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Calibration in survey sampling as an
optimization problem

Gareth Davies, Jonathan Gillard and Anatoly Zhigljavsky

Dedicated to Professor Panos Pardalos on occasion of his 60-th birthday

Abstract Calibration is a technique of adjusting sample weights routinely used in
sample surveys. In this paper, we consider calibration as an optimization problem
and show that the choice of optimization function has an effect on the calibrated
weights. We propose a class of functions that have several desirable properties,
which includes satisfying necessary range restrictions for the weights. In this pa-
per, we explore the affect these new functions have on the calibrated weights.

1 Introduction

Calibration of survey samples is one of the key issues in official statistics and anal-
ysis of panel data (in particular, in market research). The problem of calibration can
be defined informally as follows. Suppose there are some initial weights d1, ...,dn
assigned to n objects of a survey. Suppose further that there are m auxiliary variables
and that for these auxiliary variables the sample values are known, either exactly or
approximately. The calibration problem seeks to improve the initial weights by find-
ing new weights w1, ...,wn that incorporate the auxiliary information. In a typical
practical problem, the sample size n is rather large (samples of order 104 and larger
are very common). The number of auxiliary variables m can also be large although
it is usually much smaller than n.

Three main reasons are advocated for using calibration in practice (see, for ex-
ample, [2]). The first of these is to produce estimates consistent with other sources
of data. Indeed, when a statistical office publishes the same statistics via two data
sources, the validity of the statistics will be questioned if there are contradictions be-
tween the sources. The second reason is to reduce the sampling variance of estimates
as the inclusion of the additional calibration information can lead to a reduction in
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the variance of the estimators (see for example [11]). The third argument for cal-
ibration is a reduction of the coverage and/or non-response bias (see for example
[10]).

In this paper, we properly formulate the problem of calibration of weights as an
optimization problem, study properties of the corresponding optimization problems
and give recommendations on how to choose the objective function. We claim that
the literature on calibration has ignored this important issue which lead to the recipes
which were inefficient or even incorrect.

Notation

We use the following key notation throughout the paper:
D = (d1, ...,dn)

′: vector of initial weights,
W = (w1, ...,wn)

′: vector of calibrated weights,
G = (g1, ...,gn)

′: vector of the g-weights gi = wi/di,
L = (l1, ..., ln)′: vector of lower bounds for the g-weights,
U = (u1, ...,un)

′: vector of upper bounds for the g-weights,
X = (xi j)

n,m
i, j=1: given n×m matrix,

A = (ai j)
n,m
i, j=1: n×m matrix with entries ai j = di xi j,

T = (t1, ..., tm)′: an arbitrary m×1 vector,
1 = (1,1, . . . ,1)′ n×1 vector of ones,
G feasible domain in the calibration problem.

2 Calibration as an Optimization Problem

A vector of initial weights D = (d1, ...,dn)
′ is given. The di are always assumed to

be positive: di > 0 for all i. Our aim is to calibrate (improve) these initial weights in
view of some additional information. The vector of calibrated (improved) weights
will be denoted by W = (w1, ...,wn)

′.
We are given a matrix X = (xi j)

n,m
i, j=1 of realizations of m auxiliary variables. The

(i, j)-th entry xi j of X denotes the value which the ith member of the sample takes
on the jth auxiliary variable Formally, X is an arbitrary n×m matrix. Given the
vector T = (t1, ..., tm)′, exact (hard) constraints can be written as X ′W = T , whereas
approximate (soft) constraints are X ′W ≃ T . These constraints, whether exact or ap-
proximate, define the additional information we use in the calibration of the weights.

It is sometimes natural to impose a constraint on the sum of the weights. In this
paper, we shall consider the sum of weights constraint ∑n

i=1 wi =∑n
i=1 di or, in vector

notation, 1′W = 1′D, where 1 = (1,1, . . . ,1)′. This constraint is motivated in [17].
The condition 1′W = 1′D can be added to the set of the main constraints X ′W = T
(see, for example, [16]). Hence we do not formally distinguish the cases when the
condition 1′W = 1′D is required or not.
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In most practical cases of survey sampling and panel data analysis, the ratios
of the weights wi and di are of prime importance rather than the weights wi them-
selves and the so-called g-weights gi = wi/di are considered. Denote the vector of
g-weights by G = (g1, ...,gn)

′ and consider this vector as the vector of calibrated
weights we are seeking.

Since di > 0 for all i, the hard constraints X ′W = T can be written in the form
A′G = T , where the matrix A = (ai j)

n,m
i, j=1 has elements ai j = dixi j. Correspondingly,

soft constraints X ′W ≃ T have the form A′G ≃ T .
In addition to either hard or soft constraints, the following constraints on G have

to be imposed. First of all, the calibrated weights must be nonnegative; that is, gi ≥ 0
for all i. Moreover, much of the calibration literature, see for example [4] and [18],
recommends imposing stricter constraints on the g-weights of the form L ≤ G ≤U ,
where L = (l1, ..., ln)′ and U = (u1, ...,un)

′ are some given n× 1 vectors such that
0 ≤ li < 1 < ui ≤ ∞ for all i. That is, the g-weights should satisfy li ≤ gi ≤ ui for
some sets of lower and upper bounds li and ui. If li = 0 and ui = ∞ for all i, then the
constraint li ≤ gi ≤ ui coincides with the simple non-negativity constraint gi ≥ 0. In
the majority of practical problems li = l and ui = u for all i with 0 ≤ l < 1 < u ≤ ∞,
where the strict inequalities l > 0 and u < ∞ are very common.

In the process of calibration, the weights W have to stay as close as possible to
the initial weights D. Equivalently, the g-weights G have to stay as close as pos-
sible to the vector 1. To measure the closeness of G and 1, we use some function
Φ(G) = Φ(g1, . . . ,gn). This function is required to satisfy the following properties
(see [5] for a related discussion): (a) Φ(G)≥ 0 ∀G, (b) Φ(1) = 0, (c) Φ(G) is twice
continuously differentiable, and (d) Φ(G) is strictly convex. The function Φ often
has the form

Φ(G) = Φ(g1, . . . ,gn) =
n

∑
i=1

qiϕi(gi) , (1)

where q1, . . . ,qn are given non-negative numbers; in the majority of applications
qi = di for all i. We shall concentrate on this form of Φ ; in Sect. 3, we discuss the
choice of the functions ϕi.

Hard constraints A′G = T enter the definition of the feasible domain of G. Soft
constraints A′G ≃ T can either enter the definition of the feasible domain of G in
the form ∥A′G−T∥ ≤ ε for some vector norm ∥ ·∥ and some given ε > 0, or can be
put as a penalty Ψ(A′G,T ) into the objective function. The properties required for
Ψ (as a function of G) are similar to those required for Φ . The most common choice
for Ψ is

Ψ(A′G,T ) = β (A′G−T )′C(A′G−T ) (2)

where C is some user-specified m×m positive definite (usually, diagonal) matrix
and β > 0 is some constant (see for example [2], equation (2.3)).

Summarizing, we have the following versions of the calibration problem formu-
lated in terms of the g-weights G.
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Hard constraint case:

Φ(G)→ min
G∈G

, where G= {G : L ≤ G ≤U and A′G = T}. (3)

Soft constraint case I:

Φ(G)→ min
G∈G

, where G= {G : L ≤ G ≤U and Ψ(A′G,T )≤ 1}. (4)

Soft constraint case II:

Φ(G)+Ψ(A′G,T )→ min
G∈G

, where G= {G : L ≤ G ≤U}. (5)

In problems (3)–(5), the matrix A and the vectors T,L and U are given, and in
the majority of applications the functions Φ and Ψ have the forms (1) and (2) cor-
respondingly.

The optimization problems (3) and (4) may have no solutions; that is, the feasi-
ble domain G in these problems may be empty. The case when G is empty means
that the constraints on G are too strong. The feasible domain G in the problem (5)
is always non-empty and the optimal solution always exists. In view of the strict
convexity of Φ and Ψ as well as the compactness of G, if the optimal solution ex-
ists then it is necessarily unique. The optimization problem (4) is considered too
difficult by practitioners and hence it is never considered (despite it looking rather
natural). We therefore consider problems (3) and (5) only.

3 Choice of Functions ϕi in (1)

Here we discuss the choice of the functions ϕi in (1). See Sect. 4 for examples
of calibrated weights obtained using different forms of functions ϕi. By slightly
modifying the assumptions of [4], we require the function ϕi : (li,ui)→R+ to satisfy
the following properties: (i) ϕi(g)≥ 0 for all g∈ (li,ui), (ii) ϕi(1) = 0, (iii) ϕi is twice
continuously differentiable and strictly convex. The function ϕi does not have to be
defined outside the open interval (li,ui). If all ϕi satisfy the conditions (i)-(iii) then
the function Φ defined in (1) satisfies the conditions (a)-(d) formulated above.

Since these functions are chosen in the same manner for all i, the subscript i will
be dropped and the function ϕi will be denoted simply by ϕ . Correspondingly, the
lower and upper bounds li and ui for the g-weights gi will be denoted by l and u
respectively.

We will illustrate the shape of several functions ϕ in Figs. 1–3. In all these figures,
we choose l = 1/4,u = 4 and plot all the functions in the interval (l,u) = ( 1

4 ,4),
despite some of the functions are defined in a larger region. As our intention in
this section is illustrating shapes of the possible calibration functions ϕ we thus
plot scaled versions of these functions using appropriate multiples (so that different
functions become visually comparable).
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(a) ϕ (1) (line), ϕ (2) (dot-dash) and ϕ (3) (dash) (b) ϕ (1) (line), ϕ (4) (dot-dash) and ϕ (5) (dash)

Fig. 1 Classical calibration functions of Type I scaled so that ckϕ (k)(3) = 1, k = 1, ...,5.

We distinguish the following two types of functions ϕ :

Type I ϕ(g) is defined for all g either in R or R+ = (0,∞) and does not depend
on l and u.

Type II ϕ(g) is defined for g ∈ (l,u) but not outside the interval [l,u]. The func-
tional form of g depends on l and u and hence we will use the notation
ϕ(g; l,u) for the functions ϕ of this type.

The authors of the classical papers [4] and [5] suggest six choices for the function
ϕ . Five of these are Type I and are: ϕ (1)(g) = (g−1)2, ϕ (2)(g) = g lng− g+ 1,
ϕ (3)(g)= (

√
g−1)2, ϕ (4)(g)=− lng+g−1 and ϕ (5)(g)= (g−1)2 /g. Fig. 1 shows

the shapes of these five functions.
The function ϕ (1) is simply quadratic; in the literature on calibration it is usually

referred to as the ‘chi-square’ function (see for example [14], equation (2.10)). It
is by far the most popular in practice. The function ϕ (2) is often referred to as the
multiplicative or raking function in literature, (see for example [1]).

Many authors consider solving the optimization problem (3) without the con-
straint L ≤ G ≤U . However, in this case using the function ϕ (1) in the optimization
may lead to extreme and negative weights. Whilst the function ϕ (2), by the nature of
its domain, only permits non-negative values for the optimized weights, the weights
may still take very large values. This also applies to functions ϕ (3), ϕ (4) and ϕ (5).
The functions ϕ (3), ϕ (4) and ϕ (5) have received much less attention in the literature
on calibration.

The above criticism of the functions ϕ (1)–ϕ (5) can be extended to all functions
of Type I. Note that if we use the functions ϕ of Type I then the optimization prob-
lem (3) is an optimization problem with many variables and many constraints (recall
than n is typically very large).
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(a) ϕ (6) (line) and ϕ (7) (dot-dash) and ϕ (1)

(dash)
(b) ϕ (6) (line), ϕ (7) (dot-dash) and ϕ (8) with
α = 1 (dash)

Fig. 2 Functions ϕ (1) ϕ (6), ϕ (7) and ϕ (8) scaled so that c1ϕ (1)(3) = 1 and ckϕ (k)(3; 1
4 ,4) = 1,

k = 6,7 and c8,1ϕ (8)(3; 1
4 ,4,1) = 1.

Let us consider three functions ϕ of Type II:

ϕ (6)(g; l,u) = (g− l) ln
(

g− l
1− l

)
+(u−g) ln

(
u−g
u−1

)
,

ϕ (7)(g; l,u) = (1− l) ln
(

1− l
g− l

)
+(u−1) ln

(
u−1
u−g

)
, (6)

ϕ (8)(g; l,u,α) =
(g−1)2

[(u−g)(g− l)]α
, α > 0 . (7)

In Fig. 2, we plot the functions c1ϕ (1)(g), c6ϕ (6)(g; 1
4 ,4), c7ϕ (7)(g; 1

4 ,4) and
c8,1ϕ (8)(g; 1

4 ,4,1) with the constants c1, c6, c7 and c8,1 chosen so that c1ϕ (1)(3) = 1,
ckϕ (k)(3; 1

4 ,4) = 1 for k = 6,7 and c8,1ϕ (8)(3; 1
4 ,4,1) = 1.

In Fig. 3, we plot function ϕ (8) for various values of the parameter α . In Fig. 3(a),
we choose the constants c8,α so that c8,α ϕ (8)(3; 1

4 ,4,α) = 1. In Fig. 3(b), we choose
the constants c8,α so that c8,α ϕ (8)( 1

2 ; 1
4 ,4,α) = 1

2 .
The function ϕ (6) is defined on the closed interval g ∈ [l,u] so that by continuity

we have ϕ (6)(l; l,u) = (u− l) ln u−l
u−1 and ϕ (6)(u; l,u) = (u− l) ln u−l

1−l . The function
ϕ (6)(g; l,u) is not defined outside the interval [l,u]. Using this function in (1) creates
difficulties for the algorithms that optimize the function (1) because of the discon-
tinuity (and the loss of convexity) of ϕ (6)(g; l,u) at g = l and g = u. A way around
this is the use of constrained optimization algorithms but then the criticism above
directed to the functions of Type I can be extended to the function ϕ (6).

The functions ϕ (7)(g; l,u) and ϕ (8)(g; l,u,α) are derived by us. These two func-
tions are defined only in the open interval g ∈ (l,u) and tend to infinity as g tends
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(a) ϕ (8) scaled so that c8,α ϕ (8)(3; l,u,α) =
1: α = 0.2 (line), α = 1 (dot-dash) and α =
5 (dash)

(b) ϕ (8) scaled so that c8,α ϕ (8)( 1
2 ; l,u,α) =

1
2 : α = 0.2 (line), α = 1 (dot-dash) and α =
5 (dash)

Fig. 3 Function ϕ (8)(g; l,u,α) for various values of α with l = 1/4 and u = 4.

to either l or u so that they can be classified as interior penalty functions. We have
derived the expression for the function ϕ (7) by applying a suitable transformation
(including taking a logarithm) to the density of the Beta-distribution on [0,1]. The
convexity of the function ϕ (7) follows from the expression for its second derivative:

∂ 2ϕ (7)(g; l,u)
∂g2 =

(u− l)
(
g2 − lu−2g+ l +u

)
(g− l)2 (u−g)2 =

(u− l)
[
(g−1)2 +(u−1)(1− l)

]
(g− l)2 (u−g)2 .

Since 0 < l < 1 < u < ∞, this second derivative is positive for all g ∈ (l,u) so that
the function ϕ (7)(g; l,u) is convex. The analytic forms of the functions ϕ (6) and ϕ (7)

are very similar but we believe the properties of the function ϕ (7) are much more
attractive for the problem at hand than the properties of the function ϕ (6).

For any α > 0, the function ϕ (8) has properties similar to the function ϕ (7): it is
defined in the open interval g ∈ (l,u), it is convex in this interval, and it tends to
infinity as g → l or g → u. The function ϕ (8) depends on an extra shape parameter
α , see Fig. 3, so that the penalty for g deviating from 1 can be adjusted by the user.

A very important special case of the function ϕ (8) occurs when α = 1:

ϕ (8)(g; l,u,1) =
(g−1)2

(u−g)(g− l)
. (8)

The most attractive property of the function (8) is its invariance with respect to the
change g ↔ 1/g in the case l = 1/u (which is a very common case in practice).
Recall that g = w/d is the ratio of the calibrated weight w to the initial weight d
and therefore the multiplicative scale for measuring deviations of g from 1 is the
most appropriate. This means that it is very natural to penalize g as much as 1/g for
deviating from 1. Assuming α = 1 and l = 1/u we have:
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ϕ(g;u) = ϕ (8)(g;1/u,u,1) =
(g−1)2

(u−g)(g−1/u)
.

For this function, we have ϕ(g;u) = ϕ(1/g;u) so that this function possesses the
additional property of equally penalizing g and 1/g.

4 Hard Calibration

In Sect. 2, we introduced the calibration problem with both hard and soft constraints.
In this section we consider the optimization problem (3), namely calibration with
hard constraints. We shall refer to this class of calibration problems as hard calibra-
tion. For several examples, we shall compare the calibrated weights obtained using
each of the functions considered in Sect. 3.

We solve the optimization problem (3) using the ‘solnp’ function within R’s
Rsolnp package (see [6]). Using this software, we directly solve the optimization
problem (3) using the Augmented Lagrange Multiplier (ALM) method (see [9] for
more details) for any choice of Type I or Type II function. For a comprehensive
optimization software guide, see [12].

We consider two approaches to the hard calibration problem. The first of these is
the classical approach considered in [4]. For this approach, the constraint L≤G≤U
is not included within the optimization. This means negative and extreme weights
are in the domain of the feasible solution. This motivates the second approach that
considers the optimization problem (3) including the constraint L ≤ G ≤ U . The
classical approach can be considered a particular case of the the second approach,
with L and U chosen to be vectors whose entries are l =−∞ and u = ∞ respectively.

We remark that there are software packages that solve the calibration problem
using an iterative Newton method as detailed in [5]. Examples of these include: the
‘calib’ function within R’s sampling package (see [19]), the G-CALIB-S module
within SPSS (see [20]) and the package CALMAR in SAS (see [4]). These packages
allow the user to solve the hard calibration problem using the classical approach (no
constraint L ≤ G ≤U) for the functions ϕ (1) and ϕ (2). The packages also allow the
user to solve the hard calibration problem including the constraint L ≤ G ≤ U for
functions ϕ (1) and ϕ (6) (see [5] for more details).

Many statistical offices throughout Europe use these packages to perform cali-
bration. When comparing the weights obtained using direct optimization with the
weights given by these packages, the answers in our examples were the same to
within computer error (despite the running time was in some cases very different).
Therefore, for the remainder of this paper, we only solve the optimization prob-
lem (3) using the ALM method.

To illustrate the case of negative and extreme weights, we consider the following
example adapted from [8] using data from [3].
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4.1 Example 1: A Classical Example

Throughout this example, we are working in units of thousands of people. Suppose
we have a sample of n = 12 cities, sampled from 49 possible cities. We wish to
weight our sample of cities appropriately to estimate the population total of the 49
cities.

For the 12 sampled cities, we know their size in 1920. Suppose we also know
the population total of the 49 cities in 1920, namely T = 5054. We begin with the
vector G = 1 and take the initial weights D = (49/12,49/12, ...,49/12)′. These
initial weights are derived using the classical Horvitz-Thompson estimator [7].

Recall from Sect. 2, that the hard calibration constraint can be written in the
form X ′W = T or equivalently A′G = T , with ai j = dixi j. We only have one aux-
iliary variable in this example, thus X and A reduce to 12 × 1 vectors. Suppose
we are given the sample values for the auxiliary variable in the 12 × 1 vector
X , where X = (93,77,61,87,116,2,30,172,36,64,66,60)′. Note that in this case
X ′D = A′1 = 3528 ̸= 5054. Therefore, for the initial weights G = 1, the constraint
A′G = T is not satisfied. This motivates the need to calibrate.

Figure 4 shows the g-weights obtained when optimizing (3) for functions ϕ (1),
ϕ (2) and ϕ (3) using classical hard calibration (recall L and U are taken as vectors
whose entries are −∞ and ∞ respectively). We consider the case qi = di in (1).
Figure 4(a) shows the calibrated weights when we do not impose the constraint
1′G = 12. The calibrated weights obtained when we impose the constraint 1′G = 12
are shown in Fig. 4(b).

1 4 6 8 12

−
1

0
1

2
3

4

(a) g-weights for functions ϕ (1) (cross),
ϕ (2) (plus) and ϕ (3) (circle) with the sum
of weights unconstrained

1 4 6 8 12

−
1

0
1

2
3

4

(b) g-weights for functions ϕ (1) (cross),
ϕ (2) (plus) and ϕ (3) (circle) with the sum
of weights constrained

Fig. 4 Comparison of g-weights with 1 (line) for the functions ϕ (1), ϕ (2) and ϕ (3).

For these functions, observe that when we do not impose the constraint 1′G = 12,
all the weights increase from, or remain at, their initial value of 1. It can be verified
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that the calibrated weights for each of these functions satisfy the constraint A′G =
T . We remark that 1′G = 15.883 for the calibrated weights using function ϕ (1),
1′G = 15.738 for the calibrated weights using function ϕ (2) and 1′G = 15.653 for
the calibrated weights using function ϕ (3); in all cases 1′G> 12 due to the calibrated
weights being larger than the initial weights of 1.

Imposing the extra constraint 1′G= 12 results in weights that are distributed both
above and below the initial g-weights of 1. One of the g-weights for function ϕ (1)

(indexed 6 in Figure 4(b)) is negative, whilst the weight indexed 8 has taken a large
value in comparison to the other g-weights. For functions ϕ (2) and ϕ (3), we do not
have a negative weight at index 6, however the value of the weight at index 8 is still
large in comparison with the other weights. Thus, whilst functions ϕ (2) and ϕ (3)

prevent negative weights, they do not prevent large positive weights.
We remark that the behaviour of the weights for functions ϕ (4) and ϕ (5) is very

similar to that for functions ϕ (2) and ϕ (3). Plots of the weights comparing functions
ϕ (1), ϕ (4) and ϕ (5) are very similar to the plots in Figs. 4(a) and 4(b). Hence we do
not plot the weights for functions ϕ (4) and ϕ (5) here.

To overcome the issue of negative and extreme weights, we include constraint
L ≤ G ≤U , where L and U have entries l and u respectively with 0 ≤ l < 1 < u ≤ ∞.
Any feasible solution to this problem is guaranteed to be within the bounds pre-
specified by the user. However, recall from Sect. 2 that the feasible solution of this
problem may be empty depending on the choice of L and U .

Returning to the example, suppose the calibrated weights G must satisfy the
bounds L ≤ G ≤U where L = (l, l, ..., l)′ and U = (u,u, ...,u)′ are both 12×1 vec-
tors. Consider the particular case of l = 12

49 and u = 120
49 . This means the g-weights gi

will be bounded between the lower bound of 12
49 and the upper bound of 120

49 , whilst
the weights wi will be bounded between the lower bound of ldi = 1 and the upper
bound of udi = 10 for all i.

Figure 5 shows the g-weights obtained by optimizing (3) for functions ϕ (1), ϕ (2)

and ϕ (3). Figure 5(a) shows the calibrated weights when we do not impose the con-
straint 1′G = 12. Figure 5(b) shows the calibrated weights when we include this
constraint.

For the weights in Fig. 5(a), we observe that imposing the constraint 1′G = 12
results in all the weights increasing from, or remaining at, their initial value of 1.
The weights in Fig. 5(a) are identical to those in Fig. 4(a).

However, in Fig. 5(b), we see that imposing the extra constraint 1′G = 12 re-
sults in weights that are at, or very close to, the upper and lower bounds u and l
respectively. The weights in Fig. 5(b) are different to those in Fig. 4(b).

In this case, the behaviour of the weights for functions ϕ (4) and ϕ (5) is very
similar to that for functions ϕ (2) and ϕ (3), both with and without the constraint
1′G = 12 included in the optimization. Hence we do not plot the weights for these
functions here.

Recall the relationship wi = digi. Since the vector of initial weights D is given,
and we have calculated the g-weights, we can compute the weights wi. Computing
the weights wi for function ϕ (1) from the corresponding g-weights in Fig. 5(b) gives
the same weights as those derived in [8].
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1 4 6 8 12

0
1

2
3

(a) g-weights for functions ϕ (1) (cross),
ϕ (2) (plus) and ϕ (3) (circle) with the sum
of weights unconstrained

1 4 6 8 12

0
1

2
3

(b) g-weights for functions ϕ (1) (cross),
ϕ (2) (plus) and ϕ (3) (circle) with the sum
of weights constrained

Fig. 5 Comparison of g-weights with 1 (line) for the functions ϕ (1), ϕ (2) and ϕ (3), dotted lines
indicate the upper and lower bounds.

Figure 6 shows the g-weights obtained by optimizing (3) for the functions ϕ (1),
ϕ (6) and ϕ (7). Figure 6(a) shows the calibrated weights when we do not impose the
constraint 1′G = 12. Figure 6(b) shows the calibrated weights when the constraint
is included within the optimization.
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(a) g-weights for functions ϕ (1) (cross),
ϕ (6) (plus) and ϕ (7) (circle) with the sum
of weights unconstrained

1 4 6 8 12

0
1

2
3

(b) g-weights for functions ϕ (1) (cross),
ϕ (6) (plus) and ϕ (7) (circle) with the sum
of weights constrained

Fig. 6 Comparison of g-weights with 1 (line) for functions ϕ (1), ϕ (6) and ϕ (7), dotted lines indicate
the upper and lower bounds.

Figure 7 shows the g-weights obtained by optimizing (3) for function ϕ (8) with
α chosen to be 0.2, 1 and 5. Figure 7(a) shows the calibrated weights when we do
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not impose the constraint 1′G = 12. Figure 7(b) shows the calibrated weights when
we include this constraint within the optimization.
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(a) g-weights for functions ϕ (8) with α =
0.2 (cross), α = 1 (plus) and α = 5
(circle) with the sum of weights uncon-
strained
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3

(b) g-weights for function ϕ (8) with α =
0.2 (cross), α = 1 (plus) and α = 5 (cir-
cle) with the sum of weights constrained

Fig. 7 Comparison of g-weights with 1 (line) for function ϕ (8), dotted lines indicate the upper and
lower bounds.

Observe that when the constraint 1′G = 12 is not imposed, the weights all in-
crease or remain at the initial values of 1. When the constraint is imposed, we see
that the weights are distributed both above and below the initial values of 1, with
several weights clustered at the bounds.

In summary, we have seen that not imposing the constraint 1′G = 12 results in
calibrated weights exhibiting less variability than the calibrated weights obtained
including the constraint. For this example, the calibrated weights all increased from
the initial values of 1 but did not exhibit any extremal behaviour, lying well within
the considered bounds. However, including the constraint 1′G = 12 gave calibrated
weights that were more variable and likely to move towards the boundaries.

For the remaining examples in this paper, we shall explore the effects the choice
of L and U have on the calibrated weights G. In all the examples we will include the
constraint 1′G = n, and take qi = di in (1).

4.2 Example 2

Suppose we are given the vector X = (93,77,87,116,2,30,172,36,64,60)′ and the
10× 1 vector of initial weights D = (4,4, ...,4)′. The parameter value T = 3900 is
assumed known. Recall that we impose the upper and lower bounds U = (u,u, ...,u)′

and L = (l, l, ..., l)′, where U and L are both 10 × 1 vectors whose entries are u and
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l respectively. Consider the case l = 1/u. We wish to find the smallest value of
u such that the optimization problem (3) has a feasible solution. In this example,
experimentation gave the smallest value of u as approximately 2.0.

In Fig. 8 we plot the calibrated weights when we take l = 1/2 and u = 2. In this
case, solving the optimization problem (3) for functions ϕ (1), ϕ (6) and ϕ (7) gives the
weights in Fig. 8(a). Figure 8(b) shows the weights for function ϕ (8) with α = 0.2,
α = 1 and α = 5.
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(a) Weights obtained for ϕ (1) (cross), ϕ (6)

(plus) and ϕ (7) (circle)

1 4 7 10

0
1

2
3

(b) Weights obtained for ϕ (8) with α = 0.2
(cross), and α = 1 (plus) and α = 5 (circle)

Fig. 8 Comparison of weights for functions ϕ (1), ϕ (6), ϕ (7), and ϕ (8) for various α with l = 1/2
and u = 2 (dotted lines indicate bounds).

For this example, a feasible solution to the problem (3) exists for the (approx-
imate) bounds 0 ≤ l ≤ 1/2 and u ≥ 2. Let us consider the effect of changing the
values of l and u.

Figure 9 shows the calibrated weights when l = 1/4 and u = 2. In Fig. 9(a) we
plot the weights for functions ϕ (1), ϕ (6) and ϕ (7) whilst in Fig. 9(b) we plot the
weights for function ϕ (8) with α = 0.2, α = 1 and α = 5. We see that reducing the
lower bound results in less weights taking values at the lower bound. Generally, the
calibrated weights for function ϕ (8) appear to move towards the boundaries more
than the weights obtained for functions ϕ (1), ϕ (6) and ϕ (7).

We now consider the effect of increasing u. In Fig. 10, we keep l = 1/4 and
consider the calibrated weights when u = 4. In Fig. 10(a) we plot the calibrated
weights for the functions ϕ (1), ϕ (6) and ϕ (7) whilst in Fig. 10(b) we plot the cali-
brated weights for function ϕ (8) with α = 0.2, α = 1 and α = 5. We see that in-
creasing the upper bound has resulted in some of the weights increasing slightly in
comparison to the weights in Fig. 9. However, there are no weights on the upper
bound.

To conclude, this example has shown that taking l = 1/u and minimizing the
value of u such that the calibration problem (3) has a feasilbe solution often results
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(a) Weights obtained for ϕ (1) (cross), ϕ (6)

(plus) and ϕ (7) (circle)
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(b) Weights obtained for ϕ (8) with α = 0.2
(cross), and α = 1 (plus) and α = 5 (circle)

Fig. 9 Comparison of weights for functions ϕ (1), ϕ (6), ϕ (7), and ϕ (8) for various α with l = 1/4
and u = 2 (dotted lines indicate bounds)
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(a) Weights obtained for ϕ (1) (cross), ϕ (6)

(plus) and ϕ (7) (circle)
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(b) Weights obtained for ϕ (8) with α = 0.2
(cross), and α = 1 (plus) and α = 5 (circle)

Fig. 10 Comparison of weights for functions ϕ (1), ϕ (6), ϕ (7), and ϕ (8) for various α with l = 1/4
and u = 4 (dotted lines indicate bounds)

in many of the weights taking values at the boundaries. Increasing the value of u
gives extra freedom to the weights and, as a result, there are typically less weights
at the boundaries.

In the remaining two examples, we only consider the smallest value of u for
which the optimization problem (3) has a feasible solution when l = 1/u. We fur-
ther explore the phenomenon of weights clustering at the boundary and investigate
whether different functions are more or less likely to give weights that approach the
boundaries.
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4.3 Example 3

Suppose we are given the 100 × 1 vector of initial weights D = (5, ...,5)′ and
suppose that T = 49500. The vector of auxiliary values X is formed by extending
the auxiliary vector from Example 4.2. We form a 100×1 vector that has the values
from the auxiliary vector in Example 4.2 as its first ten entries. The next ten entries
are formed by taking the auxiliary vector from Example 4.2 and adding 2 to each
value. In a similar way, we subtract 3 from each value to give the next 10 values. In a
similar way, we then repeat the vector, add 4 to all the entries, add 3 to all the entries,
subtract 1, subtract 2, repeat the vector and finally add 4 to give the remaining 70
values.

We impose the upper and lower bounds U = (u,u, ...,u)′ and L = (l, l, ..., l)′,
where L and U are both 100 × 1 vectors whose entries are u and l = 1/u respectively.
For this example, experimentation gives the smallest value of u as approximately
u = 2 and so l = 1/2.

In Fig. 11, we compare the calibrated weights for functions ϕ (6), ϕ (7) and ϕ (8)

with those for function ϕ (1). In Fig. 11(a), we observe that most of the points in the
scatterplot are on the diagonal. This indicates the similarity of the weights for func-
tions ϕ (1) and ϕ (6). However, in Fig. 11(b), we observe that there are fewer weights
on the diagonal. This indicates that, for function ϕ (7), more of the weights approach
the boundary. In Fig. 11(c), we see this even more clearly with a distinct band of
weights at the upper and lower bounds of 2 and 1

2 for function ϕ (8), compared with
the weights for ϕ (1) that are more evenly distributed between the upper and lower
bounds.
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(a) Weights for function ϕ (1)

against ϕ (6)

0 1 2

0
1

2

(b) Weights for function ϕ (1)

against ϕ (7)

0 1 2

0
1

2

(c) Weights for function ϕ (1)

against ϕ (8)

Fig. 11 Comparison of weights for function ϕ (1) against functions ϕ (6), ϕ (7) and ϕ (8), with l = 1/2
and u = 2

For the next example, we keep the sample size at n= 100 and increase the number
of auxiliary variables to m = 3.
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4.4 Example 4

Suppose we are given a 100× 1 vector of initial weights D = (5,5, ...,5)′, and let
T = (49500,49540,41000)′. Suppose that the 100×3 matrix of auxiliary values X
is defined as follows: for the first column of X we take the auxiliary vector from
Example 3 in Sect. 4.3. For the second column of X , we form a 100× 1 vector
whose first ten values are formed by taking the auxiliary vector in Example 4.2 and
subtracting 1. The next ten entries are formed by adding one to each of the values
of the auxiliary vector in Example 4.2. In a similar way, we subtract 2 from each
value to give the next 10 values, then repeat the vector, add 5 to all the entries,
repeat the vector twice, subtract 1, add 1 and finally add 3 to give the remaining
70 values. For the third column, we take 100 values generated at random from a
Normal distribution with mean 80 and standard deviation 48 (these are similar to
the mean and standard deviations for the other columns).

We impose the upper and lower bounds U = (u,u, ...,u)′ and L = (l, l, ..., l)′,
where L and U are both 100 × 1 vectors whose entries are u and l = 1/u respectively.
For this example, experimentation gives the smallest value of u as approximately
u = 2, and so l = 1/2.

In Fig. 12, we compare the calibrated weights using function ϕ (1) with the cali-
brated weights for functions ϕ (6), ϕ (7) and ϕ (8) (α = 1).
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(a) Weights for function ϕ (1)

against ϕ (6)
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(b) Weights for function ϕ (1)

against ϕ (7)
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(c) Weights for function ϕ (1)

against ϕ (8) with α = 1

Fig. 12 Comparison of weights for the function ϕ (1) against ϕ (6), ϕ (7) and ϕ (8) (α = 1)

Figure 12 has many similarities with Fig. 11 in Example 4.3. We observe that
the weights for functions ϕ (1) and ϕ (6) are very similar. However, the calibrated
weights for functions ϕ (7) and ϕ (8) show clear differences to the calibrated weights
for function ϕ (1). Again, we observe the distinct band of weights at the upper and
lower bounds of 2 and 1

2 for functions ϕ (7) and ϕ (8), compared with the weights
for functions ϕ (1) and ϕ (6) that are more evenly distributed between the upper and
lower bounds.

We now compare the CPU times taken to obtain the weights in Fig. 12. These
CPU times were computed on a computer with an Intel(R) Core(TM) i7-4500U CPU
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Processor with 8GB of RAM. The CPU times are given in Table 1. We observe
that the CPU times for functions ϕ (7) and ϕ (8) (α = 0.2) are less than those for
the classical functions ϕ (1) and ϕ (6). CPU time is related to the complexity of the
optimization problem, see [13] on a comprehensive discussion of how to measure
numerical complexity of an optimization problem.

Table 1 CPU times for various functions ϕ in solving the optimization problem (3) in Example 4

Function CPU Time (seconds)
ϕ (1) 0.609
ϕ (6) 0.734
ϕ (7) 0.544

ϕ (8) (α = 0.2) 0.569
ϕ (8) (α = 1) 0.559

In these examples, we have seen that the problem (3) does not necessarily have a
feasible solution for all choices of the vectors L and U . We address this issue in the
next section by introducing soft calibration.

5 Soft Calibration

In this section, we consider the optimization problem (5). Recall that this requires a
choice of the functions Φ and Ψ . In this section, we choose Φ to be of the form (1)
with ϕ taken to be ϕ (1), and consider the penalty function Ψ of the form (2). We do
not consider other choices of Φ or Ψ in this section.

Re-writing the problem (5) with our choice of Φ and Ψ gives the following
optimization problem:

n

∑
i=1

qi(gi −1)2 +β (A′G−T )′C(A′G−T )→ min
G∈G

, (9)

where G = {G : L ≤ G ≤ U}, q1, ...,qn are given non-negative numbers, C is a
user-specified m×m positive definite (usually diagonal) matrix and β > 0 is some
constant.

In Sect. 4, we considered two approaches to solving the hard calibration prob-
lem (3). We now consider two similar approaches for solving the problem (9). The
first approach is the classical soft calibration approach (see, for example, [2]). In
this approach, the constraint L ≤ G ≤ U is not included within the optimization.
Practitioners vary the value of the parameter β so that the weights are within some
pre-specified bounds. The second approach is to include the constraint L ≤ G ≤ U
within the optimization algorithm, i.e. to solve the optimization problem (5). We
remark that classical soft calibration is a special case of the second approach where
L and U are vectors whose entries are −∞ and ∞ respectively.



18 G. Davies, J. Gillard and A. Zhigljavsky

For the example in Sect. 4.1, we considered the calibrated weights obtained when
solving the optimization problem (3) without imposing the constraint L ≤ G ≤ U .
In this case, we saw that it is possible to obtain negative and extreme weights.

The classical soft calibration problem was proposed as a way to deal with these
negative and extreme weights. Classical soft calibration allows an analytic solution
to be found to the optimization problem (9). Let D be an n× n diagonal matrix,
whose entries are the weights d1,d2, ...dn. Furthermore, take qi = di and let γ = 1

β .
Then, for the classical soft calibration approach, the analytic form of the weights
that satisfy the optimization problem (9) is given by

G = 1+A
(
A′D−1A+ γC−1)−1 (

T −A′1
)
. (10)

This is an equivalent formulation of equation (2.4) from [2], expressed in terms
of g-weights. The term

(
A′D−1A+ γC−1

)−1 is similar to the inverse matrix term in
ridge regression (see, for example, [15]).

Let us consider the effect of changing the parameter β in (9). Recall that γ =
1/β or equivalently β = γ−1. We consider the effect of changing the parameter
γ . As γ tends to zero, γ−1 tends to infinity and so the optimization problem (9)
reduces to minimising (A′G−T )′C(A′G−T ) for G ∈G. As this term is quadratic,
the minimum occurs when A′G−T = 0 or equivalently A′G = T . This is the hard
calibration constraint. Therefore, the case γ → 0 corresponds to the solving the hard
calibration problem (3). We remark that this is consistent with (10), since taking γ =
0 in this formula gives the expression for the g-weights in classical hard calibration.

As γ tends to infinity, γ−1 tends to zero and so the term (A′G−T )′C(A′G−T )
becomes negligible. This results in the optimization (9) reducing to the problem of
minimising Φ(G) = ∑n

i=1 qiϕ (1)(gi) for G ∈ G, which is minimised at G = 1 (by
definition of the function Φ). Again, this is consistent with (10), since when γ → ∞
the term A

(
A′D−1A+ γC−1

)−1
(T −A′1) tends to zero giving G = 1.

To illustrate this, let us re-visit the example of Sect. 4.1. Recall that T = 5054,
D = (49/12,49/12, ...,49/12)′ and X =(93,77,61,87,116,2,30,172,36,64,66,60)′.
In Fig. 13, we plot the weights given by (10) as the value of γ varies. We take C = Im,
where Im denotes the m×m identity matrix. Figure 13(a) plots the weights for values
of γ from 0 to 40. This plot confirms our earlier assertions that as γ → 0, G tends to
the classical hard calibration weights. Figure 13(b) plots the weights for values of
γ between 0 and 1.6×106. This plot confirms that as γ → ∞, the g-weights tend to
their initial values of 1.

When obtaining the explicit solution, (10), to the classical soft calibration prob-
lem, we did not specify any constraints on the weights G. Suppose that we wish to
impose the constraint L ≤ G ≤ U . Observe from Fig. 13(a) that as the value of γ
increases, the range of the weights decreases. In classical soft calibration, having
obtained the analytic solution (10) for the calibrated weights, the approach to satis-
fying the constraint L ≤ G ≤ U is to choose the smallest value of γ for which the
weights in (10) are within the specified bounds. Clearly, the value of γ that satisfies
the constraints L ≤ G ≤U is sample dependent.
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(a) Soft weights for γ between 0 and 40
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(b) Soft weights for γ from 0 to 1.6×106

Fig. 13 Plots of classical soft calibration weights (10) as a function of γ

Consider again Example 1 from Sect. 4.1. We previously saw that, in the case
of classical hard calibration, we obtain negative and extreme weights for this sam-
ple. Suppose we wish to impose the lower and upper bounds of l = 12/49 and
u = 120/49. We saw that we were able to satisfy these bounds by solving the prob-
lem (3). In order to satisfy these bounds for classical soft calibration, experimenta-
tion gives the smallest value of γ as approximately γ = 9.0 in order to find a solution
that lies between these bounds. This is a relatively large value of γ .

Note that in this case we have 1′G = 13.527 ̸= 12 and A′G = 5053.899 ̸= 5054,
therefore our constraints 1′G = 12 and A′G = T are no longer satisfied. Having
relaxed these constraints in the soft calibration penalty (2), the larger the value of
γ , the smaller the value of β and the less importance we assign to the penalty (2)
in (9). This allows greater variation between A′G and T and between 1′G and 12.
However, for large values of γ there is less variation in the weights. In contrast, for
small values of γ , the penalty (2) is given more importance allowing less variation
between A′G and T and between 1′G and 12. However, in this case there will be
greater variability in the weights.

We illustrate this in Figs. 14 and 15. To produce these figures, we took 10,000
simple random samples of size 12 from the data in [3]. Figure 14 shows the distri-
bution of weights and values of A′G when we take γ = 0.1. Figure 15 shows the
distribution of weights and values of A′G when we take γ = 9, as required for this
example to ensure the weights are between L and U . We observe that although γ = 9
gave g-weights satisfying the bounds L ≤G≤U for one sample, this value of γ does
not guarantee that the g-weights will satisfy these bounds for every sample.

Let us now consider the second approach of directly optimizing (5). As stated in
Sect. 2, the optimization problem (5) has a solution for any value of β > 0. There-
fore, given any L and U , we can find a solution to the optimization problem (5)
independent of the choice of β . That is what makes this approach different to clas-
sical soft calibration.
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(a) A′G for 10000 random samples of size
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dashed lines indicate bounds

Fig. 14 Plots of A′G and g-weights that satisfy the optimization problem (10) for γ = 0.1
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(a) X ′W for 10000 random samples of size
12, vertical line at 5054 (X ′W = 5054 is
hard constraint)
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(b) g-weights for 10000 random samples of
size 12, vertical line at 1 (initial weights),
dashed lines indicate bounds

Fig. 15 Plots of A′G and g-weights that satisfy the optimization problem (10) for γ = 0.1

Let us return again to Example 1 from Sect. 4.1. Consider the problem (5) with
L ≤ G ≤ U where L = (l, ..., l)′ and U = (u, ...,u)′ are 12× 1 vectors with entries
l = 12

49 and u = 120
49 respectively. We know that small values of γ give a solution that

is close to the hard calibration solution. Taking γ = 0.01, we obtain soft calibration
weights that are very similar to those derived for hard calibration in Sect. 4.1. There-
fore, in this instance, solving the problem (5) has little advantage over solving the
corresponding hard calibration problem (3).
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However, suppose we want to impose the bounds l = 24/49 and u = 96/49,
corresponding to bounding the weights wi between the lower and upper bounds of
2 and 8 respectively. In this case, there is no feasible solution to the hard calibration
problem (3). Solving this problem using classical soft calibration requires a value of
γ = 16 to ensure that the weights are between these bounds.

We now consider the direct optimization approach. Recall that for small values
of γ , the solution to the problem (5) is approximately equal to the solution to the
problem (3). Assuming we have the lower bounds l = 24/49 and u = 96/49, taking
γ = 10−9 we obtain weights G such that A′G = 5053.910 and 1′G = 13.435. Un-
der hard calibration, we would require A′G = 5054 and 1′G = 12. We have almost
satisfied the constraint A′G = 5054, however we have not satisfied the constraint
1′G = 12. This suggests that the condition 1′G = 12 was too restrictive.

Conclusions

The problem of calibrating weights in surveys is a very important practical problem.
In the literature on calibration, there are many recipes but no clear understanding
of what calibration is. In this paper, we have formally formulated the calibration
problem as an optimization problem and defined the desired conditions for the com-
ponents of the objective function and feasible region. We have demonstrated that
the commonly used calibration criteria do not fully satisfy the desired criteria. The
corresponding optimization problems are not flexible enough, harder than they have
to be, or have some common recipes leading to wrong and contradictory recommen-
dations. An example of the latter is the use of ridge estimators for trying to achieve
positivity of the calibrated weights, see Sect. 5.

We have studied the influence of the function ϕ , the main component of objective
function, on the complexity of the optimization problem and the final solution. We
claim that the new functions ϕ (7) and ϕ (8) suggested in this paper are much more
transparent and more flexible than the functions adopted in the standard calibration
literature and classical calibration software packages. The functions suggested by
us lead to easier optimization problems as they automatically take into account the
constraint L ≤G≤U . This could be of high importance in practice as the dimension
of the problem (which is the size of the sample) may be very large.

In the case of large samples, one of our recommendations is to replace the hard
calibration problem defined by (1) and (3) with a soft calibration problem defined
by (1), (2) and (5), where β in (2) is large and the functions ϕi in (1) are either ϕ (7)

i

or ϕ (8)
i , see (6) and (7) respectively. In doing so we replace a potentially difficult

constrained optimization problem (3) with a much simpler problem (5), which is
an unconstrained convex optimization problem (recall that all constraints in (5) are
taken into account due to a clever choice of the functions ϕi). If β is large then the
solution of this problem is guaranteed to be very close to the solution of the original
problem (3).
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