���x� ,

q�x� = ��x� · H�x�, or H�x� = ��x� · q�x� , �1�

where ��x� and ��x� are the second order conductivity and
resistivity tensors, respectively. Generally, the boundary con-
ditions on the boundary �V of the RVE can be specified in
one of the following two equivalent forms:

��x� = − H0 · x or q�x� · M�x� = q0 · M�x� , �2�

where x is the position vector, H0 and q0 are the constant
intensity and heat flux, respectively, and M�x� is the unit
vector normal to the boundary �V.

In order to solve the boundary-value problem, apart from
Eqs. �1� and �2� for each of the constituents �i.e., the inclu-
sions and the matrix�, the interface conditions between the
constituents must be prescribed. Below, we will summarize
the interface conditions for the three types of bond imperfec-
tion identified above.

(a) Low conducting interface (LC). The temperature field
is discontinuous across the interface, but the normal compo-
nent of the heat flux is continuous. The LC-type bond imper-
fection simulates a thin interphase with low conductivity.
The LC interface conditions are

�qn� = 0, ��� = − �qn, �3�

where qn is the normal component of the heat flux, �¯�
= �out�− �in� represents the discontinuity of a quantity across
the interface, and � is an interface parameter; �→0 denotes
an ideal interface, whereas �→� denotes adiabatic contact.

(b) High conducting interface (HC). The temperature field
is continuous across the interface, but the normal component
of the heat flux is not. The HC-type bond imperfection simu-
lates a thin interphase with high conductivity. The HC inter-
face conditions are

��� = 0, �qn� = �	S� , �4�

where 	S is the surface Laplacian of �.1 �→0 denotes an
ideal interface, whereas �→� describes contact with a me-
dium of infinite conductivity.

(c) Interphase model. The LC- and HC-type bond imper-
fections are both two-phase models in the sense that the in-
terface regions occupy no volume in the heterogeneous me-
dium, whereas the interphase model is a three-phase one
consisting of the inclusion, the interphase of finite thickness,
and the matrix. In the interphase model, perfect bonding con-
ditions are usually assumed to prevail at both the inclusion/
interphase interface 
Ic and the interphase/matrix interface

c1, i.e.,

��k� = 0, �qn
k� = 0 �k = 1,2� , �5�

where the superscript k=1,2 represents the interfaces 
Ic and

c1, respectively. ��k� and �qn

k� represent the discontinuities
in the temperature and normal heat flux at the interfaces 
Ic
and 
c1.

III. CONDUCTIVITIES WHEN THE INCLUSIONS ARE
IMPERFECTLY BONDED

The presence of bond imperfections between the ellipsoi-
dal inclusions and matrix considerably complicates the math-
ematical analysis, and it is difficult to find an analytical so-
lution of the boundary-value problem described by Eqs.
�1�–�4�, or �5�. Miloh and Benveniste1 used ellipsoidal har-
monic functions to solve the boundary-value problem with
the HC-type interface, but the resulting expressions for the
effective conductivities are very complicated and thus of lim-
ited usefulness. Therefore, in order to reveal the effect of the
bond imperfection on the conductivity properties and to ob-
tain explicit expressions which are easy to use we take an
alternative approach based on the concept of an equivalent
inclusion, i.e., a fictitious inclusion perfectly bonded to the
matrix. The key problem is to obtain the conductivity of the
equivalent inclusion corresponding to each of the three types
of bond imperfection. Once this key problem is solved we
can use all the expressions obtained in our earlier paper.15

We begin by calculating the conductivity tensor �e of the
equivalent inclusion corresponding to the ellipsoidal inclu-
sion with an interphase of finite thickness between it and the
matrix. We can then deduce by an appropriate limiting pro-
cess the conductivity tensors �e of equivalent inclusions cor-
responding to the LC- and HC-type bond imperfections.

A. Conductivities of equivalent inclusions

Let us regard an ellipsoidal inclusion with conductivity
tensor �r surrounded by a thin interphase layer of constant
thickness t and conductivity tensor �c as an equivalent inclu-
sion. It should be noted that the assumption of constant in-
terphase thickness for an arbitrary ellipsoid is only valid
when the thickness is infinitesimally small. The ellipsoidal
inclusion and ellipsoidal interphase have the same center O,
and have the same axes. The semiaxes ar, br, and cr of ellip-
soidal inclusion are aligned with the axes of z, x, and y of the
Cartesian coordinate systems, respectively. The conductivity
tensor of this equivalent inclusion can be obtained using the
average t-matrix approximation �ATA� of the multiple-
scattering approach.16,17 In particular, if both the inclusion
and the interphase constituents of this equivalent inclusion
are isotropic, then the components of its conductivity tensor
�e can be shown to be

�ie = �c +
fc��r − �c��c

�c + Sir��r − �c��1 − fc�
, �6�

where i=x ,y ,z refers to the coordinate axes, �r is the con-
ductivity of the isotropic ellipsoidal inclusion, and �c is the
conductivity of its surrounding isotropic interphase. Here,
fc=arbrcr / �ar+ t��br+ t��cr+ t�, where ar, br, and cr are the
semiaxes of the ellipsoidal inclusion, and Sir is the compo-
nent of the geometrical tensor of the ellipsoidal inclusion
given in the appendix of Duan et al.15 In theory, the above
equation is approximately valid for thin interphase layers
only. In practice, as will be shown below by numerical
computations, the results for such layers are surprisingly
accurate.
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We now pass to the limit as t→0 and �c→0, i.e., we
regard the interface thermal resistance as the limiting case of
heat conduction across the bulk phase separated by an ex-
tremely thin, poorly conducting interphase layer. As a result
we obtain the conductivity tensor components �ie of the
equivalent ellipsoidal inclusion corresponding to the LC-type
bond imperfection

�ie =
�r

1 + ��rSir� 1

ar
+

1

br
+

1

cr
� , �7�

where �� lim t→0
�c→0

�t /�c�. For the case of a spheroidal

inclusion �br=cr, �r=br /ar�, Eq. �7� reduces to

�Le =
�r

1 +
��rSLr��r + 2�

br

, �Te =
�r

1 +
��rSTr��r + 2�

br

,

�8�

where �Le=�ze and �Te=�xe=�ye.
At the other extreme, when the normal heat flux experi-

ences a jump across the interface, we pass to the limit as t
→0 and �c→�, and obtain the conductivity tensor compo-
nents of the equivalent ellipsoidal inclusion corresponding to
the HC-type bond imperfection

�ie = �r + ��1 − Sir�� 1

ar
+

1

br
+

1

cr
� , �9�

where �� lim t→0
�c→�

��ct�. For the case of a spheroidal inclu-

sion, Eq. �9� reduces to

�Le = �r + ��1 − SLr�
�r + 2

br
, �Te = �r + ��1 − STr�

�r + 2

br
.

�10�

Equations �8� and �10� are identical to those of Nan et al.11

Additional special cases are the following. If �r=1, �Le
and �Te in Eqs. �8� and �10� reduce to those for spherical
inclusions. If �r→0, �Te in Eqs. �8� and �10� reduce to those
for cylindrical fibers. Finally, if �r→�, then �Te in Eqs. �8�
and �10� reduces to that for penny sheets.

It should be emphasized that although we deduced the
conductivities �Eqs. �7�–�10�� of the equivalent inclusions
corresponding to the LC- and HC-type bond imperfections
by limiting processes from the conductivities �Eq. �6�� of the
equivalent ellipsoidal inclusion corresponding to the
interphase-type bond imperfection, the definitions of the two
interface parameters � and � are not limited to �
� lim t→0

�c→0
�t /�c� and �� lim t→0

�c→�

��ct�. Other definitions are

also possible. For example, the Kapitza resistance Rd�=��
can be measured at different temperatures by measuring the
ratio of the temperature drop to the heat flux across an
interface.10

B. Accuracy of the equivalent inclusion approximation

We will take the three-phase configuration of a spheroidal
inclusion with an interphase in an infinite matrix as an ex-
ample to solve the local fields exactly. The results of the LC-
and HC-type bond imperfections can be obtained by limiting
processes from those of the interphase-type bond imperfec-
tion. We will then use the exact local fields of a spheroidal
inclusion with an interphase in an infinite matrix subjected to
a uniform far field intensity and other known numerical re-
sults to establish the accuracy of the intensities obtained by
the present approximate scheme �Eqs. �6�–�10��. The three
regions, namely, the inclusion, the interphase and the matrix,
are isotropic and homogeneous and are labeled r, c, and 1.
The two interfaces between r and c, and between c and 1 are
denoted by L1 and L2, respectively. The outer L2 and inner L1
spheroidal surfaces have a common center O and axis of
revolution �Oz�, and they are not allowed to intersect. The
axes of x, y and z of the Cartesian coordinate system are
aligned with the semiaxes of L1 and L2. The isotropic con-
ductivities of the inclusion, interphase and matrix are de-
noted by �r, �c, and �1, respectively. In general, the position
of L2 relative to L1 can be different in this three-phase con-
figuration, e.g., the interphase can be confocal when L1 and
L2 have the same foci, it can be equithick when the inter-
phase thicknesses along the minor and major axes x, y, and z
of L1 and L2 are equal, or it can be homothetic when L1 and
L2 are homothetic. For these three relative positions of L1
and L2, the local fields �intensity and flux� of the three-phase
configuration are different, but they can be obtained by pro-
cedures similar to that described in the Appendix.

In order to examine the accuracy of the intensities ob-
tained by the present approximate scheme and by Duschl-
bauer et al.,12 we consider the case of equithickness inter-
phase and compare the temperature gradient concentration
tensors Dij

r �defined as Hi
r=Dij

r Hj
0� in the inclusion and Dij

m

�defined as Hi
m=Dij

mHj
0� in the matrix, where i , j=x ,y ,z, Hi

r

and Hi
m are the intensities in the inclusion and matrix, respec-

tively, and Hi
0 is the intensity at infinity. For a spheroidal

inclusion with an equithickness interphase in an infinite ma-
trix under a uniform far field intensity, the local fields in the
inclusion are not constant. We calculate the components Dzz

r

and Dzz
m of the intensity tensors in the inclusion and matrix

under the only nonvanishing remote intensity Hz
0. For the

three-phase configuration under the remote axisymmetric in-
tensity Hz

0, the temperature fields in Eq. �A5� of the Appen-
dix can be simplified by letting m=0, because the tempera-
ture fields are symmetrical with respect to the z axis.

Let us now compare the numerical results obtained by the
different approximate schemes with the exact solution for the
case of the LC interface. The intensities of the LC-type bond
imperfection can be obtained by a limiting process from
those of the interphase-type bond imperfection, namely, t
�ar and �c��r. Therefore, the parameters for the numeri-
cal computations are chosen as ar=2 �m, �=6
�10−8 W/m2 K, t=0.3 nm, �c=0.005 W/mK, �r
=600 W/mK, �1=17.4 W/mK, and �=5. Without repro-
ducing the tedious calculations here, the exact solutions of
Dzz

r and Dzz
m can be obtained following the procedure of the

Appendix, and the results for the chosen parameters are plot-
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ted in Fig. 1 together with the results predicted the present
approximate scheme. It is clear from Fig. 1 that the predic-
tions of present scheme are very close to the exact results
both in the inclusion and the matrix.

Duschlbauer et al.12 gave the numerical results obtained
by their approximate averaging scheme and the finite ele-

ment method for the volume average D̄zz
r in the inclusion.

For the chosen parameters, D̄zz
r =0.0312 by their approximate

averaging scheme, and D̄zz
r =0.0310 by finite element

method. The exact result is D̄zz
r =0.0317, and that by the

present scheme is D̄zz
r =0.0324. Thus, for the spheroid with a

general aspect ratio the results obtained by the present ap-
proximate scheme �Eq. �10�� are very close to the exact re-
sults and to those of Duschlbauer et al.12 Without reproduc-
ing the details here, we have also confirmed that for
inclusions in the shape of spheres, disks, and cylinders, the
results obtained by the present scheme are identical to the
exact results and to the results of Duschlbauer et al.12 The
approximate averaging scheme and the finite element method
in the paper of Duschlbauer et al.,12 furnish results in a nu-
merical form; by contrast the expressions obtained by the
present approximate scheme are in closed form, easy to use,
and just as accurate. Moreover, in Sec. V , we will show that
compared with the numerical results of Miloh and
Benveniste,1 the conductivity tensor �Eqs. �6�–�10�� of the
equivalent inclusion together with the corresponding scheme
for effective conductivity of the heterogeneous materials
give very accurate predictions for the effective conductivity
of the heterogeneous materials under consideration, and the
predictive formula is again in a simple closed form.

C. Heterogeneous medium with diverse spatial distributions
and orientations of imperfectly bonded inclusions

For an ergodic heterogeneous medium consisting of ellip-
soidal inclusions of N−1 different types in a homogeneous
matrix, the matrix will be denoted by the superscript 1, and
its conductivity tensor and volume fraction by �1 and f1,
respectively. The inclusions with conductivity tensor �r and
the volume fraction fr may differ in size, shape, orientation
and the type of bond imperfection. The effective conductivity
tensor � of such an N-phase heterogeneous medium is still
given by Eqs. �30�, �31� in the paper of Duan et al.,15 but

with �r in Eq. �31� replaced by �e of Eq. �6�, �7�, or �9�
depending on the type of bond imperfection.

In what follows, we will therefore present, without detail,
the effective conductivities of only those heterogeneous me-
dia containing inclusions with diverse orientational distribu-
tions and bond imperfections for which the results can be
compared with those available in the literature. This com-
parison will provide further validation of our approximate
approach based on the concept of the equivalent inclusion. It
will also help in revealing how the effective conductivities in
the presence of bond imperfections differ from their counter-
parts when the inclusions are perfectly bonded to the matrix.

With these two aims in mind, consider an orientational
distribution of spheroidal inclusions that is intermediate be-
tween the random and the aligned ones, for example, the
distribution with the probability density function D�
 ,��
�= 1

2� ���2+1�e−�
+�e−��/2��, where 
 and � describe the
orientation of a spheroidal inclusion.15 The effective conduc-
tivities of the heterogeneous medium with this distribution of
spheroidal inclusions are15

�T = �1 + �1���k1r	 + R1�k2r	�−1 − STV�−1, �11�

�L = �1 + �1���k1r	 + R2�k2r	�−1 − SLV�−1

in which

R1 =
18 − ���2 + 3�e−��/2

6��2 + 9�
,

R2 =
��2 + 3��3 + �e−��/2�

3��2 + 9�
, �k1r	 = 


r=2

N

k1r, �k2r	 = 

r=2

N

k2r,

k1r = fr� �1

�Tr − �1
+ STr�−1

, �12�

k2r = fr�� �1

�Lr − �1
+ SLr�−1

− � �1

�Tr − �1
+ STr�−1� ,

where SLr, STr, SLV, and STV are the components of Sr and SV
of the spheroidal inclusion and distribution spheroid, respec-
tively, given in the appendix of Duan et al.,15 but with �Lr
and �Tr replaced by �Le and �Te given by Eqs. �8� and �10�
depending on the type of bond imperfection.

As shown in Duan et al.,15 the probability density func-
tion D�
 ,�� can cover several orientations of inclusions: �a�
the random orientation, which corresponds to �=0, R1=R2
=1/3; �b� the aligned orientation, which corresponds to �
=�, R1=0, R2=1; �c� the slightly perturbed aligned orienta-
tions, corresponding to a large value of �, with R1 and R2 in
Eq. �12� being R1
3/�2, R2
1–6/�2; �d� the weakly ex-
pressed orientational preference, corresponding to a small
value of �, with R1 and R2 in Eq. �12� being R1
1/3
−� /18, R2=1/3+� /9.

(a) Random orientation ��=0�. For a two-phase hetero-
geneous medium containing randomly oriented spheroidal
inclusions with imperfect bonding, the shape of the distribu-
tion ellipsoid is a sphere, the conductivity tensor is isotropic,
so that Eqs. �11� and �12� reduce to

FIG. 1. Comparison of the exact temperature gradient concen-
tration tensors Dij

r and Dij
m with those obtained the present approxi-

mate scheme.
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�T = �L = �1 + �1
3f2�2�T + �L�

9 − f2�2�T + �L�
�13�

in which

�T =
�Te − �1

�1 + ST2��Te − �1�
, �L =

�Le − �1

�1 + SL2��Le − �1�
.

�14�

Equations �13� and �14� are not identical to those �Eq. �23��
of Nan et al.11 This is because Nan et al.11 used the Mori-
Tanaka averaging scheme18 which, for random orientation of
inclusions, does not coincide with the averaging scheme used
in our earlier paper,15 except for spherical inclusions. The
accuracy of our averaging scheme15 has been established for
the perfectly bonded ellipsoidal inclusions with random ori-
entation, for which the predictions of the counterparts of Eqs.
�13� and �14� agree very well with experimental data. We
shall return to the numerical comparison between our results
and those of Nan et al.11 later in the paper.

(b) Aligned orientation ��=��. For a two-phase hetero-
geneous medium containing aligned spheroidal inclusions
with imperfect bonds, the shape of the distribution is a spher-
oid, and Eqs. �11� and �12� reduce to

�T = �1 + �1
f2�T

1 − f2�TSTV
, �L = �1 + �1

f2�L

1 − f2�LSLV
.

�15�

When STV=ST2 and SLV=SL2, the above expressions reduce
to the results obtained by the Mori-Tanaka scheme.18 When
STV=ST2=1/2 and SLV=SL2=0, the result for a two-phase
heterogeneous medium containing aligned cylindrical fibers
coincides with that of Nan et al.11 �their Eq. �18��.

(c) Slightly perturbed aligned orientations. For a two-
phase heterogeneous medium containing spheroidal inclu-
sions with slightly perturbed aligned orientations and imper-
fect bonds, the shape of the distribution ellipsoid is a
spheroid, and Eqs. �11� and �12� reduce to

�T = �1 + �1
f2�3�L + ��2 − 3��T�

�2 − f2STV�3�L + ��2 − 3��T�
, �16�

�L = �1 + �1
f2���2 − 6��L + 6�T�

�2 − f2SLV���2 − 6��L + 6�T�
.

(d) Weakly expressed orientational preference. For a two-
phase heterogeneous medium containing spheroidal inclu-
sions with a weakly expressed orientational preference and
imperfect bonds, the shape of the distribution ellipsoid is a
spheroid, and Eqs. �11� and �12� reduce to

�T = �1 + �1
f2��12 + ���T − �� − 6��L�

18 − f2STV��12 + ���T − �� − 6��L�
, �17�

�L=�1+�1 f2��3+���L− ��−6��T�� 9− f2SLV��3+���L− ��

−6��T� .

IV. SCALING LAWS FOR SIZE-DEPENDENCE OF
CONDUCTIVITIES

From the derivation of the conductivity tensors of equiva-
lent inclusions corresponding to the LC- and HC-type bond
imperfections two intrinsic length scales automatically
emerged, namely,

llow = ��1 for LC-type imperfection, �18�

lhigh =
�

�1
for HC-type imperfection. �19�

Dimensional analysis shows that the nondimensional ef-
fective conductivities of heterogeneous media containing in-
clusions with imperfect interfaces of the LC and HC types
must depend upon the size of the inclusions. This size de-
pendence is important for the characterization of such het-
erogeneous media. The detailed size dependence of the ef-
fective conductivities can of course be investigated by a
close scrutiny of the corresponding expressions which can be
rather time consuming. However, as will be shown below,
when the intrinsic length scales are small compared with the
characteristic size of the heterogeneous medium, the size de-
pendence is accurately captured by simple scaling laws de-
pending on the type of bond imperfection. For the purposes
of illustration, we only consider a two-phase heterogeneous
medium containing spheroidal inclusions of diverse orienta-
tions but with LC or HC type of bond imperfection. The size
dependence of the effective conductivities of multiphase het-
erogeneous media with the same types of bond imperfection
also obeys similar scaling laws.

A. Scaling law for LC-type bond imperfection

The nondimensional effective conductivity of a heteroge-
neous medium with LC-type imperfect bond can be ex-
pressed as a function of the nondimensional parameter
llow/L, where L is the characteristic size of the medium. We
can expand the expressions for the components of the effec-
tive conductivity tensor in a Taylor series in the variable
llow/L. When this variable is small so that the terms of the
order two and higher can be neglected, these expressions
take the following simple form:

Hq���
Hq�L�

= 1 +
1

L
�lqllow �q = T,L� , �20�

where �lq�q=T,L� are two nondimensional parameters.
Here and in the following, the subscript q=T ,L denotes
quantities in the transverse and longitudinal directions, re-
spectively. �The subscript L for longitudinal should not be
confused with the characteristic length L�. Hq�L� denotes a
generic conductivity component corresponding to the char-
acteristic size L, and Hq��� denotes the same property when
L→� or, equivalently, when the effect of bond imperfection
is vanishingly small. For the two-phase heterogeneous me-
dium containing spheroidal inclusions, the radius R
= �a2b2

2�1/3 of the equivalent spherical inclusion, which has
the same volume as the spheroidal inclusion, is chosen as the
characteristic size L. Nan and Birringer19 have also obtained
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a simple scaling law similar to that in Eq. �20� for the ther-
mal conductivity of polycrystals.

For the two-phase heterogeneous medium containing
spheroidal inclusions with LC type of bond imperfection, the
two nondimensional parameters �lT and �lL in the transverse
and longitudinal directions are, respectively,

�lT = f2
2
2��2 + 2��2

−1/3 ST2�1 − g1�R1�
g2�R1,STV�g2�R1,1 + STV�

, �21�

�lL = f2
2
2��2 + 2��2

−1/3 ST2�1 − g1�R2�
g2�R2,SLV�g2�R2,1 + SLV�

in which 
2=�2 /�1 and

�1 = �
2 − 2�
2 − 1�ST2�2,

g1�x� = �ST2 − SL2��1 − �1 − 
2�2SL2ST2�x ,

g2�x,y� = f2�
2 − 1�2�SL2 − ST2��1 − y�x − �2ST2 + 
2SL2��1

+ �
2 − 1��f2 + ST2 − f2y�� . �22�

Note that �lT, �lL, Hq���, and Hq�L� are dependent on the
orientations �namely, on the parameters R1 and R2� and the
distribution �namely, on the parameters STV and SLV� of the
inclusions. Therefore, the parameters R1 and R2 in Eqs.
�20�–�22� have different values for the four different orienta-
tions considered above. Also, STV=SLV=1/3 for the random
orientation, and STV=ST2 and SLV=SL2 for the other three
orientations �the aligned, the slightly perturbed aligned, and
the weakly expressed orientational preference�. A compari-
son of the numerical results from the scaling law in Eqs.
�20�–�22� with the exact results from the governing expres-
sions shows that the scaling law Eqs. �20�–�22� is accurate
when llow�0.1R for prolate inclusions and llow�0.05R for
oblate inclusions. In particular, for a two-phase heteroge-
neous medium containing spherical inclusions, R1=R2=1/3,
�2=1, ST2=STV=1/3. In this case, �lT and �lL are equal to,
say, �ls

�ls =
9f2
2

2

��1 + 2f2�
2 + 2�1 − f2����1 − f2�
2 + 2 + f2�
.

�23�

A comparison of the scaling law in Eqs. �20� and �23�
with the exact results from the governing expressions shows
that it is accurate when llow�0.2R, which is a slightly larger
range of accuracy than for spheroidal inclusions. For a two-
phase heterogeneous medium containing cylindrical fibers
R1=0, R2=1, �2=0, ST2=STV=1/2, the nondimensional pa-
rameter �lf in the transverse direction is

�lf =
4f2
2

2

��1 + f2�
2 + 1 − f2���1 − f2�
2 + 1 + f2�
. �24�

Again, a comparison shows that the scaling law for the ef-
fective conductivity in the transverse direction �Eqs. �20� and
�24�� is accurate when llow�0.35R. Note that the effective
conductivity in the longitudinal direction is simply �L

= f2�2+ �1− f2��1, which shows that it is unaffected by the
bond imperfection.11

B. Scaling law for HC-type bond imperfection

Following the same procedure as in the preceding section,
the size dependence of the effective conductivities of hetero-
geneous media with HC-type bond imperfection interface
model can be shown to obey the scaling law

Hq�L�
Hq���

= 1 +
1

L
�hqlhigh �q = T,L� , �25�

where �hq�q=T,L� are two nondimensional parameters. For
a two-phase heterogeneous medium containing spheroidal
inclusions with HC-type bond imperfection, �hT and �hL, in
the transverse and longitudinal directions are, respectively,

�hT = f2��2 + 2��2
−1/3 �1 − ST2��1 − g3�R1�

g2�R1,STV�g2�R1,1 + STV�
, �26�

�hL = f2��2 + 2��2
−1/3 �1 − ST2��1 − g3�R2�

g2�R2,SLV�g2�R2,1 + SLV�

in which

g3�x� = �SL2 − ST2��
2
2 − 2�1 − 
2�2ST2�1 − ST2��x . �27�

R1, R2, STV, and SLV are identical to those for the LC-type
bond imperfection. A comparison of the predictions of the
scaling law in Eqs. �25� and �26� with the results from the
exact expressions for the effective conductivities shows that
the above scaling law is accurate when lhigh�0.1R for pro-
late inclusions and lhigh�0.05R for oblate inclusions. For a
two-phase heterogeneous medium containing spherical inclu-
sions �hs=2�ls /
2

2 �with �ls given by Eq. �23��, and scaling
law is accurate when lhigh�0.2R. For a two-phase heteroge-
neous medium containing cylindrical fibers, the nondimen-
sional parameter �hf in transverse direction is �hf =�lf /
2

2

�with �lf given by Eq. �24��, and scaling law for the effective
conductivity in the transverse direction �Eq. �25�� is accurate
when lhigh�0.35R. As before, there is no size effect in the
effective conductivity in the longitudinal direction. It should
be pointed out that Wang et al.20 have shown that the size
dependence of the effective moduli and the Eshelby tensors
of the nanostructured materials also follows a scaling law
similar to Eq. �25�.

V. NUMERICAL RESULTS

Let us compare the effective longitudinal conductivity of
a two-phase heterogeneous medium containing aligned pro-
late spheroidal inclusions with the HC-type bond imperfec-
tion predicted by Miloh and Benveniste1 who solved the
boundary-value problem using ellipsoidal harmonic func-
tions with the result obtained by the present approximate
scheme based on the concept of an equivalent homogeneous
inclusion. The shape and material parameters used in the
numerical calculations are taken from Fig. 2 in the paper of
Miloh and Benveniste,1 i.e., a1=1.02C, b1=0.201C, �2
=0.1971, and �1=5�2, where 2C denotes the distance be-
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tween the foci of the spheroid. Define two nondimensional
parameters S and �,

S =
1

f2
��L

�1
− 1�, � = log10��C−1�1

−1� . �28�

The variation of S with � is shown in Fig. 2. The numeri-
cal result of Miloh and Benveniste1 is predicted by Eq. �3.37�
in their paper, and our numerical results are obtained from
Eqs. �10�, �14�, and �15�. It is seen from Fig. 2 that on the
scale of the figure the two sets of results are practically in-
distinguishable, thus further confirming the validity and ac-
curacy of the equivalent homogeneous inclusion concept.

Next, we will compare the effective thermal conductivity
of a heterogeneous medium consisting of copper spheroids
randomly distributed in an epoxy matrix. The interface be-
tween the spheroids and the matrix has low thermal conduc-
tivity �Kapitza resistance�, i.e., the bond imperfection is of
the LC type. The shape parameter of the inclusion and ma-
terial parameters of the constituents for the numerical calcu-
lations are as follows: equivalent radius R= �a2b2

2�1/3

=50 �m, aspect ratio is �2=0.2, and �2=10�1. We choose
two values of the interface Kapitza resistance Rd�Rd=�� at
two different temperatures, namely, R / ��1��=14.8 at T
=4 K and R / ��1��=4.93 at T=3 K.10 We compare the re-
sults obtained by the present scheme �the exact results and

the results predicted by the scaling law� with those of Nan et
al.11 The comparison is shown in Figs. 3 and 4. The numeri-
cal results of Nan et al.11 are predicted using their Eq. �23�.
Our exact numerical results are obtained from Eqs. �8�, �13�,
and �14�, and the approximate results from the scaling law
Eqs. �20�–�22�. Our results are very close to those of Nan et
al.11 for small volume fractions of spheroids and deviate
from the latter as the volume fraction increases. Note that
when R / ��1��=14.8, llow=0.0676R�0.1R, whereas when
R / ��1��=4.93, llow=0.203R�0.1R. We have shown above
that the scaling law is accurate for prolate spheroids with
LC-type bond imperfection when llow�0.1R. This is borne
out by the results shown in Figs. 3 and 4.

VI. CONCLUSIONS

We have derived explicit expressions for the effective
conductivities of heterogeneous media containing imper-
fectly bonded ellipsoidal inclusions of diverse shapes, spatial
distributions, and orientations. We took into account the ef-
fect of three types of imperfect bonding between the inclu-
sions and the matrix by replacing the imperfectly bonded
ellipsoidal inclusions with equivalent perfectly bonded ho-
mogeneous inclusions using the average t-matrix approxima-
tion of the multiple-scattering approach. The validity and
accuracy of this replacement approximation was demon-
strated by comparing the predictions based on it with known
numerical results and with the exact analytical results for
some special inclusion configurations. These explicit expres-
sions are easy to use. We have shown that, in contrast to the
perfectly bonded inclusions, the effective conductivities of a
heterogeneous medium containing imperfectly bonded inclu-
sions are dependent upon the size of the inclusions. This size
dependence is shown to be captured by simple scaling laws
depending upon the type of bond imperfection. The present
model is applicable to any type of conduction problem obey-
ing the Laplace equation. It is emphasized that in this paper,
we only consider ergodic heterogeneous media, i.e., statisti-
cally homogeneous media. The present scheme cannot pre-
dict the effective conductivity close to the percolation thresh-
old.

FIG. 3. Effective thermal conductivity of a medium containing
copper spheroids randomly distributed in an epoxy matrix and hav-
ing an LC-type bond imperfection �Kapitza resistance R / ��1��
=14.8�.

FIG. 4. Effective thermal conductivity of a medium containing
copper spheroids randomly distributed in an epoxy matrix and hav-
ing an LC-type bond imperfection �Kapitza resistance R / ��1��
=4.93�.

FIG. 2. Comparison of the effective longitudinal conductivity of
a two-phase heterogeneous medium containing aligned prolate
spheroidal inclusions with HC-type bond imperfection obtained by
Miloh and Benveniste �Fig. 2� �Ref. 1� and by the present approxi-
mate scheme.
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APPENDIX

For the three-phase configuration of a spheroidal inclu-
sion with an interphase in an infinite matrix subjected to a
uniform far field intensity, the temperature fields satisfy
Laplace’s equation. The general solution of Laplace’s equa-
tion in the oblate spheroidal coordinate system is21

�i = 

n=0

�



m=0

n

�An
i pn

m��� + Bn
i qn

m����Pn
m���sin m�

+ 

n=0

�



m=0

n

�Cn
i pn

m��� + Dn
i qn

m����Pn
m���cos m� �A1�

in which the superscript i=r ,c ,1 denotes the inclusion, the
interphase and the matrix, respectively. � and � are the aux-
iliary position parameters for the oblate spheroidal coordi-
nate system �� ,� ,��,

� = sinh �, �̄ = cosh � = �1 + �2, � = cos � , �A2�

�̄ = sin � = �1 − �2.

pn
m�x� and qn

m�x� are the modified Legendre functions of order
m of the first and second kinds, and are defined as

pn�x� = �− i�nPn�ix�, qn�x� = in+1Qn�ix� ,

pn
m�x� = �− i�nPn

m�ix�, qn
m�x� = in+1Qn

m�ix� , �A3�

where i=�−1, Pn
m�x� and Qn

m�x� are the associated Legendre
functions of order m of the first and second kinds, and they
are defined in the book of Hobson.21 As �→�, pn

m��� be-
comes infinite, so that An

m=Cn
m=0 in the matrix. qn

m��� be-
comes singular as �=0, so that Bn

r =Dn
r =0 in the spheroidal

inclusion which contains the origin.
When the spheroidal inclusion and spheroidal interphase

do not have common foci �e.g., an equithickness interphase
exists between the inclusion and the matrix�, two oblate
spheroidal coordinate systems “s” and “e” are needed de-
fined by22

x = cs�̄s�̄s cos � = ce�̄e�̄e cos �, y = cs�̄s�̄s sin �

= ce�̄e�̄e sin �, z = cs�s�s = ce�e�e, �A4�

where cs and ce are the half distances between the foci of the

spheroidal inclusion and spheroidal interphase, respectively.
The subscripts “s” and “e” represent the parameters in the
two coordinate systems, respectively. In such a case, the po-
tentials in Eq. �A1� for the inclusion and interphase are ex-
pressed in the oblate coordinate system “s,” and those for the
matrix are expressed in the oblate coordinate system “e.”
Therefore, the temperature fields in the inclusion, the inter-
phase and the matrix are

�r = 

n=0

�



m=0

n

�An
r sin m� + Cn

r cos m��pn
m��s�Pn

m��s� ,

�c = 

n=0

�



m=0

n

�An
cpn

m��s� + Bn
cqn

m��s��Pn
m��s�sin m�

+ 

n=0

�



m=0

n

�Cn
cpn

m��s� + Dn
cqn

m��s��Pn
m��s�cos m� ,

�1 = 

n=0

�



m=0

n

�Bn
1 sin m� + Dn

1 cos m��qn
m��e�Pn

m��e�

− ce�Hx
0 sin � + Hy

0 cos ��p1
1��e�P1

1��e�

− ceHz
0p1��e�P1��e� , �A5�

where An
r , Cn

r , An
c, Bn

c, Cn
c, Dn

c, Bn
1, and Dn

1 are unknown con-
stants to be determined from the following interface and
boundary conditions:

�r = �c, qr · n1 = qc · n1 at L1,

�c = �1, qc · n2 = q1 · n2 at L2,

H1 = H0 at infinity. �A6�

Here, n1 and n2 are the unit normal vectors to the interfaces
between the inclusion and interphase and the interphase and
matrix, respectively. To reduce the continuity conditions at
interface between the interphase and matrix to equalities be-
tween series involving Pn

m��e�, it is necessary to express
pn

m��s�Pn
m��s� and qn

m��s�Pn
m��s� for the interphase region in

the coordinate system “e.” This operation calls for the expan-
sion formulas for the spheroidal harmonics. The expansion
formulas for the spheroidal harmonics can be obtained based
on the relation between the Bessel and the Legendre
functions.22,23 The expansion formulas for the oblate spheroi-
dal harmonics are

Pm+l
m ��s�qm+l

m ��s� = dm+l+1 �2m + l�!
l! 


i=0

+� �

r=0

i
1

r!
�1 − d2

2
�r

a2i
l+m,r� �

�2i + l�!
�2m + 2i + l�!

Pm+l+2i
m ��e�qm+l+2i

m ��e� ,
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Pm+2l
m ��s�pm+2l

m ��s� =
�2m + 2l�!

�2m + 4l + 1��2l�!
· 


k=0

l
�2m + 4k + 1��2k�!

�2m + 2k�!
� d−�m+2k��


r=0

l−k
1

r!
�d2 − 1

2d2 �r

a2s−2k
m+2k,r�Pm+2k

m ��e�pm+2k
m ��e� ,

Pm+2l+1
m ��s�pm+2l+1

m ��s� =
�2m + 2l + 1�!

�2m + 4l + 3��2l + 1�!
k=0

l
�2m + 4k + 3��2k + 1�!

�2m + 2k + 1�!
� d−�m+2k+1�

��

r=0

l−k
1

r!
�d2 − 1

2d2 �r

a2l−2k
m+2k+1,r�Pm+2k+1

m ��e�pm+2k+1
m ��e� , �A7�

where

a2i
n,r = �− 1�i+rCi−1

i−r�2n + 4i + 1��
k=1

r−1

�2�n + i + k� + 1� ,

�1�r� i�, Ci−1
i−r denotes the binomial coefficients, a2i

n,0=�i,0

and �i,0 is the Kronecker delta,

a2i
n,1 = �− 1�i+1�2n + 4i + 1�,�1 � i�,l � 0,n � 0,d = cs/ce.

Using the recursion formulas for the associated Legendre
functions Pn

m���, and equating the coefficients of Pn
m��� and

Pn
m���� in the left and right sides of the interface and bound-

ary conditions �A6�, an infinite system of linear algebraic

equations for the constants is obtained, where Pn
m���� is the

derivative of Pn
m��� with respect to �. In the numerical com-

putations the infinite system is truncated at n=N with N be-
ing determined by the requirement that the change from N to
N+1 does not change the numerical values of the coefficients
by more than 10−5. Note that the local intensity field is not
constant in the inclusion when the spheroidal inclusion and
spheroidal interphase do not have common foci. However,
when they have common foci, only one oblate shperoidal
coordinate system is needed. In this case, the temperature
fields are still given by Eq. �A5�, but the only nonzero con-
stants are An

r , Cn
r , An

c, Bn
c, Cn

c, Dn
c, Bn

1, and Dn
1 �n, m=0,1�.

Analytical results of the local fields for the confocal case can
be easily obtained, and these fields are constant in the inclu-
sion. These results are the same as those of Bilboul.24
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