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Calibration in survey sampling as an

optimization problem

Gareth Davies, Jonathan Gillard and Anatoly Zhigljavsky

Dedicated to Professor Panos Pardalos on occasion of his 60-th birthday

Abstract Calibration is a technique of adjusting sample weights routinely used in

sample surveys. In this paper, we consider calibration as an optimization problem

and show that the choice of optimization function has an effect on the calibrated

weights. We propose a class of functions that have several desirable properties,

which includes satisfying necessary range restrictions for the weights. In this pa-

per, we explore the affect these new functions have on the calibrated weights.

1 Introduction

Calibration of survey samples is one of the key issues in official statistics and anal-

ysis of panel data (in particular, in market research). The problem of calibration can

be defined informally as follows. Suppose there are some initial weights d1, ...,dn

assigned to n objects of a survey. Suppose further that there are m auxiliary variables

and that for these auxiliary variables the sample values are known, either exactly or

approximately. The calibration problem seeks to improve the initial weights by find-

ing new weights w1, ...,wn that incorporate the auxiliary information. In a typical

practical problem, the sample size n is rather large (samples of order 104 and larger

are very common). The number of auxiliary variables m can also be large although

it is usually much smaller than n.

Three main reasons are advocated for using calibration in practice (see, for ex-

ample, [2]). The first of these is to produce estimates consistent with other sources

of data. Indeed, when a statistical office publishes the same statistics via two data

sources, the validity of the statistics will be questioned if there are contradictions be-

tween the sources. The second reason is to reduce the sampling variance of estimates

as the inclusion of the additional calibration information can lead to a reduction in
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the variance of the estimators (see for example [11]). The third argument for cal-

ibration is a reduction of the coverage and/or non-response bias (see for example

[10]).

In this paper, we properly formulate the problem of calibration of weights as an

optimization problem, study properties of the corresponding optimization problems

and give recommendations on how to choose the objective function. We claim that

the literature on calibration has ignored this important issue which lead to the recipes

which were inefficient or even incorrect.

Notation

We use the following key notation throughout the paper:

D = (d1, ...,dn)
′: vector of initial weights,

W = (w1, ...,wn)
′: vector of calibrated weights,

G = (g1, ...,gn)
′: vector of the g-weights gi = wi/di,

L = (l1, ..., ln)
′: vector of lower bounds for the g-weights,

U = (u1, ...,un)
′: vector of upper bounds for the g-weights,

X = (xi j)
n,m
i, j=1: given n×m matrix,

A = (ai j)
n,m
i, j=1: n×m matrix with entries ai j = di xi j,

T = (t1, ..., tm)
′: an arbitrary m×1 vector,

1 = (1,1, . . . ,1)′ n×1 vector of ones,

G feasible domain in the calibration problem.

2 Calibration as an Optimization Problem

A vector of initial weights D = (d1, ...,dn)
′ is given. The di are always assumed to

be positive: di > 0 for all i. Our aim is to calibrate (improve) these initial weights in

view of some additional information. The vector of calibrated (improved) weights

will be denoted by W = (w1, ...,wn)
′.

We are given a matrix X = (xi j)
n,m
i, j=1 of realizations of m auxiliary variables. The

(i, j)-th entry xi j of X denotes the value which the ith member of the sample takes

on the jth auxiliary variable Formally, X is an arbitrary n×m matrix. Given the

vector T = (t1, ..., tm)
′, exact (hard) constraints can be written as X ′W = T , whereas

approximate (soft) constraints are X ′W ≃ T . These constraints, whether exact or ap-

proximate, define the additional information we use in the calibration of the weights.

It is sometimes natural to impose a constraint on the sum of the weights. In this

paper, we shall consider the sum of weights constraint ∑n
i=1 wi =∑n

i=1 di or, in vector

notation, 1′W = 1′D, where 1 = (1,1, . . . ,1)′. This constraint is motivated in [17].

The condition 1′W = 1′D can be added to the set of the main constraints X ′W = T

(see, for example, [16]). Hence we do not formally distinguish the cases when the

condition 1′W = 1′D is required or not.
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In most practical cases of survey sampling and panel data analysis, the ratios

of the weights wi and di are of prime importance rather than the weights wi them-

selves and the so-called g-weights gi = wi/di are considered. Denote the vector of

g-weights by G = (g1, ...,gn)
′ and consider this vector as the vector of calibrated

weights we are seeking.

Since di > 0 for all i, the hard constraints X ′W = T can be written in the form

A′G = T , where the matrix A = (ai j)
n,m
i, j=1 has elements ai j = dixi j. Correspondingly,

soft constraints X ′W ≃ T have the form A′G ≃ T .

In addition to either hard or soft constraints, the following constraints on G have

to be imposed. First of all, the calibrated weights must be nonnegative; that is, gi ≥ 0

for all i. Moreover, much of the calibration literature, see for example [4] and [18],

recommends imposing stricter constraints on the g-weights of the form L ≤ G ≤U ,

where L = (l1, ..., ln)
′ and U = (u1, ...,un)

′ are some given n× 1 vectors such that

0 ≤ li < 1 < ui ≤ ∞ for all i. That is, the g-weights should satisfy li ≤ gi ≤ ui for

some sets of lower and upper bounds li and ui. If li = 0 and ui = ∞ for all i, then the

constraint li ≤ gi ≤ ui coincides with the simple non-negativity constraint gi ≥ 0. In

the majority of practical problems li = l and ui = u for all i with 0 ≤ l < 1 < u ≤ ∞,

where the strict inequalities l > 0 and u < ∞ are very common.

In the process of calibration, the weights W have to stay as close as possible to

the initial weights D. Equivalently, the g-weights G have to stay as close as pos-

sible to the vector 1. To measure the closeness of G and 1, we use some function

Φ(G) = Φ(g1, . . . ,gn). This function is required to satisfy the following properties

(see [5] for a related discussion): (a) Φ(G)≥ 0 ∀G, (b) Φ(1) = 0, (c) Φ(G) is twice

continuously differentiable, and (d) Φ(G) is strictly convex. The function Φ often

has the form

Φ(G) = Φ(g1, . . . ,gn) =
n

∑
i=1

qiφi(gi) , (1)

where q1, . . . ,qn are given non-negative numbers; in the majority of applications

qi = di for all i. We shall concentrate on this form of Φ ; in Sect. 3, we discuss the

choice of the functions φi.

Hard constraints A′G = T enter the definition of the feasible domain of G. Soft

constraints A′G ≃ T can either enter the definition of the feasible domain of G in

the form ∥A′G−T∥ ≤ ε for some vector norm ∥ ·∥ and some given ε > 0, or can be

put as a penalty Ψ(A′G,T ) into the objective function. The properties required for

Ψ (as a function of G) are similar to those required for Φ . The most common choice

for Ψ is

Ψ(A′G,T ) = β (A′G−T )′C(A′G−T ) (2)

where C is some user-specified m×m positive definite (usually, diagonal) matrix

and β > 0 is some constant (see for example [2], equation (2.3)).

Summarizing, we have the following versions of the calibration problem formu-

lated in terms of the g-weights G.
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Hard constraint case:

Φ(G)→ min
G∈G

, where G= {G : L ≤ G ≤U and A′G = T}. (3)

Soft constraint case I:

Φ(G)→ min
G∈G

, where G= {G : L ≤ G ≤U and Ψ(A′G,T )≤ 1}. (4)

Soft constraint case II:

Φ(G)+Ψ(A′G,T )→ min
G∈G

, where G= {G : L ≤ G ≤U}. (5)

In problems (3)–(5), the matrix A and the vectors T,L and U are given, and in

the majority of applications the functions Φ and Ψ have the forms (1) and (2) cor-

respondingly.

The optimization problems (3) and (4) may have no solutions; that is, the feasi-

ble domain G in these problems may be empty. The case when G is empty means

that the constraints on G are too strong. The feasible domain G in the problem (5)

is always non-empty and the optimal solution always exists. In view of the strict

convexity of Φ and Ψ as well as the compactness of G, if the optimal solution ex-

ists then it is necessarily unique. The optimization problem (4) is considered too

difficult by practitioners and hence it is never considered (despite it looking rather

natural). We therefore consider problems (3) and (5) only.

3 Choice of Functions φi in (1)

Here we discuss the choice of the functions φi in (1). See Sect. 4 for examples

of calibrated weights obtained using different forms of functions φi. By slightly

modifying the assumptions of [4], we require the function φi : (li,ui)→R+ to satisfy

the following properties: (i) φi(g)≥ 0 for all g∈ (li,ui), (ii) φi(1) = 0, (iii) φi is twice

continuously differentiable and strictly convex. The function φi does not have to be

defined outside the open interval (li,ui). If all φi satisfy the conditions (i)-(iii) then

the function Φ defined in (1) satisfies the conditions (a)-(d) formulated above.

Since these functions are chosen in the same manner for all i, the subscript i will

be dropped and the function φi will be denoted simply by φ . Correspondingly, the

lower and upper bounds li and ui for the g-weights gi will be denoted by l and u

respectively.

We will illustrate the shape of several functions φ in Figs. 1–3. In all these figures,

we choose l = 1/4,u = 4 and plot all the functions in the interval (l,u) = ( 1
4
,4),

despite some of the functions are defined in a larger region. As our intention in

this section is illustrating shapes of the possible calibration functions φ we thus

plot scaled versions of these functions using appropriate multiples (so that different

functions become visually comparable).
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(a) φ (1) (line), φ (2) (dot-dash) and φ (3) (dash) (b) φ (1) (line), φ (4) (dot-dash) and φ (5) (dash)

Fig. 1 Classical calibration functions of Type I scaled so that ckφ (k)(3) = 1, k = 1, ...,5.

We distinguish the following two types of functions φ :

Type I φ(g) is defined for all g either in R or R+ = (0,∞) and does not depend

on l and u.

Type II φ(g) is defined for g ∈ (l,u) but not outside the interval [l,u]. The func-

tional form of g depends on l and u and hence we will use the notation

φ(g; l,u) for the functions φ of this type.

The authors of the classical papers [4] and [5] suggest six choices for the function

φ . Five of these are Type I and are: φ (1)(g) = (g−1)2
, φ (2)(g) = g lng− g+ 1,

φ (3)(g)= (
√

g−1)2, φ (4)(g)=− lng+g−1 and φ (5)(g)= (g−1)2 /g. Fig. 1 shows

the shapes of these five functions.

The function φ (1) is simply quadratic; in the literature on calibration it is usually

referred to as the ‘chi-square’ function (see for example [14], equation (2.10)). It

is by far the most popular in practice. The function φ (2) is often referred to as the

multiplicative or raking function in literature, (see for example [1]).

Many authors consider solving the optimization problem (3) without the con-

straint L ≤ G ≤U . However, in this case using the function φ (1) in the optimization

may lead to extreme and negative weights. Whilst the function φ (2), by the nature of

its domain, only permits non-negative values for the optimized weights, the weights

may still take very large values. This also applies to functions φ (3), φ (4) and φ (5).

The functions φ (3), φ (4) and φ (5) have received much less attention in the literature

on calibration.

The above criticism of the functions φ (1)–φ (5) can be extended to all functions

of Type I. Note that if we use the functions φ of Type I then the optimization prob-

lem (3) is an optimization problem with many variables and many constraints (recall

than n is typically very large).
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(a) φ (6) (line) and φ (7) (dot-dash) and φ (1)

(dash)

(b) φ (6) (line), φ (7) (dot-dash) and φ (8) with

α = 1 (dash)

Fig. 2 Functions φ (1) φ (6), φ (7) and φ (8) scaled so that c1φ (1)(3) = 1 and ckφ (k)(3; 1
4
,4) = 1,

k = 6,7 and c8,1φ (8)(3; 1
4
,4,1) = 1.

Let us consider three functions φ of Type II:

φ (6)(g; l,u) = (g− l) ln

(

g− l

1− l

)

+(u−g) ln

(

u−g

u−1

)

,

φ (7)(g; l,u) = (1− l) ln

(

1− l

g− l

)

+(u−1) ln

(

u−1

u−g

)

, (6)

φ (8)(g; l,u,α) =
(g−1)2

[(u−g)(g− l)]α
, α > 0 . (7)

In Fig. 2, we plot the functions c1φ (1)(g), c6φ (6)(g; 1
4
,4), c7φ (7)(g; 1

4
,4) and

c8,1φ (8)(g; 1
4
,4,1) with the constants c1, c6, c7 and c8,1 chosen so that c1φ (1)(3) = 1,

ckφ (k)(3; 1
4
,4) = 1 for k = 6,7 and c8,1φ (8)(3; 1

4
,4,1) = 1.

In Fig. 3, we plot function φ (8) for various values of the parameter α . In Fig. 3(a),

we choose the constants c8,α so that c8,α φ (8)(3; 1
4
,4,α) = 1. In Fig. 3(b), we choose

the constants c8,α so that c8,α φ (8)( 1
2
; 1

4
,4,α) = 1

2
.

The function φ (6) is defined on the closed interval g ∈ [l,u] so that by continuity

we have φ (6)(l; l,u) = (u− l) ln u−l
u−1

and φ (6)(u; l,u) = (u− l) ln u−l
1−l

. The function

φ (6)(g; l,u) is not defined outside the interval [l,u]. Using this function in (1) creates

difficulties for the algorithms that optimize the function (1) because of the discon-

tinuity (and the loss of convexity) of φ (6)(g; l,u) at g = l and g = u. A way around

this is the use of constrained optimization algorithms but then the criticism above

directed to the functions of Type I can be extended to the function φ (6).

The functions φ (7)(g; l,u) and φ (8)(g; l,u,α) are derived by us. These two func-

tions are defined only in the open interval g ∈ (l,u) and tend to infinity as g tends
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(a) φ (8) scaled so that c8,α φ (8)(3; l,u,α) =
1: α = 0.2 (line), α = 1 (dot-dash) and α =
5 (dash)

(b) φ (8) scaled so that c8,α φ (8)( 1
2

; l,u,α) =
1
2

: α = 0.2 (line), α = 1 (dot-dash) and α =
5 (dash)

Fig. 3 Function φ (8)(g; l,u,α) for various values of α with l = 1/4 and u = 4.

to either l or u so that they can be classified as interior penalty functions. We have

derived the expression for the function φ (7) by applying a suitable transformation

(including taking a logarithm) to the density of the Beta-distribution on [0,1]. The

convexity of the function φ (7) follows from the expression for its second derivative:

∂ 2φ (7)(g; l,u)

∂g2
=

(u− l)
(

g2 − lu−2g+ l +u
)

(g− l)2 (u−g)2
=

(u− l)
[

(g−1)2 +(u−1)(1− l)
]

(g− l)2 (u−g)2
.

Since 0 < l < 1 < u < ∞, this second derivative is positive for all g ∈ (l,u) so that

the function φ (7)(g; l,u) is convex. The analytic forms of the functions φ (6) and φ (7)

are very similar but we believe the properties of the function φ (7) are much more

attractive for the problem at hand than the properties of the function φ (6).

For any α > 0, the function φ (8) has properties similar to the function φ (7): it is

defined in the open interval g ∈ (l,u), it is convex in this interval, and it tends to

infinity as g → l or g → u. The function φ (8) depends on an extra shape parameter

α , see Fig. 3, so that the penalty for g deviating from 1 can be adjusted by the user.

A very important special case of the function φ (8) occurs when α = 1:

φ (8)(g; l,u,1) =
(g−1)2

(u−g)(g− l)
. (8)

The most attractive property of the function (8) is its invariance with respect to the

change g ↔ 1/g in the case l = 1/u (which is a very common case in practice).

Recall that g = w/d is the ratio of the calibrated weight w to the initial weight d

and therefore the multiplicative scale for measuring deviations of g from 1 is the

most appropriate. This means that it is very natural to penalize g as much as 1/g for

deviating from 1. Assuming α = 1 and l = 1/u we have:
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φ(g;u) = φ (8)(g;1/u,u,1) =
(g−1)2

(u−g)(g−1/u)
.

For this function, we have φ(g;u) = φ(1/g;u) so that this function possesses the

additional property of equally penalizing g and 1/g.

4 Hard Calibration

In Sect. 2, we introduced the calibration problem with both hard and soft constraints.

In this section we consider the optimization problem (3), namely calibration with

hard constraints. We shall refer to this class of calibration problems as hard calibra-

tion. For several examples, we shall compare the calibrated weights obtained using

each of the functions considered in Sect. 3.

We solve the optimization problem (3) using the ‘solnp’ function within R’s

Rsolnp package (see [6]). Using this software, we directly solve the optimization

problem (3) using the Augmented Lagrange Multiplier (ALM) method (see [9] for

more details) for any choice of Type I or Type II function. For a comprehensive

optimization software guide, see [12].

We consider two approaches to the hard calibration problem. The first of these is

the classical approach considered in [4]. For this approach, the constraint L≤G≤U

is not included within the optimization. This means negative and extreme weights

are in the domain of the feasible solution. This motivates the second approach that

considers the optimization problem (3) including the constraint L ≤ G ≤ U . The

classical approach can be considered a particular case of the the second approach,

with L and U chosen to be vectors whose entries are l =−∞ and u = ∞ respectively.

We remark that there are software packages that solve the calibration problem

using an iterative Newton method as detailed in [5]. Examples of these include: the

‘calib’ function within R’s sampling package (see [19]), the G-CALIB-S module

within SPSS (see [20]) and the package CALMAR in SAS (see [4]). These packages

allow the user to solve the hard calibration problem using the classical approach (no

constraint L ≤ G ≤U) for the functions φ (1) and φ (2). The packages also allow the

user to solve the hard calibration problem including the constraint L ≤ G ≤ U for

functions φ (1) and φ (6) (see [5] for more details).

Many statistical offices throughout Europe use these packages to perform cali-

bration. When comparing the weights obtained using direct optimization with the

weights given by these packages, the answers in our examples were the same to

within computer error (despite the running time was in some cases very different).

Therefore, for the remainder of this paper, we only solve the optimization prob-

lem (3) using the ALM method.

To illustrate the case of negative and extreme weights, we consider the following

example adapted from [8] using data from [3].
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4.1 Example 1: A Classical Example

Throughout this example, we are working in units of thousands of people. Suppose

we have a sample of n = 12 cities, sampled from 49 possible cities. We wish to

weight our sample of cities appropriately to estimate the population total of the 49

cities.

For the 12 sampled cities, we know their size in 1920. Suppose we also know

the population total of the 49 cities in 1920, namely T = 5054. We begin with the

vector G = 1 and take the initial weights D = (49/12,49/12, ...,49/12)′. These

initial weights are derived using the classical Horvitz-Thompson estimator [7].

Recall from Sect. 2, that the hard calibration constraint can be written in the

form X ′W = T or equivalently A′G = T , with ai j = dixi j. We only have one aux-

iliary variable in this example, thus X and A reduce to 12 × 1 vectors. Suppose

we are given the sample values for the auxiliary variable in the 12 × 1 vector

X , where X = (93,77,61,87,116,2,30,172,36,64,66,60)′. Note that in this case

X ′D = A′1 = 3528 ̸= 5054. Therefore, for the initial weights G = 1, the constraint

A′G = T is not satisfied. This motivates the need to calibrate.

Figure 4 shows the g-weights obtained when optimizing (3) for functions φ (1),

φ (2) and φ (3) using classical hard calibration (recall L and U are taken as vectors

whose entries are −∞ and ∞ respectively). We consider the case qi = di in (1).

Figure 4(a) shows the calibrated weights when we do not impose the constraint

1′G = 12. The calibrated weights obtained when we impose the constraint 1′G = 12

are shown in Fig. 4(b).

1 4 6 8 12

−
1

0
1

2
3

4

(a) g-weights for functions φ (1) (cross),

φ (2) (plus) and φ (3) (circle) with the sum

of weights unconstrained

1 4 6 8 12

−
1

0
1

2
3

4

(b) g-weights for functions φ (1) (cross),

φ (2) (plus) and φ (3) (circle) with the sum

of weights constrained

Fig. 4 Comparison of g-weights with 1 (line) for the functions φ (1), φ (2) and φ (3).

For these functions, observe that when we do not impose the constraint 1′G = 12,

all the weights increase from, or remain at, their initial value of 1. It can be verified
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that the calibrated weights for each of these functions satisfy the constraint A′G =
T . We remark that 1′G = 15.883 for the calibrated weights using function φ (1),

1′G = 15.738 for the calibrated weights using function φ (2) and 1′G = 15.653 for

the calibrated weights using function φ (3); in all cases 1′G> 12 due to the calibrated

weights being larger than the initial weights of 1.

Imposing the extra constraint 1′G= 12 results in weights that are distributed both

above and below the initial g-weights of 1. One of the g-weights for function φ (1)

(indexed 6 in Figure 4(b)) is negative, whilst the weight indexed 8 has taken a large

value in comparison to the other g-weights. For functions φ (2) and φ (3), we do not

have a negative weight at index 6, however the value of the weight at index 8 is still

large in comparison with the other weights. Thus, whilst functions φ (2) and φ (3)

prevent negative weights, they do not prevent large positive weights.

We remark that the behaviour of the weights for functions φ (4) and φ (5) is very

similar to that for functions φ (2) and φ (3). Plots of the weights comparing functions

φ (1), φ (4) and φ (5) are very similar to the plots in Figs. 4(a) and 4(b). Hence we do

not plot the weights for functions φ (4) and φ (5) here.

To overcome the issue of negative and extreme weights, we include constraint

L ≤ G ≤U , where L and U have entries l and u respectively with 0 ≤ l < 1 < u ≤ ∞.

Any feasible solution to this problem is guaranteed to be within the bounds pre-

specified by the user. However, recall from Sect. 2 that the feasible solution of this

problem may be empty depending on the choice of L and U .

Returning to the example, suppose the calibrated weights G must satisfy the

bounds L ≤ G ≤U where L = (l, l, ..., l)′ and U = (u,u, ...,u)′ are both 12×1 vec-

tors. Consider the particular case of l = 12
49

and u = 120
49

. This means the g-weights gi

will be bounded between the lower bound of 12
49

and the upper bound of 120
49

, whilst

the weights wi will be bounded between the lower bound of ldi = 1 and the upper

bound of udi = 10 for all i.

Figure 5 shows the g-weights obtained by optimizing (3) for functions φ (1), φ (2)

and φ (3). Figure 5(a) shows the calibrated weights when we do not impose the con-

straint 1′G = 12. Figure 5(b) shows the calibrated weights when we include this

constraint.

For the weights in Fig. 5(a), we observe that imposing the constraint 1′G = 12

results in all the weights increasing from, or remaining at, their initial value of 1.

The weights in Fig. 5(a) are identical to those in Fig. 4(a).

However, in Fig. 5(b), we see that imposing the extra constraint 1′G = 12 re-

sults in weights that are at, or very close to, the upper and lower bounds u and l

respectively. The weights in Fig. 5(b) are different to those in Fig. 4(b).

In this case, the behaviour of the weights for functions φ (4) and φ (5) is very

similar to that for functions φ (2) and φ (3), both with and without the constraint

1′G = 12 included in the optimization. Hence we do not plot the weights for these

functions here.

Recall the relationship wi = digi. Since the vector of initial weights D is given,

and we have calculated the g-weights, we can compute the weights wi. Computing

the weights wi for function φ (1) from the corresponding g-weights in Fig. 5(b) gives

the same weights as those derived in [8].
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(a) g-weights for functions φ (1) (cross),

φ (2) (plus) and φ (3) (circle) with the sum

of weights unconstrained

1 4 6 8 12

0
1

2
3

(b) g-weights for functions φ (1) (cross),

φ (2) (plus) and φ (3) (circle) with the sum

of weights constrained

Fig. 5 Comparison of g-weights with 1 (line) for the functions φ (1), φ (2) and φ (3), dotted lines

indicate the upper and lower bounds.

Figure 6 shows the g-weights obtained by optimizing (3) for the functions φ (1),

φ (6) and φ (7). Figure 6(a) shows the calibrated weights when we do not impose the

constraint 1′G = 12. Figure 6(b) shows the calibrated weights when the constraint

is included within the optimization.
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(a) g-weights for functions φ (1) (cross),

φ (6) (plus) and φ (7) (circle) with the sum

of weights unconstrained

1 4 6 8 12

0
1

2
3

(b) g-weights for functions φ (1) (cross),

φ (6) (plus) and φ (7) (circle) with the sum

of weights constrained

Fig. 6 Comparison of g-weights with 1 (line) for functions φ (1), φ (6) and φ (7), dotted lines indicate

the upper and lower bounds.

Figure 7 shows the g-weights obtained by optimizing (3) for function φ (8) with

α chosen to be 0.2, 1 and 5. Figure 7(a) shows the calibrated weights when we do
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not impose the constraint 1′G = 12. Figure 7(b) shows the calibrated weights when

we include this constraint within the optimization.
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(a) g-weights for functions φ (8) with α =
0.2 (cross), α = 1 (plus) and α = 5

(circle) with the sum of weights uncon-

strained

1 4 6 8 12

0
1

2
3

(b) g-weights for function φ (8) with α =
0.2 (cross), α = 1 (plus) and α = 5 (cir-

cle) with the sum of weights constrained

Fig. 7 Comparison of g-weights with 1 (line) for function φ (8), dotted lines indicate the upper and

lower bounds.

Observe that when the constraint 1′G = 12 is not imposed, the weights all in-

crease or remain at the initial values of 1. When the constraint is imposed, we see

that the weights are distributed both above and below the initial values of 1, with

several weights clustered at the bounds.

In summary, we have seen that not imposing the constraint 1′G = 12 results in

calibrated weights exhibiting less variability than the calibrated weights obtained

including the constraint. For this example, the calibrated weights all increased from

the initial values of 1 but did not exhibit any extremal behaviour, lying well within

the considered bounds. However, including the constraint 1′G = 12 gave calibrated

weights that were more variable and likely to move towards the boundaries.

For the remaining examples in this paper, we shall explore the effects the choice

of L and U have on the calibrated weights G. In all the examples we will include the

constraint 1′G = n, and take qi = di in (1).

4.2 Example 2

Suppose we are given the vector X = (93,77,87,116,2,30,172,36,64,60)′ and the

10× 1 vector of initial weights D = (4,4, ...,4)′. The parameter value T = 3900 is

assumed known. Recall that we impose the upper and lower bounds U = (u,u, ...,u)′

and L = (l, l, ..., l)′, where U and L are both 10 × 1 vectors whose entries are u and
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l respectively. Consider the case l = 1/u. We wish to find the smallest value of

u such that the optimization problem (3) has a feasible solution. In this example,

experimentation gave the smallest value of u as approximately 2.0.

In Fig. 8 we plot the calibrated weights when we take l = 1/2 and u = 2. In this

case, solving the optimization problem (3) for functions φ (1), φ (6) and φ (7) gives the

weights in Fig. 8(a). Figure 8(b) shows the weights for function φ (8) with α = 0.2,

α = 1 and α = 5.

1 4 7 10
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3

(a) Weights obtained for φ (1) (cross), φ (6)

(plus) and φ (7) (circle)

1 4 7 10

0
1

2
3

(b) Weights obtained for φ (8) with α = 0.2
(cross), and α = 1 (plus) and α = 5 (circle)

Fig. 8 Comparison of weights for functions φ (1), φ (6), φ (7), and φ (8) for various α with l = 1/2

and u = 2 (dotted lines indicate bounds).

For this example, a feasible solution to the problem (3) exists for the (approx-

imate) bounds 0 ≤ l ≤ 1/2 and u ≥ 2. Let us consider the effect of changing the

values of l and u.

Figure 9 shows the calibrated weights when l = 1/4 and u = 2. In Fig. 9(a) we

plot the weights for functions φ (1), φ (6) and φ (7) whilst in Fig. 9(b) we plot the

weights for function φ (8) with α = 0.2, α = 1 and α = 5. We see that reducing the

lower bound results in less weights taking values at the lower bound. Generally, the

calibrated weights for function φ (8) appear to move towards the boundaries more

than the weights obtained for functions φ (1), φ (6) and φ (7).

We now consider the effect of increasing u. In Fig. 10, we keep l = 1/4 and

consider the calibrated weights when u = 4. In Fig. 10(a) we plot the calibrated

weights for the functions φ (1), φ (6) and φ (7) whilst in Fig. 10(b) we plot the cali-

brated weights for function φ (8) with α = 0.2, α = 1 and α = 5. We see that in-

creasing the upper bound has resulted in some of the weights increasing slightly in

comparison to the weights in Fig. 9. However, there are no weights on the upper

bound.

To conclude, this example has shown that taking l = 1/u and minimizing the

value of u such that the calibration problem (3) has a feasilbe solution often results
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(a) Weights obtained for φ (1) (cross), φ (6)

(plus) and φ (7) (circle)
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(b) Weights obtained for φ (8) with α = 0.2
(cross), and α = 1 (plus) and α = 5 (circle)

Fig. 9 Comparison of weights for functions φ (1), φ (6), φ (7), and φ (8) for various α with l = 1/4

and u = 2 (dotted lines indicate bounds)

1 4 7 10

0
1

2
3

4

(a) Weights obtained for φ (1) (cross), φ (6)

(plus) and φ (7) (circle)
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(b) Weights obtained for φ (8) with α = 0.2
(cross), and α = 1 (plus) and α = 5 (circle)

Fig. 10 Comparison of weights for functions φ (1), φ (6), φ (7), and φ (8) for various α with l = 1/4

and u = 4 (dotted lines indicate bounds)

in many of the weights taking values at the boundaries. Increasing the value of u

gives extra freedom to the weights and, as a result, there are typically less weights

at the boundaries.

In the remaining two examples, we only consider the smallest value of u for

which the optimization problem (3) has a feasible solution when l = 1/u. We fur-

ther explore the phenomenon of weights clustering at the boundary and investigate

whether different functions are more or less likely to give weights that approach the

boundaries.
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4.3 Example 3

Suppose we are given the 100 × 1 vector of initial weights D = (5, ...,5)′ and

suppose that T = 49500. The vector of auxiliary values X is formed by extending

the auxiliary vector from Example 4.2. We form a 100×1 vector that has the values

from the auxiliary vector in Example 4.2 as its first ten entries. The next ten entries

are formed by taking the auxiliary vector from Example 4.2 and adding 2 to each

value. In a similar way, we subtract 3 from each value to give the next 10 values. In a

similar way, we then repeat the vector, add 4 to all the entries, add 3 to all the entries,

subtract 1, subtract 2, repeat the vector and finally add 4 to give the remaining 70

values.

We impose the upper and lower bounds U = (u,u, ...,u)′ and L = (l, l, ..., l)′,
where L and U are both 100 × 1 vectors whose entries are u and l = 1/u respectively.

For this example, experimentation gives the smallest value of u as approximately

u = 2 and so l = 1/2.

In Fig. 11, we compare the calibrated weights for functions φ (6), φ (7) and φ (8)

with those for function φ (1). In Fig. 11(a), we observe that most of the points in the

scatterplot are on the diagonal. This indicates the similarity of the weights for func-

tions φ (1) and φ (6). However, in Fig. 11(b), we observe that there are fewer weights

on the diagonal. This indicates that, for function φ (7), more of the weights approach

the boundary. In Fig. 11(c), we see this even more clearly with a distinct band of

weights at the upper and lower bounds of 2 and 1
2

for function φ (8), compared with

the weights for φ (1) that are more evenly distributed between the upper and lower

bounds.

0 1 2

0
1

2

(a) Weights for function φ (1)

against φ (6)

0 1 2

0
1

2

(b) Weights for function φ (1)

against φ (7)

0 1 2

0
1

2

(c) Weights for function φ (1)

against φ (8)

Fig. 11 Comparison of weights for function φ (1) against functions φ (6), φ (7) and φ (8), with l = 1/2

and u = 2

For the next example, we keep the sample size at n= 100 and increase the number

of auxiliary variables to m = 3.
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4.4 Example 4

Suppose we are given a 100× 1 vector of initial weights D = (5,5, ...,5)′, and let

T = (49500,49540,41000)′. Suppose that the 100×3 matrix of auxiliary values X

is defined as follows: for the first column of X we take the auxiliary vector from

Example 3 in Sect. 4.3. For the second column of X , we form a 100× 1 vector

whose first ten values are formed by taking the auxiliary vector in Example 4.2 and

subtracting 1. The next ten entries are formed by adding one to each of the values

of the auxiliary vector in Example 4.2. In a similar way, we subtract 2 from each

value to give the next 10 values, then repeat the vector, add 5 to all the entries,

repeat the vector twice, subtract 1, add 1 and finally add 3 to give the remaining

70 values. For the third column, we take 100 values generated at random from a

Normal distribution with mean 80 and standard deviation 48 (these are similar to

the mean and standard deviations for the other columns).

We impose the upper and lower bounds U = (u,u, ...,u)′ and L = (l, l, ..., l)′,
where L and U are both 100 × 1 vectors whose entries are u and l = 1/u respectively.

For this example, experimentation gives the smallest value of u as approximately

u = 2, and so l = 1/2.

In Fig. 12, we compare the calibrated weights using function φ (1) with the cali-

brated weights for functions φ (6), φ (7) and φ (8) (α = 1).
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(a) Weights for function φ (1)

against φ (6)

0 1 2

0
1

2

(b) Weights for function φ (1)

against φ (7)
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0
1

2

(c) Weights for function φ (1)

against φ (8) with α = 1

Fig. 12 Comparison of weights for the function φ (1) against φ (6), φ (7) and φ (8) (α = 1)

Figure 12 has many similarities with Fig. 11 in Example 4.3. We observe that

the weights for functions φ (1) and φ (6) are very similar. However, the calibrated

weights for functions φ (7) and φ (8) show clear differences to the calibrated weights

for function φ (1). Again, we observe the distinct band of weights at the upper and

lower bounds of 2 and 1
2

for functions φ (7) and φ (8), compared with the weights

for functions φ (1) and φ (6) that are more evenly distributed between the upper and

lower bounds.

We now compare the CPU times taken to obtain the weights in Fig. 12. These

CPU times were computed on a computer with an Intel(R) Core(TM) i7-4500U CPU
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Processor with 8GB of RAM. The CPU times are given in Table 1. We observe

that the CPU times for functions φ (7) and φ (8) (α = 0.2) are less than those for

the classical functions φ (1) and φ (6). CPU time is related to the complexity of the

optimization problem, see [13] on a comprehensive discussion of how to measure

numerical complexity of an optimization problem.

Table 1 CPU times for various functions φ in solving the optimization problem (3) in Example 4

Function CPU Time (seconds)

φ (1) 0.609

φ (6) 0.734

φ (7) 0.544

φ (8) (α = 0.2) 0.569

φ (8) (α = 1) 0.559

In these examples, we have seen that the problem (3) does not necessarily have a

feasible solution for all choices of the vectors L and U . We address this issue in the

next section by introducing soft calibration.

5 Soft Calibration

In this section, we consider the optimization problem (5). Recall that this requires a

choice of the functions Φ and Ψ . In this section, we choose Φ to be of the form (1)

with φ taken to be φ (1), and consider the penalty function Ψ of the form (2). We do

not consider other choices of Φ or Ψ in this section.

Re-writing the problem (5) with our choice of Φ and Ψ gives the following

optimization problem:

n

∑
i=1

qi(gi −1)2 +β (A′G−T )′C(A′G−T )→ min
G∈G

, (9)

where G = {G : L ≤ G ≤ U}, q1, ...,qn are given non-negative numbers, C is a

user-specified m×m positive definite (usually diagonal) matrix and β > 0 is some

constant.

In Sect. 4, we considered two approaches to solving the hard calibration prob-

lem (3). We now consider two similar approaches for solving the problem (9). The

first approach is the classical soft calibration approach (see, for example, [2]). In

this approach, the constraint L ≤ G ≤ U is not included within the optimization.

Practitioners vary the value of the parameter β so that the weights are within some

pre-specified bounds. The second approach is to include the constraint L ≤ G ≤ U

within the optimization algorithm, i.e. to solve the optimization problem (5). We

remark that classical soft calibration is a special case of the second approach where

L and U are vectors whose entries are −∞ and ∞ respectively.
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For the example in Sect. 4.1, we considered the calibrated weights obtained when

solving the optimization problem (3) without imposing the constraint L ≤ G ≤ U .

In this case, we saw that it is possible to obtain negative and extreme weights.

The classical soft calibration problem was proposed as a way to deal with these

negative and extreme weights. Classical soft calibration allows an analytic solution

to be found to the optimization problem (9). Let D be an n× n diagonal matrix,

whose entries are the weights d1,d2, ...dn. Furthermore, take qi = di and let γ = 1
β .

Then, for the classical soft calibration approach, the analytic form of the weights

that satisfy the optimization problem (9) is given by

G = 1+A
(

A′
D
−1A+ γC−1

)−1 (
T −A′1

)

. (10)

This is an equivalent formulation of equation (2.4) from [2], expressed in terms

of g-weights. The term
(

A′
D
−1A+ γC−1

)−1
is similar to the inverse matrix term in

ridge regression (see, for example, [15]).

Let us consider the effect of changing the parameter β in (9). Recall that γ =
1/β or equivalently β = γ−1. We consider the effect of changing the parameter

γ . As γ tends to zero, γ−1 tends to infinity and so the optimization problem (9)

reduces to minimising (A′G−T )′C(A′G−T ) for G ∈ G. As this term is quadratic,

the minimum occurs when A′G−T = 0 or equivalently A′G = T . This is the hard

calibration constraint. Therefore, the case γ → 0 corresponds to the solving the hard

calibration problem (3). We remark that this is consistent with (10), since taking γ =
0 in this formula gives the expression for the g-weights in classical hard calibration.

As γ tends to infinity, γ−1 tends to zero and so the term (A′G−T )′C(A′G−T )
becomes negligible. This results in the optimization (9) reducing to the problem of

minimising Φ(G) = ∑n
i=1 qiφ

(1)(gi) for G ∈ G, which is minimised at G = 1 (by

definition of the function Φ). Again, this is consistent with (10), since when γ → ∞

the term A
(

A′
D
−1A+ γC−1

)−1
(T −A′1) tends to zero giving G = 1.

To illustrate this, let us re-visit the example of Sect. 4.1. Recall that T = 5054,

D = (49/12,49/12, ...,49/12)′ and X =(93,77,61,87,116,2,30,172,36,64,66,60)′.
In Fig. 13, we plot the weights given by (10) as the value of γ varies. We take C = Im,

where Im denotes the m×m identity matrix. Figure 13(a) plots the weights for values

of γ from 0 to 40. This plot confirms our earlier assertions that as γ → 0, G tends to

the classical hard calibration weights. Figure 13(b) plots the weights for values of

γ between 0 and 1.6×106. This plot confirms that as γ → ∞, the g-weights tend to

their initial values of 1.

When obtaining the explicit solution, (10), to the classical soft calibration prob-

lem, we did not specify any constraints on the weights G. Suppose that we wish to

impose the constraint L ≤ G ≤ U . Observe from Fig. 13(a) that as the value of γ
increases, the range of the weights decreases. In classical soft calibration, having

obtained the analytic solution (10) for the calibrated weights, the approach to satis-

fying the constraint L ≤ G ≤ U is to choose the smallest value of γ for which the

weights in (10) are within the specified bounds. Clearly, the value of γ that satisfies

the constraints L ≤ G ≤U is sample dependent.
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(a) Soft weights for γ between 0 and 40
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(b) Soft weights for γ from 0 to 1.6×106

Fig. 13 Plots of classical soft calibration weights (10) as a function of γ

Consider again Example 1 from Sect. 4.1. We previously saw that, in the case

of classical hard calibration, we obtain negative and extreme weights for this sam-

ple. Suppose we wish to impose the lower and upper bounds of l = 12/49 and

u = 120/49. We saw that we were able to satisfy these bounds by solving the prob-

lem (3). In order to satisfy these bounds for classical soft calibration, experimenta-

tion gives the smallest value of γ as approximately γ = 9.0 in order to find a solution

that lies between these bounds. This is a relatively large value of γ .

Note that in this case we have 1′G = 13.527 ̸= 12 and A′G = 5053.899 ̸= 5054,

therefore our constraints 1′G = 12 and A′G = T are no longer satisfied. Having

relaxed these constraints in the soft calibration penalty (2), the larger the value of

γ , the smaller the value of β and the less importance we assign to the penalty (2)

in (9). This allows greater variation between A′G and T and between 1′G and 12.

However, for large values of γ there is less variation in the weights. In contrast, for

small values of γ , the penalty (2) is given more importance allowing less variation

between A′G and T and between 1′G and 12. However, in this case there will be

greater variability in the weights.

We illustrate this in Figs. 14 and 15. To produce these figures, we took 10,000

simple random samples of size 12 from the data in [3]. Figure 14 shows the distri-

bution of weights and values of A′G when we take γ = 0.1. Figure 15 shows the

distribution of weights and values of A′G when we take γ = 9, as required for this

example to ensure the weights are between L and U . We observe that although γ = 9

gave g-weights satisfying the bounds L ≤G≤U for one sample, this value of γ does

not guarantee that the g-weights will satisfy these bounds for every sample.

Let us now consider the second approach of directly optimizing (5). As stated in

Sect. 2, the optimization problem (5) has a solution for any value of β > 0. There-

fore, given any L and U , we can find a solution to the optimization problem (5)

independent of the choice of β . That is what makes this approach different to clas-

sical soft calibration.
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(a) A′G for 10000 random samples of size

12, vertical line at 5054 (A′G = 5054 is

hard constraint)
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(b) g-weights for 10000 random samples of

size 12, vertical line at 1 (initial weights),

dashed lines indicate bounds

Fig. 14 Plots of A′G and g-weights that satisfy the optimization problem (10) for γ = 0.1
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(a) X ′W for 10000 random samples of size

12, vertical line at 5054 (X ′W = 5054 is

hard constraint)
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(b) g-weights for 10000 random samples of

size 12, vertical line at 1 (initial weights),

dashed lines indicate bounds

Fig. 15 Plots of A′G and g-weights that satisfy the optimization problem (10) for γ = 0.1

Let us return again to Example 1 from Sect. 4.1. Consider the problem (5) with

L ≤ G ≤ U where L = (l, ..., l)′ and U = (u, ...,u)′ are 12× 1 vectors with entries

l = 12
49

and u = 120
49

respectively. We know that small values of γ give a solution that

is close to the hard calibration solution. Taking γ = 0.01, we obtain soft calibration

weights that are very similar to those derived for hard calibration in Sect. 4.1. There-

fore, in this instance, solving the problem (5) has little advantage over solving the

corresponding hard calibration problem (3).



Calibration in survey sampling as an optimization problem 21

However, suppose we want to impose the bounds l = 24/49 and u = 96/49,

corresponding to bounding the weights wi between the lower and upper bounds of

2 and 8 respectively. In this case, there is no feasible solution to the hard calibration

problem (3). Solving this problem using classical soft calibration requires a value of

γ = 16 to ensure that the weights are between these bounds.

We now consider the direct optimization approach. Recall that for small values

of γ , the solution to the problem (5) is approximately equal to the solution to the

problem (3). Assuming we have the lower bounds l = 24/49 and u = 96/49, taking

γ = 10−9 we obtain weights G such that A′G = 5053.910 and 1′G = 13.435. Un-

der hard calibration, we would require A′G = 5054 and 1′G = 12. We have almost

satisfied the constraint A′G = 5054, however we have not satisfied the constraint

1′G = 12. This suggests that the condition 1′G = 12 was too restrictive.

Conclusions

The problem of calibrating weights in surveys is a very important practical problem.

In the literature on calibration, there are many recipes but no clear understanding

of what calibration is. In this paper, we have formally formulated the calibration

problem as an optimization problem and defined the desired conditions for the com-

ponents of the objective function and feasible region. We have demonstrated that

the commonly used calibration criteria do not fully satisfy the desired criteria. The

corresponding optimization problems are not flexible enough, harder than they have

to be, or have some common recipes leading to wrong and contradictory recommen-

dations. An example of the latter is the use of ridge estimators for trying to achieve

positivity of the calibrated weights, see Sect. 5.

We have studied the influence of the function φ , the main component of objective

function, on the complexity of the optimization problem and the final solution. We

claim that the new functions φ (7) and φ (8) suggested in this paper are much more

transparent and more flexible than the functions adopted in the standard calibration

literature and classical calibration software packages. The functions suggested by

us lead to easier optimization problems as they automatically take into account the

constraint L ≤G≤U . This could be of high importance in practice as the dimension

of the problem (which is the size of the sample) may be very large.

In the case of large samples, one of our recommendations is to replace the hard

calibration problem defined by (1) and (3) with a soft calibration problem defined

by (1), (2) and (5), where β in (2) is large and the functions φi in (1) are either φ
(7)
i

or φ
(8)
i , see (6) and (7) respectively. In doing so we replace a potentially difficult

constrained optimization problem (3) with a much simpler problem (5), which is

an unconstrained convex optimization problem (recall that all constraints in (5) are

taken into account due to a clever choice of the functions φi). If β is large then the

solution of this problem is guaranteed to be very close to the solution of the original

problem (3).
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